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Abstract

We develop a rational expectations model of financial bubbles and study ways

in which a generic risk-return interplay is incorporated into prices. We retain the

interpretation of the leading Johansen-Ledoit-Sornette model, namely, that the price

must rise prior to a crash in order to compensate a representative investor for the

level of risk. This is accompanied, in our stochastic model, by an illusion of certainty

as described by a decreasing volatility function. The basic model is then extended to

incorporate multivariate bubbles and contagion, non-Gaussian models and models

based on stochastic volatility. Only in a stochastic volatility model where the mean

of the log-returns is considered fixed does volatility increase prior to a crash.

Keywords: financial crashes, super-exponential growth, illusion of certainty, contagion.

1 Introduction

In this paper we discuss rational expectations models for bubbles and market crashes – a

stochastic version of the model in [3]. We derive a number of significant theoretical and

empirical implications and the potential relevance to recent events is striking.

∗Email: frymaths@googlemail.com
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Rational expectations models were introduced with the work of Blanchard and Watson

to account for the possibility that prices may deviate from fundamental levels [1]. We take

as our main starting point the somewhat controversial subject of log-periodic precursors

to financial crashes [2]-[11]. For additional background on log-periodicity and complex

exponents see [12]. A first-order approach in [3] and subsequent extensions in [13]

state that prior to a crash the price must exhibit a super-exponential growth in order

to compensate a representative investor for the level of risk. However, this approach

concentrates solely on the drift function and ignores the underlying volatility fluctuations

which typically dominate financial time series [14]. Similar in spirit to [3], we derive

a second-order condition which incorporates volatility fluctuations and enables us to

combine insights from a rational expectations model with a stochastic model [15]-[16].

Our model gives two important characterisations of bubbles in economics: firstly, a rapid

super-exponential growth; secondly, an illusion of certainty as described by a decreasing

volatility function prior to the crash.

The layout of this paper is as follows. In Section 2 we introduce the basic model

and derive the crash-size distribution, the post-crash dynamics and simple estimates

of fundamental value. The model is then further extended to incorporate multivariate

bubbles (Section 3), contagion across different assets and sectors (Section 4), non-Gaussian

models (Section 5) and stochastic volatility (Section 6). Section 7 describes an empirical

application to the UK housing bubble of the early to late 2000s [17]. Section 8 is a brief

conclusion.

2 The model

In this section we give an alternative formulation of the model solution in [3]. This leads

naturally to a stochastic generalisation of the original model, which is then solved in full

to give empirical predictions for the distribution of crash-sizes, post-crash dynamics, and

simple estimates of fundamental value.

The basic model can be described as follows. Let Xt denote the log-price of an asset

at time t. As in [18] the starting point is the equation

dXt = µ(t)dt + σ(t)dWt − κdj(t), (1)

where Wt is a Wiener process and j(t) is a jump process satisfying

j(t) =

{

0 before the crash

1 after the crash.
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κ measures the relative size of the crash since if the crash occurs at time C

XC−
= XC and XC+ = XC − κ.

The corresponding fall in price is

[eXC − eXC−κ] = eXC [1 − e−κ]. (2)

Let h(t) be the hazard rate. Suppose a crash has not occurred by time t′. To first

order, j(t)|t′∼Bernoulli(pt′,t). where
∫ t

t′
h(u)du = pt′,t. It follows that E[j(t)|t′] = pt′,t and

Var[j(t)|t′] = pt′,t(1 − pt′,t). Under the model (1)

E[Xt − Xt′ |t′] =

∫ t

t′
µ(u) − κh(u)du, (3)

Var[Xt − Xt′ |t′] =

∫ t

t′
σ2(u) + κ2(h(u) − 2h(u)H(u))du, (4)

where H ′(t) = h(t). We compare (1) with the prototypical Black-Scholes model for a

stock price:

dXt = rdt + σdWt. (5)

Under the model (5)

E[Xt − Xt′|t′] =

∫ t

t′
rdu, (6)

