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Abstract 
 
 
Previous research on wage penalty for temporary workers has focused on the conditional mean model. 

This paper uses micro data from the 2006 wave of the Survey of Italian Households’ Income and Wealth 

(SHIW) to examine the wage gap between temporary and permanent workers across the whole wage 

distribution. I apply a quantile regression models to understand whether there are glass ceiling or sticky 

floor for fixed-term workers and to test the hypothesis of polarization of wage profile by contract status. 

I also exploit a counterfactual decomposition analysis to investigate whether the gap is attributed to 

differences in characteristics or to differences in coefficients effect.  

A possible source of misspecification may arise, the endogenous selection in temporary status. In order 

to address the selectivity bias, I adopt an IV specification and a variant of the traditional Heckman (1978) 

dummy endogenous variable for the quantile framework. 

The main finding is a sticky floor effect, in the sense that the wage penalty for temporary workers is 

wider at the bottom of earnings distribution and in particular the decomposition method shows how the 

coefficients effect is decreasing in the upper half of wage profile. The analysis by educational level and 

by sector confirms the sticky floor effect. Finally correcting for endogenous self-selection in temporary 

contract slightly modifies the magnitude of wage gap, without changing the main patterns evidenced in 

the standard quantile regression. 

 

 
 
Keyword: temporary employment, quantile regression, wage gap decomposition, endogenous selection 

 

 

 

 

 



 2

Introduction 
 
 
During the last decades, European countries witnessed a significant expansion of temporary 

employment. The growth of fixed-term contracts has been triggered by the process of 

liberalization which has contributed to lessen the rigid employment protection legislation and 

to make more flexible the labour market. The increase of atypical contracts has generated a 

concern over its effects on labour market equilibrium. In particular the relative situation of 

temporary workers has played a central role in the numerous studies carried out in the last 

years on fixed-term jobs and their consequence in term of wages and employment transition.  

Furthermore fixed-term contracts expire automatically at the end of the term fixed without any 

firing cost for the employer and this means that temporary workers suffer a higher risk of 

unemployment and of income loss. According to the theory of compensating differentials, 

different working conditions in presence of the same level of competence should correspond to 

a wage premium for temporary workers to offset the disadvantages. However the empirical 

evidence shows a wage penalty for temporary jobs and in recent years several studies have 

investigated on this topic, finding negative earnings differentials for atypical jobs. 

This paper aims to investigate the differences between the wage structures of temporary and 

permanent workers in the Italian labour market. In particular the focus is to analyze the wage 

gaps across the whole pay distribution to understand whether there are “glass ceilings” and 

“sticky floors” for fixed-term workers in Italy. The pay gap may be different in the upper and 

lower tails of earnings distribution. The glass ceiling effect refers to a wider wage gap at the 

top of distribution, suggesting that temporary in the high-income jobs are paid less than their 

permanent counterparts. In contrast a sticky floor effect refers to an opposite situation, when 

the gap widens at the bottom of the wage distribution. I hypothesize a sort of polarization of 

wage profile by contract status, distinguishing between temporary and stable job, and I try to 

emphasize the extent to which work duration affects the location and shape of the conditional 

wage distribution.   

A growing number of studies has attempted to analyze the phenomenon and promoted greater 

understanding of its evolution. I evaluate the presence of a wage penalty for temporary 

contracts in Italy and whether the wage gap between two groups of workers is due to the 

distribution of employment contracts in the different type of jobs or whether they present 

different returns for the same characteristics. 

Most of the empirical studies that have investigated the permanent wage premium have looked 

exclusively at the conditional mean models and considered different ways of addressing the 
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selection issue related to contract type. I use the quantile regression technique to explore the 

source of heterogeneity in the wage gaps between temporary and permanent workers. 

Differently from the standard OLS approach, the quantile regression (hence after QR) 

framework provides a more flexible method to characterizing the effect of temporary status on 

different percentiles of the conditional wage distribution, thus enabling to shed further light on 

the location, scale and shape of the log wage distribution. Another advantage of QR model 

concerns the coefficient estimates that are more robust to outliers of dependent variable and, in 

presence of non-normal errors, may be more efficient than OLS estimates (Buchinsky, 1998). 

To examine the pay gap across wage profile, one has to go beyond the traditional OLS 

regression and Blinder-Oaxaca decomposition and to exploit several methods available to 

decompose the wage differential at each quantile. Thus I perform the Machado–Mata 

techniques (hence after MM) for QR model to assess the relevance of glass ceiling or sticky 

floor hypothesis and to investigate the magnitude of difference in earnings between temporary 

and permanent workers. The MM techniques is applied using the procedure proposed by Melly 

(2006) to study the differences in distribution in the quantile regression framework. The 

empirical analysis decomposes the difference between the temporary and permanent log wage 

distributions into one component based on the difference in labour market characteristics 

(endowments effect) and one component based on the difference in rewards for the same 

characteristics (coefficient effect). The idea is to generate a counterfactual temporary log wage 

density that would arise if fixed-term workers were given permanent’s labour market 

characteristics but continued to be paid like temporary.  

Nevertheless a possible source of misspecification may arise in this framework, the potential 

endogeneity of the temporary status which may bias the QR estimates, given that the role of 

unobservable individual characteristics cannot be ignored as well as the potential correlation 

between the temporary dummy variable and the error term in the wage equation. In order to 

address the issue of endogenous selection in temporary contract, this work examines the 

empirical implication of allowing the dummy variable for contract type to be correlated with 

the error term. Thus I adopt an IV method and a variant of the Heckman (1978) dummy 

endogenous variable model to correct the bias induced by the endogeneity of contract status. 

In particular for the IV approach I present a traditional 2SLAD estimator1 and a Quantile 

Treatment Effect (QTE) estimation strategy (as Abadie et al., 2002) that allows to look at the 

impact of temporary status throughout the income distribution. 

                                                 
1 The 2SLAD estimator has been used in the literature about returns to schooling to correct the endogeneity of 
education level (see for example Arias et al. 2001; Girma and Kedir, 2005)  but the fitted values approach may 
present some problem whether the treatment effect widely differs across quantile. 
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Differently the traditional self-selection issue, proposed by Heckman (1978) and present in the 

empirical studies on wage differentials, has been revised from Buchinsky (1998, 2001) in the 

QR framework, introducing a two-step in semi-parametric process to correct for the self-

selection. In this paper I apply a variant of the Buchinsky approach to account for the 

selectivity bias in my wage equation.2 

The dataset used here to explore wage differentials is the 2006 wave of the Survey of Italian 

Households’ Income and Wealth (SHIW), a representative survey carried out by the Bank of 

Italy. Therefore I focus in my empirical exercise on the sub sample of employees with age 

between 15 and 65 years that are employed on temporary or permanent basis. In particular I 

wish to understand whether the temporary jobs evidence a wage penalty with respect to open-

end contracts and whether this gap is due to different individual characteristics or to 

discrimination in the labour market. 

Several studies have looked at the pay gap between temporary and permanent workers and in 

particular for the Italian labour market (Picchio, 2006, 2007; Tanda e Rossetti, 2007) they find 

the existence of a wage penalty for fixed-term jobs, lower with respect to other countries. But 

all these studies analyse pay gap at the conditional mean, which may hide significant 

differences at the bottom or top  of the wage distribution. This study complements and adds to 

the previous research in many ways. Works on how much the temporary status wage penalty 

varies across the wage distribution have emerged recently and comparing wage not only at the 

mean is important to correctly capture the presence of segregation or discrimination and to 

evaluate the impact of individual characteristics at different point of earnings distribution.  

In addition I investigate more in depth the link between educational level and wage penalty 

that should be of great interest especially for policy makers for whom it is crucial to better 

understand the effects of flexibility in the Italian labour market. My study also complements 

Picchio (2006), which used the 2002 wave of SHIW to examine the wage differentials between 

temporary and permanent workers. Picchio (2006) looks at the wage penalty for temporary 

worker and accounts for self-selectivity bias in contract status dummy applying IV and sample 

selection models in a conditional mean framework. So this paper also contributes to the 

literature on the temporary-permanent wage differentials for the Italian labour market, 

controlling also for endogenous contract type in a QR framework.   

The main empirical findings are in favour of the sticky floor hypothesis, in the sense that the 

wage gap between temporary and permanent workers is wider at the bottom of the distribution, 

                                                 
2 The selectivity issue in wage gap literature has been widely account in several works. Previous studies has applied 
a variant of the traditional semi-parametric Bucinsky approach, exploiting several estimator (probit or other semi-
parametric model) to calculate the power expansion of inverse Mills ratio in the first step. Different example are 
Arulampalam et al. (2006) about union wage premia and Melly (2006) and Hyder and Reilly (2005) for public 
sector pay gap. 
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while at the top it is not significant. In particular the Machado-Mata decomposition shows how 

the coefficients effect (a measure of discrimination) is monotonically decreasing after the 30th 

percentile, especially for women. Moreover the differences in the upper tail of distribution are 

explained by difference in labour market characteristics, as for example education, experience 

and occupation. The analysis by educational level and for sector confirms a significant 

negative coefficient effect for temporary workers in the lower tail of earnings distribution, 

which may indicate the “port of entry” nature of temporary employment, in particular for 

young and high-skilled workers. Finally correcting for endogenous self-selection in temporary 

contract modifies the magnitude of the differentials, without changing the main patterns, as QR 

regression. 

The plan for the paper is as follows. In section 2 I discuss the econometric model and the 

specification of quantile regression, as well as the decomposition method applied. Section 3 

describes the dataset used for the empirical exercise, the rule for sample selection and presents 

some descriptive statistics. Section 4 reports the empirical findings and the decomposition of 

wage differential and finally section 5 draws the conclusions. 

  
 

2) The econometric model 

 

2.1) Quantile regression model 

 

In this section I disentangle the contribution of workers’ characteristics and contract type on 

wage setting process in the Italian labour market. Several contributions have examined the 

wage gap between temporary and permanent workers using a standard OLS framework3 and 

taking a Mincerian standard specification 4  as starting point. It consists on estimating a 

traditional wage equation, including a dummy variable for temporary contract. 

To investigate whether the wage penalty (or premium) varies at different points of earnings 

profile, I deviate from this practice by looking at the effect of con tract type and other 

covariates on the whole wage distribution, thus employing a quantile regression model 

(Koenker and Basset, 1998). In addition, linear regression, as OLS and other standard 

statistical techniques, focus only on mean effect, emphasizing the impact of each covariate as a 

                                                 
3 For instance Picchio (2006, 20007), Tanda and Rossetti (2007) for Italy, Jahn (2008) for Germany,  De La Rica 
(2004), Davia and Hernanz (2004) for Spain and Van Der Wiel (2008) for Netherlands. 
4 The specification of the wage equation is an extension of well-known Mincer model of wage determination and it 
controls for age and its square, work experience (and its square), tenure in the present job (and its square), five 
education dummies, a dummy for contract type (temporary or permanent), region of residence, demographic 
characteristics (a marital status dummy and a dummy on whether one is the head of household, firm size dummies, 
industry dummies and three occupation dummies (white collar, blue collar and manager). Summary statistics are 
presented in table 1. 
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simple “location shift” (Melly, 2005). Therefore the quantile regression (QR) is a natural 

extension of OLS estimation of conditional mean model and it describes the conditional 

quantile regression as a linear function of observed heterogeneity, providing a detailed 

description of the conditional wage distribution.  

I specify the thθ  ( )10 << θ  quantile of the log wage distribution ( iw ), conditional on a 

vector of covariates ix  as 

θθ βiii xxwq =)|(  

implying 

θθ µβ += ii xw ,   with  0)|( =ixq θθ µ , 

where θµ  is the error term of thθ  conditional quantile that is assumed to be zero.5 Moreover 

QR results are robust to outliers and heavy tailed distributions. 

The quantile estimator of θβ  solve the following minimization problem: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−−+−= ∑ ∑

≥ <β ββ
θ βθβθβ

ii iiXwi Xwi

iiii XwXw
: :

1minargˆ . 

 

The minimization problem can be solved into a GMM framework which has been applied to 

demonstrate consistency and asymptotic normality of θβ̂ and to define its asymptotic 

covariance matrix. Thus, I estimate a single equation QR model  as 

 

θθθ µβα ++= iii xtempw  

 

where itemp  is a dummy indicating contract type and equal to one whether the worker has a 

fixed-term job and zero if permanent. The set of QR coefficients provides the rates of return to 

the corresponding characteristics at the selected quantile of the conditional wage distribution. 

If the impact of temporary contracts is the same across the entire conditional wage distribution, 

I would expect θα  not vary for different θ . In addition, the variations in θα  across different 

quantiles could reflect heteroscedasticity. Moreover, if heteroscedasticity concerns interaction 

between temporary contract and unobserved determinants of wages, QR model allows to 

                                                 
5 This is the only distributional assumption on θµ . QR model avoids the restrictive assumption that the error terms 

are identically distributed at all points of the conditional distribution. 



