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Abstract

This paper presents a model of migration in which migration decisions are made with in-

complete information on the labor market conditions at destination. It provides an explanation

for how differences in the level of information about the destination can bring about differences

in economic outcomes related to migration, such as the migration propensity and the return to

migration. The implications of the model show the conditions under which information posi-

tively and negatively affects these outcomes. Thus, the model can be used to explain a wide set

of empirical �ndings regarding the relationship between information and migration outcomes.

2005 CPS data are used to estimate the econometric model. The estimation results suggest that

increased access to information regarding destination labor markets increases one's likelihood

to migrate to another state. Furthermore, the �ndings suggest that people who have more infor-

mation regarding the destination at the time of their migration decision on average experience

higher returns to migration.

1 Introduction

Since Sjaastad's in�uential work, migration has been perceived as an investment in human capital

(1962). Economists who have studied the return to this investment have often looked at the wage

and earnings growth that are experienced by migrants as a result of their migration decisions. The

human capital theory of migration predicts that the present discounted value of lifetime earnings

at the destination exceeds the present discounted value of lifetime earnings at home; however,

it is silent on the direction of the more immediate wage or earnings growth due to migration.

Empirical literature has also failed to produce a consensus on the contemporaneous change in

wage and earnings of migrants that is brought about by migration. Findings of positive, negative

and insigni�cant returns to migration, calculated as contemporary wage and earnings growth, exist
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in the literature, begging for the question of why different migrants experience different returns to

their migration decisions1.

In this paper, I present a model of migration under incomplete information as an alternative

framework in which to study the consequences of migration. I start with the premise that infor-

mation about labor market conditions at the destination is an important determinant of migration.

Differences in the level of access to such information in the population can bring about differences

in economic outcomes related to migration, such as the migration propensity and the return to mi-

gration. For example, in an environment with incomplete information regarding post-migration

wages, negative wage growth can re�ect overestimation of migration wages among migrants. The

purpose of this paper is to investigate the role of incomplete information in migration decisions

and more speci�cally the effect of increased information on migration outcomes. To that end, I

present a model of migration under incomplete information, discuss its theoretical implications and

provide an empirical analysis of how access to information about destination labor markets affects

the rate of state-to-state migration within the U.S. and the return to migration among migrants.

Economists acknowledge that information plays an important role in people's migration deci-

sions by directly affecting their expected bene�ts from migration. Many studies have empirically

investigated the impact of incomplete information on migration behavior and have concluded that

information is a determinant of various migration-related outcomes, including migration propen-

sity (Greenwood, 1975; DaVanzo, 1976; Allen, 1979), return migration (DaVanzo and Morrison,

1981; Allen, 1979), post-move earnings growth (Kau and Sirmans, 1977), and job search duration

after the move (Gibbs, 1994). The theoretical foundation of most of this empirical work is rooted

in the job search model. In their paper, Herzog, Ho�er and Schlottmann (1985) emphasize the

link between the job search model and migration under incomplete information and use the �nd-

ings of the job search literature in developing their migration model with incomplete information.

Their model assumes that greater labor market information increases actual post-migration wages;

therefore, actual wages under incomplete information are less than the potential wages that people

would earn under perfect information. Berninghaus and Seifert-Vogt (1987) present a migration

model that is based on the sequential nature of the job search process. They assume that individ-

uals compare income draws at various destinations and choose a destination based on the results

of their comparison. After the move, they conduct a search to �nd a job. A prediction of their

model is that greater uncertainty about the destination labor market increases one's probability of

migration.

1Ham et al. provide an excellent review of the empirical literature on the contemporary wage and earnings change

due to migration (2006). As summarized in their paper, Polachek and Horvath (1977), Borjas, Bronars and Trejo

(1992), Tunali (2000) and Ham, Li and Reagan (2006) have found negative returns to migration while insigni�cant

returns have been found by Bartel (1979), Hunt and Kau (1985), and Yankow (2003) for different migrant groups.

Bartel (1979), Hunt and Kau (1985) and Yankow (2003) also report positive returns for other migrant subsamples.
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In this paper, I present an alternative model of migration under incomplete information. The

model is based on the assumption that there is a random component to destination wages that

are not perfectly observable by the individual. The individual does not know the population

distribution of this random component, so she cannot use its population mean in calculating her

prediction of her post-migration wages. The model is based on an information acquisition process

initially proposed by Allen and Eaton (2005). According to this process, the individual receives

a sample of n draws from the population distribution of the random variable, so in effect, she

draws a sample mean. She uses the sample mean of the n observations to calculate the expected

value of her post-migration wages. The number of observations that she receives, n, increases

with the level of her information about the destination. Since the variance of the distribution of

sample mean decreases with n; in this model, information affects the worker's migration decision

by changing the spread of the distribution from which she draws the sample mean. The model

allows for both underprediction and overprediction of destination wages in the population. Allen

and Eaton have used this information acquisition process to explain the effect of information about

a destination to the rate of migration to that destination. In this paper, I focus on the role of

incomplete information in bringing about the variation in the return to migration observed in the

data.

The model presented in this paper predicts that migrants on average overestimate their post-

migration wages. This result provides an explanation for the observation made in earlier research

that "migration should select against those who underestimate the net returns to migration and

attract those who overestimate them" (DaVanzo, 1983). The prevalence of overprediction of post-

migration wages among migrants can explain the negative return to migration found in previous

empirical research. In a setting of incomplete information, individuals who overestimate their

post-migration wages are more likely to experience negative returns to migration. The model also

predicts that the expected value of the prediction error, the difference between the predicted and

actual post-migration wages, in the entire population is zero. Therefore, the implication that mi-

grants on average experience positive prediction error does not depend on a restrictive assumption

such as a positive support for the prediction error in the population.

Furthermore, the implications of the model reveal that increased information about destination

labor markets can have both positive and negative effects on the probability of migration and the

return to migration. Thus, the model can be used to explain a wide set of empirical �ndings

regarding the relationship between information and migration outcomes. The effect of information

on the probability of migration hinges on the difference between the expected value of home wages

and the expected value of destination wages in the population. If the population mean of wages at

origin exceeds that of the wages at destination, increased information regarding destination labor

market conditions is likely to change the migration decision of those who used to overestimate
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their post-migration wages. The withdrawal of these individuals from the migrant pool leads

to a decrease in the migration rate. If the population mean of wages at origin is lower than

the population mean of wages at destination, access to more information is likely to change the

migration decisions of those who used to underestimate their post-migration wages. As these

individuals decide to migrate under increased information, the migration rate increases.

Increased information regarding destination labor market conditions affects the return to migra-

tion through two channels, which I name as composition and scale effects due to their resemblance

of the composition and scale effects of Borjas' model (1987). The composition effect re�ects

the impact of information on the return to migration through its effect on the composition of the

migrant sample, conditional on the rate of migration. As a result of more information, the migrant

sample consists of a greater proportion of people with high destination wages, and this change in

the composition of migrants has a positive effect on the return to migration, conditional on the

size of the migrant sample. The scale effect describes the effect of information on the return to

migration through its impact on the size of the migrant sample. A positive scale effect exists when

increased information leads to a withdrawal of overestimators from the migrant pool. As the mi-

grant pool is made up of a smaller proportion of people who used to overestimate their destination

wages, the average return to migration among migrants increases. A negative scale effect, on the

other hand, is brought about when information brings about a surge in migrants who used to un-

derestimate their post-migration wages. As the migrant pool comprises of a greater proportion of

people who used to underestimate their destination wages, the average return to migration among

migrants decreases.

The theoretical model forms the basis for the empirical work which investigates how informa-

tion about the destination labor market affects the rate of state-to-state migration within the U.S.

and the wage gain associated with such moves. I use data from the March supplement to the 2005

Current Population Survey in the analysis. I draw on the results of previous research regarding the

role of network externalities in migration. These results indicate that one of the channels through

which people obtain information about other regional labor markets is their interaction with their

friends and neighbors. One can learn about the job prospects in another state by talking to her

friends and neighbors who have already migrated to or migrated from that state. Based on this

statement, I assume that people who live in states with high gross migration rates have greater

access to information about labor market conditions in other states since residents of such states

are more likely to come into contact with people who have moved to or from other states.

In the estimation of the migration probability, the use of the state gross migration rate as a

proxy for the residents' level of information about destination labor markets presents a potential

problem of endogeneity because the gross migration rate can be correlated with unobservables

such as local economic conditions which are also likely to affect a resident's migration decision.
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Therefore, I use the median age in the state of origin as an instrumental variable for the state's gross

migration rate in estimating the migration probit regression. The median age in the state is likely

to affect the migration rate in that state since age is a determinant of migration; however, it should

have no effect on an individual resident's migration decision when the decision is conditional on

the resident's own age. The instrumental variable probit regression results indicate that increased

access to information regarding destination labor markets increases one's likelihood to migrate to

another state.

In order to address the potential endogeneity of the gross migration rate in the wage equation,

I use a modi�ed version of the Heckman's two-step estimator in estimating the wage equation for

migrants and stayers. The estimation results indicate that increased access to information about

destination labor markets has no signi�cant effect on the wages of migrants and a signi�cantly

negative effect on the wages of stayers. In addition, I use the parameter estimates of the wage

equation to calculate the return to migration among migrants, which is the difference between their

reported post-migration wages and the estimated wage they would have earned had they decided

to stay. The average return to migration is greater for individuals who have migrated from states

with high gross migration rates. Furthermore, comparative static exercises show that increasing

the gross migration rate leads to an increase in the return to migration, conditional on the original

subsample of migrants. I also �nd that the return to migration is highest among high school

dropouts and lowest among individuals with some college.

The paper is divided into several sections. Section II presents the theoretical model and dis-

cusses its implications with respect to the probability of migration and the return to migration.

