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Abstract

This paper proposes the evaluation of the New Keynesian Phillips Curve (NKPC) under a

new learning mechanism where VAR learning dynamics is combined with the idea of testing

the validity of the forward-looking model of inflation dynamics. The key assumption is

that agents’ perceived law of motion is a VAR whose parameters are updated by recursive

least squares. Differently from standard adaptive learning methods, agents test sequentially

the cross-equation restrictions that the NKPC imposes on the VAR as the information set

increases. When the restrictions are not rejected agents learn under the restricted system

and exploit the cross-equation restrictions to forecast inflation. It is thus possible to check

how much and in which periods agents’ beliefs are consistent with the restrictions of the

theory. The empirical analysis on quarterly data on the euro area shows that the NKPC

with negligible backward-looking parameter is not rejected when the model is evaluated

over the period 1984-2005 under the proposed learning mechanism. The result, however,

is not fully robust to specifications based on non stationary variables and points out that

learning may represent a remarkable source of euro area inflation persistence but not its only

determinant.

Keywords: Adaptive learning, Cross-equation restrictions, Forward-looking model of

inflation dynamics, Perceived Law of Motion, Recursive Least Squares, VAR.

J.E.L. Classification: C32, C52, D83, E10

∗Paper presented at the 17th EC2 Meeting, “The Econometrics of Monetary Policy and Financial Decision-

Making”, December 15-16, 2006, Rotterdam, and at the 7th Macroeconometric Workshop: “Is macroeconometrics

back?”, H alle, D ecemb er 7 -8 , 2006. I w ish to thank Tho mas Sargent, James Hamilton, L utz K ilian, Kirstin H ubrich,

Sophocles Mavroeidis, Barbara Rossi and Silvia Sgherri for helpful comments and suggestions on earlier drafts of

the paper. I also thank Davide Delle Monache and Giulio Palomba for precious comments.
†Department of Statistical Sciences, University of Bologna, via Belle Arti 41, I-40126 Bologna, Italy. email:

fanelli@stat.unibo.it, ph: +39 0541434303, fax: +39 051 232153.

1



1 Introduction

The class of ‘small-scale’ and ‘medium-scale’ dynamic stochastic general equilibrium (DSGE)

models that presently govern the debate in monetary policy are built under the hypothesis of

rational expectations (RE). Following Muth (1961), ‘rational’ agents compute expectations by

referring to the ‘true’ probabilistic structure of the data. This means that expectations are

formed with reference to the reduced-form model solution.

A controversial question is whether DSGE models are capable to capture observed data

properties and persistence. Smets and Wouters (2003), among many others, argue that a DSGE

model for the euro area exhibits fit and forecasting performance comparable to that of Vector

Autoregressive (VAR) models, see also Ireland (2004). On the other hand, other authors recog-

nize that DSGE models are potentially misspecified and propose methods to address the issue,

e.g. Del Negro and Schorfheide (2006).

There is growing awareness among macroeconomists and econometricians, that the RE hy-

pothesis requires too much knowledge. In practise, agents display ‘bounded’ rationality and

depart systematically from Muth’s tenet, see e.g. Pesaran (1987), Chap 3, Sargent (1999), and

Evans and Honkapohja (1999, 2001), see also references therein. In the monetary policy frame-

work the idea that inflation expectations may not be rational and that deviations from the RE

hypothesis may represent a remarkable source of inflation persistence that may improve the fit

of DSGE models is well recognized, see, inter alia, Roberts (1997) and Milani (2005a, 2005b).1

How to replace RE in econometric modelling, however, is still an open door. The traditional

approach to modelling boundedly rational expectations assumes agents form expectations by

using adaptive updating rules, see e.g. Branch and Evans (2006). In short, agents estimate

and update the parameters of their forecasting model - the perceived law of motion (PLM) -

according to recursive least squares (RLS), or a constant version of it, i.e. constant gain least

squares (CGLS), see e.g. Sargent (1999).2 Replacing RE in the forward-looking model by the

forecasts implied by the PLM, yields the so-called Actual Law of Motion (ALM), which reads

as the data generating process (DGP).

This paper focuses on the aggregate supply equation of a prototypical ‘trinity’ DSGE model

of monetary policy, i.e. the New Keynesian Phillips curve (NKPC), and puts forward an econo-

metric approach to the estimation and evaluation of the NKPC based on the combination of

1We also refer to e.g. to Sargent (1999), Orphanides and Williams (2005) and Primicieri (2006) for examples

in the macroeconometric literature where rational policy-makers learn about the behavior of the economy in real

time and set stabilization policies conditional on their current beliefs.
2 In this context learning is ‘adaptive’ rather than ‘optimal’, because it ignores the feedback from the learning

rule on the actual low of motion. In this paper we focus on the issue of learning from a purely econometric point

of view.
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the following assumptions: (i) agents use VARs to forecast inflation and the other variables

of the system such as the labor share and the interest rate; (ii) agents evaluate the validity of

the NKPC by testing the cross-equation restrictions (CER) that it imposes on the VAR for the

data; (iii) agents update VAR parameters through RLS as new information become available

and follow the outcome of a sequential test: if at time t the CER are rejected they forecast

inflation from the unrestricted VAR; if at time t the CER are not rejected they forecast inflation

from the constrained VAR, with the possibility of learning ‘how much’ and in which periods

their statistical (forecast) model supports the restrictions of the theory.

The combination of (ii) and (iii) represents the major point of departure from existing

literature. Models with adaptive learning are usually estimated by treating the ALM as the

DGP, i.e. without any concern on the issue of testing whether the forward-looking model is

consistent with data properties. More specifically, in the existing econometric literature once

expectations are replaced by agents’ beliefs, the ALM is cast in state space form and likelihood-

based (possibly Bayesian) methods are applied to estimate the model, see e.g. Milani (2005b).

The proposed learning mechanism, instead, takes an explicit stand on the idea that agents

evaluate whether the ALM can be regarded as a statistically coherent description of the data.

We discuss in detail each of the three assumptions comprising our VAR-based model of

learning dynamics.

Assumption (i): the hypothesis of ‘VAR expectations’ is not new in the literature, see

Brayton et al. (1997) and Branch (2004). ‘VAR expectations’ can coincide or not with RE,

depending on the actual model solution. We do not assume that the VAR, i.e. agents’ PLM

necessarily coincides with the Minimum State Variable (MSV) solution of the system (McCal-

lum, 1983, 2003), as in our framework it reads as the ‘best’ statistical model agents specify to

forecast the data, consistently with the information set they have.3

Assumption (ii): it is well known, at least since Sargent (1979), that models involving

forward-looking behavior impose a set of CER on the VAR of the data. These restrictions can

be used to identify and estimate the free parameters of structural forward-looking model, and

to test their validity (Hansen and Sargent 1980, 1981). Further examples where VAR models

are used as statistical platforms to test the restrictions implied forward-looking models include

Baillie (1989), Johansen and Swensen (1999), Kozicki and Tinsley (1999), Fanelli (2002, 2006a,

2006b, 2006c) and Kollmann (2006).

Assumption (iii): VAR parameters are updated recursively as new data increase agents’

3This means that learning may be incomplete, see Sargent (1999). Observe that in this paper we are not

interested in the conditions under which the economy converges to a RE equilibrium, see e.g. Marcet and Sargent

(1992). We refer to Evans and Honkapohja (1999, 2001) and references therein for the study of convergence of

different learning mechanisms, in a variety of macroeconomic models, to a unique equilibrium.
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information set. Given the recursive nature of estimation and the assumption (ii) above, a

sequence of CER arises. The objective of testing the sequence of CER can be accomplished

by adapting Inoue and Rossi’s (2005) sequential test. The asymptotic results in Inoue and

Rossi (2005) cover Wald, Lagrange multiplier (LM) and likelihood ratio (LR)-like tests based

on generalized method of moments (GMM). Therefore, included in this class are tests based on

maximum likelihood that we consider in the paper. Learning in this set-up works as follows: if

a time t the restrictions that the NKPC imposes on the VAR are not rejected, then it makes

sense for the agents to forecast inflation by the constrained system, otherwise they will forecast

from the unrestricted system.