 7

derive how the fixed-term contract effect and unobserved heterogeneity impact on individual 

outcome across different quantiles.6 

Finally, the single equation model is based on the assumption that the wage determination 

process is identical for both permanent and temporary workers, i.e. the returns to individual 

characteristics are the same in both contract type. In order to test this restriction, I estimate a 

model interacting each independent variable with the contract type dummy and I investigate 

whether the interaction terms are significantly and jointly different from zero. The null 

hypothesis is rejected, thus the above mentioned assumption is violated. In practice the single 

equation QR model may be misleading and separate wage equation for each group are required.  

 

 

2.2) Quantile regression decomposition 

 

Once I have estimated the QR coefficients, as in the OLS approach, the differences at selected 

quantiles of the wage distribution between two groups of workers can be decomposed into one 

component due to labour market characteristics and one component that is based on 

differences in rewards. In addition the implementation of quantile decomposition analysis may 

provide further evidence to understand whether the unobserved heterogeneity is a source in 

explaining the nature of the existent wage gap.7 The usual Blinder-Oaxaca methodology is 

based on the OLS property that the mean wage conditional on the average characteristics of the 

sample is equal to the unconditional mean wage. Basically the exact decomposition of the 

average wage gap between both group of workers is due to the validity of this property. Hence 

incorporating the QR framework in this decomposition techniques based on conditional mean 

model may be misleading.  

Furthermore the unconditional thθ quantile wage is equal to its thθ  quantile wage conditional 

on the vector of explanatory variables at the same quantile plus the average of those 

individuals’ error terms as  

θθθ µβ += iii xxwq )|( . 

But the error term in QR is not zero, so the exact decomposition of the wage differential (as in 

Blinder-Oaxaca methodology) cannot be performed at different quantiles. 

                                                 
6 In order to prove the heteroscedasticity hypothesis, i.e. the case in which slope coefficients are different for the 
same variables across quantile, I test that the estimated coefficients vectors from different QR are statistically 
different from one another.  
7 In practice I investigate whether the existence of sticky floor or glass ceiling is due to the prevalence of a 
composition effect (differences in labour market characteristics, as educational level, experience, occupation) or a 
price effect (differences in rewards, i.e. whether the rate of return for the same characteristics is different). 
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More recently, Machado and Mata (2005) have proposed a quantile-based decomposition 

method, which combines quantile regression with bootstrap approach and it has been 

addressed in a wide range of empirical studies.8 This procedure extends the traditional Blinder-

Oaxaca decomposition on conditional mean wage to the whole wage distribution by allowing 

to overcome the above mentioned problem. Assuming linearity9 between the quantiles of the 

dependent variable iw  and the covariates iX , the main methodological contribution of the 

Machado-Mata (MM) procedure is to derive an estimator of counterfactual unconditional wage 

distribution. 

In this paper I follow Melly (2006) who suggests a modified procedure of MM technique to 

decompose differences at different quantiles of the unconditional distribution. Instead of 

randomly drawing θ  from an uniform )1,0(U , the conditional distribution is estimated by 

quantile regression for a large number of selected sθ , such that Jj θθθ ,..,,..,1  (with j = 1,…, J) 

and then the conditional (log) wage distribution is integrated over the range of the explanatory 

variables. Let )ˆ,...,ˆ,...,ˆ(ˆ
1 Jj θθθ ββββ =  be the QR coefficients estimated at J different 

quantiles, 10 << Jθ  (with j= 1,…, J) separately for both temporary and permanent workers. 

Then, integrating over all observations and over all quantiles, Melly (2006) derives an 

estimator of the thθ  unconditional quantile of (log) wage as follows 

 

⎭
⎬
⎫

⎩
⎨
⎧

≥≤−= ∑∑
= =

−

N

i

J

j

ijji qx
N

qXq
j

1 1
1 )ˆ(1)(

1
:inf),,( θβθθθβ θθ  

 

where 1(• ) is the indicator function. 

In what follows, using the above estimator for unconditional distribution, Melly (2006) 

estimates the counterfactual distribution by replacing either the estimated parameters of the 

distribution of characteristics of permanent workers with those of temporary workers. In 

addition the difference at each quantile of the unconditional distribution can be separate into 

one component that calculates the difference in the rewards that the two groups (temporary and 

permanent workers) receive for their labour market characteristics (coefficients effect) and one 

                                                 
8 Other decomposition procedures have been provided in the literature in order to disentangle the sources of 
differences in wage distribution. For instance, the plug-in methods of Juhn et al. (1993), based on parametric 
regression, or Di Nardo et al. (1996), that exploit sample reweighting to apply a semi parametric model. However 
numerous empirical studies have mainly focused on the Machado-Mata technique to decompose differences along 
the whole wage distribution, exploiting quantile regression framework.      
9 This means that the 

thθ  conditional quantile is correctly specified as θθ βiii xxwq =)|(  ∀  )1,0(∈θ . 
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component that is based on differences in labour market characteristics between temporary and 

permanent workers (characteristics effect):  

 

( )θβ ,, tt

ixq - ( )=θβ ,, pp

ixq )],(),([)],(),([ ppptpttt
xqxqxqxq θθθθθθθθ ββββ −+−  

 

where t = temporary, p = permanent, the first brackets measure the difference in the rewards 

that the two groups receive for their labour market characteristics, exploiting the counterfactual 

distribution, while the second brackets measure the impact of differences in labour market 

characteristics between fixed-term and permanent workers. 10  Overall, the Melly (2006) 

decomposition generalizes the traditional Blinder-Oaxaca approach and illustrates how 

differences in rewards or in labour market characteristics affect the wage gap between the two 

groups across the entire distribution. However an important disadvantage of this methodology 

is that, unlike the classic Blinder-Oaxaca, it cannot be used to separate the contribution of each 

variable, thus I can report only the total endowment and coefficients effect for each selected 

quantile.        

 

 

2.3) The Endogeneity issue in contract type 

 

As widely discussed in the literature, standard QR results may be biased due to the 

endogeneity of contract type. In practice, if the choice of working under a temporary or a 

permanent contract is not exogenous and the workers do not have the same probability of 

being hired under each type of contract, a self-selection bias may arise due to the non random 

distribution of employment contracts. Indeed the role of workers’ unobserved characteristics 

on both wages and contract type selection cannot be ignored and accounting for endogenous 

selection may be necessary to correct the bias mentioned above.  

A further potential source of misspecification derives from a sample selection problem. The 

information on wages is only observable for wage earners, i.e. for those individuals who 

decide to participate to the labour market. Moreover, being a wage earner may be a 

characteristic distributed not randomly across the population and whether the error term of the 

labour market participation model is correlated with the error term of the wage equation, the 

QR may yield biased estimates even if the endogeneity of contract type is controlled for, due to 

a sample selection distortion.  

                                                 
10 For a more detail description of this decomposition approach see Melly (2006). I use Stata package rqdeco (Melly, 
2007), estimating 100 quantile regressions in the first step and then to obtain consistent standard errors I bootstrap 
the results with 100 replications. 
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Therefore, to account for the potential endogenous selection in temporary contract, I replicate 

the analysis, exploiting an IV approach and a self-selection model, and in the next two section 

I will describe the estimation strategy used to deal with endogeneity issue. 

 

 

2.3.1) An extension of IV: the Quantile Treatment Effect 

 

Several studies on wage differentials have dealt with the possible non-random selection in 

temporary contracts and have used different estimation strategy in order to account for the 

endogeneity bias. In particular an IV approach has been adopted to correct for the endogenous 

self-selection in the literature for the Italian labour, using different excluded instruments. For 

instance, as instrument, Tanda and Rossetti (2007) use information on whether the workers 

enters in the labour market after the Treu reform (so being potentially exposed to temporary 

contracts) or not, exploiting the timing of change in labour market regulation. Further, Picchio 

(2006) estimates different IV specifications, using an instruments on the job searching dummy 

variable and whether the worker has taken sick days or not.11  

In addition, the issue of endogenous variable is not straightforward in the quantile regression 

framework and thus to address the self-selection bias, differently by previous literature, I adopt 

an instrumental variable quantile regression (IVQR) approach that looks at the quantile 

treatment effect (QTE) of being a temporary worker on wages. 

Moreover, to perform the QTE estimator, I decide to follow Picchio (2006) and, as instrument, 

in this paper I use the on the job searching dummy variable, which is equal to one whether the 

employee is looking for another work or zero otherwise. The consistency of IV estimator is 

based on the correlation between the instrument and the endogenous dummy variable (being a 

temporary worker) and on its exogeneity. The searching dummy variable is supposed to be 

positively correlated to the contract type indicator, because temporary workers should have a 

higher incentive to search, giving their higher probability to be laid off at the end of the 

contract. Furthermore the first stage of a 2SLS estimator confirms that the on the job searching 

and fixed-term contract are positively correlated, with a positive estimated coefficient, 

statistically different from zero.12 

                                                 
11 In this case the author provides both an IV and a GMM specifications in the study of wage differentials between 
temporary and permanent workers. GMM estimation strategy allows to test for the jointly validity of the 
instruments with the Hansen – Sargan test of over identification, so providing a robustness check on endogeneity of 
contract type. Moreover, he also discusses the possibility to include, as instrument, information on whether the 
employee has never paid social security contributions.  
12 An issue much debated in the IV framework is the weakness of the instruments used in the empirical analysis, as 
discussed in Staiger and Stock (1997). For instance, in this specific case, with one endogenous variable and one 
excluded instrument, the model fall into the just identified case and thus the validity of the instrument cannot be test. 
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The extension of instrumental variable methods to the estimation of conditional quantile model 

is discussed firstly in Amemiya (1982).13 In practice, the estimation strategy consists in using 

the fitted values from a first step least squares regression of the endogenous variable on the 

instruments as covariate in the standard quantile regression at the second step. In literature this 

model is the so-called fitted value approach (2LAD). But, applying a 2LAD estimator, 

analogous to a 2SLS one, it will most likely result into biased and underestimated standard 

errors. Thus, to recover consistent standard errors, an approach may be to bootstrap them in 

both the first stage and in the second stage regressions.14 Based on the above model and for a 

comparison device, in this paper I estimate a 2LAD model where the first stage is a regression 

of the endogenous variable (temporary contract) on the exogenous ones (including the 

instrument) with a probit model, while the second stage is a linear quantile regression with the 

fitted value for temporary status.15  

However, as suggested in previous studies, the fitted value approach is not consistent whether 

the treatment effect differs across quantile. Other alternative approaches of IVQR estimator 

have been discussed in the literature (for a detailed description see Frolich and Melly, 2008; 

Melly, 2006). The subject of quantile regression with endogenous variables has been 

investigated by Chernozhukov and Hansen (2005) who provide a model of IVQR in presence 

of discrete endogenous variable. But, as discussed in the introduction, I adopt a quantile 

treatment effect (QTE) model, following Abadie, Angrist and Imbens (2002) approach, that 

allows to look at the impact of contract type throughout the wage distribution, controlling for 

endogenous self-selection in temporary contract. The comparison of both models shows that 

Abadie et al. (2002) impose more restrictive conditions on the selection equation but allow for 

heterogeneity in responses.16 Therefore I exploit the peculiar feature of QTE approach in order 

to emphasize the heterogeneous impact of flexible contracts across the wage profile. 

                                                                                                                                             
Alternatively, as suggested by Picchio (2006), on the job searching could have a direct effect on wages whether, for 
example, the employer decides to offer an higher wage to avoid that the worker accepts another job. Therefore, in 
this case, the IV estimator is not consistent. In order to make the Quantile Treatment Effect (QTE) approach more 
robust, I have also run a further specification in which the instrument used is the dummy variable sick, equal to one 
if the employee has taken days for sick and zero otherwise, as proved in Picchio (2006). The results are quite similar 
and the main patterns do not change. Finally, to overcome the possible weakness of the instrument, one could use 
the lagged incidence of temporary employment by region, skill and sector to control for local availability of 
temporary job by skill and sector. But, to exploit the QTE estimator proposed by Abadie et al. (2002), I haveto use a 
binary instrument and so the on the job searching seem to be a quite robust choice.   
13 Amemiya (1982) has considered quantile regression model combined with an endogenous variable, reporting the 
consistency and asymptotic normality of a 2LAD estimator, but having in mind a conditional median regression 
(LAD model) 
14 Arias et al. (2001) use the bootstrap approach to obtain consistent standard errors when they investigate return to 
schooling with instrumental variable quantile regression. A similar framework is udes by Garcia et al. (2001) in a 
study on gender wage gap applying QR model. 
15 Both stage are calculated using the bootstrap technique with 100 replications. 
16 I mean heterogeneity conditional on X and the quantile of interest, while both estimators allow for different 
treatment effects at different quantiles (see also Melly, 2006) 
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Abadie et al. (2002) propose a parametric estimator, based on the local average treatment 

effect (LATE) model of Imbens and Angrist (1994), which can be applied only to a specific 

case: a binary endogenous treatment variable D and a binary instrument Z. Abadie et al. (2002) 

provide conditions under which a Quantile Treatment Effect (QTE) model can be estimated:  

1. Independence assumption, i.e. ( )0101 ,,, DDYY  is jointly independent of Z given X. 

2. Non trivial assignment, ( ) 1|10 <=< XZP   

3. [ ] [ ]XDEXDE || 01 ≠  

4. Monotonicity assumption, i.e. ( ) 1|01 =≥ XDDP  

Thus for each θ  ( )10 << θ  there exist θδ  and θβ  such that    

 

( ) θθθ βδ '
01,,| XDDDDXYq +=> , 

 

where ),,|( 01 DDDXYq >θ  denote the θ -quantile of Y given X and D for compliers. Under 

these conditions, I can compute a consistent estimator of θδ  and θβ .  