Section III presents the econometric model and explains the empirical strategy employed in this

study. Section IV discusses the dataset, and Section V contains the results of the empirical analy-

sis. Concluding remarks are given in Section VI.

2 Theoretical Model

2.1 The Framework

Individuals make a decision between moving (M = 1) and staying (M = 0) based on their current

wages, their expected wages at the destination and their moving costs. They decide to move if

they anticipate their wages at destination to be higher than the sum of their current wages and the

moving costs. Consider individual i who has two wage alternatives: y1i if she migrates and y0i if

she does not migrate. These alternatives are given by

y0i = �0 + �0i (1)
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y1i = �1 + �1i + "i (2)

where �0 and �1 represent the population mean of wages at the origin and the population mean of

the wages at the destination, respectively, and �0i and �1i represent the deviations from the mean

that are observed by the individual. While the individual perfectly observes �0; �1; �0i and �1i, she

does not observe "i prior to migration, and as such "i can be interpreted as the random component

of one's post-migration wages from the perspective of the individual at the time of the migration

decision.

The information acquisition process presented in this model was originally proposed by Allen

and Eaten in their migration model (2005)2. I assume that the individual does not have complete

information in the sense that she does not know the distribution of " in the population. Instead,

she observes n number of random and independent draws from the population distribution " and

uses the average of the n draws as a predictor of "i. Let "i be the average of the n random draws

observed by individual i: Then, the individual anticipates her wages at the destination to be ye1i

where

ye1i = �1 + �1i + "i (3)

The information acquisition process in this model is based on the assumption that information

about the population mean of the random term, "; is costly. n, the size of the sample drawn

from the population distribution of "; is a decreasing function of the cost of acquiring information.

Individuals who face high costs of acquiring information about the labor market conditions at the

destination have low values of n; and those, who face low costs of acquiring information and thus

can obtain more about the destination labor market, have high values of n:

The one-time moving cost faced by individual i is given by

ci = �c + �ci (4)

where both �c and �ci are known by the individual at the time of her migration decision. Then,

individual i's migration decision can be characterized as

M = 1 if ye1i � y0i � ci > 0

M = 0 otherwise (5)

2Allen and Eaton's model focuses on explaining how the migration propensity changes with information about the

destination. The purpose of this paper includes studying the effect of information on the return to migration. This

difference in focus brings about differences in the set-up of the two models. For example, in Allen and Eaton's model,

all individuals in a given origin have identical expectations of their future earnings at origin. In the model presented

here, individuals' expectation of their future home earnings is a random variable that follows a continuous probability

distribution.
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Note that y1i represents the actual post-migration wages while y
e
1i represents individual i's

anticipation of her post-migration wages at the time of the migration decision. Furthermore,

the random components, �0; �1, and �c; are observed by the individual but are unknown to the

researcher while " is unknown to both the individual and the researcher. In order to be able to

further pursue the implications of the model, I assume that �0; �1, �c; and " are jointly normal with

zero means and the covariance matrix

� =

2

6666
4

�20 �01 �0c �0"

�01 �21 �1c �1"

�0c �1c �2c �c"

�0" �1" �c" �2"

3

7777
5

Since " is distributed normally in the population, the sample mean, "; also follows a normal

distribution where " � N(0; �
2
"

n
): In addition, since n is inversely related to the variance of ";

access to more information about the destination labor market, represented by an increase in n in

this model, decreases the variance of " that individuals use in calculating their anticipated post-

migration wages. As n increases, individuals' " draws become more concentrated around the

actual population mean of "; which is assumed to be zero. Thus, individuals move from a situation

of incomplete information towards one of complete information, in which they know the expected

value of " in the population and can use it in predicting their post-migration wages.

2.2 The Probability of Migration

From the perspective of the researcher, the probability that a randomly chosen individual chooses

to migrate is given by

P = Pr(� > �0 + �c � �1) = 1� �(z) (6)

where � = �1 + "� �0 � �c, z =
�0+�c��1

��
; and � is the cdf of a standard normal distribution:

Since n captures the individual's level of information regarding the destination labor market

conditions, the effect of information on migration-related outcomes, such as the migration propen-

sity and the return to migration, can be studied by analyzing the effect of n on these outcomes.

Based on Equation 6, the effect of n on the probability of migration is given by

@P

@n
= ��(z) �

@z

@��
�
@��

@n
(7)
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As shown in the Appendix, the sign of @P
@n
depends on the sign of �0 + �c � �1: In particular,

@P

@n
> 0 if �0 + �c � �1 < 0

@P

@n
< 0 if �0 + �c � �1 > 0 (8)

According to this result, as people have more information about the destination labor market

conditions, the probability of migration moves in the direction of higher expected wages in pop-

ulation. If the population mean of home wages is higher than the population mean of wages at

destination minus the moving cost, then the probability of migration decreases as people become

more informed. If the population mean of wages at home is lower than the population mean of

destination wages minus the moving cost, then access to more information has a positive effect on

the probability of migration.

Before explaining the intuition behind this result, one should note that this model allows for

both underprediction and overprediction of post-migration wages by individuals depending on their

"i and "i draws. In particular, an individual overpredicts her post-migration wages if "i > "i: In

that case the individual makes a positive prediction error since "i�"i > 0: Similarly, the individual

underpredicts her post-migration wages if "i < "i: In that case the "i�"i < 0; and the individual's

prediction error is negative.

The mathematical intuition behind Equation 8 can be explained as follows: Suppose that the

population mean of wages at origin is smaller than the population mean of wages at the destination

minus the moving cost. Then as n increases and individuals' " draws move closer to zero, people

who are likely to change their migration decisions are those who initially had low " values. As

their " draws become closer to zero after the increase in n, they become more likely to choose

migration, thus leading to an increase in the migration rate. The opposite result holds when the

population mean of wages at origin is greater than the population mean of wages at the destination

minus the moving cost. In that case, those who are likely to change their migration decisions are

those who initially had high " values and decided to migrate. After n increases and their " draws

approach zero, these individuals become less likely to choose migration, leading to a decrease in

the probability of migration in the population.

The incomplete information in this model, characterized as the individuals' lack of information

regarding the population distribution of ", has unique implications on the migration rate that cannot

be captured by a standard model in which the individuals know the population distribution of ".

If the individuals know the expected value of " in the population, then ye1i = �1 + �1i + E(") =

�1 + �1i under the current assumption that E(") is zero. Consequently, the individual chooses to

migrate as long as �1 + �1i > �0 + �c + �0i + �ci, and the probability of migration is given by

P = Pr(�1 � �0 � �c > �0 + �c � �1): In such a model, the variance of "; which re�ects the
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level of uncertainty surrounding post-migration wages, has no effect on the individual's migration

propensity.

Hypothesis 1 The individual's level of information regarding the destination labor market posi-

tively affects the probability of migration if �0 + �c � �1 < 0: Otherwise, its effect on the

probability of migration is negative.

2.3 The Return to Migration

The return to migration, R; can be de�ned as the difference between what migrants earn at the

destination and what they would have earned at home had they stayed. Mathematically,

R = E(y1jM = 1)� E(y0jM = 1) (9)

where E(y1jM = 1) gives the expected value of wages of migrants at the "new" location, and

E(y0jM = 1) gives the expected value of wages of migrants at "home." If we let ! = �1 + ";

�!� = Corr(!; �) and �1 =
�(z)
1��(z)

; then the expected value of post-migration wages of migrants

can be stated as

E(y1jM = 1) = �1 + E(!j� > �0 + �c � �1) = �1 + �!��!�1 (10)

Similarly, the expected value of pre-migration wages of migrants can be expressed as

E(y0jM = 1) = E(�0 + �0j� > �0 + �c � �1) = �0 + �0��0�1 (11)

where �0� = Corr(�0; �): Then R can be stated as

R = �1 � �0 +
�
�!��! � �0��0

�
�1 = �1 � �0 + A

�1

��
(12)

where A = �21 � 2�10 + �
2
0 � �1c + �0c + �1" � �0" � �c".

Before investigating effect of information on the return to migration, I would like to discuss

the implications of the model on the average prediction error among migrants. As shown in the

Appendix, the expected value of the prediction error among migrants is positive.

E(ye1jM = 1)� E(y1jM = 1) =
�1

��

�
�2"
n

�
> 0 (13)

Therefore, the average migrant overestimates her destination wages. Based on this implication,

this model provides an explanation for the observation made in earlier research that "migration
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should select against those who underestimate the net returns to migration and attract those who

overestimate them" (DaVanzo, 1983). It is important to note that this theoretical result is not con-

tingent on restrictive assumptions about the distribution of the prediction error in the population.

In fact, the model allows for both over- and underestimation of destination wages, and it generates

a positive prediction error among migrants even as the expected value of the prediction error in

the population is zero (E( "i � "i) = 0). This implication distinguishes the model presented here

from earlier models by Herzog et al. (1985) and Daneshvary et al. (1992) which also conclude

that migrants on average overestimate their destination wages. In these earlier models, the posi-

tive prediction error among migrants is contingent on the assumption that the prediction error has

a positive support over the entire population. These models assume that reservation wages are

monotonically increasing over the level of information; thus everyone in the population underes-

timates their actual post-migration wages, leading to a positive expected value of the prediction

error in the population.

Furthermore, the model presented here implies that as n goes to in�nity, �1 and �� approach

constant values,
�2
"

n
approaches zero, and hence the expected value of the prediction error among

migrants (E(ye1jM = 1) � E(y1jM = 1)) approaches zero. Intuitively, as individuals approach

having complete information, the average prediction error among migrants goes to zero.