Var[Xt − Xt′|t′] =

∫ t

t′
σ2du. (7)

The first-order condition, in [3], has the interpretation that µ(t) in (1) grows in order to

compensate a representative investor for the risk associated with a crash. This first-order

condition can also be retrieved by equating conditional means (equations (3) and (6))

giving µ(t) = r + κh(t). If we ignore volatility fluctuations by setting σ(t) = σ, then our

pre-crash model for the asset price becomes

dXt = (r + κh(t))dt + σdWt. (8)

However, this is actually a rather poor empirical model [19], failing to account for the

volatility fluctuations in (1). Under a Markowitz interpretation, means represent returns

and variances/standard deviations represent risk. Suppose that in (1) σ(t) adapts in

an analogous way to µ(t) in order to compensate a representative investor for bearing
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additional amounts of risk. Equating conditional variances, equations (4) and (7) gives

σ2(t) = σ2 − κ2h(t) + 2κ2h(t)H(t). (9)

Note that integrating (9) leads to the following expression for the conditional variance:

σ2(t − t′) − κ2
[

H(u) − H2(u)
]t

t′
. (10)

The second term in (10) is negative and illustrates an illusion of certainty – a decrease in

the conditional variance brought about by the bubble process. Intuitively, in order for a

bubble to occur not only must the returns increase but the volatility must also decrease,

otherwise the fundamental model (5) represents a safer and hence more attractive

investment than (1). We use (5) as a model of a ‘fundamental’ or purely stochastic

regime, as in Black-Scholes theory. From (9), our model for a bubble becomes

dXt = [r + κh(t)]dt +
√

σ2 − κ2h(t)(1 − 2H(t))dWt. (11)

The simplest h(t) considered in [3] is

h(t) = B(tc − t)−α, (12)

where it is assumed that α ∈ (0, 1) and tc is a critical time when the hazard function

becomes singular, by analogy with phase transitions in statistical mechanical systems

[20]. Here, we choose on purely statistical grounds

h(t) =
βtβ−1

αβ + tβ
, (13)

which is the form corresponding to a log-logistic distribution and is intended to capture

the essence of the previous approach. The log-logistic distribution is commonly used in

survival analysis, see e.g. [21], as the hazard rate has both a relatively simple form and,

for β > 1, has a non-trivial mode at t = α(β − 1)
1
β . This distribution has probability

density

f(x) =
βαβxβ−1

(αβ + xβ)2
,

on the positive half-line. The cumulative density function is

F (x) = 1 − αβ

αβ + xβ
.

4



The model (11) with h(t) given by (13) has the solution

Xt = X0 + rt + κ ln

(

1 +
tβ

αβ

)

+

∫ t

0

√

σ2 − κ2
βuβ−1

αβ + uβ

(

1 − 2 ln

(

1 +
uβ

αβ

))

dWu. (14)

From (14) the conditional densities can be written as

Xt|Xs∼N(µt|s, σ
2
t|s), (15)

where

µt|s = Xs + r(t − s) + κ ln

(

αβ + tβ

αβ + sβ

)

,

σ2
t|s = σ2(t − s) − κ2 ln

(

αβ + tβ

αβ + sβ

)

+ κ2

(

ln

(

αβ + tβ

αβ + sβ

))2

.

Under the fundamental equation (5) these expressions are simply µt|s = Xs + r(t− s) and

σ2
t|s = σ2(t− s). Given empirical data, the likelihood function can be simply calculated as

a product of normal densities and the likelihood-ratio test can be used to test for bubbles.

