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CHAPTER I  

Introduction 

1.1 Background 

Management of supply chains facing atypical demand settings is challenging. 

Demand during events such as promotional sale, seasonal sale and or short life 

cycle product introduction is notoriously uncertain and therefore very difficult to 

predict. Demands arising from such events are called atypical demand. However, 

these events bring huge financial opportunity to the supply chain players.  

In industries such as fashion, toys, and high-tech electronics, time-to-

market and product turnover are vital; product has very short life and is sold in 

brief and well-defined selling seasons (Christopher 2004, Johnson 2001). 

Demand faced by such industries are extremely volatile and seasonal in nature, 

and highly unpredictable (Wong et al 2005). In addition, with a lot of this 

manufacturing being outsourced to distant countries, transit times are longer, 

creating additional constraints. The end result being higher costs of obsolete 

inventory, lost sales and markdowns. Early on, Reinmuth and Geurts (1972) 

labeled similar settings combined with promotions atypical. We particularly define 

atypical demand settings to be those settings where construction of a predictive 

time-series model for demand forecasting is difficult, consistent with observations 

by Hausman (1969). 

Effective ways of managing atypical demand situation are: (a) Modeling 

the uncertainty, (b) improve visibility and, (c) decision making based on predictive 

updates.  Modeling the uncertainty would need establishing methods and 
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practices to monitor different source of market events and explore relationship 

between factors that can generate a demand estimate. Revised estimates based 

on recent market information should in turn be used to revise operational 

decisions. Market events are typically more visible to players closer to the final 

customer. Demand predictions or transformation of such information (e.g. soft 

orders), should be shared by downstream player through collaborative planning 

or information sharing framework with key supply chain partners. This improves 

downstream visibility for upstream players and enables them to efficiently 

position their resources and plan activities to hedge against uncertainty. In 

addition to downstream information, upstream information from supplier to buyer 

could potentially increase the supply side visibility. Increased supply side visibility 

helps reduce supply uncertainty and enables buyer to take action in case of 

possible supply shortage or supply disruption. Research done by AMR Research 

found that, ability to share information faster and more accurately among players 

allows them to see trends sooner and it is the real value of supply chain enablers 

(Koch 2004). Particularly in atypical demand situations, early planning through 

better visibility can make a huge difference; for example, a supplier that plan 

early and initiate necessary activities will benefit from better utilization of his 

resources and facilities where last minute ramp ups are usually very expensive. 

Similarly, a vendor gets a better assessment of supply uncertainty if supplier is 

updated with the order inventory position; for example, in case of possible supply 

shortage, she can go for an alternative supplier (such as a subcontractor) and or 
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plan for a substitute product to hedge the possibility of lost-revenue due to lost 

sales. 

However, the challenge is, to reap the benefit from superior predictive 

methods, forecasting updating technique, immediate information sharing and 

early warning about possible revenue opportunity, players will need custom 

operations planning policies in place that are sophisticated enough to incorporate 

extra information that are more frequently updated and finally generate 

recommendations that allows them to make intelligent decisions. This combined 

set: more predictive power, framework for sharing information and tools/policies 

to help make operational decisions can position the supply chains facing atypical 

demand in a competitive advantage against their competitors. 

A supply chain player facing atypical demand, before beginning any 

initiatives in terms of investment for a information sharing system or bringing 

innovation in their operational policies need to investigate the return on 

investment and effort that it plan to put for change. Some of the key questions 

they face while performing this step are: what benefit sheared-information brings 

to the company or the supply chain as a whole, will it reduce cost, what are the 

options, which information to share, what operational changes are necessary, do 

we even have data to explore all these questions objectively etc. In this 

dissertation, we try to explore some of these important questions in the context of 

atypical demand situations. In this chapter, we characterize atypical demand, 

present a short literature about impact of atypical demand, more specifically, 

seasonal and promotional sales in industry and then explore questions based on 
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industry need and driven by gaps in literature. We have identified information that 

can be shared between players, we have detailed discussion on the benefit of 

sharing them and presented operational policies and analysis that work with 

those information. 

 

1.2 Characterizing atypical demand 

 ‘Atypical demand’ situation has the following characteristics: 

(i) A type of demand situation with high uncertainty and, forecasting through time 

series model does not result in good predictions. In such situations, demand 

is modeled through distributions or histograms based on experts’ opinion or 

past data and forecast are updated as new market information becomes 

available. 

(ii) Example of atypical demands are demand for a short life cycle product or a 

seasonal item under promotion that depends on numerous complex market 

activities such as weather, demand of substitute product, competitor’s 

behavior, market price, overall economy etc.  

(iii) Demand is usually intense in a short period due to its seasonal nature, 

promotional push and/or because product life cycle is relatively short. 

Demand could be so volatile that sales may jump to several times higher than 

any typical sales day. 

(iv) Usually supply chain players near to the final customer face such demand. 
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The assumption that construction of a time series model (stationary or 

non-stationary) for predictive purpose is difficult in atypical situation has been 

researched by Hausman (1969). He provides evidence of such demand 

scenarios. 

  Reinmuth and Geurts (1972) also studied a similar demand situation. They 

are the first to discuss ‘atypical situation’. We use the phrase ‘atypical demand’ 

for the purpose of brevity, and depict demand characteristics outlined above.  

 

1.3 Example of atypical demand: seasonal and promotional sales 

One example of atypical demand situation is seasonal and promotional sales. 

Here we present a literature review of the significance of such demand situations. 

A recent survey that explored the format of customer shopping and spending 

across retail chains found that that on an average a grocery store sells 18.2% on 

promotion, a mass merchandiser sells 13.9% on promotion, and a drug store 

sells 24.3% sells on promotion (Fox 2004). According to the National Christmas 

Tree Association (NCTA 2000a), about 28 million natural Christmas trees were 

purchased for the holiday in 2001, nearly $1 billion in retail sales. Ann Taylor, a 

U.S. women’s apparel retailer with over 580 stores nationwide, reported a year 

on year increase in sales by 26% over the Christmas period of 2003 (Liu and 

Ryzin 2005). Wal-Mart, the world’s largest retailer, reports that, holiday season 

sales - including Thanksgiving and post-Christmas season sales events - 

account for close to 20% of total annual sales (Rozhon 2005). Retailers have 

recognized the potential of pricing and promotion as tools to boost seasonal 
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sales. A study by Fearne et al (1999) done in UK on alternative promotion 

strategies in spirit category, found that impact of tactical promotions to increase 

share and volume growth in this sector is significant and essential even during 

the Christmas period. Larson (2004) states that retailers and producers can 

boost sales of Christmas trees by application of promotion and price tactics. If 

natural Christmas tree growers and seller do not use promotion as a sales 

leverage assuming it’s a seasonal item, then plastic trees may eat away their 

market share; in 2001, only 24% house hold has natural trees and 52% has 

artificial trees (NCTA 2002b). 

 

1.4 Atypical demand and supply chain management 

Objective of a retailer during promotional and seasonal sales is to generate store 

traffic and help communicate image (Blattberg et al 1990), to increase revenue 

and profit in the short-term as well the long-term. Seasonal and promotional 

sales events however generate largest swings in demand, and as a result, they 

face the majority of out-of-stock, excess inventory, and unplanned logistics costs 

(VICS 2004). The ill effects of such events propagate beyond the boundary of the 

retailer’s business. These events are one of the root causes of bullwhip effect 

(Lee et al 1997). Supply chain inefficiencies caused by bullwhip are: excessive 

inventory investment, poor customer service, lost revenue, misguided capacity 

plans, ineffective transportation, and missed production schedule (Lee et al 

1997). Every day low price (EDLP) is prescribed as a counter measure for high-

low pricing (HLP) to alleviate the detrimental effect of bullwhip (Lee et al 1997). 
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While such a prescription can dampen the bullwhip effect, not every retailer is 

embracing it. Based on a survey conducted among 86 grocery stores for 26 

product categories, Hoch et al (1994) finds that an EDLP policy reduced profit by 

18%, and HLP increased profit by 15%. A recent article by Lee (2004a) states 

“by applying tools such as pricing and promotions companies can influence 

demand and better manage their partnerships”.  

These researches imply that the promotional and seasonal sales deserve 

more attention, because they come with huge financial opportunity but with 

notorious uncertainty. Strategies like price promotion at the front-end of the 

supply chain with improved logistics on the back-end can be a defensible 

competitive advantage (Hoch et al 1994). Given that the repercussions of these 

front-end supply chain events go beyond retailer’s business, some of the 

effective ways to reap the benefits while taking care of the uncertainty are 

increased collaboration and information sharing between retailers and suppliers 

Buy item at 
Another Store 32%

Substitute-  
Same Brand 20%

Daily Purchase 
17% 

Substitute- Different 
Brand 32% 

Do Not Purchase 
Item 11% 

Manufacturer loses 

(48%) 

Retail loses 

(59%) 

Figure 1.1 Consumer response to out-of-stock event. Source: GMA/FMI retail 
out-of-stock study (Gruen et al. 2002) 
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of seasonal products, superior forecasting with forecast update techniques, and 

replenishment and inventory/manufacturing policies specifically designed to cope 

with such events. Seasonal and promotional events hold opportunities for both 

front-end seller as well as manufacturers of seasonal items. On the other hand, 

out-of-stock are also more common during such events, just as the customer 

demand peaks. Both the manufacturer as well as the retailer lose out during 

these out-of-stock conditions. For example, according to a recent retail out-of-

stock study (Gruen et al. 2002), as illustrated in figure 1.1, retailers are likely to 

lose more than one-half of the intended purchases when a consumer confronts 

an out-of-stock, and manufacturers lose about one-half of the intended 

purchases. Pushing more inventories into the supply chain as a remedy to the 

stock-out problem however is not the solution (VICS 2004). Obsolete inventory 

management in case of overstock through clearance pricing is a major challenge 

for retail chains (Smith and Achabal 1998). For products like greeting cards, that 

has a finite selling season and uncertain demand, end of the season clearance 

pricing may not even work. 

 

1.5 Supply chain setting for this research 

This dissertation concentrates on a two-player supply chain facing a seasonal 

and/or a promotional sale. Among the two-players is a buyer 

(retailer/distributor/vendor) that makes ordering decision(s) in the presence of 

upstream supply uncertainty and demand forecast revision(s).
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Figure 1.2:  Supply chain configuration with a buyer and a supplier, along with theirs operating policies and 
uncertainties they face. Arrows represent direction of information, product, and fund flows. 

Buyer Supplier 

Replenishment
 Soft-order(s) 
 Final order 
 DP based 

Downstream information: 
Soft-order(s) 

Product 
 Short life cycle 
 Seasonal product 

Upstream information: 
Order inventory position 

Funds 
 Deposit 
 Return Supply 

 Constrained
 Uncertain 

Production 
 Release 
 DP based 

Demand 
 Soft-orders
 Final order 

 

Capacity 
 Contained 
 Random yield 

Demand 
 Atypical 

  (Seasonal &/or
   Promotional) 

Overage Cost + Underage Cost + Holding Cost Overage Cost + Underage Cost + Deposit Cost

 

9
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Second player is a manufacturer that supplies the buyer; demand for this supplier 

is buyer’s replenishment orders. Figure 1.2 illustrates the supply chain 

configuration with uncertainties that the players face and the decisions they need 

to make. Direction of arrows represent product, information and fund flows. 

 

1.5.1 Characterization of a buyer facing atypical demand 

(i) Buyer faces an atypical demand setting and must receive the only 

order shipment from the supplier before the start of the sale. 

(ii) Buyer knows the date of the sale and plans for the sale quite early in 

time. 

(iii) Buyer incurs no holding cost for the order is received just before the 

sale starts. She faces an underage cost for every unit short and an 

overage cost for every unit of excess at the end of the sales event. 

(iv) Buyer carries no substitute product for the product on sale and 

replenishment decisions need to be made for one product. 

(v) Demand forecasts are generated based on early market information 

and revised subsequently as time approaches the sale. Buyer has 

some prior knowledge of the demand uncertainty either in the form of 

past demand data or expert knowledgebase. 

(vi) Supplier’s delivery quantity never exceeds the size of the final order. 

From past knowledge, buyer knows the degree of supply uncertainty. 

Replenishment decisions are made considering both demand and 

supply uncertainty. 
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1.5.3 Characterization of a supplier that replenishes the above buyer 

(i) Manufacturer of the seasonal product. 

(ii) Does not build inventory unless he is notified about a possible 

purchase by buyer or he is sent a final purchase order. 

(iii) His capacity is constrained and faces random yield. Capacity is 

considered inflexible and last minute ramp-up to satisfy an order is not 

a possibility. 

(iv) Supplier lacks independent forecasting capability for market demand 

and relies on retailer’s orders and soft-order revisions.  

(v) Supplier has history of past orders and soft-order revisions from the 

same customer for the same or related product, and uses it for making 

production release decisions. 

1.6 Supply chain planning and information sharing 

This dissertation concentrates on a decision model with a time-frame which is 

within the time between the buyer sending a signal about a planned sale to the 

time the actual demand is observed by the retailer. This period is typically from a 

quarter and a year. Based on Chopra and Meindl (2004), we may classify this 

research to fall under the category of supply chain planning. As illustrated in 

figure 2, the flow of information, products, and funds between these two players 

occur in both directions. The information we consider in this research is as 

follows: 

(i) Soft-order(s): Based on early forecast of atypical demand, buyer 

generates a soft-order and sends it to the supplier. In doing so, it has 
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to submit a deposit per unit of soft-order. The soft-order is later revised 

to become a final order. However, buyer has the option of not sending 

soft-order(s) and only issuing the final order when forecasts are more 

accurate. Note that these soft-orders are not legally binding final orders. 

They are early signals of probable purchase orders.  

(ii) Supplier’s inventory position: If the supplier receives soft-order(s), he 

may start building inventory or wait until receiving the final order. He 

has the option of disclosing his order inventory position with the buyer 

before receiving the final order.  

In the context of information sharing, soft-order(s) can be considered as 

downstream information and supplier’s inventory position as upstream 

information, by the buyer and supplier, respectively. 

1.7 Research focus and questions 

The research focuses on production-inventory management and role of 

cooperative information sharing on cost efficiency and fill rate for the two-player 

supply chain described above. We model a supplier that faces soft-order(s) and 

effective capacity uncertainty and compares her to a supplier that is not given the 

early soft-orders, instead only received the final order under similar capacity 

circumstances. The order fulfillment costs for these two suppliers are compared 

to assess the benefit of transmitting soft-order(s). These two supplier models and 

cost comparisons are used to answer the following specific questions: 
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(i) How to plan on production release(s) when soft-orders are received 

and subsequently revised before receiving the final order, in the 

presence of effective capacity uncertainty? 

(ii) What is cost benefit to the supplier from receiving soft-order(s)? 

(iii) What are the benefits to the retailer in terms of order fill-rate for sharing 

soft-order(s)? 

(iv) How does per unit underage cost, overage cost and holding cost effect 

the decision making and cost-benefit tradeoffs? 

These questions are explored in chapter-2. 

 

On the buyer’s side, we model a buyer that faces atypical demand and supply 

uncertainty. The problem considered here is how to generate soft-order(s) and a 

final order given the demand forecast evolution and supply uncertainty. Under 

upstream information sharing case, same replenishment decisions are made 

using additional information regarding supplier’s order inventory position. We 

investigate the following questions: 

(i) How does a buyer facing atypical demand optimally generate soft–

order(s) and a final order given demand forecast revisions, supply 

uncertainty, and deposit cost? 

(ii) How does she make the same decisions if supplier’s order inventory 

position is known? 

(iii) Is knowledge of supplier’s inventory position beneficial to the buyer?  



 14

(iv) How do benefits very depending on the level of supply uncertainty, 

demand uncertainty, and deposit cost?  

These questions are explored in chapter-3. 

Apart from these specific questions, we also study the interactions of 

various cost parameters, level of demand and supply/capacity uncertainties, on 

the costs incurred by the two supply chain players. 
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CHAPTER 2 

BENEFITS OF ISSUING SOFT-ORDERS UNDER ATYPICAL DEMAND TO 

SUPPLIERS WITH CAPACITY UNCERTAINTY 

2.1 Abstract 

Demand patterns for products with seasonal demand and/or short life-cycles do 

not follow a clear discernible pattern for individual sales events due to such 

factors as product promotions and unforeseen marketplace events. Suppliers 

supporting such “atypical” demand patterns typically incur higher holding costs, 

lower capacity utilization, and lower order fill-rates, particularly under long lead-

times and capacity uncertainty. Sharing of order forecasts, also known as “soft-

orders”, in advance by the buyer could be beneficial to both parties involved. To 

investigate, we model two information sharing scenarios: (1) Supplier receives 

“firm-orders” with a finite and deterministic lead-time; (2) Supplier receives an 

early soft-order with a deterministic due date, however, soft-order revisions are 

allowed at regular intervals. We formulate optimal production scheduling models 

for the supplier under these two scenarios using dynamic programming. We also 

compare the two scenarios through extensive Monte Carlo simulations. Key 

managerial insights offered by this analysis pertain to the impact of sharing early 

soft-orders on the supplier as a function of soft-order accuracy, volatility, timing, 

production capacity, capacity uncertainty, and costs (overage, underage, 

holding). We also look into scenarios where buyers intentionally inflate soft-

orders and study the consequences for both parties involved. 