The implication that the average prediction error among migrants is positive provides an ex-

planation for the negative return to migration found in previous empirical research. As stated in

the Introduction, several studies have found negative return to migration among migrants. For

example, Tunali �nds that about 75 percent of migrants in his sample realize negative returns to

migration (2000). One of the explanations for the negative return to migration is that migrants

overestimate their post-migration wages, only to realize after the migration that their actual post-

migration wages are less than their wages at the origin. By showing that the overestimation of

post-migration wages is prevalent among migrants, the model presented here provides an explana-

tion for the negative return to migration within a human capital investment approach to migration

when individuals have incomplete information regarding destination labor market conditions.

Next I turn to the question of how the level of information about the destination labor market

affects the return to migration. Do migrants who have a better knowledge of the labor market

conditions at the destination experience a higher return to their migration decisions? The impact

of information on the return to migration is summarized by the effect of n on R: If �0c = �1c =

�0" = �1" and �c" = 0; then this derivative can be expressed as

@R

@n
=

�
1

��
�
@�1

@n
�
�1

�2�
�
@��

@n

�
V ar(�1 � �0) (14)

As shown in the Appendix, the sign of this derivative is determined by the sign of
h
1
��
� @�1
@n
� �1

�2
�

� @��
@n

i
:
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The �rst term in the brackets described the effect of n on R through its impact on the selection

and the size of the migrant sample. I will call this effect the "scale effect" since in a mathematical

sense, it is similar to the "scale effect" described in Borjas' migration model (1987). The direction

of the scale effect is inherently tied to the direction of the migration rate and the conditions that

determine it. The scale effect is positive under the same conditions when @P
@n
< 0 , and it is

negative under the same conditions when @P
@n
> 0 (i.e. @�1

@n
> 0 when �0 + �c � �1 > 0; and

@�1
@n
< 0 when �0 + �c � �1 < 0). As mentioned above, when �0 + �c � �1 > 0; the marginal

individual who changes her migration decision as a result of more information is one who had

previously overestimated her destination wages. As overestimators update their predictions of

their post-migration wages, a portion of them are likely to change their migration decision from

migration to staying, leading to a withdrawal of overestimators from the pool of migrants. As the

migrant pool comprises of a smaller proportion of people who make a negative prediction error,

the average post-migration wages in the migrant subsample increases, and the average return to

migration rises. Therefore, a positive scale effect re�ects the fact that as a smaller portion of

migrants overpredict their destination wages, the return to migration is positively affected by an

increase in n:

On the other hand, the scale effect is negative when the population mean of home wages plus

the moving costs is less than the population mean of destination wages (�0+ �c� �1 < 0): In that

case, the marginal individual who changes her migration decision is one who had underestimated

her post-migration wages. When more information is available, underestimators of future wages

are likely to choose to migrate, bringing about an injection of new migrants into the migrant pool

and a higher migration rate. These new migrants are likely to come from the lower tail of the

destination wage distribution because people from the higher tail would most likely have chosen

migration initially even if they had underestimated their future wages. The injection of new

migrants into the migrant pool from the lower tail of the destination wage distribution brings about

a negative scale effect.

The second term in the brackets can be perceived as the effect of n on R through its impact on

the composition of migrants, holding the migration rate constant. When n increases, the variances

of " and ye1 become smaller while the variance of y1 remains constant. Then, if �0 + �c � �1 > 0;

the migrant sample consists of a greater proportion of people who have higher destination wages

than anticipated. This change in the composition of migrants puts an upward pressure on R:

If �0 + �c � �1 < 0; the migrant sample consists of a smaller proportion of people who have

lower destination wages than anticipated. Such a change in the composition of the migrant sample

also has a positive effect on R. Therefore, the composition effect is unambiguously positive.

Intuitively, as people have more information about the destination labor market, the migrant sample

consists of a greater percentage of people from the upper tail of the y1 distribution, bringing about
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an increase in the return to migration.

The net effect of n on R then depends on the sum of the scale and composition effects. When

�0 + �c � �1 > 0; both effects are positive, generating a positive effect of information on the

return to migration. When �0 + �c � �1 < 0; the composition effect is positive, and the scale

effect is negative; thus the sign of @R
@n
depends on which effect dominates. In that case, information

increases the return to migration if 1
��
� @�1
@n
< �1

�2
�

� @��
@n
: In sum,

@R

@n
< 0 if �0 + �c � �1 < 0 and

����
1

��
�
@�1

@n

���� >
�1

�2�
�
@��

@n

@R

@n
> 0 otherwise (15)

Hypothesis 2 Information positively affects the return to migration if �0 + �c � �1 > 0:

Hypothesis 3 If information negatively affects the return to migration, then it positively affects

the migration rate since both conditions hold under �0 + �c � �1 < 0.

Next, I consider how an increase in the variance of " affects the return to migration. Within

the framework of this model, �" captures the uncertainty faced by an individual regarding her des-

tination wages. Based on Equation 2, �" directly affects the variance of wages at the destination.

Therefore, the effect of �" on the return to migration provides insight on how the variance of wages

at destination impacts the average return to migration. It provides an explanation for what hap-

pens to the average return to migration when the wage distribution at the destination becomes more

unequal.

Mathematically, the effect of �" on the return to migration is given by
3

@R

@�"
=

�
1

��
�
@�1

@�"
�
�1

�2�
�
@��

@�"

�
V ar(�1 � �0) (16)

This net effect can also be decomposed into a composition and scale effect. It can be shown

that the composition effect, given by the second term in the bracket, is negative. As �" goes up and

the uncertainty that one faces in her destination earning increases, conditional on n; the individual's

prediction of her post-migration wages becomes less precise, thus negatively affecting her return to

migration. An increase in �" also impacts the selection of migrant and the migration rate revealed

by the scale effect (the �rst term in the brackets). The scale effect can be positive or negative

depending on the relative values of �0; �c; and �1: If �0+�c��1 < 0; an increase in the variance

of post-migration wages causes the sample of migrants to consist of a smaller proportion of people

who overpredict their actual post-migration wages. In this case, the scale effect is positive. On

3See the Appendix for the derivation of @R
@�"
:
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the other hand, if �0 + �c � �1 > 0; an increase in the variance of post-migration wages brings

about a change in the sample of migrants so that a greater proportion of migrants overpredict their

post-migration wages. As a result, the scale effect associated with an increase in �" is negative.

The net effect of a change in �" on R depends on the sum of the composition and scale effects. In

particular,

@R

@�"
> 0 if �0 + �c � �1 < 0 and

1

��
�
@�1

@�"
>

����
�1

�2�
�
@��

@�"

����

@R

@�"
< 0 otherwise (17)

The discussion above can also be used to generate the following two hypotheses.

Hypothesis 4 If �0 + �c � �1 > 0; a higher variance of wages at the destination brings about a

lower return to migration.

Hypothesis 5 If the variance of wages at the destination positively affects the return to migration,

then �0 + �c � �1 < 0:

Hypothesis 4 can be combined with the earlier hypotheses to lead to the following result: If

the expected value of home wages in the population exceeds the expected value of destination

wages minus the moving costs in the population (�0 + �c � �1 > 0), then an increased access to

information about the destination leads to a decreased migration rate and an increased return to

migration among migrants. The model also implies that if the wage inequality at the destination

increases under this assumption, the return to migration decreases as a result.

3 Empirical Strategy

The empirical strategy employed in this paper involves investigating the effect that greater access

to information has on migration outcomes by estimating the reduced form of the behavioral model

discussed above. A critical part of this strategy is to distinguish between individuals facing dif-

ferent costs of information and thus different levels of access to information regarding destination

labor markets. One of the channels through which people obtain information about other regional

labor markets is their interaction with their friends and neighbors. For instance, one can learn about

job prospects in another state by talking to her friends and neighbors who have already migrated

to that state or migrated from that state.

Social interaction as an information-enhancing factor in the migration decision is implicit in

several other studies. For instance, Carrington et al. present a model in which moving costs are
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inversely related to the number of immigrants in the destination (1996). They use the results of

their theoretical model to explain why the Great Black Migration from the South to the North took

place during a time when the income gap between the two regions was narrowing. Spilimbergo

and Ubeda develop a model which speci�es the role of social interaction in the migration decision

(2004). Their work is based on the assumption that one's family and friend network at home

might discourage her from migrating. They �nd multiple equilibria and use the existence of

multiple equilibria to explain why different groups have persistently exhibited different migration

rates (eg. White vs. African-American, U.S. vs. Europe). In addition, previous literature on

migration has pointed to the role of network externalities in migration, referring to the fact that

each migrant lowers the cost of migration for family and friends at home (Massey et al., 1993).

Social interaction is implicit in these studies because one of the causes of network externalities

in this setting is the informal information channels that carry information from people who have

already migrated to those who are at the origin. Network externalities have been used as a reason

behind ethnic clustering of immigrants in host countries across Europe and in the U.S.

If interaction with friends, family and neighbors who have migrated to or from one's home state

is an informal medium for information about other labor markets outside her state, then residents

of states that experience a high level of outmigration or inmigration are more likely to learn about

other labor markets. Information gathering through social interaction implies that people who live

in states with high migration rates are on average better informed about destination labor markets

since they have a higher likelihood of interacting with people who have moved to or from a different

state. Based on this reasoning, I use the gross migration rate in one's home state, which is based

on the sum of inmigration and outmigration in the state, as a proxy for her level of information

about destination labor markets. I assume that people who live in states with high gross migration

rates have easier access to information about different labor markets outside their states and thus

are able to collect information at a lower cost.