However, rather than the usual simple form, the appropriate limiting density of this ratio

is non-standard and depends on the geometry of the underlying parameter space [22]. The

hypothesis of no bubble is the hypothesis that κ = 0. Since κ ∈ [0, 1], κ = 0 is a boundary

point of the parameter space, and the distribution of the likelihood ratio statistic becomes

non-standard. Using the method of [22], we can see that the distribution of the likelihood

ratio statistic is approximately

1

2
χ2

2 +
1

2
χ2

3, (16)

where the distribution in (16) is obtained by sampling with probability 1/2, from a χ2
2

and sampling from a χ2
3 with probability 1/2. 1

Crash-size distribution. Suppose a crash has not occurred by time t. The crash-

size distribution resists an analytical description. However, a Monte Carlo algorithm to

simulate the crash-size C is straightforward and reads as follows:

1. Generate u from U ∼ Log-logistic(α, β) with the constraint u≥t.

2. Generate C∼(1 − e−κ)eZ ,

1Under the null hypothesis of no bubble α and β are assumed to lie in the interior of the admissible
parameter space, i.e. in the interior of [0,∞).
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where

Z∼N

(

Xt + ru + κ ln

(

αβ + uβ

tβ + αβ

)

, σ2u − κ2 ln

(

αβ + uβ

tβ + αβ

)

+ κ2

(

ln

(

uβ + αβ

tβ + αβ

))2
)

We note that simulating u from the log-logistic distribution is straight-forward and

possible via inversion using

F−1(x) = α

(

x

1 − x

) 1
β

or F−1(x) =

(

αβ + tβ

1 − x
− αβ

)
1
β

under the constraint u≥t.

Post-crash dynamics. Before a crash equation (11) applies. After a crash, the price

reverts to the fundamental price dynamics (5). Suppose the crash occurs at time C. At

t≥C we have that

Xt+h|Xt∼N(rh − κ, σ2h), (17)

but for t < C

Var(Xt+h|Xt) = σ2h − κ2 ln

(

αβ + (t + h)β

αβ + (t)β

)

+ κ2

(

ln

(

αβ + (t + h)β

αβ + (t)β

))2

(18)

(17) predicts a linear-in-time increase in the mean of the log-price in the aftermath of the

crash. The final two terms in (18) indicate a rise in volatility in the immediate aftermath

of the crash – a rise which may dominate the drift r for some time afterwards.

Fundamental values. The above model suggests a simple approach to estimate

fundamental value. Under the fundamental dynamics (5)

E(P (t)) = P (0)e(r+σ2

2
)t, (19)

and we use (19) to provide simple estimates of fundamental value in our empirical

application in Section 7. This approach recreates the widespread phenomenology of

approximate exponential growth in economic time series (see e.g. Chapter 7 in [23]).

3 Multivariate bubbles

In this section we consider a multivariate extension of the basic model in Section 2 and

consider models for bubbles in a multivariate portfolio of n assets. The results of this

section also motivate the study of contagion in Section 4.
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The equation describing fundamental or purely stochastic behaviour becomes

dXt = rdt + Σ1/2dWt, (20)

where r is a n×1 vector, Wt is standard n-dimensional Brownian motion and Σ is a (n×n)

covariance matrix. As a model for multivariate bubbles we replace (1) with

dXt = µ(t)dt + Σ1/2(t)dWt − κdj(t), (21)

where κ is a n×1 vector of known crash sizes and µ(t) is n×1. The instantaneous drift

corresponding to (21) is

µ(t) − κh(t). (22)

Setting (22) equal to r gives







µ1(t)

. . .

µn(t)






=







r1 + κ1h(t)

. . .

rn + κnh(t)






.

The instantaneous variance associated with (20) is Σ. The instantaneous variance

associated with (21) is

Σ(t) + κκT (h(t) − 2h(t)H(t)),

and the second-order condition gives

Σ(t) = Σ − κκT (h(t) − 2h(t)H(t)).

Prior to the crash, we have that Xt|Xs∼N(µt|s, Σt|s) where

µt|s = Xs + r(t − s) + κ ln

(

αβ + tβ

αβ + sβ

)

,

Σt|s = Σ(t − s) − κκT ln

(

αβ + tβ

αβ + sβ

)(

1 − ln

(

αβ + tβ

αβ + sβ

))

.