Keywords: Information sharing, soft-orders, atypical demand, production 

planning. 
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2.2 Introduction 

In recent years, researchers and practitioners alike seem to view effective supply 

chain management and information sharing technology as inextricably linked. 

They are motivated by the possibilities of efficient supply chain planning and 

execution introduced by the information technology (IT) enabler. IT has enabled 

companies to engage in various information-sharing practices, such as 

exchanging sales data, demand forecasts, inventory levels, ordering policies, and 

capacity forecasts with different stages of the supply chain. While the reported 

benefits of information sharing vary considerably (Cachon and Fisher 2000, Lee 

et al 2000), these technologies have substantially lowered the time and cost to 

process orders, leading to impressive improvements in supply chain performance 

(Chen 2003, Sahin and Robinson 2002, Cachon and Fisher 1997, Clark and 

Hammond 1997, Kurt Salmon Associates 1993). More recently, we have even 

seen initiatives such as Collaborative Planning, Forecasting, and Replenishment 

(CPFR), launched to create more effective and collaborative relationships 

between buyers and sellers through shared information (VICS 2004a). Despite all 

this, information sharing still suffers from problems in practice and is not so 

prevalent outside the retail and grocery industries. The major exception is the 

routine exchange of manufacturing resources planning information in supply 

chains through electronic data interchange systems.  

 Demand patterns for product with seasonal demand and/or short product life-

cycles (such as styled goods and trendy consumer electronics) are normally 

“atypical” and do not follow a clear discernible pattern for individual events or 

seasons due to such factors as product promotions and unforeseen marketplace 
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events (Reinmuth and Geurts 1972). In particular, for all those cases where con-

struction of a predictive time-series model for demand forecasting is difficult 

(Hausman, 1969), we term the demand situation atypical. Suppliers supporting 

such atypical demand patterns typically incur higher holding costs, lower capacity 

utilization, and lower order fill-rates, particularly under long lead-times and capac-

ity uncertainty. While they are labeled as atypical situations, they hold opportunity 

for business; increased collaboration between buyer and seller in the form of 

sharing early demand and/or order forecasts and their revisions can reduce the 

likelihood of performance shortfalls.  Further motivation comes from the knowl-

edge that demand from promotional sales are higher compared to usual sales for 

many product segments (Blattberg and Neslin 1990) and out-of-stock problems 

are more severe during promotional events (VICS 2004b).  

 Under atypical demand situations, Terwiesch et al (2005) points out that 

information such as demand forecasts are continually updated as the buyer 

receives new market information that effects demand. Buyer can also share 

order forecasts, also knows as “soft-orders”, and their revisions in advance with 

the supplier. Soft orders are a reflection of buyer’s purchase intent and are not 

legally binding “firm” purchase orders. Supplier may use them to achieve better 

order fulfillment rate without high investment in capacity and inventory. However, 

there is a tradeoff: suppliers that act prematurely through production on any 

given soft-order might face significant future adjustment costs. If the supplier 

happens to be a contract manufacturer, apart from final order uncertainty it faces 

during production decision making, it also needs to consider uncertainty in 

“effective production capacity”. Effective capacity uncertainty can be attributed to 
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inevitable preemptive and non-preemptive factors (such as machine breakdowns, 

preventive maintenance, and yield) as well as uncertainty associated with 

allocation of line/facility capacity to different buyers. Usually, safety inventory is 

used to protect firms against both sources of uncertainty. However, using 

inventory as a hedge against demand and capacity uncertainty can be an 

expensive proposition, especially when holding costs are high (Hu 2003). This 

option may not even be relevant for contract manufacturers that do not build the 

‘same’ product twice.  

 While there is a large body of literature regarding the benefits of sharing 

demand information, there is very little literature pertaining to benefits associated 

with sharing soft-orders, in particular, under atypical demand settings. On the 

contrary, there is more literature that studies advanced firm orders (Karesmen et 

al 2004). Raghunathan (2001) argues that information sharing regarding retailer’s 

actions such as planned promotions, price reductions, and advertising are greatly 

beneficial to the supplier. Our research inquires whether sharing of promotional 

and demand information in the form of order forecasts are beneficial to suppliers 

under capacity uncertainty. While at first glance the answer might seem obvious, 

our results indicate that the accuracy of information being shared (earlier 

forecasts being less reliable than later forecasts), degree of capacity severity 

(i.e., shortage), and capacity uncertainty dictate the final benefits. We quantify 

the potential performance improvements for a supplier under different settings 

and constraints. In particular, we model the supplier facing capacity uncertainty 

under two information sharing scenarios: (1) supplier receives firm-orders for 

seasonal or promotional events with a finite and deterministic lead-time; (2) 
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supplier receives an early soft-order with a deterministic due date, however, soft-

order revisions are allowed at regular intervals, with a final firm-order issued with 

a deterministic lead-time. We formulate optimal production-scheduling models for 

the supplier under these two scenarios using stochastic dynamic programming. 

Hausman (1969) has provided justification for using a dynamic program 

framework in a problem of this setting. This problem involves sequential decision-

making (deciding on production release quantity at the beginning of each period), 

which has a property that later decision (release of next period) may be 

influenced not only by the previous decisions (previous release), but also by 

observable stochastic parameters (such as inventory positions based on actual 

production and (soft) order). We also compare the two scenarios through 

extensive Monte Carlo simulations. Key managerial insights offered by this 

analysis pertain to the impact of sharing early soft-orders on suppliers cost as a 

function of soft-order accuracy, volatility, timing, production capacity, capacity 

uncertainty, and costs (overage, underage, holding). We further quantify the 

benefit of this information sharing on the buyer through calculation of order fill-

rates. We also look into scenarios where buyers intentionally inflate demand 

while issuing soft-order forecasts and study the consequences for both parties 

involved. 

 While it is tempting to consider these buyer supplier interactions in the form of 

a stackelburg game with buyer as a stackelburg leader, the factors under 

investigation (multiple soft-order revisions, capacity uncertainty, demand 

uncertainty, and holding costs) make the problem intractable (see also Metters 
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(1998)). Hence, we choose to take the buyer’s soft-order signals as exogenous 

information. In addition, the insights offered by our analysis are very compelling. 

 Relevant existing literature is reviewed in section 2.3. Detailed formulations of 

the models are presented in section 2.4. The experimental framework for 

assessing the benefits is outlined in section 2.5. Section 2.5 also presents results 

and insights. Section 5 offers some concluding remarks. 

2.3 Literature review 

The following sections review related literature and are roughly grouped into the 

following categories: Information sharing under atypical demand and capacity 

uncertainty; Soft-order revision process; Production planning under soft-order re-

vision; and Production planning under capacity uncertainty. 

 

2.3.1 Information sharing under atypical demand and capacity uncertainty 

Chen (2003) and Sahin and Robinson (2002) provide a good review of literature 

regarding the benefits of information sharing in supply chains. For literature on 

production-inventory policies and benefits when sharing advanced “firm-orders” 

in capacitated environments, see Karenmen et al (2004), Simchi-Levi and Zhao 

(2004), and Ozer and Wei (2004). There is essentially no literature that looks into 

atypical demand settings combined with capacity uncertainty (besides capacity 

severity).  

 

2.3.2 Soft-order revision process 

Given that the buyer is issuing advanced soft-orders that are revised at regular 

intervals, any optimal production scheduling model should account for the soft-
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order revision process. Based on the type of signal, the revision process could be 

modeled as a time-series model (if significant inter-temporal correlation exists, 

e.g. Johnson and Thomson 1975) or through a state-space model (e.g. Aviv 

2003). However, as argued by Hausman (1969), not all patterns exhibit proper-

ties that allow use of a time-series model or a state-space model. This is particu-

larly the case for “atypical” demand settings where order forecasts are based on 

new market signals (Reinmuth and Geurts 1972).  

 Literature in general assumes that consecutive soft-orders follow a particular 

distribution with parameters estimated from historical data. As new information 

becomes available, the parameters are revised. For example, Terwiesch et al 

(2005) surveyed a soft-order revision process in a semiconductor industry supply 

chain where the buyer of semiconductor equipment sends soft-orders to equip-

ment manufacturer and revises it periodically as new information is obtained (be-

fore issuing a final firm-order). In terms of modeling the soft-order revision proc-

ess, two approaches are common. The revision process is assumed to follow a 

probability distribution whose parameters can be updated using: 1) Bayesian 

forecast update techniques or 2) through conditional probability distribution 

(CPD) of future order forecasts. An example of Bayesian techniques is Reinmuth 

and Geurts (1972), who present a forecast conditioning model for a farm facing 

atypical demand. Eppen and Iyer (1997) analyze a quick response system in the 

fashion industry through Bayesian updates of the demand distribution. There is 

more literature that employs the CPD technique (e.g., Raman and Kim 2002, 

Gurnani and Tang 1999, Fisher and Raman 1996 and Hausman and Peterson 

1972). Majority of this literature exploits CPD technique based forecast revision 
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for sequential production/inventory management or ordering policy optimization. 

With the exception of Hausman and Peterson (1972) that model the ratios of suc-

cessive soft-order forecasts (log-normally distributed), all the others use a bivari-

ate density model (particularly Gaussian) for successive forecasts.  

 

2.3.3 Production planning under soft-order revision  

Among the earliest of papers that has incorporated a soft-order revision process 

with production scheduling for seasonal demand goods is Hausman and Peter-

son (1972). It is a multi-period and capacitated model with terminal demand 

where the successive order forecast update ratios follow a log-normal process. 

Kaminsky and Swaminathan (2001) consider a forecast generation process that 

depends on forecast bands refined over time for a terminal demand capacitated 

case. Raman and Kim (2002) combine model features from Hausman and Peter-

son (1972) and Fisher and Raman (1996) to demonstrate the impact of holding 

cost and reactive capacity on supplier’s profitability with a real world example.  

 

2.3.4 Production planning under capacity uncertainty 

Suppliers generally face uncertainty in their effective capacity (Lin and Terdif 

1999, Hwang and Singh 1998). Production planning under usual demand uncer-

tainty coupled with capacity uncertain is a concern in management science litera-

ture (e.g. see Ciarallo et al 1994 and Weng and Yigal 1996). Karabuk and Wu 

(2003) have described capacity uncertainty as a critical factor in capacity plan-

ning in semiconductor industry. Lin and Terdif (1999) consider capacity as uncer-

tain while formulating a component partitioning scheme for a printed-circuit-board 
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assembly. Recently, Jemai et al (2006) developed a contracting scheme for a 

two-stage supply-chain in which a supplier facing uncertain capacity sells to a 

retailer facing a newsvendor problem. However, for atypical demand scenarios, 

literature primarily deals with the task of optimal production scheduling of sea-

sonal goods, and we are aware of no work that incorporates capacity uncertainty 

along with inventory holding costs under soft-orders.  

2.4 Model formulation 

This section describes the following: The two scenarios considered for evaluating 

the benefits of information sharing and the sequence of events (section 2.4.1); 

Soft-order revision process (section 2.4.2); Modeling capacity uncertainty (sec-

tion 2.4.3); Production scheduling model for both scenarios (section 2.4.4); Model 

for forecast inflation and information degradation (section 2.4.5); Performance 

measures used to compare the two scenarios (section 2.4.6). Table 2.1 lists all 

the key model variables and parameters. 

 

Table 2.1: Summary of key model variables and parameters 

J 

N 

j  

n 

∆l 

l 

Yn  

Yj 

 

YF  

Cj  

Cn  

Number of periods in the total time horizon 

Number of forecast revisions; leads to N+1 stages 

Period index, j = 1,2,…,J 

Stage index, n = 1,2,…,N+1 

Time (number of periods) between two order revisions 

Time (number of periods) between final order and shipment 

Soft order received at the beginning of stage n 

Most recently received soft-order (or final order) in the beginning of period j (State 

Variable) 

Final order sent in the beginning of stage N+1 (State Variable) 

Production capacity for period j 

Production capacity for stage n 
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µj  

σj  

µn  

σn  

fCj 

Rj  

Pj 

Ij  

h  

c0 

cu 

gshipment  

gj 

 

1 ,n nY Yf
+

  

µn+1,n 
 

Σn+1,n 
 

ρ∆l 

σD  

σn 

mm  

mσ  

mρ 

 

E(X) 

Ind 

δ(x) 

Average per period capacity 

Standard deviation of per period capacity 

Average per stage capacity 

Standard deviation of per stage capacity 

Probability density function of Cj 

Production release quantity at the beginning of period j (Decision Variable) 

Realized production quantity at the end of period j 

Inventory position at the beginning of period j (State Variable) 

Per unit inventory holding cost per period 

Per unit overage cost incurred on the day of shipment 

Per unit underage cost incurred on the day of shipment 

Actual cost incurred (also called terminal cost) on the day of shipment 

Optimal expected cumulative cost from period j to the day of shipment (Objective 

function) 
 

Joint probability density of two successive (soft) orders, Yn and Yn+1 

  

Mean vector of 
1 ,n nY Yf
+

 

Covariance matrix of 
1 ,n nY Yf
+  

Correlation coefficient between two successive (soft) orders issues ∆l interval apart 

Standard deviation of demand uncertainty on the day of shipment 

Standard deviation of demand uncertainty at the beginning of stage n 

Linear rate of inflation of average soft-order w.r.t. time 

Linear rate of inflation of standard deviation of soft-order w.r.t. time 

Liner rate of degradation of correlation coefficient ρ∆l w.r.t. time 

Normal probability distribution 

Expected value of random variable X 

Indicator function 

Dirac’s delta function 

 

2.4.1 Two scenarios: Information sharing vs. no sharing 

A buyer (a retailer or a distributor) plans for a seasonal or promotional event. 

Based on market information, the buyer updates its demand forecast for the 

product. Given that forecasts made quite early in time are prone to more error, 

buyer has the option of waiting a while to decide on a firm-order quantity to the 
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supplier. Alternatively, based on early assessment of demand, transmit soft-

order(s) before placing a final firm-order. The motivation for issuing soft-orders is 

to improve the odds of receiving a full order by providing the supplier a longer 

lead-time for building the order. In case-1, the “no information sharing” (no-IS) 

case, the buyer does not provide the supplier with order forecasts; rather only 

issues a firm-order quantity with a finite lead-time. In case-2 however, the “infor-

mation sharing” (IS) case, the supplier is provided with an early soft-order with a 

deterministic due date. The initial soft-order is then revised several times before 

giving the supplier a final firm-order with the same finite lead-time. Without loss of 

generality, we assume transportation lead-time to be zero.  

 Figure 2.1 offers a schematic that summarizes the time-lines for both the 

scenarios. It is assumed that the final firm-order, YF, is provided with a lead-time 

of l. In the no-IS case, soft-orders are updated N times (Y1, Y2, Y3, …, YN+1) and 

transmitted to the supplier at finite time intervals, ∆l, before the final order (YF 

=YN+1) is placed (N=3 in figure 2.1). The total timeline is J periods, where J= 

N∆+l. A stage is defined here as the duration between successive forecasts and 

∆l ∆l l Y1 Y2 Y3 YF Shipment

A stage with 
∆l periods 

A period 

Timeline for IS Case

Timeline for no-IS Case

Revised soft-orders
Firm order Due dateFirst soft-

order 

Figure 2.1: Schematic showing time-lines for the no information sharing (no-
IS) case and the information sharing (IS) case with three soft-orders. 

 j=1                       ∆l                       2∆l                     3∆l                          J=l+3 ∆l 
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the last stage entails the lead-time between issuing the final firm-order and the 

due date (figure 2.1 involves N+1=4 stages). 

Thus, the sequence of events for the No-IS case is: 

Step-1: Buyer sends a final order YF with a due date. Due date is l periods away. 

Step-2: Supplier sends a production release Rj to its production plant on period 

j=1. 

Step-3: Realized production is Pj ≤ Rj and inventory position is Ij = Ij-1+Pj at end of 

period j=1.  

Step-4: Supplier repeats step-2 and step-3 for all the available periods (j=2 to l) 

until either: (a) inventory position reached YF or (b) time for shipment 

reaches. 

Step-5: At the end of period l, supplier ships an amount 1l FI Y+ ≤  (there can be no 

overage in the no-IS case).  