The four conditions described above are derived from Angrist and Imbens (1994) in order to 

recover the local average treatment effect (LATE) interpretation of 2SLS.17  

Under these assumptions, Abadie et al. (2002) identify the marginal distribution of the 

potential outcomes for the sub-population of compliers and they suggest that the conditional 

quantile treatment effect can be estimated as a weighted quantile regression: 

∑ −−= )(.minarg)ˆ,ˆ( , δβρδβ τδβ iii

AAI

iIVIV DXYW  

 

where 
)|1Pr(

)1(

)|1Pr(1

)1(
1

i

ii

i

iiAAI

i
XZ

ZD

XZ

ZD
W

=
−

−
=−
−

−= .18 

 

More generally, the QTE approach captures the impact of an intervention on the whole 

distribution for individuals whose treatment status is changed by a binary instrument.19 

                                                 
17  In this framework, the first assumption implies that searching for another job is randomly assigned. In practice I 
cannot test this assumption, but I find that temporary workers are not significantly different from each other whether 
they search for another job or not. The third condition simply requires a significant first stage, as I explained in this 
section. The fourth condition basically implies that there not exists workers for whom searching another job reduces 
the probability to be temporary. In addition the model requires the presence of compliers and the treatments effects 
can be identified only for this group.    
18 A preliminary estimator for )|1Pr( ixz =  is necessary to implement QTE approach, but some of the weights 

may be negative. Moreover, Abadie et al. (2002) use a series estimator, while the Stata package IVQTE used in the 
estimation procedure, applies a local estimator, setting to zero the estimated weight that are negative in finite 
samples. 
19 Finally, I exploit bootstrap technique with 100 replication in order to obtain robust standard errors. 
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2.3.2) Self-selection approach: an extension of Dummy Endogenous Variable Model 

 

To guarantee the robustness of QR estimates, I need to account for a potential self-selection  

bias. Indeed if I do not correct for endogenous selection, usual QR risks yielding biased 

estimates, given that the disturbance term and the independent variables in the wage equation 

could be correlated. Either through a self-selection by workers or sample selection by 

employers, the location of individuals in either contract type may not be considered as the 

result of a random process.  

For the QR model, I control for endogenous selection by applying a variant of the standard 

Heckman two-step procedure (1978), as it was introduced by Buchinsky (1998, 2001) and 

based on a non parametric method. There is currently little consensus regarding the most 

appropriate correction procedure for selectivity bias in QR model, also exploiting a higher 

order series expansion, based on the inverse Mills’ ratio.  

Nevertheless this approach presents some complications that arise in regard to identifying the 

constant term in such wage regression models when higher order terms are used to capture 

selection bias. To get unbiased estimates of θβ , it is necessary to introduce an extra term in 

the quantile wage equation to correct for selectivity as evidenced:  

 

θθθθ εβ ++== )()|( '
ghxxxwq iii  

where  

)0,|()( >≡ gxuqgh iθθθ  

such that 0)0,|( =>gxq iiεθ . 

Following the two-step Buchinsky approach, the )(ghθ  is approximated by a power series 

whose coefficients has to be estimated and should define a function which is larger when the 

impact of unobservable is larger. This function is the inverse Mill’s ratio, being small for those 

with an high probability of being temporary and increasing monotonically as the probability of 

being temporary reduces. As exclusion variable in the first step, I adopt on the job searching 

dummy variable.20 Hence I control for the selectivity bias in QR wage equation expanding 

)(ghθ  as a power series in the inverse Mill’s ratio. 

In the first step I have to estimate the probability of workers being in temporary or permanent 

contract. The traditional method in the selection step uses a semi-parametric least square which 

                                                 
20 Whether I suppose that there not exist exogenous variables which account for the selection into temporary 
contracts and which are excluded from the wage equation, the identification of the self-selection model derive from 
a distributional assumption, i.e. the non linearity of the correction term (hazard term). 
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makes no assumptions about the distribution of the residuals. However a different strategy is 

followed in this paper, where I apply two ordinary probit selection equations (distinguishing 

by region, i.e. North vs. Centre-South) similarly to Heckman (1979) and from there derive the 

bias correcting factor (i.e. the inverse Mill’s ratio), as in Arumpalam et al. (2006). In the 

second step, a linear quantile regression is performed by additionally including the derived 

correcting factor. The )(ghθ  function is approximated by the inverse Mill’s ratio and its 

square. A different model specification with a series of power 3 (of Mill’s ratio) is tested and 

the result is similar.  

 

 
3) Dataset and descriptive statistics 

 

The empirical analysis has been carried out also on the 2006 wave of the Survey of Italian 

Households’ Income and Wealth (Shiw), a nationally representative survey conducted every 

two years since 1989 from the Bank of Italy. It covers 7,768 households composed of 19,951 

individuals and 13,009 income-earners, providing information about individual and job 

characteristics, contract type (temporary, interim and permanent work), the average monthly 

wage and the hour worked. The 2006 wave of SHIW dataset covers 7,236 employed workers 

of which 5,808 employees and 1,424 self-employed workers. 

To investigate the impact of temporary contracts on wages, I select the sub-sample of 

employed workers but removing the self-employed worker since their earnings are driven from 

more complex factors, as taxation, and they are structurally different from employees. Then I 

excluded observation lying in the first and in the last percentiles of the weekly working hours 

and yearly earnings respectively. Further I consider only individual with a working age 

between 15 and 65 years, excluding observations which have missing values for some 

covariates. 

The main variable is the type of contract itemp , a dummy variable equal to one whether the 

individual is fixed-term or interim worker and equal to 0 if the individual has an open-end 

contract. The dependent variable is the logarithm of the average hourly wage, defined 

combining the information provided by the SHIW on the yearly earnings and average working 

hours. In particular employees are asked to specify how many months they are worked during 

the year and in the same way the average weekly working hours including overtime. 

Differently fringe benefits are removed from total earned income, which is net of taxes and 

social security contribution. Exploiting this information I can compute the logarithm of net 

hourly wage for all employees in the sample, both temporary and permanent.  
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In order to draw a picture of temporary work and wage gap in Italy, I present some descriptive 

statistics, computed using the 2006 wave of SHIW. Table 1 shows the profile of employees, 

distinguishing then between temporary and permanent workers. Employment, permanent one 

in particular, follows a stronger “gender pattern”. Further the level of education is higher on 

average for permanent workers with more than 51% that have at least an high school 

qualification while for temporary the same percentage is around 47%.  

Regarding the age profile, fixed-term jobs are diffused among the youths, with more than 70% 

of temporary workers having less than 40 years. Differently the open-end works are 

concentrated among the adults where more than 50% is older than 40 years. This clearly 

illustrates the strategy of flexibility at the margin, with an higher diffusion of temporality rate 

among the weaker categories, as young workers, women and immigrants. 

From a macro-region analysis, table 1 reveals how in the Southern there are the 44% of 

temporary workers, while only 24% of permanent ones, so confirming the dual structure of 

Italian labour market. Moreover the 55% of permanent workers are resident in the North.  

Then the distribution of workers among occupations is related to one of the skill levels: high 

qualified worker (manager) and white collar tend to register lower temporality than unskilled 

workers and blue collars. And last but not least fixed-term employment is quite unequally 

spread across sectors and different firm size. Thus it common in building and in agriculture 

and it is likewise used by small and medium firm up to 50 employees. On the opposite extreme 

public services and industry and mining are the ones that register the highest portion of 

permanent position, together with large firm, higher than 50 employees. 

Table 2 displays a picture of the unconditional wage dispersion for temporary and permanent 

workers at various percentiles of the distribution (10th, 25th, 50th, 75th, 90th and median). I also 

show a measure of the wage dispersion, the 0.9-0.1 spread for both contractual status. The 

unconditional log hourly wage evidences a wider gap at the bottom of distribution, which 

decreases as I consider the upper tail of distribution. Moreover the spread 0.9-0.1 is higher for 

temporary than for permanent workers. Hence the data suggests the presence of a “glass floor” 

hypothesis, exhibiting a stronger wage differential between temporary and permanent at the 

lower percentile of distribution. 

The figure 1a and 1b provide a visual summary of the temporary and permanent wage 

distribution and the density functions were estimated using an Epanechinov kernel estimator. It 

can be seen from these figures that the distributions are quite distinct between contractual 

types. The permanent earnings distribution is characterized by a higher density function around 

the mode and a lower dispersion with respect to temporary distribution. But to control for the 
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effects of differences in the distribution of worker characteristics between contract type, I look 

at the quantile regression model in the next section.  

 

 

4) The empirical results 

 

Labour market literature on wage differentials has recently discovered the importance of 

controlling for the difference in pay gap along the whole distributions, given that wide 

differentials may arise at the bottom or at the top of distribution (for example see Melly, 2006; 

Arulampalam et al. 2006). In the quantile regression analysis two main effects may be 

identified. A “glass ceiling” effect is identified, in this study, when temporary workers, who 

are otherwise similar to permanent ones, tend to fall behind permanent at the top of wage 

distribution, while a “sticky floors” phenomenon is identified when the gap between temporary 

and permanent workers widens at the bottom of distribution. In the next paragraphs I present 

the quantile estimates with and without sample selection and the wage gap decomposition, 

applying the Machado-Mata techniques.    

 

4.1.) Quantile regression 

 

In this section I present the results for the econometric model outlined in section 3 to 

investigate whether the relationship between hourly wage and individual characteristics differ 

between temporary and permanent workers along the different quantiles of the whole wage 

distribution. According to the descriptive statistics presented in table 1-3, the discrepancy 

between the permanent and temporary log wage could be in part derived from differences in 

permanent’s and temporary’s labour market characteristics as for example age, education, 

occupation and industry. Thus in table 4 I further investigate the wage gap evolution between 

permanent and temporary workers throughout the wage distribution and I present the quantile 

regression respectively for the 10th, 25th, 50th, 75th and 90th quantile, controlling for individual 

and firms characteristics. Due to limited number of temporary in my sample, I believe that the 

comparison could be flawed at the bottom or at the top of the wage distribution. 

Furthermore the coefficient of contractual type dummy may be considered as a measure of the 

impact of temporary status on the wage profile for each worker, a sort of raw index of labour 

market discrimination against temporary workers. My results are in favour of the “sticky floor” 

hypothesis for atypical workers, in the sense that the wage gap is wider at the bottom of the 

distribution, as evidenced in table 4.  
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At the bottom of the distribution (10th percentile), the gap is about 20,6% and it is statistically 

significant at the 1%. Then the temporary-permanent wage differentials is lower at the 25th and 

50th percentile, around 13,3% and 11,3% and always statistically significant at the 1%. A 

further reduction is present at the 75th percentile where the gap is now slightly more than 6% 

and significant at the conventional level. Finally the data shows a marked reduction in the 

wage differentials at the upper tail of distribution (90th percentile) where the sign is reverse and 

the coefficient is now positive, around 3,3% but not statistically significant. These results 

reject the hypothesis of “glass ceiling” which prevents temporary from reaching high wages, 

suggesting that the link between flexibility and wage gap could be a problem for weaker 

workers at the bottom of the distribution. 

Figure 2 reports the coefficient estimates and their 95 per cent confidence intervals for the 

temporary dummy, comparing quantile regression and OLS models by gender.21 Comparing 

the estimates from quantile and OLS regression, it notes that for both females and males the 

OLS coefficient tends to underestimate the wage penalty for temporary workers until the 60th  

percentile. In particular the difference between OLS and quantile estimates appear more wider 

at the bottom and top ends of the conditional wage distribution both for male and female 

workers.     