Although the literature provides several examples where DSGE models comprising NKPC-

type supply equations are investigated under the assumption of adaptive learning, to our knowl-

edge, Milani (2005a) is the only contribution where ‘the econometric analysis of the NKPC under

learning rules’ is explicitly addressed. Focusing on the US economy, Milani (2005a) considers

specifications of the NKPC which account for the role of indexation, and a univariate dynamic

forecast models which are estimated recursively by a constant gain version of least squares. He

finds that when such a learning mechanism replaces the assumption of RE, a structural source

of inflation persistence such as indexation is no longer essential to fit the data. Learning is thus

interpreted as the major source of persistence in inflation, with consequences on the design of

optimal monetary policy where the management of expectations plays a prominent role, see e.g.

Woodford (2003) and Evans and Honkapohja (2003a. 2003b).

Our approach differs from Milani (2005a) in several respects. First, we use a VAR as the

forecast model. Second, we update the VAR parameters through RLS, with the possibility of

exploiting the link between RLS and maximum likelihood (ML) estimation. Third, and more

importantly, our approach hinges on the idea of testing the NKPC and the learning mechanism is

intimately related to the empirical assessment of the forward-looking model of inflation dynamics.

Fourth, we extend the analysis to the case where the variables of the NKPC can be approximated

as non stationary time-series, providing methods to check the sensitivity of results obtained

by treating the PLM as a stationary system to specifications where possible stochastic trends

characterizing variables are opportunely removed.

The method is applied to evaluate the NKPC in the euro area. We proxy firms’ real marginal

costs by the wage share as in Galí et al. (2001). The empirical analysis on quarterly data covering

the 1971-2005 period shows that the NKPC is clearly rejected when a full sample (‘one shot’)

test of the model is considered. Yet, the cross-equation restrictions with negligible backward-

looking parameter are supported by the data when the VAR-based learning mechanism and

the implied sequential test are taken into explicit account over the period 1984-2005, which is

4



characterized by a marked disinflation process that facilitated the adoption of a single currency.

The result, however, is not fully robust to specifications of the system based on non stationary

variables and points out that: (a) there is little room for the NKPC to serve as a reasonable

description of inflation dynamics under the rational expectations paradigm; (b) learning may

represent a possible source of euro area inflation persistence but not its only determinant; (c)

non stationarity can be a relevant issue.

The rest of the paper is organized as follows. Section 2 introduces the NKPC and Section 3

sketches the main features of the proposed method by discussing a motivating example. Section

4 proposes the econometric analysis of the NKPC. Section 4.1 deals with the derivation of CER

between the VAR and the NKPC, whereas Section 4.1 extends the analysis to the case where

agents behave as econometricians and update VAR parameters recursively and test the NKPC

as the information set increases. Section 5 shows how the method can be extended to the case

where variables are non stationary. Section 6 investigates the NKPC in the euro area; Section

6.1 deals with the empirical assessment of the model under VAR-based learning and Section

6.2 provides a robustness check of results. Section 6 contains some concluding remarks and the

directions of future research. All proofs and technical details are sketched in the Appendix.

2 Model

A variety of pricing environments within the New Keynesian tradition give rise to the following

‘hybrid’ version of the NKPC (Roberts, 1995):

πt = γfEtπt+1 + γbπt−1 + λxt + ut (1)

where πt is the inflation rate at time t, xt is a scalar explanatory variable related to firms’

real marginal costs, and Etπt+1 indicates the expected value of πt+1 formed at time t on the

basis of the available information summarized in the (non decreasing) sigma-field Ωt ⊆ Ωt+1,
i.e. Etπt+1 := E(πt+1 | Ωt). γf , γb and λ are the structural parameters. The model includes a

disturbance ut that is assumed to obey a martingale difference sequence (MDS) with respect to

Ωt.
4 Theory usually relates γf , γb and λ to other ‘deep’ parameters; for instance, in the Calvo

model of Galí and Gertler (1999) and Galí et al. (2001), γf , γb and λ can be linked to firms’

discount factor, the degree of price stickiness and the degree of ‘backwardness’ in price setting,

and γf + γb ≤ 1.
The empirical assessment of (1) has attracted a great deal of research, see, inter alia, Fuhrer

and Moore (1995), Fuhrer (1997), Sbordone (2002, 2005), Galí et al. (2005), Lindé (2005), Rudd

4We explicitly rule out the assumption that ut obeys some autoregressive (e.g. AR(1)) process, as it is

customary in the literature.
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and Whelan (2005a, 2005b, 2006), Kurmann (2006) and Fanelli (2006c), just to mention few. It

is well understood in the recent literature that identification issues can be ruled out in the context

of the forward-looking model (1) to the extent that a suitable dynamic system for xt is explicitly

specified, see e.g. Pesaran (1987), Chap. 6, Mavroeidis (2005) and Nason and Smith (2005).

To achieve this objective one can in principle augment the model by introducing additional

structural (possibly forward-looking) equations explaining the dynamics of xt. This leads to the

class of ‘small scale’ DSGE models of monetary policy, as in e.g. Lindè (2005). Alternatively,

one can refer to reduced-form equations for xt (and possibly for the other variables comprising

the system), as in e.g. Fuhrer and Moore (1995) and Fuhrer (1997), who appeal to VAR-type

dynamics.

Two likelihood-based approaches have been traditionally followed to investigate the NKPC.

The former requires an explicit specification of the process generating xt, and consists in the

derivation of the reduced-form solution of the system under RE. The process generating xt can

be either a reduced-form as in e.g. Pesaran (1987), Chap 7, or a structural equation of a ‘small

scale’ DSGE model, as in e.g. Lindè (2005). In both cases one can write down the log-likelihood

of the system under the implicit null that the NKPC is the data generating process (DGP).

In this framework it is of key importance to known whether the model solution is determinate

or indeterminate, i.e. whether the system has a unique (non-explosive) solution, or multiple

(non-explosive) solutions (Lubik and Schorfheide, 2004).

The latter approach, based on what we call ‘VAR expectations’ (Brayton et al., 1997) and

that goes back to Sargent (1979), Campbell and Shiller (1987) and Baillie (1989), works under the

assumption that irrespective of whether the NKPC (1) holds or not, the DGP for Zt := (πt : xt)
0

belongs to the VAR used by agents to forecast inflation and the other variables of the system, see

e.g. Kurmann (2006) and Fanelli (2006c). Provided that the specified VAR reads as a congruent

representation of the data, the idea is that if the theoretical model is ‘true’, its solution must

be nested within agents’ statistical model. The application of the method of undetermined

coefficients allows to retrieve a set of CER between VAR and NKPC coefficients, that can be

used to identify the structural parameters and for inferential purposes. Clearly, in practise

there is no way to rule out that a class of possible solutions of the RE model might not be

nested within the specified VAR, including e.g. the Minimum State Variable (MSV) solution

(McCallum, 1983).5

In this paper we focus on the second approach and attempt to extend it to the case where

the parameters of the VAR are updated recursively. Section 3 provides a motivating example

5Obviously, the two approaches are equivalent and end up with the same results when the two conditions are

jointly met: first, the DGP is given by (1) (i.e. the NKPC holds); second, the implied model solution under RE

is nested within the VAR used to approximate the dynamics of variables.
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with the aim of illustrating the main features of the suggested method.

3 Background and outline of methodology

To fix main ideas, we leave for the moment the NKPC of Section 2 and focus on a more general

example. Consider the forward-looking model

yt = γEtyt+1 + δyt−1 + κwt + vt (2)

where yt is a scalar, vt a scalar white noise shock, and wt a scalar explanatory variable; Etyt+1

indicates the expected value of yt+1 formed at time t on the basis of the available information,

Ωt, and γ, δ and κ are the structural parameters.

Many forward-looking models, including the NKPC (1), can be regarded as special cases of

(2). To apply ‘full’ information methods to estimate (2) under RE, it is of key importance to know

the structure of the process generating wt, otherwise estimation through ‘limited’ information

methods requires identification robust methods, see e.g. Mavroeidis (2006).