Suppose we have a portfolio (ω1, . . . , ωn)T in stocks (X1, . . . , Xn) with the ωi non-negative

and satisfying
∑n

i=1 ωi = 1. Suppose a crash has not occurred by time t. The portfolio-

wide crash-size distribution can be obtained by simulation using the following algorithm:

1. Generate u from U ∼ Log-logistic(α, β) with the constraint u≥t.

2. Generate C∼(1 − e−κ)eZ ,
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where the distribution of Z is normal with mean

ωT (Xt + ru + κ ln

(

uβ + αβ

tβ + αβ

)

),

and variance

ωT

(

Σu − κκT ln

(

uβ + αβ

tβ + αβ

)(

1 − ln

(

uβ + αβ

tβ + αβ

)))

ω.

Statistical tests for multivariate bubbles. One can test for the presence of at least one

bubble in a portfolio of n assets. Alternatively, one may also test for the presence of a

bubble in m of the n assets in the portfolio where m < n. Testing for a bubble in at least

one of the assets in an n-dimensional portfolio corresponds to testing the null hypothesis

that κ = (0, . . ., 0)T . In this case the likelihood-ratio statistic has the null distribution

(

1

2
χ2

2 +
1

2
χ2

3

)n

, (23)

where the distribution in (23) is an n-fold convolution of the mixture distribution in

(16). We can also test the hypothesis of an m-dimensional bubble, where m < n.

We may test the hypothesis that κ = (κ1, . . . , κm, κm+1, . . . , κn)T against the alternative

κ = (0, . . . , 0, κm+1, . . . , κn)T . In this case the approximate distribution of the likelihood

ratio statistic is an m-fold convolution of the chi-squared mixture distribution with itself.

If κm+1, . . . , κn are all non-zero this is a test for bubbles in the remaining m assets assuming

bubbles in assets m + 1–n. If κm+1, . . . , κn all equal zero this is a test that bubbles occur

in the subset of m assets only.

4 Contagion

Based on the model of the previous section, we discuss a simple model of the contagious

effects directly brought about by the bubble process. First however, we give a brief

overview.

Assessing contagion is a delicate theoretical and empirical issue in economics. A

distinction needs to be made between genuine contagion and simple co-dependence, with

much of the literature failing to make an adequate distinction between the two [24]. Asset

prices are assumed to exhibit non-zero correlations in normal times. Contagion occurs

when there is a genuine change in the market’s correlation or cross-linkage structure

brought about by specific events or crises. Anything else is simply co-dependence.

8



As an illustration, consider the following. Suppose the prices of two assets are

correlated. Following exposure to a commmon shock the price of both assets falls.

Simplistic empirical analysis may suggest enhanced correlation in these periods without a

genuine change in market cross-linkages having actually occurred. Empirical approaches

based on copulae, see e.g. [25] and the interesting economic interpretation therein, assess

contagion on the basis of “intrinsic” copulae properties and do allow for some headway.

However, this approach remains largely empirical and, as we show, our basic framework

explicitly allows us to model contagion as defined by a change in the cross-linkage or

correlation structure directly brought about by the bubble process.

Analogously to (17), our model for post-crash dynamics becomes

XC+h|XC∼N(rh − κ, Σh).

We consider two assets X and Y and let h = 1. Under our model for post-crash dynamics

(

XC+1 − XC

YC+1 − YC

)

∼N

((

rX − κX

rY − κY

)

,

(

σ2
X σXY

σXY σ2
Y

))

.

We have that

E(YC+1 − YC |XC+1 − XC = x) = rY − κY +
σXY

σ2
X

(x − rX + κX). (24)

(24) suggests that contagion from X to Y occurs if

κXσXY

σ2
X

> κY ,

i.e. if the relative effect of a shock of size κX on X has a larger impact on Y than κY .

Alternatively, we can model shocks across whole sectors rather than simply across single

assets. Let x∼N(µ, Σ) and write

x = (xA, xB)T , µ = (µA, µB)T , Σ =

(

ΣAA ΣAB

ΣBA ΣBB

)

.