The sequence of events for the IS case: 

Step-1:  Buyer sends a soft-order Y1 with a due date. Due date is l+N∆l periods 

away. 

Step-2:  Supplier sends a production release Rj to its production plant on period 

j=1. 

Step-3:  Realized production is Pj ≤ Rj at end of period j=1. Inventory position 

becomes Ij = Ij-1+Pj. 

Step-4:  Supplier receives soft-order updates (Yn+1) during periods j = n∆l+1, for 

all n=1,2,..,N-1. Based on updated soft-orders and inventory position, 

supplier repeats step-2 and step-3 until either: (a) inventory reaches the 

final firm-order quantity (YF) or (b) due date is reached. 
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Step-5: At the end of period l+N∆l, supplier ships an amount less than or equal to 

YF. 

 

2.4.2 Soft-order revision model  

Demand forecasting for an atypical setting is a complex interaction of a number 

of largely unpredictable events or activities such as, overall economic condition, 

competitor’s sales push, emergence of new substitute product etc. It is expected 

that as the buyer comes closer to the planned sale event, more reliable demand 

forecasts emerge. This results in soft-orders more reliable to the supplier. We 

assume that historical data is available to the supplier to construct a model of 

soft-order revision process. In order to couple the soft-order revision model to a 

decision model, we must also assume that the forecasting method used by the 

buyer has not changed significantly and that the underlying stochastic process 

relating to forecast information sources will not change significantly. This implies 

that the forecast data generation model is not going to significantly change in the 

next planning period and hence the soft-order revision model. Having stated that, 

our soft-order data generation model is assumed to be known and we consider it 

exogenous for our analysis of benefits of information sharing. As for the structure 

of the soft-order revision model, we model each pair of consecutive soft-orders 

as a joint distribution; mathematically, we have
1 ,n nY Yf
+

. Given 
1 ,n nY Yf
+

, the decision 

maker can predict the next possible soft-order (i.e. Yn+1) given the current stage 

soft-order through
1 |n nY Yf
+

. A quasi-Markovian property is assumed between suc-

cessive forecasts,
1 1 1| ,..., |n n n nY Y Y Y Yf f

+ +
= . Hausman (1969) justifies this assumption and 

provides empirical evidence supporting this property. Hausman (1969) also 
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states that a quasi-Markovian property is important because it allows us to formu-

late a sequential decision problem using a dynamic program without having to 

handle a large number of state variables. This soft-order revision model is flexible 

enough to represent many forecast-generation models discussed in literature. 

For example, the log-normal order forecast revision process model proposed by 

Hausman and Robinson (1972), where the ratio of two consecutive order signals 

follows a lognormal distribution, is a special case of this model. So is the demand 

evolution model proposed by Raman and Kim (2002) that models successive 

demands as Gaussian.  

 An important characteristic we seek in our soft-order revision process model 

is its applicability for achieving a fair comparison of the two information-sharing 

scenarios. It is therefore necessary to ensure that the final firm-orders from the 

buyer to the supplier follow an identical pattern irrespective of sharing early soft-

orders. The process is illustrated in figure 2.2, including the estimation of 
1 |n n nY Y yf

+ = . 

In all numerical experiments, we generate the complete soft-order sequence of 

Y1, Y2,…,YF  and use only YF for the no information sharing case. 

 

2.4.3 Modeling capacity uncertainty  

We assume supplier’s production capacity as constrained and random. Without 

loss of generality, per period capacity, jC , is assumed to be i.i.d. for all j with 

density 
jCf . Based on

jCf , the production yield density (Pj) for a given release jR is 

as follows: 

( )Ind(0 ) ( )
j j j j

j
P p C j j C j Rj j

R
f f p R f dC pδ

∞

= = ≤ < + ∫   (1) 
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Figure 2.2: Illustration of soft-order revision process with four stages 
(N=3). Ellipses denote joint density contours of successive soft-
orders, while the bell curves denote conditional density of next soft-
order given a soft-order. Capital Y denotes soft-order random variable 
where as y denotes a realization during a particular season. 

Figure 2.3: Relationship between capacity uncertainty and produc-
tion uncertainty given a particular release (Rj). 
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Y2 

Y3 
f3,2 

fYF|y3

y2 

y3 
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∞

∫
jPf  



 30

 

where, Ind is the indicator function and δ is the Dirac’s delta function with the fol-

lowing properties: 

Ind(0 ) 1      0

                           0  

j j j jp R if p R

elsewhere

≤ < = ≤ <

=
  (2) 

,    
( )

0,       

j

Rj j

j

p Rj
p

p Rj
δ

∞ =
=  ≠

   (3) 

These mechanics are illustrated in figure 2.3. It shows that the probability of pro-

ducing jR  is the sum of all the probabilities of realizing a capacity more than or 

equal to jR . On the other hand, the probability of producing less than jR is equal  

to the probability of realizing that much capacity to produce. Right hand side of 

the equation 1 is integral to the cost formulation presented in the next sections. 

 

2.4.4 Production-scheduling model for the no-IS case 

Supplier makes one final shipment and a unit underage cost of cu is incurred on 

the day of shipment. In addition, a unit holding cost of h per period is incurred 

based on the production pattern. Over production is not a possibility in the no-IS 

case for the supplier initiates production after receiving the final order. With the 

presence of capacity uncertainty, we can optimally schedule production (i.e., de-

termine releases) for the l periods using backward dynamic programming. Let, jI  

denote inventory position at the beginning of the thj period and jP  is the actual 

production of the thj period. The (underage) cost incurred at the end of shipment 

(end of period J) holds the following relationship: 

 ( ) [ ( )]shipment J J u F J Jg I P c Y I P ++ = − +   (4) 

where JP denotes the quantity produced during period J.  
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At the beginning of period J, the expected cumulative cost from the beginning of 

period J to the end of shipment is 

0
( ) ( )

J

j j
J J J

R

shipment J J C J shipment J J C J
C C R

g I C f dC g I R f dC
∞

= =
+ + +∫ ∫ , where JR  denotes the 

“production release’ quantity for period J and actual production yield ( JP ) less 

than or equal to JR . There is obviously no holding cost term given that the order 

is being shipped at the end of the period. The task is to determine the optimal 

production release quantity JR  that minimizes this cost: 

 
0

( ) Min ( ) ( )
J

j j
J J J J

R

J J shipment J J C J shipment J J C J
R C C R

g I g I C f dC g I R f dC
∞

= =
 = + + +
 ∫ ∫      (5) 

The general recurrence relation for any period j  (including the last period) is:  

 

( )( )

( )

1
0

1

( )

( ) Min ,    1,..,

( ) ( )

j

j
j

j

j
j j

R

j j j j j C j
C

j j
R

j j j j j C j
C R

g I C HC C f dC

g I j J

g I R HC R f dC

+=

∞

+ =

 + +
 = = 
+ + +  

∫

∫
  (6) 

where, the holding cost function jHC  is defined as cost incurred for producing a 

quantity x in the period j and carrying to the day of shipment (i.e. period J). Note 

that this way of defining holding cost doesn’t incur a holding cost for the period in 

which the product is produced: 

 ( )( )jHC x hx J j= −   (7) 

 

2.4.5 Production model for the IS case 

As in the no-IS case, supplier incurs an underage cost of cu or unit overage cost 

of c0 based on mismatch between realized production and final order. A unit 

holding cost of h per period is incurred based on production pattern. Let, jI and 

jY denote inventory position and the most recently received soft-order forecast or 

final order quantity, respectively, at the beginning of period j. While the produc-

tion planning is done on a period by period basis, the revised forecasts are avail-
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able only on a stage by stage basis. Therefore, 1j jY Y+ =  for those successive pe-

riods with no new forecast update. Overall, two sets of recursive equations are 

necessary for these two cases in deriving the optimal release orders.  

Similar to (4), the sum of overage and underage costs incurred at the end of 

shipment is: 

[ ] [ ]( , ) ( ) ( )shipment J J F o J J F u F J Jg I P Y c I P Y c Y I P
+ ++ = + − + − + .  (8) 

Once again, using backward dynamic programming, one can derive the following 

recurrence relations for determining the optimal production release quantities for 

all periods. For all 1j n l= ∆ − , 1,2...,n N= , the recurrence relations involve soft-

order revision and can be expressed as follows: 

 
0

( , ) Min ( , ) ( , )
j

j j
j j j j

R

j j j j j j j C j j j j j C j
R C C R

g I Y G I C Y f dC G I R Y f dC
∞
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where 
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For all 1j n l≠ ∆ − , 1,2...,n N= , the recurrence relations involve no soft-order revi-

sion and can be expressed as follows: 
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  (11) 

 

2.4.6 Modeling forecast inflation and information degradation 

In the context of sharing early soft-order forecasts, poor forecasting on the part of 

the buyer induces forecast volatility to the supplier (Terwiesch et al 2005). Fore-

cast volatility also arises as soft-orders based on preliminary information are 

transmitted to supplier at a point when the buyer still faces substantial uncertainty 

about the market demand (market volatility). While forecast volatility could be an 
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unavoidable condition, forecast inflation or manipulation can be considered an 

opportunistic behavior: buyer places inflated soft-orders hoping to obtain a higher 

order fill-rate. We investigate the impact of these two elements, degree of fore-

cast volatility and degree of forecast inflation, on the supplier as well as the 

buyer, with two objectives. First, we study the cost and order fill-rate conse-

quences to supplier and buyer, respectively. Secondly, we investigate the extent 

to which the above dynamic programming model can compensate the behavior 

of soft-order inflation, in particular, under the condition that the supplier pos-

sesses historical knowledge that buyer inflates soft-order forecasts and is aware 

of the degree of inflation in an expected sense.  

 It is a commonly accepted notion that longer forecast horizons lead to fore-

casts that are more uncertain. As illustrated in figure 2.4, a linear model is em-

ployed here to model forecast volatility and degradation of certainty with time. 

Amplitude of standard deviation of the soft-order forecast distribution ( jY ) is used 

as a measure of forecast uncertainty and is modeled as 

( )( 1)n D m N n l lσσ σ= + − + ∆ + , where nσ  denotes the standard deviation of the 

soft-order forecast distribution at the beginning of stage n, Dσ  the standard de-

viation of demand uncertainty on the day of shipment, and mσ  the slope of the 

degradation model. In estimating nσ , it is necessary to use the standard deviation 

of demand uncertainty on the day of shipment, Dσ , as a base for facilitating a fair 

comparison between the two information sharing scenarios (for the duration of 

the last stage, l, is common to both cases). Given that our formulation models the 

joint density of successive soft-orders, it is also necessary to address the effect 

of correlation between two consecutive soft-orders. We assume that this correla- 
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Figure 2.4: Forecast inflation (c) and information degradation models (a 
and b). 
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-tion strictly depends on the stage duration, i.e. l∆ , and is also modeled linearly 

as 1 ( )l m lρρ∆ = − ∆ , where lρ∆  is the correlation coefficient. This model implies 

the following: Correlation coefficient is one if two successive soft-orders are is-

sued at the same instant and correlation degrades linearly with time at a rate of 

mρ . 

As for intentional order inflation, we once again employed a linear model: 

( )( ) ( ) ( 1)n F mE Y E Y m N n l= + − + ⋅ ∆ , where E(Yn) denotes the mean of the soft-

order distribution at the beginning of stage n, E(YF) the mean of final firm-order 

distribution, and mm  the slope of soft-order mean inflation. These relations are 

also illustrated in figure 2.4. 

 

2.4.7 Performance measures for comparison of information sharing scenar-
ios 

The different information sharing scenarios will be compared based on supplier’s 

expected costs (holding, overage, and underage costs) as well expected order 

fill-rates to the buyer (fraction of the final firm-order). It is assumed that the sup-

plier makes one final shipment on the due date asked by the buyer. Holding cost 

is incurred for keeping finished goods and overage and underage costs are in-

curred on the day of shipment. Overage costs are possible only when forecasts 

are updated; therefore, for no-IS case, this cost component is not applicable. 

Costs are denoted as follows: oc for unit cost of overage, uc for unit cost of under-

age, and h  for holding cost per unit per time-period. The expressions for the cost 

performance measures are as follows. For the No-IS case: 

 ( )( ) [ ( )] ( )u F J J j jE TC E c Y I P HC P+= − + +   (12) 

For the IS case, the cost expression is: 
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 [ ] [ ]( )( ) ( ) ( ) ( )o J J F u F J J j jE TC E c I P Y c Y I P HC P
+ += + − + − + +   (13) 

where, ( )j jHC P is defined in equation (7). 

For both the cases, the expected order fill-rate is: 
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In expressions (12), (13) and (14) the expectation is taken over all possible varia-

tions on soft-orders and production yield coupled with the decision being taken at 

each period of the production process. In the numerical evaluation section of this 

research, the expected values are computed through Monte Carlo simulations of 

optimal release policies. 

2.5 Numerical experiments 

In this section, we numerically analyze how modification of different cost parame-

ters, lead-time, forecast uncertainty/inflation, and capacity shortage/uncertainty 

affect the two players (i.e., the supplier as well as the buyer). The supplier’s order 

fulfillment cost and the order fill-rate it delivers to the buyer depends on all these 

parameters.  

Numerical evaluation involves the following steps. First, optimal production 

scheduling models for all the selected combinations of parameters are executed 

and the resulting optimal policies are stored. Then, the Monte Carlo simulation is 

performed that primarily involves two tasks: i) Generation of soft-order forecasts 

and final firm-order quantities based on the selected soft-order revision process. 

ii) Determination of optimal production release orders based on stored optimal 

policies, and in turn, computation of supplier’s expected cost and order fill-rate.  
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Figure 2.5: (a) Period level release policy. (b) Aggregate stage level re-
lease policy. While holding cost is ignored for production during the period 
of production for the period level policy, this is not the case in the stage 
level model. 
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Given the nature of the dynamic programming formulations, modeling capacity 

uncertainty and production at an aggregate level for stages rather than individual 

periods offers significant advantage in terms of computing time (resulting in three 

to four fold reduction in some cases). While this approximation leads to a small 

bias in determining holding costs, for ease of simulation, we have adopted the 

aggregate optimization and simulation strategy. 

 

2.5.1 Aggregate production plan for stages 

Firstly, we derive the capacity per stage (Cn) from the capacity per period model 

(Cj) (assuming capacity per period is independent). Then, we compute an optimal 

aggregate release order Rn for every stage of production instead of every period 

of production. However, without the detailed production schedule for every pe-

riod, it becomes necessary to approximate the computation of holding cost. The 

assumption that holding cost is not incurred during the “stage” of production but 

incurred during subsequent stages will introduce significant bias in assessing the 

difference between expected total cost of IS case and No-IS case, since No-IS 

case contains a single stage. Hence, a reasonable holding cost approximation for 

a stage is derived as follows. Given the realized production for any stage as Pn , 

we assume that it is realized through uniform production over duration Tp. Here, 

we define TP as the time taken to produce an amount Pn in a stage of length ∆l:  

 
   if    ( )

( )

                 if    ( )

n
n n

n

n n

P
l P E C

E C

l P E C

= ∆ <

= ∆ ≥

PT
  (15) 

These relations are illustrated in figure 2.5 (b) and can be best visualized by 

comparing triangles A1B1C, AB0C, and ABC. The resulting holding cost expres-

sion is: 
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( )( ) ( )
2

n n n n

h
HC P P hP N n l l= + − ∆ +PT   (16) 

 In this expression, the first term is the holding cost for that stage and the sec-

ond term is the holding cost for remaining periods (with due date ( )J N n l− − ∆  

periods into the future). This modified formulation is implemented for deriving the 

optimal production “release” patterns. For the No-IS case, we no more need a 

dynamic program. Optimal policy becomes a rule that can be stated as follows: 

release quantity Rl is equal to the order quantity YF. Assuming Rl units are pro-

duced during the lead-time l, supplier’s expected cost under this policy becomes: 

 ( ) ( [ ] ( ))u F N N NE TC E c Y P HC P+= − +   (17) 

In the IS case, as periods are aggregated into stages, unlike in period by period 

scheduling, we no longer need to derive two sets of recursive expression for in 
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Modifications in the expressions for performance measures are straightforward; 

we simply replace number of periods J with number of stages N and period index 

j with stage index n in equations (13)-(15). 

 

2.5.2 Framework for numerical analysis  

All numerical evaluations presented here are based on 1.5 million simulation 

runs. Table 2.2 provides the common framework for all the simulations while the 

subsections below discuss the framework for studying the different effects. Dur-

ing optimization and simulation of various scenarios, we approximate the con-

tinuous probability distributions functions with probability mass functions defined 

over a set of discrete values. Capacity is always bounded between 
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[0, 4.5 ]n nµ σ+ , where nµ is the expected capacity per stage and nσ  the standard 

deviation of stage capacity.  