Suppose that boundedly rational agents behave as econometricians and have a PLM of the

form

yt = φ0 + φ1yt−1 + φ2wt−1 + ηt (3)

where ηt is a white noise process, and φ0, φ1 and φ2 are unknown parameters. Agents gradually

learn the values of φ0, φ1 and φ2 from the data they observe. Notice that with φ2 := 0 in

(3), agents would not recognize the dependence of yt on wt−1, hence in general agents, like

econometricians, might fail to correctly specify the ‘correct’ model, and accordingly the ALM,

see e.g. Evans and Honkapohja (1999), Section 5.3, for a comprehensive discussion.

At time t agents’ one-step ahead forecasts (expectations) of yt are formed by

bEtyt+1 := E(yt+1 | Ht) := bφ0t + bφ1tyt + bφ2twt (4)

where Ht := {yt, wt, yt−1, wt−1,..., y1, w1} ⊆ Ht+1 is the information set they exploit at time t,

and bφ0t, bφ1t and bφ2t are obtained by estimating (3) by least squares, using Ht. Plugging (4)

back into equation (2) and solving for yt, gives the ALM under least squares learning, i.e.6

yt = (1− γbφ1t)−1bφ0tγ + (1− γbφ1t)−1δyt−1 + (1− γbφ1t)−1(γbφ2t + κ)wt + vt (5)

where bςt := (bφ0t : bφ1t : bφ2t)0 evolves recursively with t.

6Observe that it is often assumed that when forming expectations in period t, in practise agents have access to

information only up to t−1; in that case the quantity to plugg into (2) is not (4) but bEt−1yt+1 := E(yt+1 | Ht−1).

However, for the purposes of the present section, it is irrelevant which option among bEt−1yt+1 and bEtyt+1 is used

in the analysis.
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Two methods can be used to estimate a model of the form (5) whose coefficients are convo-

lutions of the structural parameters γ, δ, κ and the time-varying coefficients representing agents’

beliefs, bςt := (bφ0t : bφ1t : bφ2t)0. One possibility is to compute the one-step ahead forecasts of
yt by using (4), which are then plugged in back into (2); the resulting model can be estimated

by standard methods, see e.g. Milani (2005a). The other possibility is to cast (5), along with

the equations governing the recursion of bςt, in state space form and exploit likelihood-based

(possibly Bayesian) techniques.

In line with the existing econometric literature on adaptive learning, the above mentioned

estimation methods implicitly maintains that the forward-looking model (2) holds: once RE in

(2) are replaced by agents’ beliefs, the only problem is the estimation of the resulting time-

varying ALM. No attention is devoted on the issue of testing whether the structural model (2)

represents a plausible description of the data under the chosen PLM and updating rule.

The model we propose in this paper is based on the idea that at each time t, agents acting like

econometricians use their PLM to test whether the restrictions implied by the forward-looking

model are supported by the data. The implicit assumption, therefore, is that the chosen PLM

represent a congruent description of the data and the DGP belongs to it. If the restrictions

match the data, it makes sense to use the ALM to forecast the variable(s) of interest, otherwise

agents’ ‘best’ forecast will be that stemming from the PLM. This procedure can be iterated

at time t + 1, t + 2,... with the increase of the information set, so that other than updating

their beliefs, agents can also learn to what extent and in which periods their PLM embodies

information on the theoretical model.

To describe how such a method may work in practise with reference to the model (2), suppose

that boundedly rational agents have a PLM for the bivariate vector Zt := (yt : wt)
0 which is a

VAR(k), where k, the number of lags, is determined by the data. Following Sargent (1979),

Campbell and Shiller (1987) and Baillie (1989), the VAR can be regarded in this framework

not only as the forecast system, but also as the statistical model for the data upon which the

restrictions implied by the theory can be tested. Thus if at time t the CER that the model

(2) imposes on the VAR(k) are not rejected, then it means that agents’ PLM supports the

restrictions of the theory, and it makes sense to forecast yt by the restricted VAR(k) (which

amounts to use the ALM). Likewise, if at time t the CER are rejected, it is reasonable to

forecast yt by the unrestricted VAR(k), and wait for new data at time t+ 1 to repeat the test

of the model, and so forth. In other words, we are describing a learning process based on a

sequential test of the validity of the CER that the theoretical model imposes on the VAR.

Consider, in particular, the VAR(2)

Zt = G1Zt−1 +G2Zt−2 + εt (6)
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where εt is a bivariate white noise and Gi, i = 1, 2, are 2 × 2 matrices of parameters. VAR

forecasts are given by bEt−1yt+1 := E(yt+1 | Ht−1) = gyG
2
t
eZt−1, where with Gt we conventionally

denote the companion matrix associated with (6) to be estimated by using the information up

to time t, Ht := {Zt, Zt−1, ..., Z1} ⊆ Ωt, eZt := (Z
0
t : Z

0
t−1)

0, and gy is a selection row vector such

that gy eZt := yt. The forward-looking model (2) can be tested at time t as follows: (i) condition

both sides of (2) with respect to the information set at time t− 1 and apply the law of iterated
expectations, obtaining

Et−1yt = γEt−1yt+1 + δyt−1 + κEt−1wt;

(ii) substitute Et−1yt , Et−1yt+1 and Et−1wt in the expression above by the VAR(2) forecasts

bEt−1yt, bEt−1yt+1 and bEt−1wt, yielding

gyGt
eZt−1 = γgyG

2
t
eZt−1 + δgyZt−1 + κgwGt

eZt−1

where gw is a known selection vector such that gwZt := wt. Since eZt−1 6= 0 a.s., one has

gyGt(I4 − γGt)− δgy − κgwGt = 0
1×2

(7)

which involve both the structural parameters of (2), and the VAR parameters. Thus for t =

T0 + 1, T0 + 2, .... we have the sequence of CER

gyGt(I4 − γGt)− δgy − κgwGt = 0
1×2

, t = T0 + 1, T0 + 2, .... (8)

where T0 + 1 can be regarded as the ‘first monitoring time’, i.e. the first period in which the

evaluation of the CER starts.

Provided that the VAR is identified under the CER, a natural solution to test (8) is to

estimate, for t = T0 + 1, T0 + 2, ...., the system (6) both unrestrictedly and under the CER

and hence compute a sequence of LR statistics. In the next sections we show in detail how the

method works in practise with the NKPC.

4 Expectations formation model and the cross-equation restric-

tions

In this section we introduce the expectations formation model and discuss the CER that the

NKPC imposes on the VAR parameters. To keep the exposition simple, we divide the presenta-

tion into two parts. In Section 4.1 we derive the CER assuming that all the available information,

HTmax , where T
max denotes the time of the last available information, is used to estimate and

test the model in a ‘one-shot’ solution. In Section 4.2 we extend the analysis to the case where
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agents endowed with initial VAR estimates obtained with data up to time T0 update parameter

values recursively and test the restrictions implied by the NKPC at time t = T0 + 1, T0 + 2 ....,

Tmax.

4.1 VAR approach without learning

Assume that agents’ law of motion for the p× 1 vector of observable variables, Zt, is given by

Zt :=
kX

i=1

AiZt−i +Θdt + εt (9)

where k is the lag length, Z0, Z−1, ..., Z(1−k) are fixed, Ai, i = 1, 2, ..., k are p × p matrices of

parameters, dt is an d0 × 1 vector of deterministic terms (constant, linear trend, deterministic

dummies, etc.) with associated p × d0 matrix of parameters, Θ, and εt is a MDS with re-

spect to Ht := σ(Zt, Zt−1, ..., Z1) ⊆ Ωt, with (non-singular) covariance matrix Σε and Gaussian
distribution.

If the VAR is (asymptotically) stable, i.e. the roots of det(Ip−
Pk

i=1Ais
i) = 0 are such that

| s |> 1, c-step ahead forecasts of Zt can be computed as

bEtZt+c := E(Zt+c | Ht) := gzA
c eZt +

c−1X

h=0

gzA
hg0zΘdt+c−h (10)

where eZt := (Z
0
t : Z

0
t−1 : ... : Z

0
t−k+1)

0 is the n× 1 (n = pk) state vector associated with the VAR

(9), A is the n× n companion matrix, and gz is a p× n selection matrix such that gz eZt := Zt.