The conditional mean of A given B is given by

µA|B = µA + ΣABΣ−1
BB (xB − µB) ,

see e.g. Chapter 2 in [26]. Let X and Y be vectors representing different sectors of the
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economy. Our model for post-crash dynamics becomes

(

XC+1 − XC

YC+1 − YC

)

∼N

((

rX − κX

rY − κY

)

,

(

Σ2
X ΣXY

ΣY X Σ2
Y

))

.

We have that

E(YC+1 − YC |XC+1 − XC = x) = rY − κY + ΣY XΣ−1
XX(x − rX + κX), (25)

and contagion from X to Y occurs if

ΣY XΣ−1
XXκX>κY .

5 Non-Gaussian models

In this section, motivated by the stylised empirical facts of financial markets (see e.g.

[14], Chapter 7), we modify (5) in order to accommodate non-Gaussian behaviour. We

use the NIG Lévy process [27]-[28] as our benchmark. The NIG process has the integral

representation

Xt = X0 +

∫ t

0

rdu +

∫ St

0

σdWu, (26)

where St is an inverse Gaussian Lévy process satisfying E(St) = t ([14], Chapter 4).

Here, we restrict to univariate models, though multivariate models are possible with

an equivalent representation using multivariate Brownian motion. For an application of

multivariate NIG models to financial data see e.g. Chapter 3 in [29]. Since (26) represents

purely stochastic behaviour in the absence of a bubble, our bubble model becomes

Xt =

∫ t

0

r(u)du +

∫ St

0

σ(u)dWu − κdj(t), (27)

where j(t) is a jump process with hazard function h(t). Prior to a crash we have

µ(t) = r+κh(t) and σ2(t) = σ2−κ2h(t)+2κ2h(t)H(t) as before. The transition densities

for the models in (26-27) are symmetric NIG. Adapting a non-standard parameterisation

in [30], we write the symmetric NIG density as

f(x) =
(σ2)−1/2√χeχ

π

√

χ

χ + (x−µ)2

σ2

K1

(
√

χ2 +
χ(x − µ)2

σ2

)

.

10



Suppose the price is observed at a sequence of regularly spaced price increments t1, . . . , tn.

We have the following model for log-returns:

log(Pt+1) − log(Pt)∼NIG(µt, σ
2
t , χ).

Under the null hypothesis of no bubble in (26) µt = r and σ2
t = σ2. Under the bubble

model (27) we have that

µt = r + κ ln

(

αβ + (t + 1)β

αβ + tβ

)

,

σ2
t = σ2 − κ2 ln

(

αβ + (t + 1)β

αβ + tβ

)(

1 − ln

(

αβ + (t + 1)β

αβ + tβ

))

.

The likelihood ratio test in (16) can again be used to test for bubbles. Suppose a crash

has not occurred by time t. The crash-size distribution can be simulated using:

1. Generate u from U ∼ Log-logistic(α, β) with the constraint u≥t.

2. Generate C∼(1 − e−κ)eZ ,

where

Z∼NIG

(

Xt + ru + κ ln

(

uβ + αβ

tβ + αβ

)

, σ2u − κ2 ln

(

uβ + αβ

tβ + αβ

)(

1 − ln

(

uβ + αβ

tβ + αβ

))

, χ

)

.

We note that under this non-Gaussian model more extreme crash-sizes are more likely.

6 Models for bubbles via a Garch model of stochastic

volatility

Large-scale empirical study suggests that on real markets volatility is non-constant,

volatility clustering occurs, and a stochastic model for volatility is appropriate [14],

Chapter 7. In this section we review a Garch(1, 1) model of stochastic volatility, see e.g.

Chapter 12 in [23], and show how this model can be used as an alternative benchmark.

The Garch(1, 1) model can be written as

Xt+1 = µ + Xt + ǫt+1, (28)

ǫt ∼ N(0, ht),

ht = β0 + β1ǫ
2
t−1 + β2ht−1,

where ǫt i.i.d N(0, 1). Suppose a crash has not occurred by time t. As a model for a
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bubble replace (28) with

Xt+1 = µ(t) + Xt + ǫt+1 − κj(t + 1). (29)

Under the regular model given by (28)

E(Xt+1 − Xt|t) = µ.