To confirm this feature and to shed further light on the nature of wage gap, I look at the effect 

of explanatory variables on log hourly wage across the whole distribution, to find a theoretical 

explanation to the glass floor hypothesis. As I carry out different quantile regression on the 

combined temporary and permanent dataset, the temp  dummy coefficient can be simply 

interpreted as a measure of the extent to which wage gap between the two groups of workers 

remains unexplained at each quantiles after controlling for individual and job characteristics. 

The effect of age is not clear cut across various quantiles, with a positive value around 1% at 

the 25th percentile and statistically significant at 10% and the opposite sign at the 75th 

percentiles, while for other percentiles the coefficient is not statistically significant. Differently 

the impact of experience is increasing and slightly positive in column 1-4, but stronger at the 

top of the distribution and characterized by decreasing marginal rate of return, given the 

negative sign on experience squared. A similar but less marked picture is for tenure. 

Looking at the education and taking the elementary or none as base category, in column (1) I 

observe a positive and statistically significant for all four coefficient, with a larger value for 

university degree, around 23% that in column (5) at the 90th percentiles is more than double, 

                                                 
21 These graph are obtained using Stata and the grqreg module due to Azevedo (2004) that graphs the coefficients 
from quantile regression and the standard errors are calculated via bootstrapping with 50 replications. Further it 
graphs the coefficient and confidence interval from an OLS regression on the same model. For quantile regression 
the estimates are calculated at each 0,01 percentile point, as well as for the confidence intervals. The OLS estimates 
are represented through the horizontal line and specific upper and lower 95% confidence interval in the figure 2.  
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47,7%  and always statistically significant at 1%. A similar but lower trend is for other level of 

education in the different percentiles examined. 

The analysis for macro-regions reveals some interesting patterns: considering the North-East 

as reference category, at the bottom of distribution to stay in the North-West and in the Centre 

has a slightly negative effect on log hourly wage. Differently to live in Southern has a stronger 

negative impact. The estimates for the 25th percentile report a penalty around 3% for the 

North-West and 14% for the South, both statistically significant at 1%. The pattern changes at 

the top of distribution, in particular looking at the 75th percentile the difference between the 

North-West and the South is now narrower, probably because for the high-wage jobs the 

penalty of living in the South is lower. 

In addition, the firm size dummy variables show an increasing wage rate with the number of 

employees that is stronger at the bottom than at the top of wage distribution. For example to be 

employed in a firm with more than 500 employees increases the wage of 24% at the 10th 

percentile and of 19% at the 90th percentile, using always as reference category firm up to 4 

employees. The effects are all statistically significant at the conventional level. Furthermore 

the public firms positively affect the wage in particular at the bottom of distribution, as shown 

in column (1) at 10th percentile, with an effect around 28% and statistically significant. This 

impact tends to be lower at the top of the distribution, as for example in column (5) at the 90th 

percentile (around 19%). A possible explanation is that public sector has a more compressed 

wage distribution and the public sector wage premium could be highest at the lower end of the 

wage distribution and then to decrease monotonically, as found for other countries. 

A reverse pattern is shown whether I look at the manager dummy which effect is instead 

monotonically increasing along the whole distribution with a larger spread from the 10th to the 

90th percentile (18% vs. 27%). At last the gender dummy seem to indicate the presence of a 

constant gap between male and female around 9-10%, always significant and similar in almost 

percentiles estimates.   

To exploit the gender differences, I replicate the model for both male and female and in table 5 

and 6, I report the quantile regression for men and female separately. 

Table 5 shows the estimates for female, exhibiting the same pattern as the above model for all 

sample, but some important dissimilarities between female and male appears, for instance in 

the magnitude of coefficients. As mentioned previously, the temporary status has a lower 

negative impact for female workers. Indeed at the 10th the gap is around 14% and statistically 

significant at 1% and this pattern is confirmed until 50th percentile where the coefficient is -

0.082 (about 8%), so accepting the glass floor hypothesis. But these estimates evidence how 

the penalty for temporary status has also a gender dimension that favours female. Nevertheless 
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at the top of distribution the coefficient is positive and not statistically significant, in line with 

the previous results. 

A further observation is about regional dimension. Here at the bottom of distribution (10th
 and 

25th) to stay in the Southern has a greater negative impact on wage rate, respectively 33% and 

17%, while the coefficients for other regions is similar to previous table. Finally, as outlined 

above, the public sector strengthened the positive effect for female workers (31% at the bottom 

of distribution), probably due to its more compressed wage structure. 

Table 6 presents the estimates for male workers. First, the gap between temporary and 

permanent is higher, in particular at the bottom of distribution, but the pattern is well-defined 

and reverse only at the 90th percentiles. For example at the 10th percentile the penalty is around 

23% and statistically significant at 1%, ten percentage points of difference with the same 

percentile for female workers. The 75th percentile shows yet a significant penalty for 

temporary workers about 10%, albeit a substantial reduction. Hence the wage differentials are 

wider for male worker and in part present also at the top of distribution. 

As expected to be a manager has a stronger impact than for female workers, in line with the 

literature on female employment segregation that outlined a poor presence of women in high-

level job position. Married status also positively acts on wage rate, around 5-6% on the whole 

distribution while the rate of return of experience is statistically significant only in the upper 

tail of distribution, with a return around 1%. The pattern for education, firm size and region of 

residence is similar to previous estimates. 

 

  

4.2) Machado-Mata decomposition and wage gap: coefficient or characteristics effect? 

 

Table 9 presents the results from decomposing the earning gap between temporary and 

permanent workers for selected percentile, using the Melly (2006) estimator applied to quantile 

regression. Here the interest is the decomposition of wage gap in an endowment and 

coefficients effect, to account for the presence of discrimination in the Italian labour market, 

looking before to all sample and then replicated for male and female separately. 

The Machado-Mata decomposition using the quantile regression and the Melly (2006) 

estimator shows that the part due to difference in characteristics and the part due to the 

coefficient effect vary throughout different percentile. Looking at the column (1) of table 7, for 

the 10th and 20th percentile, the raw difference between permanent and temporary is high, 

around 30% but the hypothesis of glass floor for temporary seem to be confirmed, as 

evidenced by the negative coefficients effect that accounts for about half of total raw 
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differences. Although this evidence, still significant appears the difference in labour market 

characteristics, constant in all selected percentile (around -0.160). As evidenced in previous 

estimates, the upper tail of distribution (from 60th percentile) shows a monotonically reduction 

of the coefficients effect, that combines with the endowments effect clearly suggests a 

progressive reduction of discrimination for temporary in the high-wage job.      

Column (2) and (3) of table 9 report some interesting feature. For example, the raw differential 

is higher for female at the lower percentile, but this pattern is reversed approximately at the 

40th percentile and subsequently the raw wage gap is higher for male, in particular at the upper 

tail of distribution, from 60th percentile. Furthermore the component due to differences in 

return (coefficients effect) is continuously decreasing in absolute term for female, while the 

pattern is not clear cut for male, especially in the highest percentile. 

At the same way the component due to relative endowment tends to be monotonically 

increasing for female from the 30th percentile, slightly different from the constant trend in male 

column. For the 80th and 90th percentile of women distribution, essentially the entire gap is 

accounted by differences in endowments effect between temporary and permanent, as the 

coefficient effect is near to zero. 

Column (4)-(6) repeat the same decomposition techniques but controlling for sample selection, 

as described in the section about econometric model. The table 9 show that the introduction of 

polynomials in inverse Mill’s ratio reduces the proportion of wage penalty explained by the 

coefficient effect without modifying the main findings.  

Thus the general conclusion does not change whichever model used (with or without sample 

selection term) and supports the proposition that temporary workers are more discriminated at 

the bottom of the wage distribution and as we move up across quantiles, this effect reduces, in 

particular for female whose coefficient effect is near zero (or sometimes over) at the top of 

distribution.     

The utility of the results derived from using quantile regression rather than OLS is that they 

reveal a more complete picture of wage differential between permanent and fixed-term 

workers and the pay structure of labour market. 

 

 

4.2.1) Decomposition of the wage gap by individual and job characteristics 

 

Wage gap may vary across educational levels and hence I decompose the wage differential 

between temporary and permanent workers separately for three ranges of schooling: 

elementary and middle school, professional and high school and finally university or post 
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graduate degree. Thus figure 3 reports the Machado-Mata decomposition (coefficient effect) 

separately for the three range of education. The other regressors and the number of replications 

are the same as in the previous section. 

Figure 3a provides the information for university degree. Quantile distribution decomposition 

shows how the price differential declines as I move up the wage distribution . In particular the 

wage penalty for temporary is higher for low-wage job at extreme lower quantiles, probably 

reflecting the port of entry nature of fixed-term employment, used as screening and training 

instrument. So at the bottom of distribution, the discrimination effect is more significative, 

then the price differential reduces at the top of distribution, with a confidence interval that 

includes zero. 

A similar picture is confirmed in the figure 3b, which illustrates the coefficient effect for the 

high and professional school level. The price differential tends to decrease monotonically 

moving up along the wage distribution. Quite surprisingly at the extreme higher quantiles I 

observe a sort of wage premium for temporary workers in this educational group, more defined 

that in university degree. Figure 3c reports the coefficient effect for lower (middle and 

elementary school) educational group, showing a flat line around zero for almost all quantiles. 

So the possible wage gap between temporary and permanent for this schooling range seem to 

be better explained by the characteristics effect, while the figure evidences the absence of a 

significant discrimination effect. 

Concerning the change in the contribution of schooling level to the quantiles of wage equation, 

the results suggest that educational choices have a different impact on individual wage profile 

and represent a source of overall wage dispersion in Italy 

Then figure 4 shows the counterfactual quantile decomposition using Melly’s approach for the 

young workers (16-35 years) and captures the heterogeneity in temporary wage penalty along 

the different quantiles. The characteristics effect seem to be stable over the whole distribution, 

while the estimated negative coefficients effect varies strongly with different quantiles, 

showing a monotonic reduction as I go from the lowest to the highest quantiles. The pattern 

confirms the findings for the high schooling level workers.  

The sticky floor effect for fixed-term jobs at the bottom of the wage distribution indicates a 

sort of discrimination for temporary workers, which in the low-wage works has been exploited 

by the employers to reduce labour cost and to a screening device. Moving on the wage 

distribution the earning penalty seems to disappear and in particular at the top of distribution 

the temporary status is associated with a positive coefficient effect, probably due to the 

taxation model applied in the Italian labour market. 
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Figure 5 and 6 report the same decomposition techniques for the North and the Centre-South 

separately. Therefore looking at the North the total differential is mainly defined by the 

coefficients effect which indicate a stronger wage inequality than in the South with an higher 

discrimination at the bottom of distribution that tends to reduce until 20th quantile. Quite 

differently if I look at the top end of the earning distribution the coefficients effect revenges its 

sign, assuming positive value. Less volatile is the picture that come from figure 6 for the South, 

where from the 50th quantile the negative characteristics effect tends to increase so 

counterbalancing the reduction in discrimination effect for the extreme higher quantiles.  

The same empirical exercise is applied to private and public sector (see figure 7-8), revealing a 

similar picture with a wider variation in earnings differentials in public than private sector. 

This result confirms recent studies that report an increase of wage inequality in the Italian 

public sector.        

Finally, the wage gap can be decomposed as usual into the discriminatory (coefficients) and 

non-discriminatory (rewards) components. In the case of differences between fixed-term and 

permanent wage schedules in Italy, I show that this approach evidences not only different 

absolute wage differentials according to the location of the worker in the distribution of wages, 

but also that the contributes of coefficients effect between the two groups modifies along such 

location. Moreover the pattern of unequal pay gaps in term both of their absolute size and of 

discrimination effect tends to reduce over the wage scale. 

 

 

4.3) Selectivity bias in quantile regression 

 

The single wage equation with a dummy variable for contract status must be interpreted with 

attention because it rely on the strong assumption that the wage determination process is the 

same for both temporary and permanent workers. This restriction may be violated whether the 

returns to individual characteristics, as education or job experience, are affected by the contract 

status, so conducting to a misspecification of the model. 

In order to control for, I correct my wage equation for the selectivity bias, applying a variant of 

the two-step methods proposed by Buchinsky (2001) in the quantile regression framework. 

Thus I estimate the probability of being a temporary worker conditionally on the other 

covariates and instrument to describe the selection process and to identify the Mills ratio series 

necessary as correction term in the quantile wage equation. The estimation is performed by a 

probit model which relies on the normality assumption for the residuals and distinguishs by 
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region (North vs. Centre-South).22 The estimation procedure has also controlled for a gender 

dimension of selection process in temporary employment.  