A potential problem with this strategy is that the gross migration rate is likely to be endogenous

to the residents' migration decisions. A state's gross migration rate is partially determined by the

state's economic conditions, which can also affect the residents' migration decisions. To address

this potential endogeneity problem, I use the median age in the state as an instrument for the

state's gross migration rate in the estimation. I believe that the median age in the state is a suitable

instrument as it is likely to be related to the endogenous variable, the state's gross migration rate,

and unrelated to an individual's migration decision. The median age in the state is likely to

be a factor in the state's gross migration rate because previous studies have documented age to

be a signi�cant determinant of migration and one that is negatively related to the probability of

migration (Greenwood, 1985). Therefore, one can expect states with a younger population to have

more outmigration, which directly impacts the gross migration rate in the state. Furthermore, the
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median age in the state is not likely to affect a resident's decision to migrate, conditional on the age

of the resident. Although the individual's own age is a factor that affects her migration propensity,

the median age in her state of origin should have no in�uence on her migration decision when

conditional on her own age.

Based on the theoretical framework, the econometric model can be expressed as a switching

regression model with the following speci�cation:

y0 = �0X + �0g + �0 (18)

y1 = �1X + �1g + ! (19)

y� = �Z + � (20)

M(Z) = 1[y� � 0] (21)

y =My1 + (1�M)y0 (22)

The error terms, �0; !; and � are assumed to be independent of X and Z; and they are assumed to

follow a trivariate normal distribution with zero expectations and the positive de�nite covariance

matrix given below: 2

6
4
�20 �0! �0�

�0! �2! �!�

�0� �!� �2�

3

7
5 (23)

y is the observed wages in the sample, with y1 denoting the wages of migrants and y0 denoting the

wages of stayers. The latent variable, y�; determines the regime, i.e. the individual's migration sta-

tus (M): This speci�cation assumes that the population means of earnings and costs (�0; �1; �c);

which capture the deterministic components of earnings and cost in the theoretical model, are lin-

ear functions of observable characterictics. The vector of observables, X; includes variables that

affect one's earnings, and the vector Z includes explanatory variables that affect earnings as well

as those that determine moving costs. Both X and Z contain exogenous explanatory variables. g

is an endogenous variable, which is correlated with the error terms in the earnings equations, �0

and !.

The given speci�cation describes a switching regression model where one of the regressors in

the outcome equation (earnings equation) is endogenous. The estimation technique should take

into account two issues: 1) the self-selection of migrants, which may result in migrants being

systematically different than non-migrants in terms of unobservable characteristics (i.e. the esti-

mation method should allow for the condition that Cov(�0; �) 6= 0 and/or Cov(!; �) 6= 0); 2) the

endogeneity of g in the earnings equation (i.e. Cov(g; �0) 6= 0 and/or Cov(g; !) 6= 0). I estimate
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the model using a modi�ed version of the two-step method developed by Heckman (1974, 1976,

1978) and Lee (1978, 1979). In the �rst stage, the migration equation (Equation 21) is estimated

using a probit regression, and the estimated parameters are used to generate the Inverse Mill's

Ratio for every observation. In the second stage, the calculated inverse mill's ratio is added to

the earnings equation (Equation 22) as a regressor, and the earning equation is estimated by two

stage least squares using instrumental variables for g. Identi�cation requires that the instruments

include at least one exogenous variable that is not included in X (Wooldrigde, 2002).

4 Data

The individual-level data including demographic, labor market and migration variables come from

the March supplement to the 2005 Current Population Survey (CPS). The extraction of the data

was performed using the IPUMS-CPS, which is an integrated set of the March CPS from 1962-

2006 (King et al., 2004). One of the advantages of using the 2005 CPS is that it allows for the

creation of two different migration variables. The �rst variable, mig1, indicates whether the indi-

vidual migrated to a different state within the past year, and the second variable, mig5, indicates

whether the individual migrated to a different state within the past �ve years. Although the re-

spondent's migration activity within the past year is asked in every year of the CPS with a few

exceptions, her migration activity over the past �ve years is not available in every year. Currently,

the �ve-year migration indicator is available for 1980, 1985, 1995 and 2005.

Individuals who moved to another state and returned to their home state within the past year

are considered non-migrants according to the mig1 indicator. Similarly, individuals who have

migrated and returned to their home states within the last �ve years are considered as non-migrants

according to the mig5 de�nition. It is plausible to think that more return migration would occur

within a �ve-year span compared to a one-year span. Therefore, I assume that the sample of

migrants de�ned by mig1 consists of a greater proportion of individuals who will eventually return

to their home states. In the empirical analysis, I use both state-to-state migration indicators. Since

mig1 and mig5 generate samples of migrants that differ with respect to the proportion who may

return to home state in the future, a comparison of results based on mig1 and mig5 can enable the

researcher to make inferences on the possible effects of "return migration" on several migration

outcomes.

Log wages are used as the dependent variable in the earnings equation. As a result, the return

to migration can be interpreted as the wage growth due to migration. Both household earnings

and wages have been used by previous studies investigating the return to migration. For instance,

while Ham et al. focus on wage growth due to migration, Tunali (2000) studies the change in

household earnings resulting from migration. The hourly wages are calculated by dividing the
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respondents' earnings by the number of hours worked, and the hourly wage variable included in

the CPS is used whenever it is reported by the respondent.

State migration rates used in the analysis are obtained from the calculations performed by the

U.S. Census Bureau using the U.S. Census 2000 (Franklin, 2003). These calculations are based

on the number of people who reported having moved across states between 1995 and 2000. The

median age in each state also comes from the U.S. Census Bureau's tabulations on the U.S. Census

2000 (Meyer, 2001). The state-level data on migration rates and median age are linked to the

individual-level data by the non-migrant's state of residence and the migrant's state of origin.

The explanatory variables used in the analysis are listed in Table 1. The number of children in

the household and whether the individual owns her dwelling are used as factors affecting migration

cost and thus are excluded from the wage equation. The sample is limited to civilians aged 15 or

older who are in the labor force. It contains 97,864 observations.

According to the statistics reported in Table 1, 2.6 percent of the sample reported living in a

different state than they did a year ago, and 8.1 percent reported living in a different state than they

did �ve years ago. Table 1 also lists the average characteristics of movers and stayers where migra-

tion is de�ned by the individuals� movement across states within the past year. These descriptive

statistics reveal that movers on average are younger, less experienced and more educated than stay-

ers. In addition, a smaller proportion of movers are married and own their homes compared to

stayers, and people who migrate have on average fewer number of children in the household. Both

of these �ndings suggest that stayers tend to have higher moving costs generated by selling home,

changing children's schools and �nding work for the spouse at the destination. Movers and stayers

are also quite different with respect to their employment status. Movers are more than twice as

likely to be unemployed during the week of the interview than stayers, and they are less likely to

be self-employed after the move compared to stayers.

5 Results

5.1 The Probability of Migration

Table 2 presents the maximum likelihood estimation results of the migration equation. Speci�-

cations (I) and (II) estimates come from the estimation of an ordinary probit regression with and

without the gross migration rate in the state of origin as an explanatory variable. In speci�cation

(III), the gross migration rate is instrumented using the median age in the state of origin. All

speci�cations are estimated for two dependent variables: mig1 (indicator for the state-to-state mi-

gration within the past year) and mig5 (indicator for the state-to-state migration within the past �ve

years).
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The marginal effects reported in column 1 indicate that the probability of migration across

states is positively affected by age and negatively affected by the number of years in the labor

market. Men are 0.26 percent more likely to move than women while race and marital status do

not signi�cantly affect the decision to migrate. Number of children and owning a house have a

negative effect on one's likelihood to migrate. This result is consistent with the notion that the

number of children and owning a house lead to higher moving costs and thus hinder migration.

People who report being unemployed are 1.6 percent more likely to have migrated from another

state within the past year, suggesting that unemployment can be more prevalent among recent

migrants than non-migrants. These results also indicate that the propensity to migrate does not

differ signi�cantly between educational groups or across occupational categories.

The marginal effects reported in column 2 refer to the estimation of speci�cation (I) probit

using mig5 as the dependent variable. As stated above, one of the key differences between mig1

and mig5 is that due to its wider span, mig5 indicator points to migrant sample which consists of a

smaller proportion of individuals who would return to their home state after the migration. Mig1,

on the other hand, yields a migrant sample consisting of a greater proportion of people who may

become return migrants in the future. The marginal effects, found using mig1 as the dependent

variable, retain their signs when mig5 is used as a dependent variable. However, the magnitudes

of the marginal effects become greater for most variables when migration status is determined by

migration activity over the past �ve years. Thus, the factors determining migration seem to have

an even stronger effect on the migration decision when migration is de�ned by movement across

states within the past �ve years, and these effects seem to be diluted when the return migrants make

up a greater portion of the migrant sample. Although the line of inquiry regarding return migration

is not pursued in this paper, these results provide indirect support for other research showing that

return migrants are systematically different from permanent migrants.

Speci�cation (II) probit results reveal that gross migration rates in the state of origin are pos-

itively related to the probability of migration. However, a positive relationship between a state's

gross migration rate and an individual's decision to migrate may be spurious in nature if the state

migration rate is affected by local economic conditions, which are also likely to in�uence the res-

ident's migration decision. In order to address the potential endogeneity of the gross migration

rate, I use median age in the state as an instrument for the state's gross migration rate (Speci�cation

(III)). The results of the IV probit regression presented in columns (5) and (6) of Table 2 show

that the gross migration rate in the home state has a positive impact on an individual's likelihood

to migrate to another state. According to these estimates, increasing the gross migration rate in

the home state by 10 percent increases a resident's probability of migrating out of the state by 2.7

percent. The magnitude of this effect is higher when mig5 is used as the migration indicator. In

that case, increasing the gross migration rate in the home state by 10 percent leads to a 5.8 percent
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increase in the a resident's propensity to move out of the state. These results suggest that greater

access to information about the destination labor market positively affects one's probability of mi-

grating to another state. The effect is stronger in magnitude when the migrant sample includes a

smaller share of return migrants.