 

Table 2.2: Common framework for all numerical experiments 
 

 
Information Sharing Case

(IS) 
No Information Sharing 

Case (No-IS: ∆l=0) 

Number of revisions 
(N) 

3 0 

Number of stages 
(N+1) 

4 1 

Final order lead-time l l 

Total number of pe-
riods (J) 

N∆l+l l 

Soft-order revision  
model 

1 2 12 12~ ( , )( , )f Y Y Σµ  

2 3 23 23~ ( , )( , )f Y Y Σµ  

3 3 3~ ( , )( , )F F Ff Y Y Σµ  

N.A. 

Per pe-
riod 

2( , )j jµ σ  2( , )j jµ σ  

Per 
stage 

2 2( , ) ( , )n n j j

periods

µ σ µ σ= ∑ 2 2( , ) ( , )N N j j

l

µ σ µ σ=∑  
Production 
capacity 

Bounds [0, 4.5n nµ σ+ ] [0, 4.5N Nµ σ+ ] 

Final order YF YF 

We caution here that while care has been exercised in conducting these nu-

merical experiments to best extract and illustrate the dynamics at play, all the 

while coping with a large number of parameters, the patterns/effects reported can 

change somewhat as a function of the parameter levels. However, the essential 

dynamics/insights from these results are expected to hold strongly in most set-

tings. 

The rest of this section is organized as follows: Section 2.5.3 outlines the ef-

fect of firm-order lead-times as well as soft-order revision lead-times on supplier’s 

total order fulfillment cost as well as order fill-rate to buyer. Sections 2.5.4 and 

2.5.5 jointly study the impact of soft-order quality degradation with lead-times.  
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Parameters: E(YF)=100, σd=7, l = 4, µC=6, σC=2, co=1, cu=1.5, 
h=0.05, mm=0, mσ=0.3, mρ=0.045. 

Figure 2.6: Effect of time between order forecast revisions on sup-
plier’s cost.  

Parameters: E(YF)=100, σd=7, l=[1,2,3,4,5], µC=6, σC =2, co=1, 
cu=1.5, h=0.05, mm=0, mσ=0.3, mρ=0.045.

Figure 2.7: Effect of total order lead-time on supplier’s cost. 
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While section 2.5.4 studies the impact of degradation of standard deviation of 

soft-orders, section 2.5.5 studies the impact of degradation in correlation be-

tween soft-orders and final firm-order. Section 2.5.6 studies the impact of “inten-

tional” efforts by the buyer to deceive the supplier through systematic soft-order 

inflation. Lastly, section 2.5.7 studies the impact of capacity uncertainty.  

 

2.5.3 Effect of lead-times (l and ∆l) 

While longer order lead-times are preferred by suppliers for the ability to reduce 

underage costs without having to commit large amounts of capacity to individual 

buyers and/or resort to overtime, they expose increased risk to buyers, attribut-

able to placing orders based on early demand forecasts. While sharing soft-order 

forecasts can partially address this dilemma, relying too heavily on very early 

soft-order forecasts (large number of revisions (N) and/or large durations be-

tween revisions (∆l)) also increases suppliers risk (attributable to potential for 

over production). This section investigates these tradeoffs through a variety of 

experiments. For example, while increasing ∆l effectively increases capacity of a 

stage, it also degrades the correlation between two adjacent soft-orders, and 

hence, increasing the uncertainty associated with final firm-order. These affects 

captured through numerical evaluations are illustrated in figures 2.6 and 2.7.  

 Figure 2.6 illustrates the effect of ∆l on expected total order fulfillment cost to 

the supplier. It can be seen that increase in ∆l decreases the total cost initially, 

attributable to significant reduction in underage costs from extra capacity. How-

ever, beyond a certain point, the marginal benefit is zero, and the cost can actu-

ally increase due to increased forecast volatility. As expected, holding cost  
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Parameters: E(YF)=100, σd=7, l=4, µj=6, σj=2, co=1, cu=1.5, h=0.05, 
mm=0, mρ=0.05. 

Figure 2.9: Effect of (soft) order variability on order fill-rate. 

Figure 2.8: Effect of (soft) order variability on supplier’s cost. 
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increases with ∆l while underage cost decreases. Given the underage cost trend, 

it can be easily inferred that the order fill-rate would increase with ∆l, however, 

with diminishing returns. The zero overage cost for experiments reported in figure 

2.6 can be attributed to the fact that, on average, final demand is E(YF)=100 and 

only 24% of that demand (i.e., E(C)/ E(YF)) can be produced after receiving the 

final order. Therefore, to incur overage, the volatility of the soft-orders has to be 

so huge that the supplier produces more than 100% of the order before receiving 

the final order. Such behavior can be introduced by increasing the values of mσ 

and mρ.  

 Figure 2.7 plots the expected order fulfillment cost to the supplier as a func-

tion of total order lead-time (l+∆l). Unlike results from figure 2.6, here we also 

study the impact of final order lead-time (l). It shows that increasing the total 

lead-time (l+∆l) decreases supplier’s cost. Also, receiving soft-orders (i.e. cases 

when ∆l≠0) are always beneficial. However, the marginal benefit of increasing 

total lead-time beyond a certain point is zero. It could even be negative, as we 

will see in subsequent sections. Another observation from figure 2.7 is that ex-

pected cost for certain combinations of l and ∆l are found to be same (e.g., con-

sider the pair (l=4, ∆l=1) and (l=1, ∆l=2)). This implies that providing a final order 

with a sorter lead-time could be just as effective as issuing soft-orders earlier. 

Thus, these experiments are able to reveal the dynamics in play. The plots 

clearly demonstrate the benefit of sharing early soft-orders, at least, at the speci-

fied parameter levels. Obviously, significantly increasing the final order lead-time 

will diminish the value of soft-orders. However, as explained earlier, this is not 

necessarily acceptable to buyers that  have to  place orders  based  on very early 
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Parameters: E(YF)=100, σd=7, l = 4, µj=6, σj=2, co=1, cu=1.5, 
h=0.05, mm=0, mσ=0.3. 

Parameters: E(YF)=100, σd=7, l=4, µj=6, σj=2, co=1, cu=1.5, 
h=0.05, mm=0, mσ=0.3.

Figure 2.10: Effect of correlation between successive (soft) orders 
on supplier’s cost 

Figure 2.11: Effect of correlation between successive (soft) orders 
on supplier’s cost 
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demand forecasts. 

 

2.5.4 Effect of order variability (mσ ) 

Our experiments investigate the impact of forecast uncertainty on supplier’s order 

fulfillment cost as well as buyer’s order fill-rates by varying the mσ (increasing mσ 

linearly increases the standard deviation or uncertainty of order forecasts as a 

function of lead-times). Overall, as expected, both performance measures de 

grade with increasing mσ for a given ∆l. Figures 2.8 and 2.9 illustrate cost and 

order fill-rate effects, respectively.  

 It is already evident from section 2.5.3 that short soft-order revision lead-times 

(given a fixed number of revisions) does increase supplier’s order fulfillment cost 

while reducing order fill-rates to the buyer. This explains the overall trends in fig-

ures 2.8 and 2.9. Figure 2.9 also illustrates that the cost is indifferent to mσ at low 

levels of ∆l (e.g., ∆l ≤2). The reason being that cost is so severely dominated by 

the low capacity constraint, that the effect of mσ  becomes secondary. Further 

comparison of figures 2.8 and 2.9 reveals that while order fulfillment costs are 

insensitive to low levels of ∆l(≤2), order fill-rates are insensitive even at slightly 

higher levels of ∆l(≤3). This implies that while total cost is dominated by the ca-

pacity constraint, the order fill-rate is favored by higher variability level if capacity 

is highly constrained. Another important observation from figure 2.9 is the down-

ward trend in the order fill-rate as ∆l increases beyond a certain limit. This can be 

attributed to the fact that the corruptive influence of order volatility begins to out-

weigh the benefits of increased effective capacity from a larger ∆l. 
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Parameters: E(YF)=100, σd=7, l = 4, µj=6, σj=2, co=1, cu=1.5, h=0.05, 
mσ=0.3, mρ=0.05. 

Parameters: E(YF)=100, σd=7, l=4, µj=6, σj=2, co=1, cu=1.5, h=0.05, 
mσ=0.3, mρ=0.05. 

Figure 2.12: Effect of systematic soft-order inflation on supplier’s cost

Figure 2.13: Effect of systematic soft-order inflation on order fill-rate
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2.5.5 Effect of correlation between successive soft-order forecasts (mρ) 

As noted earlier, correlation between successive soft-order forecasts strongly af-

fects the predictability of final firm-order based on earlier soft-orders. The affects 

of degradation in this correlation are illustrated in figures 2.10 and 2.11. As ex-

pected, stronger correlations (lower mρ values) are favorable for both the supplier 

and the retailer. It is clear that both the cost and fill-rate graphs are fanning out at 

higher levels of ∆l, meaning that the interaction between ∆l and mρ is significant 

at higher soft-order revision lead-times. These behaviors can be explained in a 

manner similar to that of figures 2.8 and 2.9. A small ∆l implies a higher correla-

tion but with a lower capacity. Therefore, the cost (order fill-rate) is high (low). 

From the production planning point of view, low correlation is never good whether 

capacity is constrained or not (figure 2.10). However, the order fill-rate seems to 

improve with lower correlation in the region between 4≤∆l≤6. 

 

2.5.6 Effect of intentional but systematic soft-order inflation (mm) 

From figures 2.12 and 2.13, it can be seen that systematic soft-order inflation has 

no effect when capacity is tight. With no forecast inflation (i.e. mm= 0), increasing 

capacity decreases cost; however, from order fill-rate point of view, there exist an 

optimal ∆l for which the order fill-rate is maximum (∆l=7 for mm= 0). For high de-

gree of inflated soft-orders (e.g. mm≥1.5), the supplier’s cost goes up dramatically 

after passing a point of minimum (e.g. for mm= 1.5, the cost is least at ∆l=4).  

 Two important insights can be drawn from these graphs. Firstly, for a given 

∆l, increasing the degree of inflation increases the order fill-rate while also in-

creasing the order fulfillment cost to the supplier. This implies that the buyer al-
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ways benefits (receives a better order fill-rate) from issuing inflated soft-orders, 

while it hurts the supplier. Secondly, the proposed dynamic programming formu-

lation is not robust enough to fully compensate for these soft-order inflations, in 

spite of the systematic (linear) pattern, and is fully appropriate only when the soft-

orders are not inflated. The overall difficulty can be attributed to the interaction 

between soft-order inflation and order volatility. We hypothesize that the dynamic 

programming formulation is likely to more effectively counter systematic soft-

order inflation at lower levels of order volatility. In addition, we believe that the 

ability of dynamic programming technique to counter soft-order inflation will also 

be a function of the inflation pattern. While we only investigated a particular type  

of systematic inflation pattern (linear), other patterns such as step-shifts will be 

considered for further study.  

 

2.5.7 Effect of capacity severity and uncertainty ( nµ  and nσ ) 

As expected, figure 2.14 illustrates that increasing the expected capacity de-

creases the expected order fulfillment cost to the supplier. This is because in-

creasing the capacity allows the supplier to postpone production without incurring 

any increase in underage cost, while decreasing the holding cost. The plot also 

illustrates that the detrimental effect of capacity uncertainty is more when the 

mean effective capacity is less (or when capacity is constrained). Moreover, the 

marginal benefit of increasing capacity decreases as we keep increasing capac-

ity.  
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2.6 Conclusion 

Our analysis reveals that suppliers supporting “atypical” demand patterns, arising 

say from promotional marketing efforts, seasonal and/or short product life-cycles, 

and contract manufacturing, can benefit from receiving early soft-order forecasts 

from the buyer. Our analysis also reveals that such information sharing is also 

beneficial to the buyer in terms of order fill-rate. The dynamic programming for-

mulations offered allow for soft-order revisions and can determine optimal pro-

duction release targets for individual production periods under capacity uncer-

tainty. We also identify several different dynamics at play, as a function of order 

lead-times, soft-order volatility, and reliability of soft-orders. The benefit of receiv-

ing soft-orders depends primarily on the degree of capacity shortage and uncer-

tainty. Volatility in soft-orders is detrimental to both the players, resulting in in-

Parameters: E(YF)=100, σd=7, l = 1, ∆l=1, co=1, cu=1.5, h=0.05, mm=0, 
mσ=0.5, mρ=0.25 

Figure 2.14: Effect of capacity severity and uncertainty on supplier’s cost
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creased order fulfillment costs while lowering order fill-rates. Although receiving 

early soft-orders improves the supplier’s ability to complete the order, early fore-

casts are often more uncertain, increasing the risk of over production. An optimal 

lead-time for sharing soft-orders can be determined based on the levels of effec-

tive capacity, demand forecast uncertainty, and the different cost parameters. 

 We also demonstrate that the dynamic programming technique cannot fully 

account for intentional soft-order inflation by the buyer, even under conditions of 

a stable and linear order inflation pattern. The analysis reveals that the buyer has 

an incentive to inflate soft-orders at a cost to the supplier. This suggests that any 

contract offered by the supplier to the buyer should incorporate penalties for soft-

order inflation. Future studies will look into optimal penalty structures for inflation.  

 Presently, efforts are also under way to study the optimal soft-ordering policy 

for a retailer facing atypical demand and supply uncertainty. In addition, we will 

study the benefits of upstream information sharing (such as production inventory) 

for such retailers.  
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CHAPTER 3 

AN OPTIMAL SOFT-ORDER REVISION POLICY FOR A VENDOR FACING 

SUPPLY UNCERTAINTY AND UPSTREAM INFORMATION  

 

3.1 Abstract 

Atypical demands are highly volatile and unsuitable for regular forecasting. In 

such cases, vendors utilize market signals to do demand forecast updating. Early 

soft-orders are transmitted to the supplier to avoid supply shortages. We 

determine an optimal soft-order revision policy for a vendor facing atypical 

demand and supply uncertainty in a single selling season based on a stochastic 

dynamic program. The decision variables are soft-order(s) and final firm-order 

quantities to be transmitted to the supplier. We also demonstrate the value of 

upstream information sharing, such as a supplier sharing order inventory 

information at regular intervals with the vendor. The contributions of this paper 

are: (i) A decision model for vendor to optimally revise soft-orders with or without 

supplier’s order inventory position. (ii) We establish the relationship between 

optimal soft-orders and final firm-order under demand forecasts, demonstrating 

that optimal orders may be inflated, deflated, or match the forecast. (iii) We 

identify circumstances under which sharing of supplier’s order inventory 

information is beneficial to vendor. A detailed analysis explores the structure of 

the optimal ordering policies and the effect of cost parameters and the different 

sources of uncertainty on vendor performance. 

Keywords: Soft-orders; supply uncertainty; upstream information sharing; atypical 

demand 
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3.2 Introduction 

In the current global and highly competitive marketplace, the product lifecycle is 

continually shortening. Vendors selling short life cycle products (such as styled 

goods and trendy consumer electronics) face increasing pressure in determining 

replenishment order quantities for their seasonal sales and promotion events. 

Although everyday low price (EDLP) strategy is being promoted by retailer 

Walmart and others as the solution to tame the highly detrimental bullwhip effect 

in supply chains, instruments like promotion and price reduction during seasonal 

sales are a commonplace. Demand patterns of style products during seasonal 

sales are rather “atypical” attributable to complex interactions between many 

intractable events, resulting in such demand behaviors that may not exhibit a 

clear discernible pattern (Reinmuth and Geurts 1972). Today software vendors 

are providing a myriad of packages to cope with uncertain situations and sales 

planning for promotional and seasonal events. However, every competing vendor 

has access to such tools. Only those vendors capable of squeezing every bit of 

inefficiency and customer dissatisfaction out of the system through better 

forecasting and planning to best match supply and demand are going to win in 

the marketplace.  

 The replenishment decision making for vendors becomes difficult if such 

unpredictability down-stream is supported by an up-stream supply source that is 

geographically distant, resulting in longer replenishment lead-times. To start the 

planning process early in time, vendors should involve experts/expert methods 

that assimilate all the complex yet relevant market information and estimate an 
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early sales forecast. Early forecasts in such situations are extremely helpful for 

both the vendor and the supplier. By issuing reasonable soft-orders based on 

these early forecasts, long before the start of the sale, vendor allows the supplier 

to better plan for and support the sales event. These soft-orders are tentative 

orders from buyer to supplier; they are reflection of buyer’s purchase intent but 

not legally binding “firm” purchase orders. Those suppliers that do not have in-

house forecasting capability or do not have forecasting capability for that 

particular product are completely dependent on such signals for early production 

planning. Moreover, if the supplier happens to be a contract manufacturer that 

does not build the same product twice, these signals become even more 

important. If the vendor is a trustworthy player or commits a deposit amount for 

every soft-order she submits, the supplier may even start building inventory 

based on such soft-order. Such early information sharing in terms of soft-ordering 

is beneficial for the supply chain in terms of achieving higher order fill-rates for 

the vendor as well as increasing sales for the supplier. Higher order fill-rates 

without soft-ordering would have been otherwise possible only through either 

investing in huge reactive capacity capable for last minute “just in case” 

production ramp-ups or through building up inventory that may have to be 

marked down with loss if demand does not occur. 