In the second step, quantile regressions for log hourly wage are estimated, including the 

inverse Mill’s ratio polynomials, based on the probit model results.23 The selectivity correction 

terms are not significant with some exception for male workers, in particular at the 25th, 75th 

and 90th quantiles of the conditional earnings distribution, on the linear λ  coefficient. The 

negative and significant impact of selection term shows that temporary workers earn less than 

would be expected for their observable characteristics and the phenomenon is observed 

throughout whole distribution. One possible explanation for such result is that fixed-term 

workers may be reluctant to bargain aggressively, either due to the temporary nature of their 

job positions or to the lack of information about what permanent workers with similar 

observable characteristics are paid.  

Table 7 and 8 report the same QR wage equation but controlling for selectivity bias. As a 

comparison, the selectivity issue has not modified the estimates for female workers, 

evidencing only a slightly reduction of sticky floor effect for the lower quantile, as well as a 

not significant wage premium at the top end of distribution. Quite different is the picture that 

appears for male. Indeed the selection correction term has reduced the wage penalty associated 

with temporary status across the whole earning distribution, so suggesting that contract status 

is a more important issue for male workers without modifying the general pattern as outlined 

in previous sub-section.    

 

 

4.4) The endogeneity of temporary: the IV quantile regression estimates 

 

It is anticipated that the IVQR analysis correcting for endogenous selection will have slightly 

different results based on the heterogeneous effect of the temporary work treatment across the 

entire population. Moreover, the robustness of the model should also give an indication 

whether the IV assumptions and the validity of the instrument hold in predicting wage gaps for 

fixed-term workers. 

                                                 
22 In the traditional Buchinsky model (1998) the first step was performed using a semi-parametric regression which 
make no assumptions about the distribution of the residuals.  
23 The inverse Mill’s ratio polynomials are of second order, 

2λλ +  and are applied separately for male and 
female. Then the first step probit specification already distinguishes by region of residence, respectively North and 
Centre-South, to take into account the duality of Italian labour market and the different probability to have a fixed-
term contract. 
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Table 9 reports the 2LAD and QTE estimates for both female and male workers., using as 

instrument the on the job searching dummy variable.24 Whether I focus on the 2LAD results 

for the contract type indicator, I detect that the wage differentials between fixed-term and 

permanent workers is lower than in standard QR, mainly at the bottom of wage profile.  

In addition, the pattern of differences with the standard model seems to suggest that QR 

models are biased upwards due to endogenous self-selection in temporary contracts for the 

low-wage job, while no significant differences are found at the top of distribution. The two 

stage LAD estimates for male workers are lower than the QR counterpart up to the conditional 

median regression, while the results show a greater wage penalty (than the standard QR) in the 

upper tail of earnings profile. This suggests the possible presence of a glass ceiling effect for 

male temporary workers, given  that the wage penalty seem to widen for 75th  and 90th  quantile. 

However it should be noted that the pattern of the 2LAD estimates is more compressed than 

the standard QR model, with a similar negative coefficient between the 10th and the 90th  

quantile for male. But the loss of precision is big enough to render some coefficients not 

significant in the case of women and thus emphasizing that the 2LAD model fails to represent 

accurately the pattern of differences in temporary wage penalty encountered along the 

distribution. Therefore the precision of these estimates is not very high so the implications we 

are about to discuss do not have a conclusive nature.   

For this reason, I focus on the Quantile Treatment Effect (QTE) results that, correcting for the 

endogeneity, allows to capture the heterogeneous impact of temporary contract throughout the 

whole distribution. The most remarkable aspect of these findings is how large the relative gap 

is, accounting for the endogenous selection in temporary contract and using as instrument the 

on the job searching dummy variable. In table 9, I report for both female and male sample two 

different IVQR specifications, one controlling only for individuals characteristics and one for 

both individuals and occupational variable.  

At a first look, comparing the estimates from QTE with those from standard QR, it appears 

that standard quantile regression for female tends mainly to underestimate the wage penalty for 

female temporary workers across the entire earnings distribution. Differently, the QTE 

estimates at the bottom of distribution (10th quantile) are lower than the QR counterparts for 

male workers, while they are higher as I move up along the wage profile. In particular the 

estimated coefficient is -0.218 at the 10th quantile (vs. -0.233 for QR), therefore controlling for 

                                                 
24 As above mentioned in a previous section, empirical studies has widely focused on the weakness of instrument to 
correct the endogenous self-selection in the wage differentials analysis. In practice, I am aware that the validity of 
the on the job searching dummy as instrument cannot be tested. In order to apply a robustness check, I run different 
specification to test the validity of my results. In particular I use the days for sick as further instrument and the 
results do not change. To exploit peculiar feature of QTE estimator I cannot use the lagged share of temporary 
employment by region, skills and sector to control for a demand side factor. Thus, following Picchio (2006) I report 
the results for on the job searching dummy variable in a IVQR framework. 
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the endogeneity of the fixed-term dummy variable reduces the wage penalty for low-wage job. 

Negative and significant signs are reported for man at almost all quantile of the wage 

distribution. In practice the wage penalty for male temporary workers is greater in IVQR than 

in standard QR at the top of distribution (for instance at the 75th  quantile -0.151 vs. -0.102). 

Furthermore I test for the difference between the QR and QTE coefficients and mainly for 

women, I’m able to reject the equality between the two model. However, as argued by Autor et 

al. (2006) for the U.S. labour market, the results show a polarization in the Italian labour 

market, with higher wage inequality in the lower tail of wage profile and the importance to 

look not only to conditional mean but across the whole earnings distribution in order to better 

account for the effect of flexible contracts in shaping wage inequality pattern. In this sense 

QTE approach allows to describe the heterogeneous impact of temporary contract and showing 

wider differences along all quantiles than standard QR not accounting for the endogeneity 

issue.  

Moreover if I look at the QTE estimates without controlling for job-related characteristics, I 

find interesting gender differences on the evolution of the wage penalty along the distributions. 

In particular the female QTE estimates shows how the wage gap between temporary and 

permanent workers reduces controlling for occupational variable. It could be argued, as 

discussed in the gender wage gap literature, that these findings are in favour of the sticky doors 

hypothesis. This means that the job-related characteristics may account for a wide share of 

overall wage penalty, indicating how not controlling for the occupational variables could 

overestimate the real wage gap for female fixed-term workers. Differently the inclusion of 

occupational variables does not modify so much the temporary coefficient for male workers, 

who show  significant and negative coefficients in both specifications until the 90th quantile. 

Finally these results can be compared to estimates from the international literature on wage 

differentials between temporary and stable workers in order to examine how the wage gap 

varies after controlling for occupational characteristics. For instance, Graaf-Zijl (2005) found 

that in Netherlands the raw wage gap is 23 percent and exploiting matching technique, they 

explain 77 percent of the wage gap with controls for firms size, industry, occupational and 

wage bargaining information. De La Rica (2004) for Spanish labour market provided a 

decomposition for the raw wage gap and showed how 42 percent of the gap is due to firm 

segregation, 9 percent to occupational segregation and 57 percent due to individual 

characteristics. Differently, Davia and Hernanz (2004) always for Spain found that the wage 
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differentials between temporary and permanent workers are mainly explained by differences in 

personal and job characteristics, while differences in rewards are not significant.25 

Thus the main finding in IVQR estimates is that the wage penalty is higher than the one 

deriving from the standard QR model and therefore if I do not take into account the 

endogeneity of contract type, I underestimate the wage gap between temporary and permanent 

workers. Moreover, this result may be interpreted as a positive correlation between the 

unobservable individual characteristics (like ability) and the probability of holding a fixed-

term work, i.e. more able workers choose temporary jobs and lower wages, anticipating that 

the contract will be renewed with higher wage. In addition, empirical evidence confirms the 

sticky floor hypothesis, with a wider wage gap at the bottom of distribution, in particular for 

male workers and the sticky doors effect for women, i.e. controlling for occupational variable 

is able to explain a large share of the wage penalty.  

Furthermore, whether I do not control for sample selection bias,26 the wage equation estimates 

may be inconsistent even if I have corrected for the endogenous selection. Thus I carry out the 

sample selection correction, estimating firstly the latent index model that indicates the 

participation decision throough a standard probit model. Then I derive a specific Mills’ ratio as 

suggested by Heckman (1979) and Buchinsky (1998). As excluded instruments in this stage I 

use the presence of children. The probit selection equation includes traditional variables that 

may act on the participation in the labour market. Further having a children does not directly 

modify the wage, i.e. it has been argued that there is no correlation between unobservable 

variables and the probability to have a children.  

Moreover, I use the estimated Mills’ ratio as the argument in the power series expansion to 

control for sample selection bias in the QR wage equation controlling for the endogeneity of 

temporary contract. The results indicate that the correction term are not statistically significant 

and different from zero (looking at t-statistics for the power series expansion), thus the sample 

selection bias is not an issue, in line with the literature. I therefore decide not to report the 

estimates controlling for sample selection bias.    

Finally, table 10 summarizes the results on the wage penalty, looking at the coefficient for 

temporary contract variable. First of all, as robustness check, I perform a second specification 

of the self-selection model where the identification is obtained only through the non-linearity 

of the Mills’ ratio, without any excluded instrument in the first stage. The results are in line 

                                                 
25 Further their results indicated that the employment structure of the labour market has played an important role in 
explaining the wage differentials between temporary and permanent workers, but the presence of a significant 
selection bias term in the decomposition analysis confirms that indefinite and fixed-term jobs may be quite different.   
26 As above mentioned, the sample selection bias may occur because the sample of observed wages is not randomly 
selected from the population and thus the decision to participate may be correlated with the error term of the wage 
equation, making the estimates inconsistent.  
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with QR estimates and for male workers more similar to QTE approach. In practice, the 

difference between the QTE estimator and the variant of traditional endogenous dummy 

variable model may be interpreted as a signal of the failure of self-selection model to capture 

the heterogeneous impact of temporary contract across the whole distribution, once controlled 

for the endogeniety. However all three model confirms the presence of a sticky floor effect in 

the Italian labour market, i.e. the wage penalty for fixed-term works widens at the bottom of 

distribution. 

 

 

5) Conclusion
 

 

In this work I investigate the existence of wage differentials between temporary and permanent 

workers in Italy using the 2006 wave of SHIW. In addition, I examine how the wage gap 

differs along the wage distribution applying a quantile regression model, in the line of several 

and recent studies for other European countries. Secondly I extend the traditional Oaxaca-

Blinder decomposition to disentangle the endowments and coefficients effects in the 

explanation of wage differentials and to evaluate the presence of discrimination in the rate of 

return for atypical contracts. In this sense the Machado-Mata decomposition has been 

performed, using Melly (2006) approach, to provide new insights into the nature and the 

sources of wage gap in the Italian labour market. 

The unconditional wage gap between temporary and permanent is wider at the bottom of the 

distribution (around 30%) and then tends to decrease monotonically in the top of distribution. 

In particular the contractual status shows a gap that is far from being constant within the wage 

distribution. The quantile regression presents the same pattern, confirming the sticky floor 

hypothesis, with well defined wage differentials for the low percentile of the distribution. 

Furthermore the gender analysis reports a stronger gap for male worker and a higher spread 

between the upper and the lower tail of the wage distribution. 

Moreover my decomposition throughout the whole wage distribution detects the presence of a 

wide coefficients effect at the bottom of the distribution which can be interpreted as a sort of 

discrimination in low-wage jobs for fixed-term workers. For female, after the 30th percentile, 

the coefficients effects is monotonically decreasing and so in the upper tail of distribution the 

difference in earnings appear to be the consequence of different labour market characteristics. 

Quite different is for male, where the rate of return effect seems to be present also at the top of 

distribution. In addition, the pattern of unequal gaps between temporary and permanent wages 

is such that both their absolute size and the portion that can be attributed to differences in 
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reward (discrimination) reduces over the pay scale. This pattern could provide an explanation 

to the lack of a robust relationship between OLS measures of wage gap and the perceived 

wage discrimination. 

Wage gap may vary across educational levels or by sector and hence I replicate the Machado-

Mata decomposition on different sub-sample to investigate whether the discrimination effect is 

distributed equally between categories or whether it regards only some disadvantaged groups. 

The analysis for schooling range confirms that for high-skilled workers the coefficient effect is 

negative and suggests the presence of a wide wage penalty that tends to reduce as we move 

along the distribution and at the top of earnings profile we observe also a revenge in sign with 

a positive (or near to zero) discrimination effect for fixed-term workers. Similar results appear 

whether I compare public and private sector. 