Suppose, in particular, that Zt := (πt : xt : a
0
t)
0, where πt is inflation, xt a proxy of firms’ real

marginal costs, and at is a qa × 1 (p = 2 + qa) subvector of ‘additional’ variables that possibly

help to forecast xt or that play an important role in the system; in Section 6 at will be a scalar

(qa := 1) representing a short term interest rate.

From (10) it turns out that with c := 1 and c := 0

bEt−1πt+1 : = E(πt+1 | Ht−1) := gπA
2 eZt−1 + gπΘdt+1 + gπAg

0
πΘdt (11)

bEt−1πt : = E(πt | Ht−1) := gπA eZt−1 + gπΘdt (12)

bEt−1xt : = E(xt | Ht−1) := gxA eZt−1 + gxΘdt (13)

where gπ and gx are 1 × n selection vectors such that gπ eZt := πt, and gx eZt := xt. Condition

both sides of the NKPC (1) with respect to Ht−1, and apply the law of iterated expectations,

obtaining

E(πt | Ht−1) = γfE(πt+1 | Ht−1) + γbπt−1 + λE(xt | Ht−1); (14)
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substituting the VAR forecasts (11)-(13) into (14) and ignoring deterministic components in dt,
7

yields the following set of restrictions

gπA(In − γfA)− γbgπ − λgxA = 0 (15)

involving the structural parameters of the forward-looking model and the VAR parameters Ai,

i = 1, 2, ..., k.

Proposition 1 of Appendix A8 discusses the technical conditions under which there exists a

unique explicit form representation of the constraints (15) which ensure the (local) identifiability

of the restricted VAR. In particular, it is shown that if the ‘true’ value of λ is different from zero,

it is possible to express the parameters associated with the VAR marginal model for xt, Bx, as

unique function of the structural parameters, τ = (γf : γb : λ)
0, and the other VAR parameters;

formally:

Bx := f(Bπ, Ba, τ) (16)

where f is a non-linear vector function, Bπ and Ba are the vectors containing the VAR parame-

ters associated with the equations for πt and at, respectively (except the coefficients associated

to deterministic components), and the non-linear relation (16) holds in a neighbourhood of the

‘true’ parameter values.

The maximization of the VAR log-likelihood subject to (16) can be carried out by numerical

optimization algorithms. Fanelli (2006c) proposes a combination of a grid-search for the struc-

tural parameters τ with ‘standard’ (quasi) Newton-type algorithms, whereas Kurmann (2006)

recommends the simulated annealing algorithm (e.g. Goffe et al., 1994). In both cases LR tests

for the CER can be computed.

4.2 VAR approach with learning

In this section we extend the approach discussed in Section 4.1 one step further by recognizing

that in computing the forecasts (10) at time t, in practise agents use only the information set

Ht. This fact has direct consequences on the way the NKPC is tested.

We split the sample into two parts: the first, a pre-testing period from t = 1 to t = T0, is the

period used to produce initial estimates of VAR parameters; the second part, from t = T0 + 1

onward is the sample used to evaluate the NKPC through the CER. Observe that T0+1 must be

7We ignore deterministic components for simplicity, hence the derivation of CER can be interpreted with

reference to a PLM whose variables are expressed in terms of deviations from determinist terms. In general, it is

possible to take into account the role of deterministic terms provided that dt is opportunely included also in the

NKPC (1), otherwise the derivation of CER becomes burdensome.
8 It generalizes Proposition 2 in Kurmann (2006) and is based on a completely different proof method.
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‘reasonably’ large in the sense that the estimates of the VAR parameter (A1 : A2 : . . . : Ak : Θ :

Σε) based on HT0+1 must ensure that a second-order moment matrix of parameters, defined

below, is invertible. We further assume that T0+1 is large enough to guarantee that the estimates

of (A1 : A2 : . . . : Ak : Θ : Σε) based on least squares are consistent; we refer to Carceles-Poveda

and Giannitsarou (2006) for a general discussion on the effect of initial conditions on adaptive

learning algorithms.

If at time t ≥ T0 + 1 agents behave as econometricians, their actual forecasts will be

E(Zt+c | Ht) := g0z bAc
t
eZt +

c−1X

h=0

gz bAh
t g
0
z
bΘtdt+c−h ,

c = 1, 2, ...

t = T0 + 1, T0 + 2...
(17)

where bAt and bΘt are the estimators of A and Θ obtained from Ht.

Let B := (A1 : A2 : . . . : Ak : Θ) be the p×u, u = n+d0, matrix of first-moment parameters

associated with the VAR (9). Focusing on the case c := 1 (one-step ahead predictions), (17)

specializes in

E(Zt+1 | Ht) = Zf
t+1|t =

bBt X
∗
t+1

where X∗
t := (Z 0t−1 : Z

0
t−2 : ... : Z

0
t−k : dt)

0 is u × 1, and given the data up to time t, the LS

estimator of B and Σε are given, respectively, by

bBt :=

Ã
1

t

tX

i=1

ZiX
∗0
i

!Ã
1

t

tX

i=1

X∗
i X

∗0
i

!−1
:=Mzx∗

t (Mx∗x∗
t )−1 (18)

bΣεt :=
1

t

tX

i=1

(Zi − bBtX
∗
i )(Zi − bBtX

∗
i )
0. (19)

It is worth noting that under the assumption of Gaussian εt, the expressions in (18) and (19) cor-

respond to the maximum likelihood (ML) estimates of B and Σε obtained throughHt. Moreover,

the value of the log-likelihood at the maximum is given, a part from a constant, by

log bLmaxt = − t

2
log(det(bΣεt)) , t = T0 + 1, T0 + 2... (20)

Rewrite the expression (18) in the form

bBtM
x∗x∗
t :=Mzx∗

t , t = T0 + 1, T0 + 2....

Using the recursive relations

Mx∗x∗
t : =

t− 1
t

Mx∗x∗
t−1 +

1

t
X∗
tX

∗0
t

Mzx∗
t : =

t− 1
t

Mzx∗
t−1 +

1

t
ZtX

∗0
t

12



and some routine algebra one gets9

bB0t : = bB0t−1 +
1

t
(Mx∗x∗

t )−1X∗
t (Zt − bBt−1X∗

t )
0 (21)

Mx∗x∗
t : =Mx∗x∗

t−1 +
1

t
(X∗

tX
∗0
t −Mx∗x∗

t−1 ) (22)

t = T0 + 1, T0 + 2, .... (23)

For given initial values of bBT0 and Mx∗x∗
T0

, (21)-(23) define the Recursive LS (RLS) estimator of

B.

Consider now the following partition of B, B = [B1 : B2 : . . . : Bp]
0, where each Bj , j =

1, 2, ..., p, is the u × 1 vector containing the parameters of the j-th equation of the VAR. For

instance, referring to the trivariate VAR Zt := (πt : xt : at)
0 already discusses in Section 4.1, one

has B = [B1 : B2 : B3]
0, where B01 := [B

0
π : Θ

0
π], B

0
2 := [B

0
x : Θ

0
x] and B03 := [B

0
a : Θ

0
a], and Θ

0
v,

v = π, x, a are the coefficients associated with deterministic terms in the three equations. The

RLS (21) specializes in the well known relation

bBjt := bBjt−1 +
1

t
(Mx∗x∗

t )−1X∗
t (Zjt − bB0jt−1X∗

t ) ,
j = 1, 2, ..., p

t = T0 + 1, T0 + 2, ...
(24)

where bejt := (Zjt − bB0jt−1X∗
t ) = (Zjt − Zf

jt|t−1) is the observed prediction error relative to the

j-th variable (equation) of the VAR. The RLS updating of the second order moments matrix

Mxx
t described in (22) is common to the p equations of the VAR.