 Replenishment decisions become more difficult with increase in uncertainty 

(both supply uncertainty as well as demand uncertainty). In case of atypical 

demand situations that we just described, construction of a predictive time series 

model based on simple observation of demand is difficult (Hausman 1969). In 
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such cases, we depend on simple statistical models such as joint distributions of 

consecutive demand forecasts and basic statistics such as correlations for 

decision support. We have seen that this way of capturing demand uncertainty 

for atypical situation has gained preference in the literature (see literature review 

by Raman and Kim 2002). Although literature predominantly focuses on demand 

side uncertainty, supply side uncertainty is relevant in many industries and not 

very well explored in developing optimal procurement policies. As stated by Lee 

(2002), supply uncertainty results from supplier source capability; elements and 

activities associated with a supply system are not free from frequent breakdowns, 

unpredictable and low yields, poor quality, limited supply capacity, inflexible 

capacity, evolving production process, and life cycle position of product. 

Heightened alertness towards quality control in production process and superior 

condition based maintenance practice may lower uncertainty due certain factors 

like frequent breakdown, unpredictable low yields, and poor quality. In contrast, 

increased complexity in production system, frequent overhauling of assembly 

system due to change in product design, thrust towards flexible production 

system, reconfigurable production, frequent change of suppliers for components 

and raw materials due to better visibility of market price will have a negative 

impact on supply uncertainty. Today, computing power allows us to build models 

capable of optimizing a policy considering more sources of uncertainty that we 

could not have done few decades earlier. Therefore, policies should incorporate 

supply source uncertainty, which if not considered, results in a suboptimal 

decisions and hence negatively influence the profit potential. 
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 One of the key topics of investigation in this research is the way soft-ordering 

decisions are made in atypical demand situations described above. We have 

shown earlier that soft-orders decrease supplier’s cost and increases buyer’s fill-

rate (Baruah and Chinnam 2006). We now ask the following follow up questions:  

Is there any information the supplier can share that will help the vendor better 

assess its demand or supply? While the supplier can collaborate in developing 

demand forecasts for the buyer, this is not our focus. Considering that the supply 

side uncertainty is mostly a result of supplier’s production and operational 

processes, we seek opportunities for upstream information sharing to reduce this 

uncertainty. One paper has investigated the effect of upstream inventory 

information sharing in reducing bullwhip effect through simulation modeling of a 

serial supply chain (Croson and Donohue 2005). In our modeling framework, we 

investigate the effect of the sharing supplier’s production information on vendor’s 

replenishment policy and show how this information interacts with optimal soft-

ordering behaviors: What soft-order is optimal based on her early assessment of 

the demand and supply uncertainty? What final order to place. To model this 

scenario, we employ a two-stage stochastic dynamic program framework that 

generates optimal soft-order and final firm-order given a demand evolution model 

and supply uncertainty model. A slightly modified model answers the same set of 

questions when supplier shares his inventory position while buyer makes the 

decision on final order. We have shown that sharing production information by 

supplier helps the vendor reduce its expected cost. 
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 Subsequent sections are organized as follows. Section 3.3 reviews the 

related literature. Section 3.4 presents the dynamic programming model for soft-

order and final firm-order determination. Section 3.5 presents mathematical 

analysis that establishes the benefits of upstream inventory information sharing. 

Section 3.6 presents results and insights from numerical analysis followed by 

conclusion in section 3.7. 

 

3.3 Literature Review 

3.3.1 Optimal ordering policy under demand and supply uncertainty 

While the production/inventory models have been studied in the 

operations/production management literatures for decades, involving 

uncertainties in the environment, the attention however has been mostly focused 

on probabilistic modeling of demand side uncertainty (Yano and Lee 1995, Gullu 

et al 1999). Many sophisticated procedures are developed to determine 

procurement quantities and their timings optimally or near optimally while 

demand is uncertain. In actuality, considering realization of sure delivery times 

and/or receipt of exact quantity ordered may not be proper assumptions (Gullu et 

al 1999). There may be many reasons why supply could be uncertain (Lee 2002): 

frequent breakdown, unpredictable and low yields, poor quality, limited supply 

capacity, inflexible capacity, evolving production process, and life cycle position 

of product. Industries where random yield is known are: electronic fabrication and 

assembly (Karabuk and Wu 2003), chemical processes, and finally procurement 

from suppliers that produce imperfect products are common across any industry. 
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In fact, it is a common occurrence in a wide range of manufacturing and service 

scenarios (Vollmann et al. 1997). A good literature review on supply/yield 

uncertainty can be found in Yano and Lee (1995) and Mohebbi (2004). For some 

related work in microeconomics, see Amihud and Mendelson (1983).  

 There is a long history for this research, starting with earlier works by Karlin 

(1958) and Silver (1976). Karlin (1958) considered a periodic review model with 

random yield where ordering was restricted to a fixed amount. Silver (1976) 

studied an EOQ model where the quantity received is a random proportion of the 

quantity requisitioned and finally derived an EOQ formula that accounts for such 

supply uncertainty.  This concept of proportional supply uncertainty is used by 

Shih (1980) and Ehrhardt and Taube (1987) to study single period inventory 

model with random demand and random replenishment. An optimal order-up-to 

policy is studied by Henig and Gerchak (1990) considering periodic review model 

where the quantity received is random multiple of the order size. Ciarallo et al. 

(1994) showed optimality of order-up-to type policies for a stochastic demand 

production/inventory model with random available capacity. Similar capacity 

uncertainty model is used by Gullu (1997) that contracts an order-up-to level 

through the use of queuing systems. Parlar and Berkin (1991) formulated an 

EOQ model where supply is available or disrupted for random duration in 

planning horizon. In another study, Parlar et al. (1995) consider a periodic review 

model with Markovian supply availability structure in which supply is either fully 

available or completely unavailable. 
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 More recently, Kouvellus and Minler (2002) studied the interplay of demand 

and supply uncertainty in capacity and outsourcing decisions in multistage supply 

chains. One of the important findings of this paper is that greater supply 

uncertainty increases the need for vertical integration while greater demand 

uncertainty increases the reliance on outsourcing. Wu and Lin (2004) have 

studied an (r, Q) inventory model under lead-time and ordering cost reductions 

when the receiving quantity is different from the ordered quantity. They 

simultaneously optimize the order quantity, reorder point, ordering cost, and lead-

time with the objective of minimizing the total relevant costs. Mohebbi (2004) 

considers a continuous-review inventory system with compound Poisson demand, 

hyper-exponentially distributed lead-time, and lost sales where the supply 

process maybe randomly interrupted depending on the availability of a supplier. 

He assumed that the supplier’s availability can be modeled as an alternating 

renewal process in which the on and off periods are independent random 

variables following general and hyper-exponential distributions, respectively. 

Bopllapragada et al. (2004) has modeled two-stage serial inventory systems 

under demand and supply uncertainty and customer service level requirements. 

Their supply model incorporates both quantity and timing uncertainty. Yang and 

Malek (2004) extended the newsvendor approach to study multi-supplier 

sourcing with random yields. A double-layered supply chain is considered where 

a buyer (vendor) facing the end users has the option of selecting among a cohort 

of suppliers; suppliers have different yield rates and unit costs. Kim et al (2004) 

propose a decision model for ordering quantity considering uncertainty in supply-
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chain logistics operations. They model uncertainty due to unforeseeable 

disruption or various types of defects (e.g., shipping damage, missing parts and 

misplacing products). Given that commonly used ordering plans developed for 

maximizing expected profits do not allow retailers to address concerns about 

contingencies, their research proposes two improved procedures with risk-averse 

characteristics towards low probability and high impact events. While all the 

papers we have discussed so far models production/inventory systems to cope 

with supply/ yield uncertainty, Lin and Hou (2005) have considered an inventory 

system with random yield in which both the set-up cost and yield variability can 

be reduced through capital investment. Objective is to determine the optimal 

capital investment and ordering policies that minimize the expected total annual 

costs for the system. 

 None of the papers discussed above have researched ordering policies under 

forecast revision. This is because research on soft-ordering is very recent. To the 

best of our knowledge, we are the first to study optimal soft-ordering under 

demand and capacity uncertainty, and in particular, under upstream information 

sharing. 

 

3.3.2 Optimal ordering policy under forecast revision and supply 

uncertainty for short life-cycle products  

Analytical models for managing inventory for short lifecycle products share these 

common features, according to Fisher et al. (2001): First, all are stochastic 

models, because they consider uncertainty explicitly. Second, they consider a 
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finite selling period at the end of which unsold inventory is marked down in price 

and sold at a loss. These models are similar to the classic newsvendor model. 

Third, they model multiple commitments such that sales information is obtained 

and used to update demand forecasts between planning periods. The “finite-

selling periods” and “multiple production commitments” are two unique 

characteristics of style goods inventory models that differentiate them from 

stochastic inventory models. 

 Style goods inventory problems are studied by Murry and Silver (1966), 

Hausman and Peterson (1972), Bitran et al. (1986), Matsau (1990), Fisher and 

Raman (1996) and Raman (1999). While these papers capture the demand side 

uncertainty through a forecast revision model initially proposed by Hausman 

(1966), Baruah and Chinnam (2006) have proposed a modified model that 

captures capacity uncertainty through probability distributions.  

 Research that specifically relates to replenishment decision by the vendor in 

atypical demand situations is sparse. Four papers are of interest: Bradford and 

Sugre (1990), Eppen and Iyer (1997a), Eppen and Iyer (1997b) and the most 

recent one being Raman et al. (2001). Bradford and Sugre (1990) present a 

model of the two-period style-goods inventory problem for a firm, which stocks 

many hundreds of distinctive items having heterogeneous Poisson demands. 

The model uses Bayesian procedure for forecast and probability revisions based 

on an aggregate-by-item scheme. They derive optimal inventory stocking policies, 

which maximize expected profit during the season based on revised forecasts. 

They have used negative binomial distribution for modeling aggregate demand 
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behaviors. Eppen and Iyer (1997a) developed an updated Newsboy heuristic 

based on Bayesian updates of demand to derive an optimal inventory policy that 

determines an original order based on a demand forecast, and later, how much 

to divert to the other sources of distribution when actual demand is observed. A 

stochastic dynamic program framework is used to model this for individual item 

demand case. Eppen and Iyer (1997b) model a backup agreement for a catalog 

retailer. Backup agreement is a scheme to provide upstream sourcing flexibility 

for fashion merchandise. In a backup agreement, retailer places an initial order 

before the start of the season and reorders during the selling season based on 

actual demand and customer return rate. This agreement uses a penalty cost for 

not buying a unit in the second period that is committed in the first period. Raman 

et al (2001) optimize initial and replenishment order quantities that manimize cost 

of lost sales, back orders, and obsolete inventory through a two-stage stochastic 

dynamic program. Their model is an upgrade of Bradford and Sugre (1990). 

While Bradford and Sugre do not consider the impact of replenishment lead 

times, Raman et al do. In addition, solution procedure of Bradford’s model is 

through complete enumeration, which works efficiently for smaller problems.   

 None of these models consider a scenario where a soft-order is issued in the 

first stage and final order in the second stage with a finite lead-time. The model 

we present incorporates them. We have incorporated a deposit scheme 

associated with the soft-order that is different from Eppen and Iyer’s (1997b) 

backup agreement penalty cost. Compared to these above models, our model 

provides insights in three new dimensions: 1) impact of soft-orders on vendor 
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performance, 2) allowing supply uncertainty as opposed to deterministic supply 

system, and 3) assessing the value of upstream production information sharing. 

 

3.3.3 Value of upstream supply chain information for buyers 

Supply chain management literature on information sharing typically studies 

scenarios when information comes from demand side, typically, a downstream 

supply-chain player sharing the information with upstream supply chain player. 

According to Chen (2003), upstream information sharing research has received 

relatively little attention. Examples of upstream information sharing studied in 

literature are supplier cost, lead-time information, supplier's capacity information, 

and inventory information. 

 Chen (2001) has studied the procurement problem faced by a buyer who has 

multiple suppliers to select from and shows the potential for supply chain 

improvement if suppliers are willing to share cost information. Chen and Yu 

(2005) have quantified the value of lead-time information sharing in a single-

location inventory system. A typical supplier knows the lead-time of order 

fulfillment, when the retailer submits a replenishment order. They show that 

sharing it with the retailer whose replenishment orders are based on periodic 

review inventory model with an infinite planning horizon has benefits. Chen and 

Yu (2001) have studied value of upstream capacity information based on a one 

retailer one supplier model. This single selling season has uncertainty in 

supplier's capacity. The model permits two orders, one early in time when 

supplier possesses infinite capacity and a second order during which capacity is 
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assumed uncertain. They compare two scenarios based on supplier's willingness 

to share its future capacity forecast with the buyer. Another study by 

Swaminathan et al (1997) studies the influence of sharing supplier capacity 

information (available-to-promise capacity) on the performance of a supply chain. 

Their model is a manufacturer who orders raw materials from two alternative 

suppliers differing in cost and capacity. They have studied different information 

sharing scenarios based on optimal inventory policy for the manufacturer facing 

stochastic demand while exact capacities of supplier are unknown. One of their 

findings is that while information sharing is beneficial to overall supply chain 

performance, it can be detrimental to individual entities. They have found trade 

offs between benefit of extra information versus cost of adoption of information 

system. The study by Croson and Donohue (2005) is the only paper we found 

that is related to our findings regarding upstream inventory information sharing. 

Although their simulation modeling framework is not at all related to the scenario 

we model, one of their inferences is similar to ours. They have shown that access 

to upstream inventory information provides a forewarning of when suppliers are 

running short of inventory and thus lessen a decision maker’s tendency to 

overreact when the order he receives from his supplier falls short of his original 

order request. Thus, it helps in reducing bullwhip effect. They state that benefits 

from sharing upstream inventory information are not as significant when 

compared to benefits from sharing downstream inventory information, as far as 

bullwhip is concerned. This result however could be dependent on the level of 

demand versus supply uncertainty a process faces. 



 64

 

Table 3.1: Summary of key model variables and parameters 

ti 
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F2 
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Y1 

Y2 

P1 

 

C2 

P2 

 

Q 

c0 

Time stamp at the beginning of a stage 

First demand forecast made by the buyer (State variable) 

Second demand forecast (State variable) 

Actual demand for the sales event or season 

Soft-order sent to the supplier (Decision variable) 

Final order (Decision variable)  

Supplier’s production during the first stage after receiving Y1 (State variable in IS 

case) 

Supplier’s capacity in the second stage  

Supplier’s production during the second stage after receiving Y2 (State variable in IS 

Case) 

Supplier’s shipment order quantity  

Unit overage cost 
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Figure 3.1: Schematic showing timeline of events for the buyer. P1 is known 
to buyer only if shared by supplier. 
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Unit underage cost 

Unit deposit cost that accompanies a soft-order 

Actual cost incurred after realizing actual demand  

Optimal expected cumulative cost from stage j to realization of actual demand in No-

IS case (Objective function) 

Optimal expected cumulative cost from stage j to realization of actual demand in IS 

case (Objective function) 

An intermediate cost function used in No-IS case for ease of manipulation 

An intermediate cost function used in IS case for ease of manipulation 

Order fill-rate to the buyer 

Portion of deposit amount returned to buyer 

Net deposit amount paid by buyer after receiving the order 

Mean vector of F1 and F2 

Covariance matrix of F1 and F2 

Mean vector of F2 and D 

Covariance matrix of F2 and D 

Ratio of average production in stage-1 to soft-order Y1 

Coefficient of variation of production in stage-1 

Coefficient of variation of capacity in stage-2 

Ratio of average capacity in stage-2 to shortage Y2−P1  

Mean production during stage-1 given the soft-order 

Standard deviation of production during stage-1 given the soft-order 

Mean capacity of stage-2 given the final order and production of stage-1 

Standard deviation of capacity at stage-2 given final order and production of stage-1 

Normal probability distribution 

Probability density function for random variable X 

Expected value of function U w.r.t. random variables X and Y 

Indicator function 

Dirac’s delta function 
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3.4 Model formulation 

3.4.1 Two scenarios: Information sharing vs. no sharing 

A buyer (a vendor or a retailer or a distributor) plans for seasonal or promotional 

event. Buyer does forecasting (F1) based on market information and sends the 

supplier a tentative soft-order quantity (Y1). Supplier produces a quantity P1 

based on this order before receiving a final firm-order. The buyer updates her 

forecast based on new market information, F2. The time between receiving Y1 

and Y2 is denoted stage-1. Once F2 is known, buyer sends the supplier a final 

order of Y2. Based on this final order, supplier produces P2 before the order is 

due. This production quantity depends on whether Y2>P1 or not. If Y2 ≤ P1, then 

P2=0 with probability 1. Within a finite period of receiving Y2, supplier ships a 

quantity Q  that can never exceed what has been ordered (Y2). 