5.2 The Return to Migration

The calculation of the return to migration requires the estimation of the wage equation for movers

and stayers. The wage equation is estimated as the second step in a two-step procedure, which is

designed to take into account the self-selection of movers. The parameter estimates of speci�cation

(I) in Table 2 are used in calculating the inverse mill's ratio for each individual in the sample, and

then the estimated inverse mill's ratio is added to the wage equation as an exogenous regressor.

In Table 3, I present the parameter estimates of the wage equation using OLS and 2SLS. In the

2SLS estimation, the median age in state is used as an instrument for the gross migration rate. The

econometric model is estimated using two separate indicators for state-to-state migration: mig1

and mig5.

The OLS results with mig1 as the migration indicator reveal that age, college education, being

male, white and married positively affect wages of both movers and stayers. Managers have higher

wages among migrants, and service and production workers have lower wages among stayers. The

convexity of the age wage pro�le is more prominent within the stayer subsample as the coef�cient

on age squared is signi�cantly negative. Experience has a negative effect on the wages of stayers

while its effect is insigni�cant on the wages of migrants. The OLS estimates also show that the

gross migration rate in the state of origin does not have a statistically signi�cant effect on the wages

of migrants while it has a signi�cantly negative effect on the wages of stayers.

When the gross migration rate is instrumented using median age in the state, the coef�cient of

the gross migration rate changes in magnitude for both migrants and non-migrants. In particular,

the coef�cient becomes remains statistically insigni�cant for the mover subsample. However, it

becomes more negative for the stayer subsample. According to the 2SLS estimates, non-migrants

living in states with high gross migration rates earn less compared to non-migrants living in states

with low gross migration rates.

The coef�cient of the added regressor, the estimated inverse mill's ratio, is positive for movers

and negative for stayers, indicating that movers experience a positive self-selection effect, and

stayers experience a negative self-selection effect. This result suggests that migrants are selected

predominantly from the upper tail of the wage distribution while stayers come predominantly from

the lower tail of the wage distribution in the population.

The wage equations are also estimated usingmig5 as the state-to-state migration indicator. The
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last four columns of Table 3 show the results of these estimations. Most of the coef�cients retain

their sign and signi�cance when mig5 is used as the migration indicator. One interesting �nding

is that the gross migration rate does not have a statistically signi�cant effect on the migrant wages

when mig5 is used in de�ning migration. This �nding is not surprising when one considers the

difference between the migrant samples de�ned by mig1 and mig5. Mig5 is likely to generate a

migrants sample that consists of a smaller proportion of people who may become return migrants.

More information about destination labor markets is expected to have the biggest impact on the

wages of migrants who may become return migrants since these are the people who potentially

made wrong migration decisions by overpredicting or underpredicting their post-migration wages.

Additional information would enable such individuals to correct their migration decisions. The

subsample of migrants de�ned bymig5 is likely to consist of a relatively small proportion of people

who potentially made bad migration decisions. Therefore, it is plausible to expect information

about other labor markets to have a small in�uence on the wages of these migrants. The gross

migration rate continues to have a negative and signi�cant effect on the wages of stayers when

mig5 is used as the migration indicator.

Next, I calculate the return to migration by taking the difference between the wages earned

by migrants and the wages that they would have earned at origin had they chosen not to migrate.

The latter is calculated based on the 2SLS estimates for the migrant subsample presented in Table

3. Since log(wage) is used as the migration outcome in the analysis, the return to migration can

be interpreted as the wage growth due to migration. When migration is de�ned by movement

across states within the past year, the average return to migration among migrants, measured as the

difference in log wages, is 0.074, and the median return among migrants is 0.033. Approximately

44 percent of migrants realize a negative return to migration. When migration is de�ned by

movement across states within the past �ve years, the average return to migration among migrants,

measured is 0.044. Although the average return calculated using mig5 is smaller than the one

calculated using mig1, the median return among migrants is the same in both cases (0.033). As

expected, when migration is de�ned by mig5, a smaller proportion of migrants, namely 27 percent,

experience a negative return to their migration decisions.

The theoretical model presented in this paper has several implications regarding the changes in

the return to migration brought about by changes in the availability of information and by changes

in wage inequality at the destination. In order to empirically test these implications, I compare the

average return to migration across different groups of migrants. First, I present the average return

to migration by educational attainment (Table 4). Standard errors are calculated using bootstrap

with 1000 repetitions. Results using mig1 as the migration indicator shows that the average return

to migration is highest for highschool dropouts. Highschool graduates experience higher returns

to migration than college graduates and lower returns to migration than high school dropouts. In-
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dividuals with some college credits gain the lowest wage growth as a result of migration compared

to other educational groups. With the exception of the individuals in the 'some college' category,

the return to migration seems to decrease with education. One of the factors that can bring about

such a result is the variation in migration costs across educational categories. In particular, higher

migration costs among people with low education can generate the observed negative relationship

between educational attainment and the return to migration. If people with low education face

higher migration costs compared to higher educated people, then they would require higher return

to migration to justify migrating and incurring the associated high migration costs. In such a case,

we would observe a higher average return to migration among migrants with low education.

The observed higher return to migration among lower educated migrants can also arise if inter-

state differences in returns to skills vary across different skill categories. The results in Table 4 are

consistent with the hypothesis that interstate wage differentials are higher in jobs that are mostly

occupied by high school dropouts. If that is the case, when workers with less than a highschool

degree migrate to another state, they exploit the large interstate variation in wages and potentially

experience a large wage increase due to migration. On the other hand, if jobs that are �lled by

college graduates have less variation in wages across states, then migrant with college degrees

experience smaller return to migration.

When migration is de�ned as changing states within the last �ve years, the average return to

migration in the entire migrant subsample is smaller relative to the case where mig1 is used as

the migration indicator. The sample of migrants de�ned by mig5 consists of a smaller portion of

individuals who would eventually return back to their home states. Therefore, a comparison of

the average return to migration under the mig1 and mig5 columns may suggest that return migrants

tend to have higher wage growth due to migration than those whose moves are permanent. Based

on this result, one can infer that the return migration need not be driven by lower than expected

wages at the destination but perhaps by other factors such as those related to one's adjustment to

her new surroundings.

I also calculate the average return to migration among various migrant categories based on

the gross migration and outmigration rates in the migrants' states of origin. The cut-off migration

rates used in the de�nition of these categories are the gross migration and outmigration rates which

correspond to the 25th percentile, the median and the 75th percentile observation in the migrant

subsample. The �ndings presented in Table 5 suggest that the return to migration increases with

the migration rate in home state. In fact, individuals from states with gross migration rates less

than 13 percent and outmigration rates less than 7.17 percent on average experience a negative

return to migration. Since residents of states with high migration rates are likely to have easier

access to information about other labor markets, these �ndings suggest that individuals with better

information about other labor markets outside their home states experience higher returns to their
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migration decisions. However, different average return to migration may arise for states with

different migration rates due to variation in resident characteristics across different states. For

instance, if states with high gross migration rates also have a high percentage of residents with less

than a high school degree, the high return to migration observed in these states may be due to the

substantial proportion of high school dropouts, who based on the Table 4 results tend to reap high

returns to their migration decisions.

In order to better tease out the relationship between gross migration rates and the return to

migration, I perform a comparative static exercise in which I increase the gross migration rate for

all migrants in the sample by 10 percent. Then, I calculate counterfactual post-migration wages

for migrants based on the parameters estimates of the wage equation. I use the counterfactual

migrant wages to calculate the return to migration and compare these returns to the ones presented

in Table 5. Any change in the return to migration can then be attributed to the 10 percent increase

in the gross migration rate because the gross migration rate is the only variable that changes in

this exercise. Furthermore, since the IV regression estimates of the wage equation are used in

calculating the post-migration wages under the higher gross migration rate, the resulting change in

the return to migration is due to the gross migration rate and not due to any economic factors that

are jointly related to the state migration rate and the residents' migration decisions. A limitation

of this comparative static exercise, however, is that it does not allow the composition of migrants

to change. While an increase in the gross migration rate can potentially change the composition

of the migrant sample, the sample of migrants are assumed to remain �xed in this exercise after

the increase in the state migration rate.

Table 6 shows that when the gross migration rate in the migrants' home state rises by 10

percent, the average return to migration also rises in the entire migrant subsample as well as in

all migrant subsamples de�ned by migration rate categories. This provides further support for

the hypothesis that increased information about destination labor markets leads to higher returns

to migration as migrants are able to secure higher post-migration wages when they have access to

more information about job opportunities in other states.

Finally, I investigate the relationship between the income inequality in the destination and the

return to migration among migrants. To that end, I calculate the average return to migration for

different migrant subsamples based on income inequality measures in their destination states. The

theoretical model implies that the income inequality in the destination plays an important role

in an individual's migration decision as it partially determines the uncertainty surrounding post-

migration wages. I use two measures of income inequality in classifying states into different

categories of income inequality: 80:20 income ratio and 95:20 income ratio. 80:20 income ratio

is the ratio of income at the 80th percentile to that at the 20th percentile in the income distribution,

and the 95:20 income ratio is the ratio of income at the 95th percentile to that at the 20th percentile.
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These income ratios are calculated by Bernstein et al. (2006) for each state using the 2001-2003

Current Population Survey data. The cut-off ratios used in categorizing destination states into low,

middle and high income inequality states, correspond to the 25th percentile, the median and the

75th percentile observation in the migrant subsample.

Table 7 presents the average return to migration experienced by migrants strati�ed by income

inequality in their destination states. In general, the results suggest a negative relationship between

income inequality at the destination state and return to migration. Migrants who have migrated

to states with high income inequality seem to experience a smaller wage growth due to migration.