In the literature on adaptive learning the recursion (24) if often replaced by the more general

scheme

bBjt : = bBjt−1 + gjt(M
x∗x∗
t )−1X∗

t (Zjt − bB0jt−1X∗
t ) (25)

Mx∗x∗
t : =Mx∗x∗

t−1 + gjt(X
∗
tX

∗0
t −Mx∗x∗

t−1 ) ,
j = 1, 2, ..., p

t = T0 + 1, T0 + 2, ...
(26)

where each gjt is a scalar, known as the ‘gain’ sequence. In general, gjt 6= git for i 6= j, i.e. the

gains may differ across VAR equations. With gjt := t−1 the expressions (25)-(26) collapse to

RLS (21)-(23); the position gjt := gj , 0 < gj < 1, leads to the constant gain version of recursive

least squares (CGLS), where the term ‘constant’ stresses the difference with the previous case

characterized by decreasing gains. For j = 1, 2, ..., p, CGLS discounts past observations at

geometric rate 1− gj , and is therefore more robust to structural changes, see e.g. Branch and

9 In particular, for given matrices A,B, and C of suitable dimensions, we use the following matrix inversion

rule: (C +B0A−1B)−1 := C−1 − C−1B0(A+BC−1B0)−1BC−1.
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Evans (2006).10 Given the ‘natural’ link between RLS and the recursive application of ML

(provided that VAR disturbances are Gaussian), in this paper we focus on (21)-(23).11

The restrictions that the NKPC imposes on the VAR parameters can be derived by following

the same route of Section 4.1. In this case one gets the sequence of CER:

gπAt(In − γfAt)− γbgπ − λgxAt = 0 , t = T0 + 1, T0 + 2, ... (27)

where once again the time index attached to the companion matrix stresses that the estimation

of the parameters in A is based on the information available up to time t, Ht. By applying

Proposition 1 of Appendix A, from (27) we can now derive the following sequence of explicit

form constraints

Bxt := f(Bπt, Bat, τ) , t = T0 + 1, T0 + 2, ... (28)

which read as the ‘sequential’ counterpart of (16). Thus, under the CER the recursion of the

estimators of Bπt and Bat is governed by (24) and simultaneously the recursion of Bxt follows

from bBxt := f( bBπt, bBat, τ), given the form of f(·).

The value of the likelihood at the constrained maximum is given (a part from a constant) by

log eLmaxt = − t

2
log(det(eΣεt)) , t = T0, T0 + 1, ...

with eΣεt being the estimated covariance matrix of the restricted VAR at time t, thus the ‘natural’
likelihood-oriented approach to test the restrictions (28) consists in computing the LR statistics

LRt = −2(log eLmaxt − log bLmaxt ) , t = T0 + 1, T0 + 2, ... (29)

Apparently, to decide about the null that the CER hold, one might simply compare the LR

statistics in (29) with the conventional χ2-based large-sample critical values. Focusing on the

GMM framework, however, Inoue and Rossi (2005) recently show that using conventional critical

values, by the law of iterated logarithms the probability that such type of tests eventually leads

to a rejection of the null hypothesis is asymptotically 1. To remedy this problem, they derive

asymptotic critical values that allow one to ‘follow’ the test statistic through the whole sequence

t = T0 + 1, T0 + 2..., in such a way that the probability of rejecting the null hypothesis is under

control at each t. Inoue and Rossi (2005) also provide asymptotic critical values (their Table 1)

10 In fact, compared to RLS constant gain algorithms assign decreasing weights on observations across time, so

that recent observations matter for the current estimate even in the limit. For this reason it is commonly argued

that CGLS are useful in tracking structural changes in the model, hence they are particular suited in situations

where the policy is allowed to shift over time.
11We leave the extension of the proposed learning method to the case of CGLS to future research.
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for LR-type sequential tests that can be used in the empirical analysis. The results in Inoue and

Rossi (2005) cover Wald, Lagrange multiplier (LM) and likelihood ratio (LR)-like tests based

on GMM, hence potentially included in this class is (29).

5 Non stationary variables

While theories upon which DSGE models and in particular the NKPC are built are formulated

at the single agent level, estimation is usually based on aggregate data. Aggregation may have

both theoretical and empirical consequences. For instance, as shown in e.g. Hughes Hallet

(2000), the aggregation of sectoral, regional/national Phillips curves may yield an inflation-

unemployment trade-off that is not vertical in the long run, despite the ‘individual’ curves being

vertical. Likewise, aggregation may be a potential source of non stationarity; that this can

be the case for the euro area inflation is confirmed by e.g. Benigno and López-Salido (2006)

where the existence of heterogeneity in inflation persistence across regions is documented, and

by O’Reilly and Whelan (2005) and Batini (2006), who using different techniques find that the

persistence of inflation is close to one and stable over time.

It is well recognized that if the eigenvalues of the VAR companion matrix, A, are close to the

unit circle, test statistics based on standard asymptotic theory and the typical sample lengths

of macroeconomic analysis may suffer large size distortion and power losses, see e.g. Johansen

(2006). In these circumstances, not fixing the number of unit roots of the system may worsen

the small sample distortion. Thus, when there exists a sound suspect that the variables entering

the NKPC (1) are non stationary and can be reasonably approximated in terms of processes

integrated of order one (I(1)), a solution may be that of checking the sensitivity of results to

specifications where the I(1) trends are opportunely removed.

When the variables entering agents’ PLM are I(1), it is either possible that πt and xt are not

cointegrated, or that they are cointegrated, see Fanelli (2006c) for a comprehensive discussion.

In general, by allowing the roots of the characteristic equation det(Ip −
Pk

i=1Ais
i) = 0 of the

VAR (9) to be also at s = 1, one can disentangle empirically between the above mentioned

situations by testing the cointegration rank (i.e. the number of unit roots) of the VAR, see e.g.

Johansen (1996).

If πt and xt are I(1) and not cointegrated, two empirical formulations of the NKPC are

consistent with data properties. First, it may happen that e.g. πt is I(1) and xt is I(0), that

means that it exists a trivial cointegrating relation of the form (0 : 1)Zt.
12 Such a situation can

12 In principle it might also happen that πt is I(0) and xt is I(1), a situation which can be faced empirically by

replacing xt in (1) by ∆xt, and considering a VAR for Zt := (πt : ∆xt : at)
0 (provided that also at is I(0)).
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be accounted by manipulating (1) in the form

∆πt =
1− γb
γb

Et∆πt+1 +
λ

γb
xt + u∗t (30)

which is obtained by simple algebra and imposing the restriction γf + γb = 1, with u∗t :=

γ−1b ut. The econometric evaluation of the model (30) under VAR-based learning follows the

lines described in Section 4.2 for stationary models, the only exception being that now agents’

PLM reads as a VAR(k) for Zt := (∆πt : xt : at)
0 (we have assumed that also at is I(0)).

Second, it may happen that both πt and xt are I(1) but do not share a common stochastic

trend (including that of at). In this case the empirical analysis of the NKPC under VAR-

based learning follows the route described in Section 4.2 for the case of stationary variables,

provided that the procedure is opportunely adapted. In particular, the non stationary VAR(k)

for Zt := (πt : xt : at)
0 must be replaced by its differenced counterpart, i.e. a DVAR(k − 1) for

∆Zt := (∆πt : ∆xt : ∆at)
0 and at the same time the NKPC (1) must be empirically replaced by

the ‘accelerationist’ specification

∆πt = γfEt∆πt+1 + γb∆πt−1 + λ∆xt + ut. (31)

Differently from what happens with (30) and (32) (see below), the empirical formulation (31)

of the NKPC can not be obtained from (1) by algebraic manipulations but by simply replacing

the levels of the variables, expect ut, with their first differences.