As suggested in literature I also control for possible source of misspecification in wage 

equation and tries to correct for the self-selection (or endogeneity) in temporary contract and 

for sample selection, applying firstly a variant of Buchinsky methods (2001) and then the IV 

estimates, comparing different approach. The results are not completely clear-cut but seem to 

confirm the presence of a sticky-floor effects and to indicate that the endogeneity bias is 

significant, mainly at the bottom of the wage distribution. 
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Tab.1: Distribution of permanent and temporary work by personal and job 

characteristics in Italy, 2006 
 All sample Permanent Temporary 

    

Men  57,4 58,0 53,4 

Women  42,6 42,0 46,6 

Education    

None or elementary 5,1 4,7 8,1 

Middle school 33,5 33,1 36,2 

Professional School 10,2 10,4 9,0 

High school 38,0 38,6 33,9 

University degree 

or more 

12,9 13,0 12,5 

Age    

Up to 30 19,0 15,8 40,4 

31-40  31,3 31,5 30,1 

41-50 30,3 31,9 19,4 

51-65 19,2 20,6 9,9 

Firm size    

Up to 4 11,1 9,7 20,3 

From 5 to 19 22,9 22,0 28,5 

From 20 to 49 15,0 14,9 15,1 

From 50 to 99 9,3 9,7 6,5 

From 100 to 499 9,7 10,2 5,8 

500 or more 10,2 10,7 7,3 

Public sector 21,5 22,3 16,1 

Region    

North-west 29,2 25,3 20,3 

North-east 24,9 30,5 21,7 

Centre 19,2 19,9 14,0 

South 17,6 16,0 28,4 

Islands 8,9 8,0 15,3 

Occupation    

Blue collar 49,4 47,1 64,9 

White collar 42,8 44,5 31,2 

Manager 7,7 8,3 3,7 

Industry    

Agriculture 4,5 3,5 11,6 

Industry and mining 29,0 30,4 19,6 

Building and 

construction 

7,1 6,2 13,0 

Wholesale and 

retail trade 

11,8 11,4 14,5 

Transport and 

communication 

4,6 4,6 4,5 

Credit and 

insurance 

3,2 3,4 1,8 

Business services 3,7 3,8 3,4 

Domestic services 6,0 5,6 9,3 

Public 

adiministration 

29,4 30,5 21,6 

    Note: Shiw, 2006 
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Tab.2: Percentiles of the log hourly wage for temporary and permanent workers 

 Temporary Permanent 

   

Percentiles   

   

10% 1,42 1,76 

25% 1,65 1,95 

50% 1,90 2,14 

75% 2,12 2,37 

90% 2,44 2,66 

0.9-0.1 spread 1,02 0,90 

   

Mean 1,90 2,18 

St. dev. 0,47 0,39 

Obs. 646 4930 

                 Note: Shiw, 2006 

 
 

Fig.1a: Kernel density estimates of the wage distribution for temporary 
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Fig.1b: Kernel density estimates of the wage distribution for permanent 
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Tab.4: Quantile regression for wage gap between temporary and permanent workers 

 Quantile 

 10th 25th 50th 75th 90th 
Temporary -0.207*** 

(-6.16) 
-0.133*** 
(-10.17) 

-0.113*** 
(-10.92) 

-0.064*** 
(-4.72) 

0.033 
(1.22) 

Age 0.017 
(2.09)*** 

0.010** 
(2.04) 

-0.003 
(-0.83) 

-0.014** 
(-2.41) 

-0.007 
(-0.89) 

Age^2 0.000 
(-1.69)* 

0.000 
(-1.49) 

0.000* 
(1.84) 

0.000*** 
(3.14) 

0.000* 
(1.89) 

Experience 0.009** 
(2.64) 

0.006*** 
(2.64) 

0.013*** 
(4.51) 

0.013*** 
(3.67) 

0.011** 
(2.53) 

Experience^2 0.000** 
(-2.59)** 

-0.001** 
(-2.44) 

-0.001*** 
(-5.15) 

0.001*** 
(-4.33) 

0.000*** 
(-3.49) 

Tenure 0.006*** 
(2.66) 

0.007*** 
(6.44) 

0.004** 
(2.47) 

0.006*** 
(3.36) 

0.001 
(0.61) 

Tenure^2 -0.001 
(-1.45) 

-0.001*** 
(-3.79) 

0.000 
(-0.91) 

0.000 
(-1.55) 

0.000 
(1.11) 

Education      
University or more 0.220*** 

(5.72) 
0.269*** 

(8.98) 
0.365*** 
(15.18) 

0.434*** 
(18.53) 

0.477*** 
(9.82) 

High school 0.115*** 
(3.49) 

0.115*** 
(4.21) 

0.164*** 
(10.26) 

0.182*** 
(9.69) 

0.203*** 
(7.05) 

Professional school 0.092** 
(2.46) 

0.097*** 
(4.08) 

0.103*** 
(5.88) 

0.141*** 
(6.62) 

0.190*** 
(4.59) 

Middle school 0.045 
(1.49) 

0.056** 
(2.49) 

0.064*** 
(4.40) 

0.069*** 
(3.34) 

0.091*** 
(3.30) 

Region      
North-West -0.041*** 

(-2.81) 
-0.029*** 

(-2.77) 
-0.022*** 

(-3.44) 
-0.029* 
(-1.66) 

-0.032** 
(-2.15) 

Center -0.053*** 
(-3.25) 

-0.024** 
(-2.04) 

-0.013 
(-1.30) 

-0.013 
(-0.86) 

-0.01 
(-0.77) 

South -0.232*** 
(-10.75) 

-0.142*** 
(-15.10) 

-0.089*** 
(-8.23) 

-0.040** 
(-1.98) 

-0.043* 
(-1.79) 

Islands -0.165*** 
(-7.97) 

-0.096*** 
(-4.65) 

-0.061*** 
(-3.34) 

-0.053*** 
(-2.68) 

-0.066*** 
(-3.13) 

Firm dimension      
From 5 to 19 0.159*** 

(5.89) 
0.093*** 

(4.38) 
0.089*** 

(5.30) 
0.070*** 

(3.70) 
0.061* 
(1.90) 

From 20 to 49 0.166*** 
(4.55) 

0.108*** 
(4.95) 

0.106*** 
(6.71) 

0.096*** 
(4.26) 

0.112*** 
(3.27) 

From 50 to 99 0.224*** 
(6.49) 

0.137*** 
(6.43) 

0.120*** 
(6.42) 

0.095*** 
(3.84) 

0.083** 
(2.29) 

From 100 to 499 0.205*** 
(6.82) 

0.146*** 
(7.68) 

0.167*** 
(8.50) 

0.169*** 
(7.09) 

0.170*** 
(4.85) 

Over 500 0.244*** 
(7.36) 

0.189*** 
(10.77) 

0.185*** 
(9.01) 

0.183*** 
(6.28) 

0.192*** 
(5.56) 

Occupation      
White collars 0.100*** 

(5.92) 
0.103*** 

(7.42) 
0.097*** 

(9.21) 
0.101*** 

(9.64) 
0.122*** 

(6.90) 
Public employees 0.278*** 

(6.13) 
0.181*** 

(7.06) 
0.198*** 

(6.99) 
0.206*** 

(6.97) 
0.194*** 

(4.87) 
Managers 0.183*** 

(7.40) 
0.190*** 

(8.33) 
0.207*** 
(10.75) 

0.233*** 
(8.96) 

0.273*** 
(10.34) 

Female -0.109*** 
(-7.80) 

-0.099*** 
(-11.94) 

-0.092*** 
(-10.03) 

-0.091*** 
(-8.38) 

-0.076*** 
(-3.69) 

Married 0.031 
(1.52) 

0.031*** 
(2.94) 

0.039*** 
(4.07) 

0.036*** 
(2.91) 

0.061*** 
(2.75) 

Head of Household 
 

Industry dummies 

0.017 
(1.04) 
Yes 

0.013 
(1.29) 
Yes 

0.023*** 
(2.69) 
Yes 

0.029** 
(2.54) 
Yes 

0.027 
(1.49) 
Yes 

               Note: the table reports coefficient estimates of different quantile regression and the test t are reported in parentesis. 
*** Significant at the 1%, ** significant at the 5% and * significant at the 10%. 
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Tab.5: Quantile regression for wage gap between temporary and permanent workers, 

female 

 Quantile 

 10th 25th 50° 75th 90th 
Temporary -0.145*** 

(-2.70) 
-0.099*** 

(-3.78) 
-0.082*** 

(-3.63) 
-0.044 
(-1.48) 

0.043 
(0.57) 

Age 0.023 
(1.61) 

0.004 
(0.40) 

-0.004 
(-0.55) 

-0.001 
(-0.15) 

0.006 
(0.55) 

Age^2 0.000 
(-1.30) 

0.000 
(-0.12) 

0.000 
(1.19) 

0.000 
(0.66) 

0.000 
(0.13) 

Experience 0.003 
(0.78) 

0.006 
(1.44) 

0.011*** 
(2.98) 

0.011*** 
(3.19) 

0.012 
(1.50) 

Experience^2 0.000 
(-0.48) 

0.000 
(-1.26) 

-0.001*** 
(-3.26) 

0.000*** 
(-3.24) 

-0.001 
(-1.65) 

Tenure 0.008** 
(2.01) 

0.009*** 
(3.71) 

0.004** 
(2.35) 

0.006** 
(2.34) 

0.003 
(0.46) 

Tenure^2 -0.001 
(-1.33) 

0.000*** 
(-3.00) 

0.000 
(-0.27) 

0.000 
(-0.61) 

0.000 
(0.40) 

Education      
University or more 0.281*** 

(4.39) 
0.351*** 

(7.39) 
0.405*** 

(9.59) 
0.501*** 
(14.64) 

0.461*** 
(4.47) 

High school 0.135** 
(2.23) 

0.148*** 
(4.04) 

0.192*** 
(5.96) 

0.221*** 
(7.86) 

0.215** 
(2.49) 

Professional school 0.086 
(1.46) 

0.094** 
(2.26) 

0.123*** 
(3.50) 

0.146*** 
(4.93) 

0.131 
(1.55) 

Middle school 0.045 
(0.81) 

0.088*** 
(2.69) 

0.092*** 
(3.20) 

0.110*** 
(4.74) 

0.114 
(1.27) 

North-West -0.039 
(-1.56) 

-0.029* 
(-1.69) 

-0.026* 
(-1.68) 

-0.041** 
(-2.35) 

-0.080* 
(-1.79) 

Center -0.033 
(-0.74) 

-0.016 
(-0.86) 

-0.006 
(-0.33) 

0.016 
(0.78) 

-0.024 
(-0.58) 

South -0.306*** 
(-5.05) 

-0.171*** 
(-8.78) 

-0.087*** 
(-4.44) 

-0.020 
(-0.70) 

-0.038 
(-0.78) 

Islands -0.127** 
(-2.13) 

-0.049 
(-1.22) 

-0.044* 
(-1.93) 

-0.054** 
(-2.16) 

-0.129* 
(-1.92) 

Firm dimension      
From 5 to 19 0.188*** 

(4.04) 
0.141*** 

(4.39) 
0.102*** 

(4.46) 
0.081*** 

(3.02) 
0.013 
(0.34) 

From 20 to 49 0.165*** 
(2.76) 

0.124*** 
(4.47) 

0.095*** 
(4.32) 

0.055** 
(2.29) 

0.063 
(1.31) 

From 50 to 99 0.250*** 
(5.19) 

0.181*** 
(6.43) 

0.151*** 
(5.76) 

0.142*** 
(6.11) 

0.194*** 
(3.51) 

From 100 to 499 0.243*** 
(4.30) 

0.169*** 
(5.68) 

0.160*** 
(7.58) 

0.144*** 
(4.36) 

0.148*** 
(3.04) 

Over 500 0.234*** 
(4.48) 

0.181*** 
(4.30) 

0.167*** 
(4.23) 

0.154*** 
(4.13) 

0.102 
(1.47) 

Occupation      
White collars 0.101*** 

(4.06) 
0.113*** 

(5.41) 
0.103*** 

(5.53) 
0.115*** 

(7.66) 
0.124*** 

(3.88) 
Public employees 0.314*** 

(4.15) 
0.220*** 

(6.40) 
0.210*** 

(7.99) 
0.231*** 

(4.70) 
0.161*** 

(3.24) 
Managers 0.150*** 

(3.26) 
0.127*** 

(3.15) 
0.183*** 

(8.80) 
0.221*** 

(6.87) 
0.184*** 

(3.62) 
Married 0.025 

(0.81) 
0.011 
(0.57) 

0.002 
(0.13) 

-0.007 
(-0.36) 

-0.031 
(-0.91) 

Head of Household 0.019 
(0.82) 

0.007 
(0.38) 

0.006 
(0.37) 

-0.003 
(-0.20) 

0.001 
(0.03) 