According to the theoretical model, high income inequality at the destination leads to greater un-

certainty faced by individuals regarding their post-migration wages. Therefore, the results in Table

7 suggest that migrants, who face greater uncertainty about their post-migration wages, experience

lower wage growth due to migration.

6 Conclusion

In this paper, I present a model in which individuals make migration decisions under incomplete

information about the destination labor market. The model is based on the assumption that infor-

mation about destination labor market conditions is an important factor in the migration decision,

and one of the channels that carry such information to people is the network of friends and family

who have migrated previously. The model's implications reveal that increased information about

destination labor markets can have both positive and negative effects on the probability of migra-

tion and the return to migration. Thus, the model can be used to explain a wide set of empirical

�ndings regarding the relationship between information and migration outcomes.

The model's implications regarding the effect of information on the probability of migration

critically depend on the population mean of the home and destination wages as well as the moving

costs. If the population mean of wages at origin exceeds the population mean of the wages at

destination, increased information regarding destination labor market conditions leads to lower

probability of migration. Otherwise, probability of migration increases with increased access to

information about other labor markets. Information about the destination affects the return to

migration through a composition and a scale effect. The composition effect re�ects the impact of

information on the return to migration through its effect on the composition of the migrant sample,

conditional on the rate of migration. The scale effect describes the effect of information on the

return to migration through its impact on the size of the migrant sample. While the composition

effect is always positive, the scale effect can be both positive or negative. The net effect of

information on the return to migration depends on the sum of these two effects.

The econometric model is speci�ed as a switching regression model where the migration deci-
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sion determines the regime, and the wages are the economic outcomes of interest. The migration

and wage equations are estimated using data from the 2005 Current Population Survey. I use gross

migration rate in one's home state as a proxy for the level of information available to the individ-

ual regarding destination labor markets. This choice is based on the reasoning that people learn

about other labor markets through their friends and neighbors who have migrated to or from other

locations. Therefore, people who live in states with high gross migration rates have greater access

to information about labor market conditions in other states since residents of such states are more

likely to come into contact with people who have moved to or from other states. The gross mi-

gration rate, however, is likely to be endogenous in both the migration and wage equations since it

may be correlated with unobservables that can affect both the individual's migration decision and

her wage. The median age in the state of origin is used as an instrument for the gross migration

rate in the analysis.

The estimation results indicate that increased access to information about destination labor

market conditions increases one's probability of migration to another state. Information has a

statistically insigni�cant effect on the wages of migrants and a signi�cantly negative effect on

the wages of stayers. Furthermore, the �ndings suggest that more information about other labor

markets leads to an increase in the return to migration among migrants. The return to migration

also varies with educational attainment. According to the empirical results, migrants with lower

education experience higher return to migration, measured by wage growth due to migration. In

addition, the average return to migration is lower among people who migrate to states with high

income inequality, suggesting that higher uncertainty about destination wages leads to lower return

to migration among migrants.

This paper emphasizes the role of information in migration outcomes. The theoretical model

provides a framework in which to study this concept. The empirical analysis provided in this paper

suggests that the information structure available to individuals at the time of the migration decision

is an important determinant of migration and economic outcomes related to migration. Future

research should investigate the extent to which differences in the level of information available to

different groups can explain the variation in migration outcomes observed across migrants with

different demographic and socioeconomic characteristics.
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Appendix

A1. The Probability of Migration

The probability that a randomly chosen individual chooses to migrate is given by

P = Pr (�1 + "� �0 � �c > �0 + �c � �1) (24)

If we let � = �1 + "� �0 � �c, then

P = Pr(� > �0 + �c � �1) = 1� �(z) (25)

where z = �0+�c��1
��

; and � is the cdf a standard normal distribution. The derivative of P with

respect to n is
@P

@n
= ��(z) �

@z

@��
�
@��

@n
(26)

First, I will simplify the expression for ��: By de�nition, �� can be stated as

�� =
p
V ar(�1 + "� �0 � �c) (27)

V ar(�1 + "� �0 � �c) =

V ar(�1) + V ar(") + Cov(�1; ")� Cov(�1; �0)� Cov(�1; �c)

� Cov(�0; ")� Cov(�c; ") + Cov(�0; �c) + V ar(�0) + V ar(�c)

Since Cov(�1; ") = Cov(�0; ") = Cov(�c; ") = 0; the expression for V ar(�1 + "� �0 � �c) can

be written as

V ar(�1 + "� �0 � �c) =

= V ar(�1) + V ar(")� Cov(�1; �0)� Cov(�1; �c) + Cov(�0; �c) + V ar(�0) + V ar(�c)

= �21 + �
2
" + �

2
0 + �

2
c � �01 � �1c + �0c = �

2
1 +

�2"
n
+ �20 + �

2
c � �01 � �1c + �0c

Then, �� is given by

�� =

�
�21 +

�2"
n
+ �20 + �

2
c � �01 � �1c + �0c

�0:5
(28)
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As a result, the third factor in the expression of @P
@n
can be written as

@��

@n
= 0:5

�
�21 +

�2"
n
+ �20 + �

2
c � �01 � �1c + �0c

��0:5
�

�
�
�2"
n2

�
(29)

The second factor in the expression of @P
@n
can be written as

@z

@��
=

�
�
�0 + �c � �1

�2�

�
(30)

Finally, the derivative of n with respect to P is given by

@P

@n
= ��(z) �

@z

@��
�
@��

@n

= �(z) �

�
�
�0 + �c � �1

�2�

�
� 0:5

�
�21 +

�2"
n
+ �20 + �

2
c � �01 � �1c + �0c

��0:5
�

�
�
�2"
n2

�

(31)

Since �(z) > 0; �2� > 0;
�
�21 +

�2
"

n
+ �20 + �

2
c � �01 � �1c + �0c

�
�0:5

> 0; and �2
"

n2
> 0;

@P

@n
< 0 if �0 + �c � �1 > 0

@P

@n
> 0 if �0 + �c � �1 < 0 (32)

The derivative of P with respect to �" is

@P

@�"
= ��(z) �

@z

@��
�
@��

@�"

= ��(z) �

�
�
�0 + �c � �1

�2�

�
� 0:5

�
�21 +

�2"
n
+ �20 + �

2
c � �01 � �1c + �0c

��0:5
�

�
2�"
n

�

(33)

Since �(z) > 0; �2� > 0;
�
�21 +

�2
"

n
+ �20 + �

2
c � �01 � �1c + �0c

�
�0:5

> 0; and 2�"
n
> 0;

@P

@�"
> 0 if �0 + �c � �1 > 0

@P

@�"
< 0 if �0 + �c � �1 < 0 (34)
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A2. The Return to Migration

The return to migration, R, can be expressed as

R = E(y1jM = 1)� E(y0jM = 1) (35)

The �rst term in this expression is the expected value of destination earning conditional on migra-

tion, and the second term is the expected value of earnings at origin if the migrants had stayed at

origin, conditional on migration. These two terms can be expressed as follows:

E(y1jM = 1) = �1 + E(bj� > �0 + �c � �1) = �1 + �!��!�1 (36)

where ! = �1 + "; �!� = Corr(!; �) and �1 =
�(z)
1��(z)

: Similarly,

E(y0jM = 1) = �0 + E(�0j� > �0 + �c � �1) = �0 + �0��0�1 (37)

where �0� = Corr(�0; �): Then, the return to migration can be stated as

R = E(y1jM = 1)� E(y0jM = 1)

= �1 � �0 +
�
�!��! � �0��0

�
�1 (38)

The following expressions are needed to further simplify the equation for R:

�0� = Corr(�0; �) =
Cov(�0; �)

�0��
(39)

Cov(�0; �) = Cov(�0; �1 + "� �0 � �c)

= Cov(�0; �1) + Cov(�0; ")� �
2
0 � Cov(�0; �c) (40)

Since Cov(�0; ");

Cov(�0; �) = �01 � �
2
0 � �0c (41)

�0��0�1 =
�01 � �

2
0 � �0c

�0��
�0�1 =

�1

��

�
�01 � �

2
0 � �0c

�
(42)

�!� = Corr(!; �) = Corr(�1 + "; �1 + "� �0 � �c) =
Cov(�1 + "; �1 + "� �0 � �c)

�!��
(43)
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Cov(�1 + "; �1 + "� �0 � �c) =

V ar(�1)+Cov(�1; ")�Cov(�1; �0)�Cov(�1; �c)+Cov("; �1)+Cov("; ")�Cov("; �0)�Cov("; �c)

Since Cov(�1; ") = Cov("; ") = 0;

Cov(�1 + "; �1 + "� �0 � �c) = �
2
1 � �10 � �1c + �1" � �0" � �"c (44)

Then,

�!��!�1 =
�21 � �10 � �1c + �1" � �0" � �"c

�!��
�!�1 =

�1

��

�
�21 � �10 � �1c

�
(45)

If �0c = �1c = �0" = �1" and �c" = 0; the expression for R can be further simpli�ed to

R = �1 � �0 +
�1

��
V ar(�1 � �0) (46)

Given Equation 46, the derivative of R with respect to n is given by

@R

@n
=

�
1

��
�
@�1

@n
�
�1

�2�
�
@��

@n

�
V ar(�1 � �0) (47)

In order to be able to sign this derivative, one has to consider the derivatives of @�1
@n
and

@��
@n
:

@�1

@n
=
@�1

@z
�
@z

@��
�
@��

@n
(48)

The three factors in this equation have the following signs:

@�1

@z
> 0 (49)

As shown above,

@z

@��
> 0 if �0 + �c � �1 < 0

@z

@��
< 0 if �0 + �c � �1 > 0 (50)

and
@��

@n
= 0:5

�
�21 +

�2"
n
+ �20 + �

2
c � �01 � �1c + �0c

��0:5
�

�
�
�2"
n2

�
< 0 (51)
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Therefore,

@�1

@n
> 0 if �0 + �c � �1 > 0

@�1

@n
< 0 if �0 + �c � �1 < 0 (52)