When πt and xt are I(1) and cointegrated, it is convenient to express the NKPC in a form such

that both levels and first differences are involved. By simple algebra (1) can be reparameterized

in the form

∆πt = ωEt∆πt+1 − ψ(πt − ξ xt) + u∗t (32)

where

ξ : =
1

(1− γf − γb)
λ (33)

ω : =
γf
γb

(34)

ψ : =

µ
1− γf − γb

γb

¶
(35)

u∗t : = ωut

provided that γf + γb < 1. The main issue with (32), however, is the interpretation of the

stationary process (πt − ξ xt), given that theory does not predict that e.g. inflation and the

wage share (unit labor costs) must be cointegrated for the NKPC to hold. Notice that in this

set-up the structural parameter λ belongs to the cointegration space.
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We refer to Fanelli (2006c) for a detailed discussion of how the econometric analysis of (32)

can be developed under ‘VAR expectations’. In short, testable implications of (32) can be

derived by appealing to a stationary vector autoregressive representation of the vector Wt :=

(∆πt : et : ∆at)
0, where et := (πt−bξ xt), and bξ is a super-consistent estimator of ξ in (33). The

extension to the case of learning along the lines described in Section 4.2 is straightforward to the

extent that agents (i) have some a priori knowledge on the fact that πt and xt are cointegrated,

and possess some ‘external’ information about the value assumed by ξ in (33).

6 Results

We consider quarterly data relative to the euro area, using the last release of the Area-wide

Model (AWM) data set described in Fagan et al. (2001). Variables cover the period 1971:1-

2005:4. To measure inflation we use the GDP deflator, i.e. πt := 100(pt − pt−4), where pt is the

log of the GDP deflator. As in Gali et al. (2001), firms’ average marginal costs are proxied by

the wage share (log of real unit labour costs), xt := wst. A short term interest rate, at := it

(qa = 1), is included in the system.
13

The plot of the three variables is reported in Figure 1; the vertical line at 1984:1 indicates

the beginning of the sub-sample used to evaluate the NKPC, whereas the period 1971:1-1983:4

is used to produce initial estimates of the VAR parameters. In terms of the notation of the

previous sections, T0 + 1 :=1984:1 is the first monitoring period and Tmax :=2005:4 is the last

available observation.

Note that the sample selected to produce initial estimates of the VAR parameters is charac-

terized by an high inflation regime. As argued in Batini (2006), most European central banks

adopted a more aggressive approach toward fighting inflation around the first half of the eighties.

The sample used to evaluate the NKPC can be regarded as substantially homogeneous from the

point of view of the commitment of European monetary authorities to stabilize inflation, the

convergence towards the European Monetary Union, and the maintenance of a stable currency.

The simple graphical inspection of Figure 1 reveals, in line with O’Relly and Whelan (2005)

and Batini (2006), that (aggregate) euro area inflation persistence resembles that of unit root-

type processes.14Also the persistence of the wage share and of the short term interest rate appears

13The GDP deflator is YED in the AWM data set. The wage share (real unit labour costs) is computes as

wst := 100 × log(WINt/Y ERt), where WIN is ‘Compensation to Employees’ (in real terms) and YER is real

GDP. As a proxy of it we have used the short-term interest rate (nominal in percent), which is STN in the data

set.
14Both O’Reilly and Whelan (2005) and Batini (2006) conclude that euro area inflation persistence is high,

however the former finds a possible shift in inflation persistence around 1984, whereas the latter do not detect
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considerably high: in general, such an outcome is not surprising in view of the cross-country

aggregation process underlying data construction.

A VAR for Zt := (πt : wst : it)
0 with k := 3 lags and a constant is estimated over the

period 1971:1-1983:4. Table 1 reports some residuals diagnostic statistics, along with the highest

estimated eigenvalues of the VAR companion matrix, and Johansen’s (1996) LR trace test for

cointegration rank.15 It can be noticed that with k := 3, VAR residuals appear substantially

‘well-behaved’ over the sample 1971:1-1983:4, suggesting that RLS estimates can be reasonably

approximated by the reiterated application of ML. Yet, results in Table 1 cast doubts on the

stationary of the system. For this reason, after discussing the empirical evaluation of the NKPC

in Section 6.1, we support the evaluation of the model through a robustness check in Section

6.2.

6.1 Euro area NKPC with learning dynamics

Given the initial estimates discussed above, the sequential evaluation of the NKPC under VAR

dynamics outlined in Section 4.2 works by estimating the VAR(3) recursively over the period

1984:1-2005:4, both unrestrictedly and subject to the CER restrictions (28).

The maximization of the Gaussian likelihood under the CER is performed by calibrating

the structural parameters τ = (γf : γb : λ)
0 at τ := τ∗ = (0.90: 0.05: 0.20)0, which roughly

correspond, in terms of the Calvo model of inflation dynamics, to firms’ discount factor equal

to 0.95, a fraction of 3% of backward-looking firms, and an average time of about 2.8 quarters

over which prices are kept fixed. The idea of fixing τ to the value τ∗ has a twofold motivation.

First, we can not implement a grid search estimation for τ as in that case the asymptotic critical

values of the sequential test of Inoue and Rossi (2005) would not apply. Second, fixing τ to τ∗

has its ratio in the similar values of structural parameters τ∗∗ = (0.773: 0.043: 0.214)0 obtained

by Gali et al. (2001) through GMM estimation and the AWM data set until 1998; in terms of

the Calvo model τ∗∗ corresponds, a part from the discount rate, to a fraction of 3% of backward-

looking firms, and an average time of 3 quarters of sticky prices duration; see also Benigno and

López-Salido (2006).

Figure 2 plots the LR statistic (LR1) for the CER over the period 1984:1-2005:4, along with

both the 5% critical values computed following the method of Inoue and Rossi (2005), and the

0.95 quantile of a χ2-distribution with 9 degree of freedom.16 For comparative purposes Figure

any changes in persistence. Moreover, it is woth noting that Benigno and López-Salido (2006) find supporting

evidence of the existence of heterogeneity in iflation dynamics across euro area countries.
15Calculations were performed in PcGive 10.0, Doornik and Hendry (2001).
16Observe that there are pk := 9 and not pk − 3 := 6 CER (see Proposition 1, Appendix A) since in this

application the three structural parameters τ = (γf : γb : λ)
0 have been fixed.

18



2 also plots the LR statistic (LR2) for the CER obtained by fixing the structural parameters at

τ∗∗ as in Gali et al. (2001).

The graph reveals that if one focuses on the full sample (‘one shot’) test of the CER, i.e.

on the value of LR1 at 2005:4, and compare it with the χ20.95(9) quantile, the NKPC is sharply

rejected. This result confirms e.g. the empirical findings in Fanelli (2006c), where using the

AWM data set with variables available until 1998:2 and a VAR-based approach, the NKPC is

sharply rejected. However, if one takes into explicitly account the sequential nature of the LR1

statistic and uses the 5% asymptotic critical values from Table1 in Inoue and Rossi (2005), it

turns out that with τ := τ∗ = (0.90: 0.05: 0.20)0 the NKPC is not rejected over the entire period

1984:1-2005:4; the NKPC would be rejected if τ were fixed at τ∗∗ = (0.773: 0.043: 0.214)0 (LR2

statistic) as in Gali et al. (2001).

Empirical results show that if agents form their beliefs recursively through the VAR(3) over

the period 1984:1-2005:4, then their PLM supports the restrictions implied by the NKPC 100%

of times. Following Milani (2005a), this finding can be interpreted by arguing that learning is

the main source of euro area inflation persistence, given that the size of γb in τ∗ is negligible

compared to that of γf . On the contrary, within the RE paradigm it is usually found that further

lags of inflation, reflecting indexation, rules of thumb, contracts, etc., are typically needed to

match the data, see e.g. Fuhrer and Moore (1995) and Fuhrer (1997). We refer to e.g. Bullard

and Mitra (2002), Woodford (2003) and Evans and Honkapohja (2003a. 2003b) and references

therein for a detailed investigation of the optimal design of monetary policy rules when instead

of having RE private agents follow plausible learning rules.

Observe, further, that the square root of the mean square forecast error of inflation, computed

as MSE(π) := (1/T1)
PTmax

t=T0+1
(πt − bπt|t−1)2, where bπt|t−1 is the one-step ahead forecast of

inflation based on the information up to time t − 1, and T1 is the number of quarters between

T0 + 1 = 1984 : 1 and Tmax = 2005 : 4, is equal to 0.93 using the unrestricted VAR(3), and is

equal to 0.98 using the VAR(3) under the CER, emphasizing that the forecast success of the

PLM and the ALM is substantially similar.