Industry dummies Yes Yes Yes Yes Yes 

       Note: the table reports coefficient estimates of diffent quantile regression and the test t are reported in parentesis. 
*** Significant at the 1%, ** significant at the 5% and * significant at the 10%.  
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Tab.6: Quantile regression for wage gap between temporary and permanent workers, 

male 

 Quantile 

 10th 25th 50° 75th 90th 
Temporary -0.233*** 

(-4.73) 
-0.145*** 

(-6.04) 
-0.122*** 

(-5.11) 
-0.102*** 

(-4.45) 
0.003 
(0.06) 

Age 0.017** 
(2.45) 

0.013* 
(1.72) 

-0.008 
(-1.08) 

-0.021*** 
(-3.00) 

-0.023** 
(-2.55) 

Age^2 -0.001** 
(-2.01) 

-0.001 
(-1.35) 

0.000 
(1.36) 

0.000*** 
(3.59) 

0.000*** 
(3.18) 

Experience 0.004 
(0.80) 

0.006 
(1.61) 

0.013*** 
(4.16) 

0.015*** 
(3.48) 

0.016*** 
(3.87) 

Experience^2 0.000 
(-1.36) 

-0.001* 
(-1.95) 

-0.001*** 
(-3.90) 

-0.001*** 
(-4.26) 

-0.001*** 
(-3.81) 

Tenure 0.007*** 
(2.75) 

0.007*** 
(5.38) 

0.005*** 
(3.20) 

0.004 
(1.47) 

0.002 
(0.57) 

Tenure^2 0.000** 
(-2.02) 

-0.001*** 
(-3.30) 

0.000** 
(-2.03) 

0.000 
(-0.64) 

0.000 
(0.52) 

Education      
University or more 0.179*** 

(3.75) 
0.225*** 

(4.83) 
0.317*** 
(10.79) 

0.319*** 
(6.76) 

0.360*** 
(5.59) 

High school 0.095*** 
(2.63) 

0.098*** 
(3.15) 

0.134*** 
(4.86) 

0.132*** 
(4.79) 

0.117** 
(2.13) 

Professional school 0.087** 
(2.18) 

0.110*** 
(2.86) 

0.099*** 
(3.85) 

0.123*** 
(3.57) 

0.139** 
(2.28) 

Middle school 0.046 
(1.34) 

0.057** 
(2.18) 

0.055*** 
(2.74) 

0.043* 
(1.75) 

0.025 
(0.52) 

North-West -0.068*** 
(-3.19) 

-0.022 
(-1.12) 

-0.010 
(-0.71) 

-0.012 
(-0.63) 

-0.047** 
(-2.06) 

Center -0.054** 
(-2.34) 

-0.025** 
(-2.20) 

-0.016 
(-1.22) 

-0.013 
(-0.73) 

-0.013 
(-0.41) 

South -0.218*** 
(-7.70) 

-0.118*** 
(-7.15) 

-0.075*** 
(-3.80) 

-0.060** 
(-2.15) 

-0.070** 
(-2.25) 

Islands -0.190*** 
(-5.97) 

-0.114*** 
(-4.64) 

-0.068*** 
(-2.88) 

-0.049 
(-1.39) 

-0.076* 
(-1.82) 

Firm dimension      
From 5 to 19 0.099* 

(1.97) 
0.047 
(1.48) 

0.067*** 
(4.57) 

0.053** 
(2.43) 

0.025 
(0.50) 

From 20 to 49 0.117** 
(2.29) 

0.084*** 
(2.75) 

0.107*** 
(6.54) 

0.095*** 
(4.25) 

0.084* 
(1.84) 

From 50 to 99 0.152*** 
(2.78) 

0.090*** 
(3.98) 

0.080*** 
(4.79) 

0.046 
(1.63) 

-0.002 
(-0.05) 

From 100 to 499 0.154*** 
(3.13) 

0.112*** 
(2.92) 

0.165*** 
(8.15) 

0.173*** 
(6.25) 

0.154*** 
(3.25) 

Over 500 0.202*** 
(3.43) 

0.155*** 
(5.78) 

0.186*** 
(7.95) 

0.190*** 
(6.06) 

0.149*** 
(3.05) 

Occupation      
White collars 0.112*** 

(5.50) 
0.116*** 

(6.42) 
0.111*** 

(6.45) 
0.111*** 

(5.52) 
0.147*** 

(6.68) 
Public employees 0.205*** 

(3.21) 
0.140*** 

(3.09) 
0.161*** 

(6.02) 
0.179*** 

(5.55) 
0.174*** 

(2.98) 
Managers 0.224*** 

(10.23) 
0.234*** 

(9.36) 
0.245*** 
(11.25) 

0.279*** 
(7.86) 

0.343*** 
(8.21) 

Married 0.057*** 
(2.93) 

0.040*** 
(3.39) 

0.065*** 
(4.02) 

0.064** 
(2.56) 

0.063** 
(2.22) 

Head of Household 0.018 
(0.77) 

0.016 
(1.52) 

0.029** 
(2.19) 

0.045*** 
(4.57) 

0.040 
(1.31) 

Industry dummies Yes Yes Yes Yes Yes 

      Note: the table reports coefficient estimates of diffent quantile regression and the test t are reported in parentesis. 
*** Significant at the 1%, ** significant at the 5% and * significant at the 10%.   
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Tab. 7: Quantile wage regression with selectivity correction, female 

 Quantile 

 10th 25th 50° 75th 90th 
Temporary -0.129** 

(-2.16) 
-0.091*** 

(-3.65) 
-0.093*** 

(-3.52) 
-0.037 
(-1.47) 

0.058 
(0.98) 

Age 0.026 
(1.50) 

0.005 
(0.44) 

-0.005 
(-0.76) 

0.001 
(0.15) 

0.003 
(0.23) 

Age^2 0.000 
(-1.32) 

0.000 
(-0.17) 

0.000 
(1.51) 

0.000 
(0.43) 

0.000 
(0.35) 

Experience 0.002 
(0.38) 

0.010** 
(2.24) 

0.014*** 
(4.35) 

0.011** 
(2.56) 

0.015*** 
(2.76) 

Experience^2 0.000 
(-0.19) 

0.000* 
(-1.93) 

0.000*** 
(-4.64) 

0.000** 
(-2.81) 

-0.001*** 
(-3.18) 

Tenure 0.008* 
(1.91) 

0.007** 
(2.30) 

0.003 
(1.22) 

0.003 
(1.27) 

0.003 
(0.54) 

Tenure^2 0.000 
(-1.27) 

-0.001* 
(-1.88) 

0.000 
(0.24) 

0.000 
(0.06) 

0.000 
(0.36) 

Education      
University or more 0.289*** 

(4.95) 
0.352*** 

(7.54) 
0.407*** 
(11.25) 

0.514*** 
(11.86) 

0.471*** 
(5.63) 

High school 0.127** 
(2.49) 

0.151*** 
(4.19) 

0.185*** 
(7.11) 

0.227*** 
(7.20) 

0.224*** 
(3.77) 

Professional school 0.092 
(1.61) 

0.108*** 
(2.66) 

0.124*** 
(4.48) 

0.151*** 
(4.04) 

0.144** 
(2.18) 

Middle school 0.028 
(0.52) 

0.086*** 
(2.60) 

0.086*** 
(3.65) 

0.106*** 
(4.05) 

0.123** 
(2.38) 

North-West -0.045* 
(-1.72) 

-0.038* 
(-1.95) 

-0.015 
(-1.05) 

-0.032** 
(-2.00) 

-0.075** 
(-2.45) 

Center -0.028 
(-0.86) 

-0.018 
(-0.83) 

0.003 
(0.16) 

0.025 
(0.98) 

-0.030 
(-0.68) 

South -0.329*** 
(-5.65) 

-0.174*** 
(-5.49) 

-0.081*** 
(-3.45) 

-0.013 
(-0.43) 

-0.019 
(0.47) 

Islands -0.138** 
(-2.39) 

-0.044 
(-1.07) 

-0.027 
(-1.19) 

-0.041 
(-1.22) 

-0.146*** 
(-2.75) 

Firm dimension      
From 5 to 19 0.185*** 

(3.48) 
0.142*** 

(5.34) 
0.104*** 

(4.93) 
0.069*** 

(3.20) 
0.019 
(0.47) 

From 20 to 49 0.157** 
(2.19) 

0.113*** 
(3.81) 

0.073*** 
(3.27) 

0.053** 
(2.04) 

0.066 
(1.37) 

From 50 to 99 0.258*** 
(4.85) 

0.186*** 
(5.86) 

0.158*** 
(6.60) 

0.151*** 
(4.06) 

0.189*** 
(3.13) 

From 100 to 499 0.242*** 
(3.95) 

0.152*** 
(4.77) 

0.150*** 
(5.35) 

0.120*** 
(3.22) 

0.164** 
(2.48) 

Over 500 0.232*** 
(5.26) 

0.174*** 
(5.24) 

0.166*** 
(5.10) 

0.146*** 
(4.18) 

0.127** 
(2.07) 

Occupation      
White collars 0.078** 

(2.56) 
0.095*** 

(5.42) 
0.085*** 

(5.13) 
0.108*** 

(4.24) 
0.113*** 

(3.52) 
Public employees 0.310*** 

(5.13) 
0.228*** 

(8.01) 
0.205*** 

(7.17) 
0.218*** 

(4.24) 
0.158*** 

(3.43) 
Managers 0.113** 

(2.28) 
0.102*** 

(3.23) 
0.163*** 

(4.30) 
0.210*** 

(4.60) 
0.186*** 

(3.00) 
Married 0.047** 

(2.12) 
0.033** 
(2.24) 

0.030* 
(1.69) 

0.32* 
(1.73) 

0.010 
(0.30) 

Head of Household 0.036 
(1.62) 

0.032* 
(1.86) 

0.035** 
(2.11) 

0.022 
(1.00) 

0.030 
(0.96) 

Mills ratio -0.183 
(-1.08) 

-0.113 
(-1.02) 

-0.087 
(-1.06) 

-0.074 
(-0.70) 

-0.030 
(-0.16) 

Mills ratio^2 0.089 
(0.85) 

0.024 
(0.31) 

0.015 
(0.30) 

0.006 
(0.11) 

-0.025 
(-0.18) 

Industry dummies Yes Yes Yes Yes Yes 

       Note: the table reports coefficient estimates of diffent quantile regression and the test t are reported in parenthesis. 
Bootstrap standard errors are obtained with 50 replications. *** Significant at the 1%, ** significant at the 5% 
and * significant at the 10%.   
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Tab 8: Quantile wage regression with selectivity correction, male 

 Quantile 

 10th 25th 50° 75th 90th 
Temporary -0.197*** 

(-3.40) 
-0.139*** 

(-6.10) 
-0.121*** 

(-5.94) 
-0.085*** 

(-3.18) 
0.006 
(0.09) 

Age 0.020** 
(2.00) 

0.009 
(1.19) 

-0.009* 
(-1.70) 

-0.021** 
(-2.60) 

-0.030** 
(-2.27) 

Age^2 -0.001* 
(-1.70) 

0.000 
(-1.00) 

0.000** 
(2.06) 

0.000*** 
(2.93) 

0.001*** 
(2.74) 

Experience 0.004 
(0.97) 

0.008** 
(2.21) 

0.015*** 
(5.47) 

0.015*** 
(3.52) 

0.016*** 
(2.61) 

Experience^2 -0.001 
(-1.11) 

0.000** 
(-2.40) 

-0.001*** 
(-4.69) 

-0.001*** 
(-3.81) 

-0.001*** 
(-3.10) 

Tenure 0.007** 
(2.15) 

0.005** 
(2.58) 

0.004** 
(1.98) 

0.003 
(1.13) 

0.002 
(0.53) 

Tenure^2 -0.001 
(-1.40) 

0.000* 
(-1.74) 

0.000 
(-1.31) 

0.000 
(-0.58) 

0.000 
(0.21) 

Education      
University or more 0.181*** 

(4.41) 
0.232*** 

(4.92) 
0.314*** 
(11.26) 

0.325*** 
(5.93) 

0.378*** 
(6.10) 

High school 0.099*** 
(2.76) 

0.085*** 
(3.26) 

0.121*** 
(5.49) 

0.128*** 
(2.94) 

0.114*** 
(2.60) 

Professional school 0.095*** 
(2.78) 

0.091*** 
(3.14) 

0.085*** 
(3.07) 

0.120*** 
(2.66) 

0.146*** 
(2.92) 

Middle school 0.053* 
(1.69) 

0.041 
(1.62) 

0.046** 
(2.46) 

0.043 
(1.10) 

0.026 
(0.69) 

North-West -0.070*** 
(-3.66) 

-0.031** 
(-2.44) 

-0.015 
(-1.31) 

-0.019 
(-1.05) 

-0.040** 
(-2.16) 

Center -0.047** 
(-2.35) 

-0.019 
(-1.35) 

-0.014 
(-0.93) 

-0.008 
(-0.45) 