Under the bubble model (29)

E(Xt+1 − Xt|t) = µ(t) − κ[H(t + 1) − H(t)].

Retaining indifference by equating conditional expectations gives µ(t) = µ + κ[H(t +

1) − H(t)], as before. Some further simplification is possible if we make the additional

assumption, as in the empirical literature see e.g. [31], that µ(t) = µ is constant. In this

case the result of the bubble process is volatility-induced financial growth.

Suppose that co-existence of the bubble and fundamental models is explained by

equating the conditional expectation of the underlying price process P (t). Under the

regular model (28)

E[Pt+1|t] = P (t)eµ+
(β0+β1ǫ2t−1+β2ht−1)

2 . (30)

Under the bubble model (29)

E[Pt+1|t] = P (t)e−κ[H(t + 1) − H(t)]eµ+
ht
2 . (31)

Equating (30) and (31) gives

ht = (β0 + β1ǫ
2
t−1 + β2ht−1) + 2κ − 2 ln (H(t + 1) − H(t)) .

7 Empirical analysis

As an empirical application we consider the UK housing bubble from 2002-2007 by

modelling a monthly time series of average house prices. Without high-frequency effects,

we restrict attention to the Gaussian model in Section 2. The likelihood for the Gaussian

random walk model is 222.366 and for the model in (14) is 234.663. The likelihood ratio

in (16) is 24.595 giving a p-value of 0.000 and strong evidence in favour of a speculative

bubble in the UK house-price series. A plot of UK house prices and estimated fundamental
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values (19) is shown in Figure 1. Notable differences can be observed between the two

series with prices well in excess of fundamental levels. Out-of-sample historical values

and out-of-sample estimated fundamental values are listed in Table 1 and show prices

reverting to fundamental values over time. The probability density of the crash-sizes is

shown in Figure 2 and suggests a crash in the range £3.5-9,000. However, this appears

to underestimate the scale of the likely falls and the estimated fundamental values are

perhaps a better guide.
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Figure 1: Plot of average UK house-prices and estimated fundamental value.

Date Historical Est. Fundamental Date Historical Est. Fundamental
Jan 08 180,473 136,822 Jan 09 150,501 145,855
Feb 08 179,358 133,553 Feb 09 147,746 146,634
Mar 08 179,110 138,288 Mar 09 150,946 147,418
Apr 08 178,555 139,027 Apr 09 151,861 148,205
May 08 173,583 139,769 May 09 154,016 148,997
Jun 08 172,415 140,516 Jun 09 156,442 149,793
Jul 08 169,316 141,266 Jul 09 150,593
Aug 08 164,654 142,021 Aug 09 151,398
Sep 08 161,797 142,780 Sep 09 152,206
Oct 08 158,444 143,543 Oct 09 153,019
Nov 08 158,442 144,309 Nov 09 153,837
Dec 08 153,048 145,080 Dec 09 154,659

Table 1: Out-of-sample house prices and comparison with estimated fundamental value
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Figure 2: Simulated crash-size distribution.

8 Conclusions

This paper has provided a stochastic version of a the model in [3]. Crash precursors

are a super-exponential growth accompanied by an illusion of certainty, characterised by

a decrease in the volatility function prior to the crash. Using a benchmark Gaussian

model a myriad of potential applications to economics were discussed including statistical

tests for bubbles, crash-size distributions and post-crash dynamics, multivariate bubbles

and contagion. This framework was further extended to include both non-Gaussian

models and stochastic volatility. As a brief empirical application we consider the UK

housing bubble in the early to mid 2000s. Prices appear to be in excess of estimated

fundamental levels but seem to revert towards estimates of fundamental value out of

sample. Further work will include large-scale empirical application of the model and more

in-depth explorations of the non-Gaussian and stochastic volatility models in Sections 5-6.
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