The next section investigates the robustness of results to a non stationary specification of

the PLM.

6.2 Robustness

The results sketched in Section 6.1 have been obtained by treating agents’ PLM - the VAR(3) - as

a stationary process. The learning mechanism proposed in the paper hinges on the capability of

agents of testing whether their PLM supports the non-linear restrictions implied by the NKPC.

The recent literature suggests that for certain type of restrictions tests in VAR models based
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on large sample approximations can exhibit distorted rejection rates (e.g. Dufour and Jouini,

2006), with the distortion increasing when the roots of the characteristic equation lay near the

unit circle. This suggests, along with the diagnostics in Table 1 obtained over the initial period

1971:1-1983:4, that the robustness of the results obtained in Section 6.1 should be checked

against non stationary specifications of the PLM.

Figure 3 plots the recursive estimates of the absolute value of the highest eigenvalues of

the VAR(3) companion matrix over the period 1984:1-2005:4, providing prima facie descriptive

evidence on how close the (inverse) roots of the characteristic equation are to the unit circle

over the period used to evaluate the NKPC. More precisely, the estimated companion matrix

has nine roots, four of which are complex conjugate. As emphasized by the graph, the absolute

value of the two highest eigenvalues fluctuates in the range 0.96-0.99, whereas the absolute value

of the third and forth eigenvalues fluctuates in the range 0.76-0.82. Overall, from Figure 3 it

turns out that there might be room for the presence of two, possibly three unit roots in the

system.

The suspect that a cointegrating relation (corresponding to two unit roots in the system)

might characterize the VAR(3) can be ruled by looking at the graphs of Figure 4, where, after

imposing the presence of a cointegrating relation (with a constant) in the system, we plotted

the recursive (maximum likelihood) estimates of the cointegrating coefficients, normalizing the

coefficient associated to inflation to one, over the period 1984:1-2005:4. The graph shows that

it can be hardly concluded that e.g. euro area inflation and the wage share represent a stable

cointegrating relation over the selected window.

If a VAR(3) with three stochastic trends represents a reasonable description of the level of

the data until 2005, it makes sense to consider a DVAR(2) for ∆Zt := (∆πt : ∆wst : ∆it)
0 as

agents’ stationary PLM. Actually, as diagnostic tests computed on the DVAR(2) cast doubts on

the uncorrelation of residuals, also a DVAR(3), corresponding to a VAR(4) for the levels, might

be the candidate PLM not embodying stochastic trends. As detailed in Section 5, when πt and

wst are I(1) and not cointegrated, the empirical formulation of the forward-looking model of

inflation dynamics which rules out I(1) trends is (31). For this reason, (31) is the NKPC tested

with the DVAR systems.

The upper panels of Figure 5 plot the sequential LR tests of the CER imposed by the forward-

looking model of inflation dynamics on the VAR(3) in levels (left panel) and its DVAR(2)

counterpart (right panel), respectively; the lower panels report the same type of tests with

reference to a VAR(4) and its DVAR(3) counterpart. The critical values of the sequential tests

are taken from Table 1 in Inoue and Rossi (2005); note that the LR statistics and corresponding

critical values in top-left panel of Figure 5 correspond to those already reported in Figure 2 and
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commented in Section 6.1.

Figure 5 shows that the NKPC is rejected from 1988 onward (77% of times) only when

the DVAR(2) is considered; all the other specifications support the restrictions of the theory

under the VAR-based learning dynamics. However, as the number of CER depends on the lag

length, k, Figure 5 also reveals that the sequential LR test of CER might suffer of low power

when relatively large values of k are considered, other than when the characteristic roots of

the system are close to the unit circle. To sum up, the results obtained in Section 6.1 do not

appear fully robust to specifications of agents’ PLM which explicitly accounts for the presence

of stochastic trends in the variables.

7 Concluding remarks

This paper provides a method for evaluating the NKPC under ‘VAR expectations’ and RLS

learning. The approach is based on the idea that RE in the structural model are replaced by the

forecasts stemming from a VAR including inflation, the wage share and possibly other variables.

However, in this set-up the VAR serves not only as agents’ PLM but also as the statistical

platform upon which the validity of restrictions implied by the NKPC are evaluated recursively

as the information set increases over time.

The proposed learning mechanism depends on the outcome of a likelihood-based test of the

cross-equation restrictions that the NKPC imposes on the VAR parameters at any point in time.

Agents learn under the null that the model of inflation dynamics is supported by the chosen

VAR, or under the alternative. As new observations become available and the evaluation of the

NKPC is repeated over time, agents may update the fraction of rejections and the fraction of

non-rejections of the model, and check whether and in which periods their PLM is consistent

with the structure of the forward-looking model of inflation dynamics.

The empirical analysis on euro area data points out that there is little room for the NKPC

to serve as a reasonable description of inflation dynamics under the RE paradigm. On the

contrary, if agents’ PLM is approximated by a VAR estimated through RLS and the evaluation

of the model is carried out over the period 1984-2005 with initial estimates obtained over the

high inflation regime up to 1983, then a NKPC with the backward-looking parameter very close

to zero seems to be consistent with agents’ learning dynamics. This finding has remarkable

implications on the optimal design of monetary policy. The empirical evidence, however, is

less favorable to the NKPC when variables in the PLM are treated as non stationary and their

stochastic trends are opportunely removed.
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Appendix A

In this Appendix we prove that the CER (15) implied by the NKPC (1) amounts to a set of

non-linear restrictions on of the form (16), which ensure the local identifiability of the system

under the constraints. The result is reported in Proposition 1.

Proposition 1

Given the VAR (9) with companion matrix A, let B0π := gπA, B
0
x := gxA and B0a := gaA be

the 1×n vectors, n = pk, containing the first-moment parameters associated with the marginal

equation for πt, xt and at, respectively. Let τ = (γf : γb : λ)
0 be the 3 × 1 vector containing

the structural parameters of the NKPC (1), and τ0 := (γ0f : γ
0
b : λ

0), B0π, B
0
x and B0a their ‘true’

values. Let the scalar B0x1 be the first element of the vector B
0
x. Then, given the CER (15), if

λ0 6= 0 and B0x1 6= (−λ0/γ0f ) when γ0f 6= 0 and provided that k ≥ 2 when p ≤ 3 and k ≥ 1 when
p ≥ 4, it exists an open set D in Rj , j := 2n+3, containing v0 := (B00π : B

00
a : τ

00)0, and a unique

(non-linear) differentiable function, f , f : D −→ Rn, such that

B0x := f(B0π, B
0
a, τ

0). (36)

Remark

Proposition 1 ensures that the VAR is locally identifiable under the CER.

Proof.

First, note that the companion matrix of the VAR can be written as

A :=




B0π

B0x

B0a

ϑ0




1× n

1× n

1× n

(n− 3)× n

where ϑ0 is the lower block of the companion matrix, containing zeros and ones only, therefore

vec(A) =




Bπ

Bx

Ba

vec(ϑ0)




n× 1

n× 1

n× 1

n(n− 3)× 1.

(37)

Secondly, re-write the CER (15) in the form

B0π(In − γfA)− γbgπ − λB0x = 01×n
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and apply the vec operator to both sides, obtaining

(In − γfA
0)Bπ − λBx − γbg

0
π = 0n×1

which can be further compacted in the expression

HA,τvec(A)− γbg
0
π = 0n×1 (38)

where the n× n2 matrix HA,τ is defined as

HA,τ := [(In − γfA
0) : − λIn : 0n×n : 0n×n(n−3)] .