Then,

@R

@n
< 0 if �0 + �c � �1 < 0 and

1

��
�
@�1

@n
>
�1

�2�
�
@��

@n

@R

@n
< 0 otherwise (53)

Equation 46 can also be used to calculate the derivative of R with respect to �":

@R

@�"
=

�
1

��
�
@�1

@�"
�
�1

�2�
�
@��

@�"

�
V ar(�1 � �0) (54)

As shown above,
@��
@�"

= 0:5
�
�21 +

�2
"

n
+ �20 + �

2
c � �01 � �1c + �0c

�
�0:5

�
�
2�"
n

�
> 0:

Furthermore,
@�1

@�"
=
@�1

@z
�
@z

@��
�
@��

@�"
(55)

@�1

@z
> 0 (56)

@��

@�"
> 0 (57)

@z

@��
> 0 if �0 + �c � �1 < 0

@z

@��
< 0 if �0 + �c � �1 > 0 (58)

Therefore,

@R

@�"
> 0 if �0 + �c � �1 < 0 and

1

��
�
@�1

@�"
>
�1

�2�
�
@��

@�"

@R

@�"
< 0 otherwise (59)
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A3. The Prediction Error

The prediction error is de�ned as the difference between the predicted post-migration earnings

and the actual post-migration earnings. The expected value of the prediction error in the entire

population is

E(ye1 � y1) = E(�1 + �1 + "� �1 � �1 � ") = �1 � �1 + E(�1 + "� �1 � ") (60)

Since E(") = E(") = 0;

E(ye1 � y1) = 0 (61)

The expected value of the prediction error among migrants is E(ye1�y1jM = 1): This expression

depends on E(ye1jM = 1); which can be expressed as follows:

E(ye1jM = 1) = �1 + E(�1 + "j� > �0 + �c � �1 (62)

Let a = �1 + ": Then,

E(ye1jM = 1) = �1 + �a��a�1 (63)

The following calculations are used in simplifying the expression for E(ye1jM = 1):

�a� =
Cov(�1 + "; �1 + "� �0 � �c)

�a��
(64)

Cov(�1 + "; �1 + "� �0 � �c) =

V ar(�1)+Cov(�1; ")�Cov(�1; �0)�Cov(�1; �c)+Cov(�1; ")+V ar(")�Cov(�0; ")�Cov(�c; ")

Since Cov(�1; ") = Cov(�0; ") = Cov(�c; ") = 0;

Cov(�1 + "; �1 + "� �0) = �
2
1 � �01 � �1c +

�2"
n

(65)

Then,

E(ye1jM = 1) = �1 +
�21 � �01 � �1c +

�2
"

n

��
�1 (66)
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and the prediction error among migrants can be stated as

E(ye1jM = 1)� E(y1jM = 1) =

�1 +
�1

��

�
�21 � �01 � �1c +

�2"
n

�
� �1 �

�1

��

�
�21 � �01 � �1c

�
=
�1

��

�
�2"
n

�
> 0

Note that as n!1; �
2
"

n
! 0 and E(ye1jM = 1)� E(y1jM = 1)! 0:
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Variable Name Variable Definition

Whole Sample Migrants Stayers Difference

Mig1
=1 if R moved to another state 

within the past year
0.026

(0.001)

Mig5
=1 if R moved to another state 

within past five years
0.081

(0.001)

Log(wage) Log of hourly wage 2.694 2.645 2.695 0.050

(0.003) (0.020) (0.003) (0.020)

Age Age in years 40.597 34.739 40.753 6.014

(0.053) (0.303) (0.053) (0.308)

Experience Age - years of schooling - 6 23.244 17.159 23.405 6.246

(0.052) (0.309) (0.053) (0.314)

High school
=1 if highest degree earned is 

high school diploma
0.588 0.530 0.590 0.060

(0.002) (0.013) (0.002) (0.013)

College
=1 if highest degree earned is 

bachelor's or higher
0.295 0.353 0.293 -0.059

(0.002) (0.013) (0.002) (0.013)

Male =1 if male 0.534 0.561 0.533 -0.027

(0.002) (0.013) (0.002) (0.013)

White =1 if white 0.823 0.786 0.824 0.038

(0.001) (0.011) (0.001) (0.011)

Married =1 if married 0.595 0.456 0.599 0.143

(0.002) (0.013) (0.002) (0.013)

Number of 

children

Number of children in the 

household
0.838 0.631 0.843 0.212

(0.004) (0.025) (0.004) (0.025)

Mean 

Table 1: Variable Definitions and Descriptive Statistics

(Standard Deviation)



Own house =1 if household owns home 0.730 0.376 0.740 0.363

(0.002) (0.013) (0.002) (0.013)

Center city
=1 if respondent lives in 

central city in metro area
0.836 0.856 0.836 -0.021

(0.001) (0.009) (0.001) (0.009)

Self-employed
=1 if respondent is self-

employed
0.099 0.069 0.100 0.030

(0.001) (0.007) (0.001) (0.008)

Unemployed
=1 if employment status is 

unemployed
0.041 0.083 0.040 -0.043

(0.001) (0.007) (0.001) (0.007)

Manager
=1 if R works in management 

occupation
0.342 0.338 0.342 0.003

(0.002) (0.012) (0.002) (0.012)

Service
=1 if R works in a service 

occupation
0.417 0.428 0.417 -0.012

(0.002) (0.013) (0.002) (0.013)

Production
=1 if R works in production 

occupation
0.132 0.124 0.132 0.009

(0.001) (0.008) (0.001) (0.008)

Northeast
=1 if respondent lives in 

northeast US
0.188 0.150 0.189 0.039

(0.001) (0.009) (0.002) (0.009)

Midwest
=1 if respondent lives in 

midwest US
0.232 0.189 0.233 0.045

(0.002) (0.010) (0.002) (0.010)

South
=1 if respondent lives in 

southern US
0.352 0.406 0.351 -0.055

(0.002) (0.013) (0.002) (0.013)

Sample Size 97,864 2,374 95,490

Notes:

1. Standard errors of means are in parentheses.

2. Sampling weights are used in the calculation of the statistics presented in this table.

3. Mig1 migration indicator is used in the definition of migration; therefore, 

   migrants moved to a different state within the past year.



Table 2: Estimates of the Migration Equation

Mig1 Mig5 Mig1 Mig5 Mig1 Mig5

Age 0.0044*** 0.0190*** 0.0045*** 0.0190*** 0.0047*** 0.0191***

(0.0009) (0.0018) (0.0009) (0.0018) (0.0010) (0.0018)

Age squared 0.0000*** -0.0001*** 0.0000*** -0.0002*** 0.0000*** -0.0002***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Experience -0.0035*** -0.0148*** -0.0035*** -0.0146*** -0.0036*** -0.0146***

(0.0007) (0.0014) (0.0007) (0.0014) (0.0008) (0.0014)

Experience squared 0.0000*** 0.0001*** 0.0000*** 0.0001*** 0.0000*** 0.0001***

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

High school -0.0030 -0.0175*** -0.0036 -0.0186*** -0.0046 -0.0196***

(0.0029) (0.0055) (0.0028) (0.0054) (0.0031) (0.0055)

College 0.0009 -0.0091 0.0002 -0.0099 0.0000 -0.0100

(0.0048) (0.0083) (0.0046) (0.0082) (0.0050) (0.0082)

Male 0.0026** 0.0089*** 0.0026** 0.0089*** 0.0029** 0.0091***

(0.0011) (0.0021) (0.0011) (0.0021) (0.0012) (0.0021)

White 0.0010 -0.0021 0.0010 -0.0019 0.0009 -0.0021

(0.0013) (0.0026) (0.0013) (0.0026) (0.0014) (0.0026)

Married 0.0003 0.0070*** 0.0004 0.0069*** 0.0004 0.0069***

(0.0013) (0.0024) (0.0013) (0.0024) (0.0014) (0.0024)

Number of children -0.0018*** -0.0062*** -0.0017*** -0.0058*** -0.0016*** -0.0054***

(0.0006) (0.0010) (0.0005) (0.0010) (0.0006) (0.0010)

Own house -0.0392*** -0.0926*** -0.0392*** -0.0934*** -0.0429*** -0.0957***

(0.0020) (0.0032) (0.0020) (0.0032) (0.0024) (0.0032)

Center city -0.0009 -0.0076*** 0.0001 -0.0039 0.0028* 0.0004

(0.0015) (0.0028) (0.0015) (0.0027) (0.0015) (0.0028)

Self-employed -0.0005 -0.0031 -0.0005 -0.0032 -0.0008 -0.0036

(0.0022) (0.0035) (0.0021) (0.0034) (0.0022) (0.0034)

Unemployed 0.0161*** 0.0296*** 0.0161*** 0.0291*** 0.0171*** 0.0292***

(0.0034) (0.0061) (0.0034) (0.0059) (0.0036) (0.0059)

Manager 0.0001 0.0070* 0.0004 0.0076* 0.0009 0.0082*

(0.0022) (0.0041) (0.0021) (0.0040) (0.0023) (0.0041)

(I) (II) (III)
3



Service 0.0006 0.0045 0.0009 0.0048 0.0010 0.0050

(0.0020) (0.0037) (0.0019) (0.0037) (0.0021) (0.0037)

Production 0.0005 -0.0027 0.0009 -0.0014 0.0018 -0.0002

(0.0022) (0.0041) (0.0022) (0.0041) (0.0025) (0.0042)

Northeast -0.0053*** -0.0192*** -0.0021 -0.0078** 0.0082*** 0.0071*

(0.0014) (0.0026) (0.0016) (0.0030) (0.0029) (0.0041)

Midwest -0.0025* -0.0128*** 0.0012 -0.0002 0.0133** 0.0165***

(0.0014) (0.0026) (0.0017) (0.0030) (0.0034) (0.0045)

South 0.0035** 0.0114*** 0.0041*** 0.0139*** 0.0052*** 0.0156***

(0.0014) (0.0027) (0.0014) (0.0027) (0.0016) (0.0027)

Gross migration rate 0.0007*** 0.0026*** 0.0027*** 0.0058***

(0.0001) (0.0002) (0.0004) (0.0007)

Notes:

1. Mig1 and Mig5 refer to the dependant variable used in the regression. 

2. Robust standard errors are given in parentheses.

3. Probit regressions are weighted.

4. In specification (III), gross migration rate is instrumented with the median age in state.

5. Marginal effects are reported.

6. (*) Significant at 10% level, (**) Significant 5% level, (***) Significant 1% level.