 In the so called information sharing case (abbreviated as IS case), the 

supplier shares how much he had produced in stage-1 (i.e. P1) in response to 

buyer’s soft-order (Y1). This information is transmitted to the buyer at the end of 

stage-1. Buyer now can estimate the amount to be produced in stage-2 (i.e. P2) 

by subtracting the Q from P1. In addition, he can estimate 
1 1|P Yf  and

2 2 1| ,P Y Pf  based 

on historical information and uses them to model the supply uncertainty (detailed 

below). This model along with the demand uncertainty model (described below) 

allows the retailer to determine the optimal Y1 and Y2 based on optimal cost 

computation. 

 In the no information sharing case (abbreviated as No-IS case), supplier does 

not reveal P1 to the buyer. Hence, the buyer cannot estimate
1 1|P Yf  and 

2 2 1| ,P Y Pf . 
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However, he estimates
1 2| ,QY Yf  and the demand uncertainty model as in IS case to 

determine optimal Y1 and Y2 order quantities. 

 Figure 3.1 offers a schematic that summarizes the time-lines for both these 

scenarios. The sequence can be described as follows. For the No-IS Case: 

Step-1:  Buyer determines and issues an optimal soft-order (Y1) to the 

supplier based on her initial forecast (F1) of the demand.  

Step-2:  Within a finite time period, based on new market information, buyer 

adjusts her forecast (F2) of the demand and places a final order (Y2) 

to the supplier with a due date. 

Step-3:  Supply is received (Q≤ Y2) on the due date and actual demand (D) is 

observed. 

 

The sequence of events for the IS Case is as follows: 

Step-1:  Buyer determines and issues an optimal soft-order (Y1) to the 

supplier based on her initial forecast (F1) of the demand. 

Step-2:  Within a finite time period, based on new market information, buyer 

adjusts her forecast (F2) of the demand. Supplier reveals to buyer 

how much he has produced (P1) based on her soft-order (Y1). Buyer 

places a final order (Y2) to the supplier with a due date. 

Step-3:  Supply is received (Q≤ Y2) on the due date and actual demand (D) is 

observed. 
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3.4.2 Modeling the forecast revision process 

It is typically the case that forecasts are updated based on new market 

information with individual forecasts for a particular season, in the beginning of 

each stage (say F1 and F2).  We assume that F1 and F2 are average point 

forecasts of the actual demand D. The forecast evolution is modeled as follows: 

(F1,F2) and (F2, D) are assumed to follow joint Gaussian distribution 
2 1F Ff ,  and 

2,D Ff  

with known parameters, and are assumed to be independent 
2 1 2, ,F F D Ff f⊥ . 

Historical information will be necessary to estimate these distributions. Figure 3.2 

illustrates how the conditional order (
2 1|F Ff ) and conditional demand (

2|D Ff ) are 

computed for a given season given the joint densities. 

 

3.4.3 Modeling the supply uncertainty 

In the presence of soft-order revision process, supplier will attempt to use some 

type of an optimal production planning process to decide on the production 

release quantities, based on the transmitted (soft) orders. However, the buyer 

could only see the supplied quantity as a response to its (soft) orders. From the 

history of such responses, buyer can assess the model of supply uncertainty 

given the orders i.e.
1 2| ,QY Yf . If supplier shares how much he has produced in 

stage-1 in response to Y1, then buyer’s belief about the supplier’s production 

uncertainty in each stage can also be assessed, i.e. 
2 2 1| ,P Y Pf and 

1 1|P Yf . It is clear that  

the marginal uncertainty associated with the shipment quantity ( Qf ) given no P1 

information sharing should perfectly match the IS Case. In another words, the 
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Figure 3.2: Illustrating the forecast revision process. The joint density contour 
of (Y1, Y2) and (Y2, D) are shown by ellipse, while the conditional densities are 
shown through the bell curves. The capital Y’s represent random variable and 
small y’s represent a particular value for a season. 
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model of supply uncertainty (
1 2| ,QY Yf ) should be logically related with production 

uncertainties (
2 2 1|P Y Pf − and 

1 1|P Yf ). The goal of this section is to establish this 

relationship. 

 

Proposition 1: P1 and P2 are conditionally independent: 
1 1 2 1 2| | ,P Y P P Yf f⊥ . 

 

Proof and explanation: The cause and effect relationships between (soft) orders 

transmitted from buyer and the supplier production is graphically illustrated as a 

causal model in figure 3.3. The network represents how soft-orders are 

responsible for production response. Arcs between nodes denote the existence 

of a direct relationship. Direction of arc represents the flow of effect. This network 

is the buyer’s perception of supplier’s response. In figure 3.3(a), we have shown 

arcs between Y1 and Y2 and between Y2 and P1. However, for the buyer, these 

two relationships cannot be estimated from historical data. 

 From figure 3.3(a) we get, 

 
1 1 2 2 1 2 1 1 1 2 2 1 2, , , | | , | ,. . .Y P Y P Y Y Y P Y Y P P Yf f f f f=   (1) 

where, 

 

1 1 2 1 1 2 1 1 1

1 1 2

1 2 1 2

, , | | ,

| ,

, ,

. .P Y Y P Y Y P Y Y

P Y Y

Y Y Y Y

f f f f
f

f f
= =

  (2) 

That results in, 

 1 1 2 2 1 1 1 2 1 1 2 1 2, , , | | , | ,. . .Y P Y P Y P Y Y P Y P P Yf f f f f=
  (3) 
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From equation (2) we get
1 1 2 1 2| | ,P Y P P Yf f⊥ . (In the above equations, we can replace 

2 1 2| ,P P Yf with 
2 2 1|P Y Pf −  given the fact that P2 is strictly dependent on order shortage Y2-

P1only and nothing else. Therefore, 
2 2 1 2 2 1| , |P Y P P Y Pf f −= .) 

 

Now, we establish the relationship between
1 2| ,QY Yf , 

1 1|P Yf and
2 1 2| ,P P Yf .  

 

Proposition 2: 

( ) ( )( ) ( )1 1

1, 2 1 1 1 1 21 2 1
1 1 2

| | 1 2 | 1|
0

. Ind(0 ) ( )
P q P

Q q Y Y P Y P Y Yq P Y P
P P Y

f f f dP q Y f dP qδ
= =∞

= − −= =
= ≤ ≤ +∫ ∫  

 

Proof and explanation: 

Following inequalities holds: 

 Q≤Y2  (4)  

 Q=P1+P2 if Y2>P1  (5) 

 Q ≤ P1      if Y2≤P1   (6) 

From the above three relationships, we can graphically plot the relationships 

between Y1, Y2, P1, P2 and Q as in figure 3.4. Now, from probability theory, if 

Q=P1+P2 and 
1 2 2 2 1| | ,P Y P Y Pf f⊥  
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(a) Triangle (0y2y2) is the region where possible combination of P1 
and P2 values lie that satisfies Q=P1+P2. 

(b) Probability of P1≥ y2 so that a point (P1,P2) falls within the triangle 
(0y2y2) and its effect on P(Q) 
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Figure 3.4: Illustrating (a) the feasible region for P1 and P2 and 
combination of values of P1 and P2 that results in Q=P1+P2; (b) 
Probability of P1≥Y2 obtained from conditional probability of P1|Y1. 
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By differentiating, 
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P q

q P Y P P Y
P

f Q q P P P q

d
F f dP

dq

f f dP

+ ≤

=

−=

=

−=

= = + ≤

=

=

∫

∫

  (8) 

Note: The above expression is not a convolution between 
1 2 1| ,q P Y Pf − and 

1 1|P Yf given 

the fact that for a given Y1=y1, the shape of
1 1|P Yf and 

1 2 1| ,q P Y Pf − changes. We can 

visualize it as a dynamic convolution of two conditionally independent 

distributions. 

 

We also know that manufacturer’s second stage production does not exceed final 

order Y2, i.e. P2≤Y2. Therefore, the only way P1+P2≥ Y2 is possible is if P1≥Y1 and 

P2=0. If P1≥Y1, then at the beginning of second stage P(Q=Y2) =1. 

Mathematically, 

 ( )1

2 2 1 1 2
1 2

| 0 | 1 ( )
P

Q Y P P Y Y
P Y

f f dP qδ
=∞

= = =
= ∫   (9) 

From equations (8) and (9) we clearly see that Y2=P1+P2 can happen in two 

ways: (a) P1+P2 = Y2 such that P2=0 or (b) P1 ≥ Y2 with P2=0. Now we can write 

the expression for supply uncertainty as: 

 ( ) ( )( ) ( )1 1

1, 2 1 1 1 1 21 2 1
1 1 2

| | 1 2 | 1|
0

. Ind(0 ) ( )
P q P

Q q Y Y P Y P Y Yq P Y P
P P Y

f f f dP q Y f dP qδ
= =∞

= − −= =
= ≤ ≤ +∫ ∫   (10) 

where, Ind is the indicator function and δ is the Dirac’s delta function with the 

following properties: 
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 2 2Ind(0 ) 1      0

                           0  

q Y if q Y

elsewhere

≤ ≤ = ≤ ≤
=

  (11) 

 
2

2

2

,    
( )

0,       
Y

q Y
q

q Y
δ

∞ ==  ≠
   (12) 

 

3.4.4 Cost structure for the buyer 

Buyer incurs following costs in our models. For every unit unsold at the end of 

the season or promotional sale, buyer incurs an overage cost of c0. For every 

unit of unmet demand, buyer also incurs an underage cost of cu. Shipment from 

supplier is received on the day of sale and therefore buyer incurs no holding 

costs.  

Our model also incorporates a stylized deposit scheme associated with the 

soft-order Y1 to ensure that buyer places a reasonable soft-order (and not 

intentionally inflate the soft-order to improve order fill-rate). In this scheme, a 

deposit of z dollars is made to the supplier for every unit of soft-order. Paying this 

amount upfront ensures that the buyer has no incentive for making highly inflated 

soft-orders. While this deposit should act as a deterrent for inflated soft-orders by 

buyers, it should not be a panelizing factor for buyers that are conservative in 

issuing soft-orders. In addition, deposit should not result in situations where 

supplier simply takes a soft-order and earns a deposit without finally shipping any 

good. To counter all these limitations, we have devised a deposit return scheme 

as follows. If deposit with soft-order Y1 is zY1, then the return to the buyer on the 

day of the shipment is Rd, 

 ( )1 1 2. .dR zY z FR Y Y
+= − −   (13) 
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2

2

2

   if   0

1      if   0

Q
Y

YFR

Y

 >= 
 =

  (14) 

FR stands for fill rate for the buyer. Time value of money is not accounted here. 

The overall scheme works as follows: 

I. If the final firm-order exceeds the soft-order, Y2 ≥ Y1, buyer gets credit for 

the complete deposit, i.e. Rd = kY1. 

II. If supplier shipped nothing, Q = 0, buyer gets credit for the complete deposit. 

III. If Y2 < Y1, supplier gets to keep a part of the deposit based on what he has 

supplied: 

 if supplied 100% of Y2, i.e. FR = 1, Rd = zY2  

 if supplied   x% of Y2, i.e. FR = x, Rd = zY1−z.(Y1−Y2) 

 if supplied   0% of Y2, i.e. FR = 0, Rd = zY1, same as (ii) 

Now, net deposit cost that is incurred to the buyer is kY1−Rd i.e. 

 ( )1 2. .dN z FR Y Y
+= −   (15) 

 

3.4.5 Model to make optimal Y1 and Y2 decisions 

The sum of overage, underage, and net deposit costs incurred by the buyer at 

the end of shipment is: 

 3 1 2 0( , , , ) ( ) ( )u dg Q D Y Y c Q D c D Q N+ += − + − +   (16) 

Based on the sequence of events, it is clear that the decisions to be made (Y1 

and Y2) depend on the information available at time instants t1and t2. It is evident 

that information at t2 includes all the information of t1, however, the reverse may 

not be true; in other words, no information is lost in progression of time. Our cost 
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optimization model is in the form of a backward dynamic program (DP) because 

the DP paradigm fits perfectly to this kind of a decision-making problem. 

 

Making decision Y2 at t2  

Expected cost w.r.t. demand at t2 is written as:  

 
22 2 1 2 3 1 2 |

0
( , , , ) ( , , , )

D

D F
D

G Q F Y Y g Q D Y Y f dD
=∞

=
= ∫   (17) 

Now, the expected cost w.r.t. both demand and supply at t2 depends on whether 

2 2 1|P Y Pf − (IS case) is known or 
1 2| ,QY Yf (No-IS case) is known.  

In the No-IS Case, the expected cumulative cost is minimized: 

 
2

1 2
2

2 1 2 2 2 1 2 | ,
0

( , ) ( , , , )
Q Y

QY Y
Y Q

g Y F Min G Q F Y Y f dQ
=

=
= ∫   (18) 

For the IS-Case, the cost becomes: 

 

2 2 1

2 2 1
2

2

2 2 1 2 | 2 2 1
0

2 1 2 1

2 2 1 2 2 1

( , , , ) ,    
( , , )

( , , , ),                                

P Y P

P Y Ps P

Y

G Q F Y Y f dP if Y P
g Y F P Min

G Q F Y Y if Y P

= −

−=
 >= 
 ≤

∫   (19) 

Here, the upper suffix s in g denotes the IS-Case (s stand for “shared 

information”). 

 

Making decision Y1 at t1 

Expected cost based on demand forecast at t1 for the No-IS-Case is,  

 
2

2 1
2

1 1 1 2 1 2 | 2
0

( , ) ( , )
F

F F
F

G Y F g Y F f dF
=∞

=
= ∫   (20) 

and for the IS-Case, 

 
2

2 1
2

1 1 1 1 2 1 2 1 | 2
0

( , , ) ( , , )
F

s s
F F

F
G P F Y g P F Y f dm

=∞

=
= ∫   (21) 
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The minimization based on whether 
1 1|P Yf is known or not becomes: 

 
1

1 1 1 1 1( ) ( , )
Y

g F MinG Y F=   (22) 

 
1

1 1 1
1 1

1 1 1 1 1 | 1
0

( ) ( , , )
P

s s
P Y

Y P
g F Min G P F Y f dP

=∞

=
= ∫   (23) 

 

3.5 Establishing the benefits of upstream information sharing 

This section investigates the benefit of sharing P1. We show that, in comparison 

with the no information sharing case, optimal Y1 and Y2 with sharing P1 do not 

worsen the expected cost of the retailer.  

 

Proposition 3: Let the initial demand forecast be F1, soft-order sent to supplier be 

Y1, and P1 the production during the first stage. Based on whether P1 is shared or 

not shared, for a given value of F2, expected optimal total cost incurred by retailer 

at time t2 holds the following relationship: 2 2
sg g≥ . 

 

Proof:  

Case-1: 2 1Y P>  

Partitioning the integral in g2 as: 

 
2 1 2

1 2 1 2 1 2
1

2 | , 2 | , 2 | ,
0 0

Q Y Q P Q Y

QY Y QY Y QY Y
Q Q Q P

G f dQ G f dQ G f dQ
= = =

= = =
= +∫ ∫ ∫   (24) 

where, G2 stands for G2(Q, F2, Y1, Y2). 

For any fixed P1, LHS and the two parts of the RHS are positive. 

 
2 2

1 2 1 2
2 2 1

2 | , 2 | ,
0

Q Y Q Y

QY Y QY Y
Y YQ Q P
Min G f dQ Min G f dQ

= =

= =
∴ ≥∫ ∫   (25) 
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For Y2 > P1, Q = P1 + P2, therefore, 

 
2 2 2 1

1 2 2 1 2 1
1 2

2 | , 2 | , ,
0

Q Y P Y P

QY Y P Y Y P
Q P P

G f dQ G f dQ
= = −

= =
=∫ ∫   (26) 

From the physics of the production process, we know that 2P  is independent of 1Y  

if Y2 and P1 is known. From the graph in figure 3.4  

 1 2 1 2 1 2 1 1 1 2 2 1 2

2 1 2 1 2 1 2

1 1 2 1 2 1 1 1 2

, , , | | , | ,

| , , | ,

, , | | ,

. . .