-0.006 
(-0.22) 

South -0.217*** 
(-7.24) 

-0.119*** 
(-5.84) 

-0.073*** 
(-4.31) 

-0.059*** 
(-3.06) 

-0.066** 
(-2.02) 

Islands -0.177*** 
(-7.34) 

-0.111*** 
(-4.64) 

-0.067*** 
(-2.94) 

-0.040 
(-1.63) 

-0.053 
(-1.32) 

Firm dimension      
From 5 to 19 0.104*** 

(3.18) 
0.047* 
(1.96) 

0.071*** 
(4.00) 

0.057** 
(2.22) 

0.041 
(1.02) 

From 20 to 49 0.133*** 
(4.01) 

0.085*** 
(2.94) 

0.110*** 
(5.74) 

0.099*** 
(3.56) 

0.108** 
(2.19) 

From 50 to 99 0.167*** 
(4.42) 

0.094*** 
(3.21) 

0.80*** 
(4.11) 

0.050 
(1.64) 

0.021 
(0.56) 

From 100 to 499 0.170*** 
(4.29) 

0.113*** 
(3.62) 

0.166*** 
(9.36) 

0.163*** 
(5.25) 

0.163*** 
(3.52) 

Over 500 0.216*** 
(4.75) 

0.159*** 
(5.91) 

0.187*** 
(7.83) 

0.196*** 
(5.50) 

0.182*** 
(3.83) 

Occupation      
White collars 0.109*** 

(3.83) 
0.108*** 

(5.29) 
0.107*** 

(8.44) 
0.108*** 

(6.73) 
0.131*** 

(4.05) 
Public employees 0.225*** 

(5.23) 
0.122*** 

(3.30) 
0.177*** 

(6.88) 
0.178*** 

(4.24) 
0.197*** 

(4.17) 
Managers 0.226*** 

(7.17) 
0.219*** 

(7.26) 
0.238*** 

(9.55) 
0.271*** 

(7.38) 
0.318*** 

(6.35) 
Married 0.073*** 

(3.68) 
0.058*** 

(3.57) 
0.073*** 

(6.25) 
0.076*** 

(4.36) 
0.052** 
(2.24) 

Head of Household 0.043*** 
(2.61) 

0.029** 
(2.43) 

0.045*** 
(4.39) 

0.062*** 
(4.97) 

0.030 
(1.33) 

Mills ratio -0.044 
(-0.34) 

-0.178** 
(-1.99) 

-0.084 
(-1.13) 

-0.178** 
(-1.98) 

-0.263* 
(-1.81) 

Mills ratio^2 -0.022 
(-0.17) 

0.120* 
(1.71) 

0.034 
(0.68) 

0.104 
(1.36) 

0.124 
(1.07) 

Industry dummies Yes Yes Yes Yes Yes 

       Note: the table reports coefficient estimates of diffent quantile regression and the test t are reported in parenthesis. 
Bootstrap standard errors are obtained with 50 replications. *** Significant at the 1%, ** significant at the 5% 
and * significant at the 10%.   
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Tab. 9: Quantile regression (Machado-Mata) decomposition of the wage differentials 

between temporary and permanent workers 

       
 Without selectivity correction With selectivity correction 

 All sample Female Male All sample Female Male 
Quantile 0.10       

Raw 
differences 

-0.378 -0.405 -0.361 -0.375 -0.406 -0.355 

Characteristics -0.168 -0.169 -0.166 -0.181 -0.178 -0.166 
Coefficients -0.209 -0.235 -0.194 -0.193 -0.227 -0.189 

Quantile 0.20       
Raw 

differences 
-0.309 -0.317 -0.300 -0.304 -0.311 -0.299 

Characteristics -0.161 -0.153 -0.159 -0.173 -0.162 -0.165 
Coefficients -0.147 -0.164 -0.141 -0.131 -0.149 -0.133 

Quantile 0.30       
Raw 

differences 
-0.287 -0.278 -0.286 -0.287 -0.276 -0.289 

Characteristics -0.158 -0.152 -0.152 -0.167 -0.160 -0.164 
Coefficients -0.128 -0.125 -0.134 -0.119 -0.116 -0.125 

Quantile 0.40       
Raw 

differences 
-0.272 -0.252 -0.274 -0.271 -0.254 -0.275 

Characteristics -0.159 -0.154 -0.152 -0.167 -0.161 -0.164 
Coefficients -0.112 -0.098 -0.122 -0.104 -0.092 -0.111 

Quantile 0.50       
Raw 

differences 
-0.265 -0.241 -0.274 -0.263 -0.244 -0.276 

Characteristics -0.160 -0.160 -0.154 -0.166 -0.165 -0.167 
Coefficients -0.105 -0.080 -0.120 -0.097 -0.079 -0.109 

Quantile 0.60       
Raw 

differences 
-0.261 -0.225 -0.283 -0.261 -0.231 -0.285 

Characteristics -0.162 -0.162 -0.156 -0.168 -0.166 -0.167 
Coefficients -0.098 -0.063 -0.127 -0.093 -0.064 -0.118 

Quantile 0.70       
Raw 

differences 
-0.259 -0.211 -0.290 -0.258 -0.214 -0.288 

Characteristics -0.168 -0.173 -0.161 -0.170 -0.171 -0.167 
Coefficients -0.091 -0.037 -0.128 -0.088 -0.043 -0.120 

Quantile 0.80       
Raw 

differences 
-0.241 -0.183 -0.285 -0.244 -0.187 -0.279 

Characteristics -0.177 -0.186 -0.163 -0.176 -0.181 -0.167 
Coefficients -0.064 0.002 -0.122 -0.068 -0.006 -0.111 

Quantile 0.90       
Raw 

differences 
-0.176 -0.139 -0.223 -0.180 -0.152 -0.223 

Characteristics -0.184 -0.209 -0.161 -0.181 -0.203 -0.168 
Coefficients 0.007 0.070 -0.062 0.001 0.050 -0.055 

     Note: Shiw, 2006. Machado-Mata decomposition, using Melly (2006) estimator. 
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Figure 2: Coefficient estimates for temporary dummy by sex 
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Note: confidence intervals extend to 95% in either direction. Horizontal lines represent OLS estimates with 95% confidence 
intervals. 

 

 

 

 

 

 

Fig. 3a: price differential by educational level, university 
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Note: Machado and Mata decomposition. Variables controlled for in the regression are age, experience, tenure, 
marital status, household dummies, firm size, occupation, region. 
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      Fig. 3b: price differential by educational level, high and professional school 
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Note: Machado and Mata decomposition. Variables controlled for in the regression are age, experience, tenure,  marital 
status, household dummies, firm size, occupation, region. 

 
 

 

Fig. 3c: price differential by educational level, middle and elementary school 
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Note: Machado and Mata decomposition. Variables controlled for in the regression are age, experience, tenure,   
marital status, household dummies,  firm size, occupation, region. 
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Fig. 3: Machado-Mata decomposition for young workers (16-35 years) 
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Note: Machado and Mata decomposition. Variables controlled for in the regression are age, experience, tenure,   
marital status, household dummies, firm size, occupation, region. 

 
 

Fig 4: Machado-Mata decomposition for the workers resident in the North 

-.
8

-.
6

-.
4

-.
2

0
.2

L
o
g
 w

a
g
e
 e

ff
e
c
ts

0 .2 .4 .6 .8 1
Quantile

Total differential Effects of characteristics

Effects of coefficients

Decomposition of differences in distribution

 
Note: Machado and Mata decomposition. Variables controlled for in the regression are age, experience, tenure,   
marital status, household dummies, firm size, occupation. 
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Fig 5: Machado-Mata decomposition for the workers resident in the South 
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Note: Machado and Mata decomposition. Variables controlled for in the regression are age, experience, tenure, 
marital status, household dummies, firm size, occupation. 

 
 
 
 

Fig 6: Machado-Mata decomposition for the workers in public sector 

-1
-.

5
0

.5
L
o
g
 w

a
g
e
 e

ff
e
c
ts

0 .2 .4 .6 .8 1
Quantile

Total differential Effects of characteristics

Effects of coefficients

Decomposition of differences in distribution

 
Note: Machado and Mata decomposition. Variables controlled for in the regression are age, experience, tenure, 
marital status, household dummies, firm size, occupation, region. 
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Fig 7: Machado-Mata decomposition for the workers in private sector 
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Note: Machado and Mata decomposition. Variables controlled for in the regression are age, experience, tenure, marital 
status, household dummies, firm size, occupation, region. 
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Table 9: IV quantile treatment effect of temporary status 

 
      

 10th  25th  50th  75th  90th 

 Female 

2SLAD  -0.044 
(-0.84) 

-0.067** 
(-2.37) 

-0.043* 
(-1.71) 

-0.039 
(-1.30) 

-0.022 
(-0.49) 

QTE with 
individual 
variables 

-0.430*** 
(-4.01) 

-0.364*** 
(-5.84) 

-0.312*** 
(-5.21) 

-0.292*** 
(-5.56) 

-0.208** 
(-2.28) 

QTE with 
individual and 
occupation 
variables 

-0.265** 
(-2.25) 

-0.173** 
(-2.33) 

-0.164*** 
(-2.60) 

-0.127 
(-1.58) 

-0.010 
(-0.08) 

      

 Male

2SLAD -0.061 
(-1.51) 

-0.046* 
(-1.91) 

-0.056*** 
(-2.73) 

-0.071*** 
(-3.02) 

-0.069* 
(-1.81) 

QTE with 
individual 
variables 

-0.344*** 
(-3.65) 

-0.244*** 
(-5.07) 

-0.201*** 
(-4.46) 

-0.178*** 
(-2.69) 

-0.090 
(-0.75) 

QTE with 
individual variable 

-0.218** 
(-2.15) 

-0.170*** 
(-2.84) 

-0.144*** 
(-2.71) 

-0.151** 
(-2.16) 

-0.098 
(-0.80) 

Note: the Quantile Treatment Effect estimator applies the Abadie, Angrist and Imbens 

(2002). The IVQR (2LAD and QTE) standard errors are obtained via bootstrapping with 100 

replications. *** Significant at 1%, ** at 5% and * at 10%. 
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  Table 10: Summary of the Estimation Resuls 
   Quantile   

 10th  25th  50th  75th  90th 

Female

Quantile 

regression 

-0.145*** 
(-2.70) 

-0.099*** 
(-3.78) 

-0.082*** 
(-3.63) 

-0.054* 
(-2.57) 

0.043 
(0.57) 

QTE (1) -0.430*** 
(-4.01) 

-0.364*** 
(-5.84) 

-0.312*** 
(-5.21) 

-0.292*** 
(-5.56) 

-0.208** 
(-2.28) 

QTE (2) 

 

-0.265** 
(-2.25) 

-0.173** 
(-2.33) 

-0.164*** 
(-2.60) 

-0.127 
(-1.58) 

-0.010 
(-0.08) 

Self-

selection 

model (1) 

-0.129** 
(-2.16) 

-0.091*** 
(-3.65) 

-0.093*** 
(-3.52) 

-0.037 
(-1.47) 

0.058 
(0.98) 

Self-

selection 

model (2) 

-0.152*** 
(-3.64) 

-0.099*** 
(-4.12) 

-0.090*** 
(-3.68) 

-0.063** 
(-2.51) 

0.033 
(0.46) 

Male

Quantile 

regression 

-0.233*** 
(-4.73) 

-0.145*** 
(-6.04) 

-0.122*** 
(-5.11) 

-0.102*** 
(-4.45) 

0.003 
(0.06) 

QTE (1) -0.344*** 

(-3.65) 

-0.244*** 

(-5.07) 

 

-0.201*** 

(-4.46) 

-0.178*** 

(-2.69) 

-0.090 

(-0.75) 

QTE (2) 

 

-0.218** 

(-2.15) 

-0.170*** 

(-2.84) 

-0.144*** 

(-2.71) 

-0.151** 

(-2.16) 

-0.098 

(-0.80) 

Self-

selection 

model (1) 

Self-

selection 

model (2) 

-0.197*** 
(-3.40) 

-0.217*** 
(-4.84) 

-0.139*** 
(-6.10) 

-0.140*** 
(-4.71) 

-0.121*** 
(-5.94) 

-0.123*** 
(-6.28) 

-0.085*** 
(-3.18) 

-0.096*** 
(-4.04) 

0.006 
(0.09) 
0.004 
(0.07) 

Note: Standard errors are obtained via bootstrapping with 100 replications, test t are 

reported in parenthesis *** Significant at 1%, ** at 5% and * at 10%.QTE (1) controls 

only for individual variable, while QTE (2) also for job characteristics. Self-

selection model (1) is identified through exogenous instrument (searching) while self-

selection model (2) relies only on non linearity of selectivity correction term. 