Observe that (38) formally defines a mapping of the type

g : S −→ Rn

where S is an open set in Rn+j , such that

g(Bx : v) := 0n×1 (39)

and v := (B0π : B
0
a : τ

0)0; the mapping g in (39) summarizes the CER (15). Consider the n× n

Jacobian

J(Bx : v) :=
∂g(Bx : v)

∂B0x
; (40)

if J(Bx : v) has full rank at the true point (B
00
x : v

00)0, then by the implicit function theorem,

there exists an open set D in Rj containing v0, and a unique function f : D −→ Rn with the

following properties: (i) f(v0) =: B0x; (ii) g(f(v) : v) := 0 for all v in D; (iii) f is continuosly

differentiable in D. Obviously, such a function corresponds to (36).

To prove that the function f exists, i.e. that the implict function theorem can be applied

to the mapping g in (39), we must show that the Jacobian J(Bx : v) in (40) is non-singular at

(B00x : v
00)0.

To simplify the computation of the Jacobian, express the first term on the right-hand-side

of (38) as

HA,τvec(A) ≡ H(Bx)
n×n2

d(Bx)
n2×1

where for notational convenience we have set HA,τ ≡ H(Bx) and d(Bx) ≡ vec[A(Bx)] to empha-

size explicitly the dependence of HA,τ and vec(A) on the parameters in Bx.

It can be noticed that

∂[H(Bx)d(Bx)]

∂B0x
:= H(Bx)

n×n2

∂d(Bx)

∂B0x
n2×n

+
£
d(Bx)

0 ⊗ In
¤

n×n3

∂vec[H(Bx)]

∂B0x
n3×n

. (41)
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As regards the first addend of (41), given (37) one has

∂d(Bx)

∂B0x
=

∂vec(A)

∂B0x
:=




∂Bπ/∂B
0
x

∂Bx/∂B
0
x

∂Ba/∂B
0
x

∂vec(ϑ0)/∂B0x



=




0n×n

In

0n×n

0n(n−3)×n



:= L

n2×n

so that

H(Bx)
∂d(Bx)

∂B0x
: = [(In − γfA

0) : − λIn : 0n×n : 0n×n(n−3)]




0n×n

In

0n×n

0n(n−3)×n




= −λIn.

The derivative appearing in the second addend of (41) can be written as

∂vec[H(Bx)]

∂B0x
:= Kn2,n

∂vec[H(Bx)
0]

∂B0x

whereKn2,n is a n
3×n3 commutation matrix (Magnus and Neudecker, 1999) such that vec[H(Bx)] =

Kn2,nvec[H(Bx)
0]. Thus

∂vec[H(Bx)
0]

∂B0x
:=




∂vec(In − γfA)/∂B
0
x

−∂vec(λIn)/∂B0x
0n2×n

0n2(n−3)×n



=




−γf∂vec(A)/∂B0x
0n2×n

0n2×n

0n2(n−3)×n




=




−γf ∂d(Bx)
∂B0x

0n2×n

0n2×n

0n2(n−3)×3



:=




−γfL
0n2×n

0n2×n

0n2(n−3)×3



,

hence

£
d(Bx)

0 ⊗ In
¤

n×n3

∂vec[H(Bx)]

∂B0x
:

n3×n

=
£
d(Bx)

0 ⊗ In
¤

n×n3

Kn2,n

n3×n3




−γfL
0n2×n

0n2×n

0n(n−3)×n




n3×n
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=
£
In ⊗ d(Bx)

0
¤




−γfL
0n2×n

0n2×n

0n(n−3)×3



=




d(Bx)
0 01×n2 · · · 01×n2

01×n2 d(Bx)
0 · · · 01×n2

...
. . .

01×n2 01×n2 · · · d(Bx)
0







−γfL
0n2×n

0n2×n

0n(n−3)×3




= −γf




d(Bx)
0L

01×n
...

01×n




n×n

(42)

where we have used the following properties of the commuation matrix: (i) [d0 ⊗ In] Kn2,n =

K1,n [In ⊗ d0]; (ii) K1,n = In, see Magnues and Neudecker (1999), pp 46-47. By focusing on

the first row of the matrix (42), it turns out that using (37), the definition of d(Bx) and the

definition of the matrix L, one has

d(Bx)
0L ≡ vec(A)0L ≡ (B0π : B0x : B0a : vec(ϑ0)0)




0n×n

In

0n×n

0n(n−3)×n




= B0x := (Bx1 : Bx2 : ... : Bxn),

where each Bxh, h := 1, ..., n is the hth element of Bx. We have thus proved that the matrix in

(42) has the structure:

−γf




d(Bx)
0L

01×n
...

01×n



:= −γf




Bx1 Bx2 · · · Bxn

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



.

To sum up, the Jacobian (40) is given by

J(Bx : v) := −λ




1 0 · · · 0

0 1 · · · 0
...
...
. . .

...

0 0 · · · 1



− γf




Bx1 Bx2 · · · Bxn

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



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= −1




λ+ γfBx1 γfBx2 · · · γfBxn

0 λ · · · 0
...

...
. . .

...

0 0 · · · λ



.

By evaluating J(Bx : v) at the true parameter values, yields:

J(B0x : v
0) := −1




λ0 + γ0fB
0
x1 γ0fB

0
x2 · · · γ0fB

0
xn

0 λ0 · · · 0
...

...
. . .

...

0 0 · · · λ0



.

Hence J(B0x : v
0) is non-singular if λ0 6= 0 and B0x1 6= (−λ0/γ0f ) when γ0f 6= 0. Observe that

the VAR (9) subject to (36) has 2n+ 3 free parameters, hence the total number of CER is

3n− (2n+ 3) = n− 3 = pk − 3. This implies that k ≥ 2 when p ≤ 3 and k ≥ 1 when p ≥ 4 for
the restrictions to be binding. This completes the proof. ¥
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Figure 1: Euro area inflation (πt), wage share (wst) and short term nominal interest rate (it).

Quarterly data 1971:1-2005:4. The vertical line at 1984:1 divides the sample used to produce initial

estimates of the VAR from that used to evaluate the NKPC.

31



1985 1990 1995 2000 2005

20

40

60

80

100

120

5% c.v. from
 Inoue and Rossi (2005)

LR1

LR2

χ
0.95
2 (9)

LR2: γ
f
∗∗ := 0.773, γ

b
∗∗ := 0.043, λ∗∗:= 0.214

LR1: γ
f
∗ := 0.90, γ

b
∗ := 0.05, λ∗ := 0.20

Figure 2: Sequence of LR tests of the CER implied by the NKPC on the VAR(3). LR1 (¨) is obtained

by maximing the log-likelihood of the VAR(3) under the CER with (γf : γb : λ)
0
fixed as described in

the top of the graph. LR2 (M) is obtained by maximing the log-likelihood of the VAR(3) under the CER

with (γf : γb : λ)
0
fixed as in Galì et al. (2001). ¤ = 5% critical value taken from Inoue and Rossi (2005);

◦ =χ20.95(9) is the 0.95 quantile of a χ2 with 9 d.f.
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Figure 3: recursive estimates over the period 1984:1-2005:4 of the absolute value of the highest

eigenvalues of the VAR(3) companion matrix.
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Figure 4: recursive estimates (maximum likelihood) over the period 1984:1-2005:4 of the coefficients

of the cointegration relation between πt (normalized to one), wst, it and a constant obtained by imposing

rank cointegration rank to one in the estimated VAR(3).
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Figure 5: Sequence of LR tests (¨) of the CER implied by the NKPC with respect to different

specifications of the PLM in levels (left panels) and in first differences (right panels). ¤ = 5% critical

values taken from Inoue and Rossi (2005).
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A Tables

VAR(3): Zt = (πt : wst : it)
0 1971:1- 1983:4

Vector AR 1-3 test: F (36, 74) := 1.08
[0.37]

Vector normality test: χ2(6) := 8.02
[0.24]

Highest eigenvalues of companion matrix: 0.95± 0.073i

Cointegration rank test

H0 : r ≤ j Trace p-val

j=0 35.97 0.039

j=1 13.73 0.31

j=2 5.16 0.28

Table 1: Upper panel: vector test for residual autocorrelation and normality,
see Doornik and Hendry (2001). Middle panel: highest estimated eigenvalues of
the VAR companion matrix. Lower panel: Johansen’s (1996) LR trace test for
cointegration rank with corresponding p-values.
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