. .

P P Y Y Y Y Y P Y Y P P Y

P Y Y P P P Y
P Y Y Y Y Y P Y Y

f f f f f
f f

f f f f
= = =   (27) 

Hence, 

 
2 2 2 1

1 2 2 2 1
2 2

2 | , 2 |
0 0

Q Y P Y P

QY Y P Y P
Y Q P

Min G f dQ G f dQ
= = −

−= =
≥∫ ∫   (28) 

 

Case-2: 2 1Y P≤  

When 2 1Y P≤ , the supply quantity becomes 2Q Y= . This is true whether 1P is 

shared or not.  

We know that for any function f(X, Y), the following is true: 

 | ( , ) ( , )QY
Y Y

MinE f Q Y Min f Q Y≥   (29) 

Hence, 

 
2

1 2
2 2

2 2 1 2 | , 2 2 2 1 2
0

( , , , ) ( , , , )
Q Y

QY Y
Y YQ

Min G Q F Y Y f dQ MinG Q Y F Y Y
=

=
≥ =∫   (30) 

 

Proposition 4: Expected total optimal cost under upstream production inventory 

information sharing is always less than or equal to total optimal cost under no 

information sharing, i.e. 3 3( ) ( )sE g E g
∀∀ ≥ , where E∀  and sE

∀
 stand for expectation 

over all possible variations in No-IS and IS cases, respectively. 
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Proof:  

We know the following: 

13 1( ) ( )FE g E g∀ =   (31) 

1 13( ) ( )s s
FE g E g

∀
=   (32) 

Therefore, if we prove 1 1
sg g≥ , proves the proposition. 

We have, 
2 1 2 1| 2 | 2( ) ( )s

F F F FE g E g≥ . Then, using Proposition 3, 

 ( )
1 1 2 1 2 1

1 1
| | 2 | 2( ) ( )s

P Y F F F F
Y Y

MinE E g MinE g≥   (33) 

If the above is true for all possible values of F1, then, 

 ( )
1 1 1 2 1 1 2 1

1 1
| | 2 | 2( ) ( )s

F P Y F F F F F
Y Y

E MinE E g E MinE g   ≥      (34) 

Or, 1 1
sg g≥ . 

 

The above discussion and results clearly show that upstream production 

inventory information sharing by the supplier cannot deteriorate the performance 

of the soft-ordering policies for the buyer.  

 

3.6 Numerical analysis 

In this section, we numerically analyze how modification of different cost 

parameters, forecast uncertainty, and capacity shortage/uncertainty affect the 

expected total cost of the buyer. Numerical evaluation involves the following 

steps. First, optimization models for all the selected combinations of parameters 

are established and optimal policies are stored. Then, the expected total cost is 

computed by taking expectation over the all possible variations.  
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 The section is organized as follows: section 3.6.1 discusses the framework for 

numerical analysis; section 3.6.2 illustrates the optimal decision surfaces and 

optimal costs w.r.t different state variables; section 3.6.3 outlines the 

performance measures used for comparing the IS Case with the No-IS case; 

section 3.6.4 discusses the effect of different policy parameters on expected 

costs. 

 

3.6.1 Framework for numerical analysis 

The section describes specific statistical models used to model demand revision 

process and the capacity uncertainty in the supply side. The demand revision 

process are assumed to follows joint Gaussian model with known parameters; 

i.e. parameters of 
2 1, 21 21~ ( , )F Ff Σµ and 

2, 2 2~ ( , )D F D Df Σµ  are known. Stage 1 

production uncertainty is assumed to follow a conditional Gaussian distribution 

1 1 1 1 1 1

2
| | |( , )~P Y P Y P Yf µ σ with following parameters: 

 
1 1| 1 1P Y k Yµ =   (35) 

 
1 1 1 1| | 1P Y P Y CVσ µ=   (36) 

This model of production in stage-1 depends on the order size Y1. This 

represents a scenario when the supplier will setup a capacity for the first stage 

based on the retailer’s soft-order. k1 = 1 will be equivalent to a supplier who 

believes in the buyer’s soft-order and installs a capacity that is on an average 

sufficient to make the full soft-order Y1. Assuming that the uncertainly linearly 

adds up as the size of the production capacity is increased, we use a constant 

coefficient of variation in production CV1. Please note that the model of stage-1 
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production is such that production quantity P1 can be equal to, less than or more 

than Y1. However, while modeling the stage-2 production we have to model it 

such that P2 ≤ Y2−P1, since supplier will never produce more than the shortage 

amount, if Y2 ≥ P1. To derive such a production model we first model the capacity 

of stage-2 as a Gaussian model and derive the production model out of it. Stage-

2 capacity is assume to follow
2 2 2 1 2 2 1

2
| , | ,( , )~C C Y P C Y Pf µ σ with following parameters: 

 
2 2 1| , 2 2 1( )C Y P k Y Pµ = −   (37) 

 
2 2 1 2 2 1| , | , 2C Y P C Y P CVσ µ=   (38) 

This model of capacity model is constrained and random. Based on
2Cf , the 

production yield density (P2) would be: 

 ( )2 2 1 2 2 2 1
2 1

| , 2 2 1 2 2Ind(0 ) ( )P Y P C C Y P
Y P

f f P Y P f dC Pδ
∞

−−
= ≤ < − + ∫   (39) 

Figure 3.5: Illustrating the relationship between stage-2 capacity uncertainty 
and stage-2 production uncertainty  

C2 
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where, Ind is the indicator function and δ is the Dirac’s delta function with 

following properties: 

 2 2 1 2 2 1Ind(0 ) 1      0

                                 0  

P Y P if P Y P

elsewhere

≤ < − = ≤ < −
=

  (40) 

 
2 1

2 1 2

2

2 1 2

,    
( )

0,       
Y P

Y P P
P

Y P P
δ −

∞ − ==  − ≠
   (41) 

Meaning of the equation 39 is illustrated in the figure 3.5. It shows that probability 

of producing as much as the shortage quantity Y2 − P1 is sum of all the 

probabilities of realizing a capacity more than or equal to the shortage. On the 

other hand probability of producing less than shortage is equal to probability of 

realizing that much capacity to produce. 

 Capacity C2 and production P1 is bounded between [ ]
1 1 1 1| |0, 4.5P Y P Yµ σ+  and 

[ ]
2 2 1 2 2 1| , | ,0, 4.5C Y P C Y Pµ σ+ respectively. Demand forecasts, capacity, and production 

are always whole numbers. During optimization of various scenarios, we 

approximate the continuous probability distributions functions with probability 

mass functions defined over a set of discrete values. We caution here that while 

great care has been exercised in conducting these numerical experiments to best 

extract and illustrate the dynamics at play, all the while coping with a large 

number of parameters, the patterns/effects reported throughout the manuscript  
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Figure 3.6: Structure of the optimal decision (soft-order) in IS and No-IS case in 
the beginning of stage-1. 
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Figure 3.7: Structure of the optimal cost for IS and No-IS case in the beginning of 
stage-1. In this particular case, the expected benefit of information sharing is 
1.73%. 
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Figure 3.8: Structure of the optimal decision (final order) for No-IS case based in 
the beginning of stage-2. 
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IS case 
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can change as a function of the parameter levels. However, the essential 

dynamics/insights from these results are expected to hold strongly in most 

settings. 

 

3.6.2 Structural properties of optimal decisions and costs 

In this section, we outline the structure of the optimal costs and optimal decision 

surfaces with or without information sharing. Following parameter set is used to 

generate the plots: c0 = 10, cu = 15, z = 0.5, k1 = 0.5, CV1 = 0.3, k2 = 0.5, CV2 = 

0.3, E(F1) = 35, σ(F1) = 15, E(F2) = 35, σ(F2) = 10, E(D) = 35, σ(D) = 10, ρ(F1, F2) 

= 0.5, ρ(F2, D) = 0.5. 

 From the above parameter set, we see that supplier respond to the soft-order 

by installing a production capacity of 50% of the size of the soft-order in stage-1. 

Also in stage-2, he installs a capacity of 50% of the size of the final-order. In both 

cases, the variability in effective production (measured in standard deviation) is 

30% of mean. If soft-order is at least as high as the final order, this scenario does 

not represent a capacity-constrained case, since on total (combining stage-1 and 

stage-2) average capacity is more than equal to the final order. We have set 

mean of point forecasts as unbiased to the final average demand. σ(F1) is set 

higher than σ(F2); it is an accepted notion that forecasts with higher lead-time 

have more variability.  

 Figure 3.6 shows the structure of the optimal soft-order Y1 w.r.t. the forecast 

F1 for both IS and No-IS case. As the figure shows the optimal soft-order for No-

IS case (Y1) is always higher than IS case (Y1
s). The difference in the optimal  
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Figure 3.10: Structure of the optimal decision (final order) in the beginning of 
stage-2 for IS case for P1=1 and P1=100 
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Figure 3.11: Structure of the optimal cost in the beginning of stage-2 for IS case 
for P1=1 and P1=100. 
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decision increases as the forecast F1 increases. The expected difference 

between the two decisions are approximately 2 units. The important point to note 

in this figure is the difference between the optimal soft-order that minimizes the 

cost and forecast. Please note the difference between Y1=F1 and the optimal 

decision graphs Y1(F1) and Y1
s(F1). It clearly shows that there is a region where 

inflating the soft-order is an optimal decision, and in another region, the reverse 

is true. Although the buyer knows that supplier installs a higher capacity with 

linearly increasing variability is she transmits a high soft-order; this way she can 

make minimize the probability of under supply. However, presence of deposit 

cost does not allow her to do so. Therefore, a tradeoff between risking the 

deposit money versus the underage cost is the reason behind why over ordering 

or unerring is optimal. It is found that if the deposit cost per unit (z) is set to zero, 

then buyer always inflate and transmits a soft-order that is maximum possible. 

This way she makes the supplier produce so much in the first stage itself that 

supplier uncertainty becomes zero. Hence, implication is that there have to be a 

penalty associated with intentionally transmitting soft-orders, which are far higher 

that demand forecasts. Unless such a penalty is present, then optimal behavior is 

to deceive. 

 Figure 3.7 presents the corresponding costs associated with the optimal 

decisions in the beginning of the stage-1. It is clear that is the IS case always 

incurs lower cost then the No-IS case. The benefit of sharing information 

increases as with higher forecast F1. From this graph, we can obtain the 
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expected total cost of IS case and No-IS case by taking expectation of g1 and g1
s 

w.r.t. the distribution of F1: 

 
1 1

1
1 1 1 1

0
( ) ( ) ( )F F

F
E TC E g g F f dF

∞

=
= = ∫   (42) 

 
1 1

1
1 1 1 1

0
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F
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∞

=
= = ∫   (43) 

The benefit of information sharing (i.e. sharing P1) is obtained by: 

 
( ) ( )

%
( )

sE TC E TC
Benefit

E TC

−
=   (44) 

The % benefit in this particular case is 1.73%.  

 Figure 3.8 shows the structure of optimal decision in the beginning of stage-2. 

Optimal Y2 increases with increase in the demand forecast F2. We also notice 

that for a given forecast F2, optimal Y2 in No-IS case decreases with increase in 

Y1. This is obvious because, it is expected that a higher Y1 will result in a higher 

average production in stage-1, and therefore a smaller Y2 is optimal. The figure 

clearly shows the difference between the optimal final order and forecast, a 

similar observation when comparing a soft-order with a forecast. Depending on 

the state variable Y1 and F2 the optimal final order Y2 is higher or lower than the 

forecast F2. The corresponding optimal cost structure at the beginning of stage-2 

for No-IS case is shown in figure 3.9. 

 Figure 3.10 illustrate the structure of the optimal final order in the beginning of 

the stage-2 for IS case for two specific values of information being shared: P1 = 1 

and P1 = 100.  Please not that, it appears that the optimal decision does not 

depend on the soft-order anymore; however with close notice the non-linearity 

along Y1 is detectable on P1 = 1 surface. This dependence is very clear in the  
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Figure 3.12: Expected cost for buyer under No-IS case decreases with 
increase in capacity of second stage. Cost is lower if capacity variability 
(CV1) is lower. 

Figure 3.13: Expected cost for buyer under IS case decreases with 
increase in capacity of second stage. Cost is lower if capacity variability 
(CV1) is lower. 
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corresponding optimal cost surface plotted in figure 3.11. As evident from figure 

3.10, depending on value of P1 being shared, the difference in optimal decisions 

can be as higher than 50%. 

 

3.6.3 Numerical assessment of the benefits of information sharing 

This section investigates effect of various factors on benefits of information 

sharing. In particular, we consider the impact of per unit deposit cost along with 

underage and overage cost and impact of supply uncertainty. 

 

3.6.3.1 The impact of k1, k2 and CV on expected percentage benefit 

Considering CV1 = CV2 the parameter set used for this section of analysis is as 

follows: c0 = 10, cu = 15, z = 0.5, CV1 = CV2, E(F1) = 35, σ(F1) = 15, E(F2) = 35, 

σ(F2) = 10, E(D) = 35, σ(D) = 10, ρ(F1, F2) = 0.5, ρ(F2, D) = 0.5. 

 Increase in k1 and k2 represent suppliers expected capacity commitment in 

stage-1 and stage-2 respectively. Increase in CV1 represents the increase in 

variability of the production system. From figure 3.12 and 3.13 we notice that 

increase in capacity commitment in stage-2 by supplier decreases the expected 

cost in both no IS case as well as IS case. This is obvious because if capacity in 

second stage is increase, then dependence on  first stage production for a better 

fill rate decreases. In fact, if second stage capacity is high enough to produce the 

final order size in an expected sense, then soft-order transmission is of no value 

as well supplier need not have to produce anything in first stage. The effect of 

variability that is introduced through the CV1 factors is as expected, lower CV1 is  
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Figure 3.14: Expected percentage cost benefit for buyer is 
maximum for a particular second stage expected capacity set by
the supplier. Benefit is negligible if expected capacity set by
customer is zero irrespective of order size or when expected
capacity set is same as the order size. Benefit is high when 
variability (CV1) is high. 

Figure 3.15: Expected percentage cost benefit for buyer increases
with decrease in expected capacity commitment in first stage by 
supplier. 
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results in reduced cost. Although without plotting the % Benefit graph we may not 

comment on the cost difference between IS and No-IS case, we see a steeper 

decrease in E(TC) compared to E(TCs). This effect is very pronounced when CV1 

is relatively higher (see 0.4 and 0.2) in both IS and No-IS case. This implies that 

marginal expected cost reduction for buyer through increasing capacity 

commitment in stage-2 by supplier has better effect when information is shared 

and when variation is high. 

 The % benefit graph for same k1=1 is plotted in figure 3.14. As explained 

above the cost benefit for the buyer is high is CV1 is high. There exist no benefit 

when CV1 is very small (e.g. 0.001). The benefit is highest at a particular value of 

k2. This is due to the way rate of decrease of E(TC) and E(TCs) w.r.t. k2. The 

inference from these graphs is that sharing of P1 has little value if supplier’s 

commitment to second stage capacity is either very small or very high when 

compared to the final order. 

 Figure 3.14 and 3.15 together illustrates the difference in % Benefit for 

different capacity commitment by supplier in stage-1. A smaller capacity 

commitment in stage-1 (k1=0.4) is more capacity constrained compared to k1=1. 

We saw that for same level of variability (CV1’s) the benefit of information sharing 

is higher when capacity in first stage is constrained. When variability is extremely 

small (CV1=0.001), irrespective of the capacity commitment, the benefit is close 

to zero. 
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Figure 3.16: Expected percentage cost benefit for buyer for different c0 
and cu when unit deposit cost is z=0. Benefit increases with increase in cu, 
however decrease with increase in c0. 
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Figure 3.17: Expected percentage cost benefit for buyer for different c0

and cu when unit deposit cost is z=7. Comparing figure 3.16 and 3.17 we 
notice that benefit has increased when z is a positive value. 
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3.6.3.2 The impact of unit deposit cost z on expected percentage benefit 

Considering CV1 = CV2 the parameter set used for this section of analysis is as 

follows: k1=0.5, k2=0.5, CV1 = CV2=0.3, E(F1) = 35, σ(F1) = 15, E(F2) = 35, σ(F2) = 

10, E(D) = 35, σ(D) = 10, ρ(F1, F2) = 0.5, ρ(F2, D) = 0.5. 

 The impact of z on expected % Benefit is illustrated in figure 3.16, 3.17, 3.18 

and 3.19. Impact of z is illustrated here in comparison with per unit overage cost 

c0 and per unit underage cost cu. The effect of z on % Benefit is as seen in figure 

3.18 and 3.19. We notice that for the same combination of overage and 

underage cost, a higher z=7 value results in higher % Benefit compared to z=0. 