Table 3: Estimates of the Wage Equation

Movers Stayers Movers Stayers Movers Stayers Movers Stayers

Age 0.0652** 0.1107*** 0.0698** 0.1105*** 0.1008*** 0.1150*** 0.0981*** 0.1141***

(0.0272) (0.0044) (0.0316) (0.0044) (0.0152) (0.0047) (0.0206) (0.0047)

Age squared -0.0001 -0.0004*** -0.0001 -0.0004*** -0.0005*** -0.0005*** -0.0004** -0.0004***

(0.0003) (0.0000) (0.0003) (0.0000) (0.0002) (0.0000) (0.0002) (0.0000)

Experience -0.0299 -0.0657*** -0.0343 -0.0661*** -0.0584*** -0.0677*** -0.0562*** -0.0678***

(0.0213) (0.0033) (0.0261) (0.0033) (0.0112) (0.0035) (0.0156) (0.0035)

Experience squared -0.0003 -0.0001* -0.0003 -0.0001** 0.0000 -0.0001* 0.0000 -0.0001**

(0.0003) (0.0000) (0.0003) (0.0000) (0.0002) (0.0000) (0.0002) (0.0000)

High school 0.0324 0.0090 0.0092 0.0100 0.0396 0.0132 0.0464 0.0115***

(0.0925) (0.0125) (0.1216) (0.0126) (0.0458) (0.0130) (0.0560) (0.0132)

College 0.2865* 0.1464*** 0.2522 0.1367*** 0.2468*** 0.1607*** 0.2554*** 0.1409***

(0.1492) (0.0209) (0.1886) (0.0212) (0.0737) (0.0220) (0.0844) (0.0227)

Male 0.2981*** 0.2591*** 0.2978*** 0.2573*** 0.2669*** 0.2641*** 0.2689*** 0.2608***

(0.0372) (0.0053) (0.0374) (0.0054) (0.0193) (0.0056) (0.0218) (0.0057)

White 0.0663* 0.0363*** 0.0701* 0.0353*** 0.0119 0.0298*** 0.0111 0.0300***

(0.0373) (0.0061) (0.0386) (0.0062) (0.0203) (0.0065) (0.0207) (0.0065)

Married 0.1089*** 0.0927*** 0.1117*** 0.0972*** 0.1393*** 0.1001*** 0.1396*** 0.1049***

(0.0360) (0.0056) (0.0372) (0.0057) (0.0188) (0.0058) (0.0189) (0.0059)

Manager 0.2293*** 0.1947*** 0.2402*** 0.1895*** 0.2305*** 0.2021*** 0.2269*** 0.1946***

(0.0734) (0.0096) (0.0875) (0.0098) (0.0343) (0.0101) (0.0396) (0.0103)

OLS 2SLS

Migration Indicator is Mig1 Migration Indicator is Mig5

OLS 2SLS



Service -0.0059 -0.0895*** 0.0030 -0.0939*** -0.0614* -0.0857*** -0.0634** -0.0910***

(0.0640) (0.0085) (0.0768) (0.0087) (0.0300) (0.0090) (0.0321) (0.0091)

Production 0.0462 -0.0678*** 0.0545 -0.0793*** -0.0837** -0.0721*** -0.0908* -0.0821***

(0.0772) (0.0093) (0.0828) (0.0097) (0.0356) (0.0098) (0.0507) (0.0101)

Gross migration rate 0.0031 -0.0013*** 0.0113 -0.0166*** 0.0010 -0.0011*** -0.0087 -0.0173***

(0.0022) (0.0004) (0.0290) (0.0036) (0.0012) (0.0004) (0.0501) (0.0035)

Constant 0.3905 -0.3003*** 0.1674 0.0291 -0.0957 -0.3035*** 0.1493 0.0747

(0.4051) (0.0639) (0.8910) (0.1006) (0.2329) (0.0672) (1.2805) (0.1059)

Inv. Mill's Ratio 0.1198* -0.2342*** 0.1272* -0.2085*** 0.2565*** -0.2545*** 0.2419*** -0.2081***

(0.0651) (0.0100) (0.0697) (0.0119) (0.0374) (0.0117) (0.0841) (0.0156)

Notes:

1. Standard errors are given in parentheses.

2. In the 2SLS estimation, gross migration is instrumented by the median age in the state.

3. Both regressions are weighted.

4. (*) Significant at 10% level, (**) Significant 5% level, (***) Significant 1% level.



Table 4: Average Return to Migration by Education

Mean Standard Error Mean Standard Error

Entire sample 0.074 0.0045 0.0445 0.0007

Education Categories

     Less than highschool 0.1343 0.0127 0.0610 0.0025

     Highschool 0.0877 0.0089 0.0436 0.0015

     Some college 0.0404 0.0079 0.0241 0.0014

     College 0.0695 0.0075 0.0550 0.0012

Notes:

1. Sample includes migrants.

2. Return to migration is calculated by each migrant's post-migration wage minus 

   his/her estimated counterfactual pre-migration wage.  The average of the individual

   returns are presented in the table.

3. Standard errors are calculated from 1000 bootstrap repetitions.

Migrants Moved Within Last Year

Migrants Moved Within Last Five 

Years



Table 5: Average Return to Migration by Migration Rates in State of Origin

Mean Std. Error Mean Std. Error

By Gross Migration Rate in the Home State

     Gross migration rate less than or equal to 13 -0.120 0.003 -0.016 0.001

     Gross migration rate between 13 and 22.6 0.021 0.003 0.029 0.001

     Gross migration rate greater than or equal to 22.6 0.310 0.008 0.114 0.001

By Outmigration Rate in the Home State

     Outmigration rate less than or equal to 7.17 -0.101 0.004 -0.010 0.001

     Outmigration rate between 7.17 and 10.69 0.013 0.003 0.026 0.001

     Outmigration rate greater than or equal to 10.69 0.339 0.009 0.126 0.001

Notes:

1. Sample includes migrants.

2. Return to migration is calculated by each migrant's post-migration wage minus 

   his/her estimated counterfactual pre-migration wage.  The average of the individual

   returns are presented in the table.

3. Standard errors are calculated from 1000 bootstrap repetitions.

4. State migration rates used in the analysis are obtained from the calculations done 

   by U.S. Census Bureau using the U.S. Census 2000 (Franklin, 2003).

Migrants Moved Within 

Last Year

Migrants Moved Within 

Last Five Years



Table 6: Effect of an Increase in the Gross Migration Rate on Average Return to Migration

Average Return 

to Migration 

Among Migrants

Average Return 

to Migration 

when Gross 

Migration Rate 

Increases by 

10%

Change in 

Average Return 

to Migration

(I) (II) (II)-(I)

Entire Migrant Subsample 0.074 0.128 0.054

(0.004) (0.005)

By Gross Migration Rate in the Home State

     Gross migration rate less than or equal to 13 -0.120 -0.086 0.034

(0.003) (0.003)

     Gross migration rate between 13 and 22.6 0.021 0.069 0.049

(0.003) (0.003)

     Gross migration rate greater than or equal to 22.6 0.310 0.387 0.078

(0.008) (0.008)

Notes:

1. Sample includes migrants.

2. Return to migration is calculated by each migrant's post-migration wage minus 

   his/her estimated counterfactual pre-migration wage.  The average of the individual

   returns are presented in the table.

3. Standard errors are calculated from 1000 bootstrap repetitions and are given in parentheses.

4. State migration rates used in the analysis are obtained from the calculations done 

   by U.S. Census Bureau using the U.S. Census 2000 (Franklin, 2003).



Table 7: Average Return to Migration by Income Inequality in the Destination State

Mean Std. Error Mean Std. Error

By 80:20 Income Ratio in the Destination State

     80:20 Income Ratio less than or equal to 6.4 0.084 0.007 0.048 0.001

     80:20 Income Ratio between 6.4 and 7.6 0.067 0.006 0.043 0.001

     80:20 Income Ratio greater than or equal to 7.6 0.080 0.012 0.039 0.002

By 95:20 Income Ratio in the Destination State

     95:20 Income Ratio less than or equal to 10.3 0.082 0.007 0.047 0.001

     95:20 Income Ratio between 10.3 and 13 0.072 0.007 0.047 0.001

     95:20 Income Ratio greater than or equal to 13 0.067 0.010 0.034 0.002

Notes:

1. Sample includes migrants.

2. Return to migration is calculated by each migrant's post-migration wage minus 

   his/her estimated counterfactual pre-migration wage.  The average of the individual

   returns are presented in the table.

3. Standard errors are calculated from 1000 bootstrap repetitions.

4. Income ratios used in the analysis are calculated by Bernstein et al. 

   using 2001-2003 Current Population Survey (Bernstein, 2006).

Migrants Moved Within 

Last Year

Migrants Moved Within 

Last Five Years