Here, z=0 case corresponds to case when no deposit needed for submitting a 

soft-order. On the hand, a very high unit deposit cost for a unit of soft-order will 

make the buyer consider her soft-orders like a firm order. Had our cost model 

contain a purchase price, the value of z for which a soft-order becomes a firm 

one is when z become equal to purchase price. The transition of a pure soft-

order (i.e. z=0) to a more firm one is shown in figure 3.18. From figure 3.18, there 

exist a unique value of z for a given cu and c0 when the % Benefit is maximal. 

This optimal vale is pronounced in c0=2 compared to c0=10. % Benefit becomes 

stable after certain value of z for a given combination of cu and c0. This imply that 

a very high deposit (z=5, 7) cost will increase the cost of soft-ordering without 

necessarily increasing the value of upstream information sharing. 
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3.6.3.3 The impact of c0 and cu on expected percentage benefit 

Considering CV1 = CV2 the parameter set used for this section of analysis is as 

follows: k1=0.5, k2=0.5, CV1 = CV2=0.3, E(F1) = 35, σ(F1) = 15, E(F2) = 35, σ(F2) = 

10, E(D) = 35, σ(D) = 10, ρ(F1, F2) = 0.5, ρ(F2, D) = 0.5.  

While it is obvious that increasing the value of c0 or cu will increase the 

expected cost for buyer under both upstream information sharing versus no 

sharing scenario, their effect on % Benefit however can not be guessed so 

straightforward. The effect of increasing c0 is just the opposite of the effect of 

increasing cu in terms of  % Benefit of sharing upstream information. The trend 

sin figure 3.16, 3.17, 3.18 and 3.19 clearly show that increasing c0 decreases 

the % Benefit while increasing cu increases the % Benefit. One possible reason 

for such behavior is that the upstream information in this case effectively reduces 

the supply uncertainty in the beginning of stage-2 and hence reduces the 

possibility of underage. This is more pronounces when capacity is constrained 

and to get a better fill rate stage-2 production is necessary. We have chosen 

k1=k2=0.5 with z=0.5. This setting imply that capacity is more than necessary if 

soft-order is more than final order, but this will be restricted by deposit cost. 

Therefore, if she places a soft-order nearly same as the final order, average 

capacity that the supplier commits is barely enough to produce the full final order. 

On the other hand, the supplier does not supply more than what has been 

ordered. In this model, the information about how much has been produced by 

the end of stage-1 is needed only to prepare if case supplier has not produced 

enough. If he has produced more than enough then knowing P1 has no value. 



 96

  

Figure 3.18: Effect of increase in z on expected percentage cost 
benefit is nonlinear; in cases like cu = 9 above, the benefit increases 
abruptly initially and decrease slightly and flattens. 
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Figure 3.19:  For a similar rate of change of cu and z, a bigger value of 
c0 reduces the benefits, while increase in cu increase benefit. 
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The figure 3.19 shows it clearly sharing P1 is beneficial if cu is high. Now 

increasing c0 makes the buyer to order less, effectively making her less 

concerted about underage, in other words effective cu goes down if c0 goes high. 

Therefore, increase in c0 decreases the benefit.  

 

3.7 Conclusion 

We have presented a model to decide optimally on soft-order revisions in the 

presence of supply uncertainty and atypical demand. Our analysis reveals that 

the optimal soft-order and final frim-order are not necessarily the same as the 

demand forecast made during the time of issuing the order. While in some 

instances inflating a (soft) order compared to the demand forecast is optimal, 

deflating the orders is optimal in certain other cases. We have studied the impact 

of sharing upstream information such as the inventory position of supplier while 

revising the soft-order. A mathematical inequality is derived that states that 

vendor's expected cost would never deteriorate when this extra piece of 

information is received. Detailed numerical analysis reveals that expected cost 

benefit is significant, in some cases reaching 11%, when supply side variability is 

high and supplier's commitment to capacity is constrained compared to order 

size. Our model has also introduced a novel deposit scheme that forces the 

buyer not to issue unrealistically high soft-orders. This study reveals that 

increasing the deposit for a unit soft-order increases the benefit of information 

sharing. Another observation is that while increasing underage cost increases the 

benefit of information sharing, w.r.t. the overage cost, the effect is opposite. 
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 The study has opened up several possibilities for future research. Firstly, the 

current supplier model is simplistic; the supply uncertainty model is exogenous in 

our case. Future study should conjoin this model with an optimal supplier model 

such as one proposed in Baruah and Chinnam (2006). Second, we have not 

studied the benefit for the supplier while he shares his inventory information. We 

hope that this question can be answered through an integrated model. Third, the 

proposed deposit scheme needs more research in terms of determining 

appropriate deposit per unit of soft-order. More investigation is also due in terms 

of how to model a deposit scheme if an initial soft-order is revised more than 

once before submitting the final order. Finally, in reality, modeling the uncertain 

demand and supply environments needs relevant data that is difficult to obtain. A 

few practical questions can be posed, if there exists no history to model 

distributions, while uncertainties do exist, how to go about making decisions? 

This last point in our view is most important if model needs to be implemented in 

the real world, and therefore, most challenging. 
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CHAPTER IV  

Conclusion and Future Research 

4.1 Conclusion 

This research has studied supply chain operational planning in atypical demand 

situations and the impact of information sharing. The study uses a two-player 

supply chain configuration comprising a buyer and a supplier. The buyer faces 

atypical demand and supply uncertainty. The supplier faces effective capacity 

uncertainty and buyer’s soft-order(s) and final order as his demand. A stochastic 

dynamic programming buyer model for optimal soft-order generation and revision 

is presented that accounts soft-order deposit costs. A stochastic dynamic 

programming supplier model for optimal production releases is also offered that 

accounts soft-order revisions and effective capacity uncertainty. Based on these 

two models, the effects of sharing soft-orders between the players as well as 

supplier’s order inventory position on both parties involved are studied. 

The supplier model shows that soft-order sharing is beneficial to supplier 

as well as the buyer. Structural relationship between several different factors that 

affect the benefit of information sharing is explored. We found that that benefit of 

downstream information sharing varies as a function of order lead times, soft-

order volatility, and reliability of soft-orders. The benefit of receiving soft-orders 

depends primarily on the degree of capacity severity and uncertainty. Volatility in 

soft-orders is detrimental to both the players, resulting in increased order 

fulfillment costs while lowering order fill-rates. Although receiving early soft-

orders improves the supplier’s ability to complete the order, soft-orders are 
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inherently uncertain, increasing the risk of over production. An optimal lead-time 

for sharing soft-orders can be determined based on the levels of effective 

capacity, demand forecast uncertainty, and the different cost parameters. We 

also demonstrate that stochastic dynamic programming technique cannot fully 

account for intentional soft-order inflation by the buyer, even under conditions of 

a stable and linear order inflation pattern. The analysis reveals that the buyer has 

an incentive to inflate soft-orders at a cost to the manufacturer, in the absence of 

an early soft-order deposit. 

Not unlike the classic newsvendor model, our buyer’s model clearly shows 

the difference between optimal soft-order(s) and mean demand forecasts. In the 

newsvendor model, the order fractile is a function of unit overage and underage 

costs, and the order matches the mean expected demand only if these costs are 

the same. However, the mechanics are more complicated with our buyer’s model. 

While inflating the soft-order with respect to the average demand forecast is 

optimal in some cases, deflating it is optimal in some other cases. Both inflation 

and deflation can be optimal under given overage and underage costs, with the 

optimal action depending on the demand forecast besides others. As for the 

impact of sharing supplier’s order inventory position with the buyer before 

receiving the final firm order, a mathematical inequality is derived that states the 

following: buyer’s expected total cost would never deteriorate when this extra 

piece of information is received. Detailed numerical analyses reveal that 

expected cost benefit from receiving order inventory position is significant, in 

some cases reaching 11%, when supply side variability is high and supplier's 
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capacity is constrained. Our model has also introduced a novel deposit scheme 

that forces the buyer not to issue unrealistically high soft orders. This study 

reveals that to some degree, increasing the deposit for a unit soft-order increases 

the benefit of information sharing. Another observation is that while increasing 

underage cost increases the benefit of upstream information sharing, with 

respect to the overage cost, the effect is opposite; increasing overage cost 

decreases the benefit of sharing upstream information. 

  

4.2 Research contributions 

This research has taken a holistic view to explore the effect of atypical demand 

on both retailers as well as suppliers (facing effective capacity uncertainty). Effect 

of information flow (soft-order(s) and supplier’s order inventory position), effect of 

product flow decisions (release decisions under holding cost), and effect of flow 

of funds (early deposit with soft-order) has been studied in a single product 

setting. More specifically, this research explores the questions asked in section 

1.7 in a supply chain setting that is described in section 1.5. We hope that these 

insights can help supply chain decision makers exploit opportunities that 

frequently arise in atypical demand environments. 

 

4.2.1 Contributions from supplier model 

Specific contribution of this research due to the supplier model based on 

stochastic dynamic programming: 
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(i) This is the first study to explore the benefits of sharing soft-order(s) with the 

supplier. The study shows that both the supplier as well as the retailer 

benefits by sharing soft-orders. 

(ii) The study also investigates the effect of soft-order accuracy, volatility (e.g., 

due to lead-times), and intentional inflation on benefits to both parties 

involved. 

(iii) Sensitivity analysis reveals several structural properties of the cost-benefit 

trade-off of information sharing versus no sharing with managerial insights. 

(iv) A production-scheduling algorithm with forecast revision and capacity 

uncertainty is formulated for the study. Related model from the previous 

research (such as Housman and Peterson 1972, Raman and Kim 2002) 

accounted for capacity constraint, however, did not account for capacity 

uncertainty. This is critical for random production yield (which we term 

effective capacity uncertainty) is typical in the real word (Yano and Lee 

1995). The study shows that the effect of effective capacity uncertainty is 

significant in influencing costs for both parties. 

(v) The production-scheduling model for supplier measures the holding cost 

more accurately than that reported in Raman and Kim (2002). Raman and 

Kim (2002) do not account for holding cost for the stage in which the product 

is produced. We estimate holding cost for the stage of production as well.  
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4.2.2 Contributions from buyer model 

The contribution of this research due to the buyer model based on stochastic 

dynamic programming: 

(i) This is the first time an optimal soft-order revision model for retailer facing 

atypical demand and supply uncertainty is presented. Fisher et al’s (2001) 

model on optimal inventory replenishment of retail fashion products is closet 

to ours, but does not optimize soft-orders; their model optimizes two firm 

orders sent in different time-periods.  

(ii) Our model prescribes optimal soft-order revision both with and without 

upstream supplier’s inventory position information. 

(iii) We have modeled production uncertainty that degenerate into supply 

uncertainty. This allows us to relate effect of capacity commitment on 

different production stages by supplier on buyer’s replenishment decisions. 

While demand uncertainty has gained lot of attention, no literature has 

previously studied production inventory system that accounts for supply 

uncertainty simultaneously accounting for atypical demand. 

(iv) We have shown that upstream information sharing improves retailer’s 

optimal soft-order revision policy in term of expected cost. 

(v) This research has shown for the first time that while soft-order inflation is 

optimal under certain circumstances, deflation may also be optimal. 

(vi) We have devised a fair deposit scheme that is incurred to buyer while soft-

ordering. This novel scheme prevents unrealistic or fake soft-orders. 
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(vii) Detail numerical analysis is presented that explore structural properties of 

optimality and managerial insights are presented. 

 

4.3 Future research 

Author believes that more research is due to study problems on supply chain 

management facing atypical demand scenarios and uncertain supply. 

Development of better and practical forecasting-production-inventory-capacity 

policies is due. Here, we briefly discuss a few possible areas of future research 

that can possibly fill the gap in the present research: 

(i) Cost of information sharing: None of our models presented here have 

accounted for cost of information sharing. Information sharing between two 

companied are possible only if there is necessary infrastructure in place. In 

addition, colleting the information also incurs costs. In context of this 

research, supplier can transmit soft-order in timely manner only if a system 

is in place to collect it, transmit it, and be received by supplier. Similarly, 

order inventory position sharing needs a system to accurately count 

inventory and data transmission capability. Unless benefits of information 

sharing outweigh cost of installing these systems, information sharing is not 

a value proposition. 

(ii) Deposit scheme: The proposed deposit scheme need more research in 

terms of how to find out what an appropriate deposit per unit of soft-order. 

More research is due to optimally devise such a deposit for a scenario 

presented here. More investigation is due in terms of how to model a deposit 
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scheme if an initial soft-order is revised more than once before submitting 

the final order. 

(iii) Inaccurate information sharing: While the supplier’s model in our research 

study the effect of intentional soft order inflation, the retailer’s model has 

assumed that order inventory position shared by the supplier is a true signal. 

More investigation is necessary to analyze the impact of supplier’ sharing a 

wrong order inventory position. 

(iv) Incentive for sharing order inventory: Present retailer model does not shed 

light on ‘why supplier should share order information with his retailer?’ While 

benefit of soft-order information sharing is clear to both parties, supplier as 

well retailer, the benefit of sharing order inventory for supplier needs more 

investigation. 

(v) Conjoined supplier-retailer model: The present supplier’s model considers 

soft-orders evolution process as exogenously given for the supplier. On the 

retailer’s side, the supplier model is very simplistic; the supply uncertainty 

model is exogenous in our case. Future study should conjoin these two 

models to gain more insight related to benefit of information sharing in terms 

a centralized versus decentralized way of planning a two-player supply chain. 

(vi) Multi-product setting: The future study should incorporate a multi product 

setting and explore the computational complexity of a manufacturing 

scheduling algorithm and retailer’s soft order revision policy. In multi product 

setting, brute search to find the optimal release or the optimal soft-order may 
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be extremely time consuming; more research on heuristics to solve such 

problem is necessary.  

(vii) Supply chain cost or profit: A more detailed analysis is needed to find out the 

benefit of information sharing in terms of supply chain profit.  

(viii) Modeling uncertainty in absence of historical data: Modeling the uncertain 

demand and supply environments need relevant data that is difficult to 

obtain. A practical question is if there exists no history to model distributions, 

while uncertainties do exist, how to go about making decisions. This point in 

our view is most important if model needs to be implemented in real world 

and therefore most challenging. 
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Demand patterns for products with seasonality and or short life-cycles do not follow 

a clear discernible pattern (to allow predictive time-series modeling of demand) for 

individual sales events or seasons due to such factors as considerable demand 

volatility, product promotions, and unforeseen marketplace events. Suppliers 

supporting such atypical demand patterns typically incur higher holding costs, lower 

capacity utilization, and lower order fill-rates, particularly under long lead-times and 

uncertainty in effective capacity. Retailers on the other hand struggle with product 

overages and supply shortages. On the other hand, atypical demand settings bring 

huge financial opportunity to supply chain players, and are pervasive. It is suggested 

in the literature that an effective means to reap these benefits is through increased 

information sharing between retailers and suppliers, superior forecasting with 

forecast update techniques, proper replenishment, and custom designed 

inventory/manufacturing policies. We also believe that sharing of order forecasts, 

also known as soft-orders, in advance by the buyer could be beneficial to both 

parties involved.   
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This dissertation in particular studies a two-player supply chain, facing 

atypical demand. Among the two-players is a buyer (retailer/distributor/vendor) that 

makes ordering decision(s) in the presence of upstream supply uncertainty and 

demand forecast revision(s). We propose a stochastic dynamic programming model 

to optimally deicide on soft-order(s) and a final firm-order under a deposit scheme 

for initial soft-order(s). While sharing of upstream soft-order inventory position 

information by the supplier before receiving a final order is not a common industrial 

practice, nor is it discussed in the literature, our analysis shows that such information 

sharing is beneficial under certain conditions.  

Second player of the supply chain is a supplier (manufacturer) that makes 

production release decision(s) in the presence of limited and random effective 

capacity, and final order uncertainty. Our stochastic dynamic programming model for 

optimal production release decision making reveals that substantial savings in order-

fulfillment cost (that includes holding, overage, and underage costs) can be realized 

in the presence of advance soft-order(s). Soft-orders can also be shown to improve 

order fill-rate for the buyer.  

This research explores complex interactions of factors that affect the 

operational decision making process, such as costs, demand uncertainty, supply 

uncertainty, effective capacity severity, information accuracy, information volatility, 

intentional manipulation of information etc. Through extensive analysis of the 

operational policies, we provide managerial insights, many of which are intuitively 

appealing, such as, additional information never increases cost of an optimal 

decision; many are also counterintuitive, for example, dynamic programming models 

cannot fully compensate for intentional soft-order inflation by the buyer, even under 

conditions of a stable and linear order inflation pattern, in the absence of deposits. 
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