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Abstract

This paper introduces fiscal increasing returns, through endogenous labor income tax rates
as in Schmitt-Grohe and Uribe (1997), into the overlapping generations model with endogenous
labor and consumption in both periods of life (for example, Cazzavillan and Pintus (2004)). We
show that under numerical calibrations of the parameters, in particular a reasonable share of
first period consumption over the wage income, local indeterminacy can easily occur with small
distortionary taxes, provided that the elasticity of capital-labor substitution is less than the share
of capital in total income and the wage elasticity of the labor supply is large enough. More
important is the fact that increasing the size of tax distortions enlarges the range of values of the
consumption—to—wage ratio associated with multiple equilibria, because of two conflicting effects

on savings that operate through wage and interest rate.
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200052, China. Tel and Fax: 86-21-52302560; E-mail address: laurencezhang@yahoo.com (Y. Zhang).
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1. Introduction

In this paper, we consider a two periods overlapping generations model with endogenous labor,
consumption in both periods of life and fiscal increasing returns coming from endogenous labor
income taxes. Cazzavillan and Pintus (2004) have pointed out that intertemporal substitution in
consumption is a critical element to make expectation-driven fluctuations disappear in the context
of LOG economies if the ratio between savings and wage is reasonably low. But in this paper, we
show that indeterminacy can appear in their framework if there are fiscal increasing returns caused
by endogenous labor income tax rates as in Schmitt-Grohe and Uribe (1997), since endogenous labor
income taxes can increase the ratio between savings and wage. We prove that with tax distortions and
realistic calibrations for the fundamentals, indeterminacy can easily occur in a CES economy provided
that the elasticity of the labor supply is large enough and the elasticity of the input substitution is
less than the share of capital in total income.

Since Reichlin (1986), the Diamond (1965) one-sector overlapping generations model augmented
to include endogenous labor supply, external effects and/or fiscal increasing returns has become a

popular framework to analyze expectations driven business cycles.!

Unlike those early works that
focus on a particular case without first period consumption, recent works such as Cazzavillan and
Pintus (2004, 2006) and Lloyd-Braga et al. (2007), consider a life-cycle utility function which is
first, separable between consumption and leisure, and second, linearly homogenous with respect to

young and old consumptions. The main contribution of these papers is to analyze the relationship

between external effects and indeterminacy under the framework with consumption in both periods.

'For example, Cazzavillan (2001) and Gokan (2009a, 2009b).



Our paper instead discusses the relationship between fiscal increasing returns and indeterminacy
under the framework with consumption in both periods. Particularly, we concentrate on the focal
case where fiscal increasing returns come from endogenous labor income taxes and show that local
indeterminacy easily occurs with reasonable steady state labor income tax rates provided that the
elasticity of capital-labor substitution is less than the share of capital in total income and the elasticity
of labor supply is large enough.

The paper is organized as follows. Section 2 sets up the model. In Section 3, we establish
the existence of a normalized steady state. Section 4 contains the derivation of the characteristic
polynomial and presents the geometrical method used for the local dynamic analysis and our main
results on local indeterminacy. Section 5 gathers some concluding comments. All the proofs are

gathered in a final appendix.

2. The model

As in Cazzavillan and Pintus (2004), we consider a competitive, non-monetary, overlapping gener-
ations model with production. The model involves a unique perishable good, which can be either
consumed or saved as investment. Identical competitive firms all face the same technology. Identical
households live for two periods. The agent consumes in both periods, supplies labor and saves when
young. When old, her saved income is rented as physical capital to the firm.

Assuming additively separable preferences, the household born at time ¢ > 0 maximizes her

lifetime utility
max  [Ui(c1¢/B) — Us (M) + BU2 (c241)]
Clt, Aty C2¢41

subject to the constraints

cit+ 2z = (1—714) Qe (1)



corr1 = Ryt (2)

c1t >0, cap1 >0, A >\ >0, for all ¢ > 0,

where \;, c1+ and z; are labor, consumption and saving, respectively, of the individual of the young
generation, cg;+1 is the consumption of the same individual when old, and €2; > 0 and R;;1 > 0 are
the real wage at time ¢ and the gross interest rate at time ¢ + 1. Moreover, 74, 8 € (0,1), B > 0 and
X are the labor income tax rate, the discount factor, a scaling parameter and the maximum amount
of labor supply, respectively.

The preferences satisfy the following condition as in Cazzavillan and Pintus (2004).

Assumption 1. The functions Uy(¢/B), Us (\) and U (¢) are defined and continuous on the
set Ri. Moreover, they are C", for r large enough, on the set Ry, with Uj(¢/B) > 0, U5 (c) > 0,
Uy(A) > 0, Ul(¢/B) < 0, U)(c) <0, U/(N\) > 0. lim, ;U;(\) = +oo, where A > 1, and
limy—oUj5 (A\) = 0. In addition, 0 < Ri(¢/B) = —(¢/B)U{(¢/B)/Ui(¢/B) < 1, 0 < Ra(c) =
—cUY (¢) /U (c) < 1, and R3(N\) = AU (\) /U () > 0.

The conditions 0 < Ri(¢/B) < 1 and 0 < Ra(c) < 1 are used to ensure that consumption and
leisure are gross substitutes, and the saving function is increasing in R. For example, we can assume

. )\1+a3

that Uy(c/B) = M, Us (c2) (2l 2 and Us (N) = 54, -

1—aq 1—ao

When 0 < a1 <1,0< as <1 and
0 < as, these equations satisfy assumption 1.
When the solution of the households maximization problem is interior, the first order conditions

are

Ui(cit/B)/B = BRi11Uj (cat1) = Us (Ae) / [(1 — 7¢) ). (3)



Using the first order conditions, the current consumption can be written as follows

and the savings of the young agent born at time t are

z=0—71)UuN—B(U])"" ( BU; () ) .

(1 — Tt) Qt
Multiplying both terms of the last equality in Eqgs. (3) by z; yields

ZtU?/) ()\t)

o ez = (G e,

! _ ZtU?/) ()‘t)
BU; (cat+1) Cot41 = RS

where ua(coi+1) = Uj (¢ai41) c2i+1 18 an increasing function in cgpy.

The perishable output (y) is produced using capital (k) and labor (),

y=AF (k) = Alf (a),

where a = k/)\ and A > 0 is a scaling factor. The competitive factor market implies that the real

wage rate and the real gross rate of return on capital are
Q(a) = A[f(a) —af'(a)] = Aw(a), R(a) = Af'(a) +1 -6 = Ap(a) +1 -4, (7)

where 1 > 0 > 0 is the constant depreciation rate of capital. If we consider the CES production

function, the reduced production function can be given by



fla) = A(sa™"+1-— s)_% itn+#0,

= Ad® itn=0,

where 1 > —1 determines the elasticity of input substitution through o =1/(1+n), while 0 < s < 1

governs the share of capital income in production.

As in Schmitt-Grohe and Uribe (1997) and Gokan (2006), at each point in time, the government

finances its constant expenditure through labor income taxes, i.e.,

g= TtQ(at>)\t > 0.

(8)

Using the fact that at the equilibrium k;;; = z; holds, we can easily derive the dynamical system

characterizing equilibrium paths of (k, a;).

ki 1, BUS() ot
kipq = Qa)) = — B(U)) N (—=2e2at )y _ g
t+1 ( t)at (U1) (Q(at)%_g) g

k(205 (&)
Blan) B — g

R(at1)kir1 = uy

1.

3. Steady state existence

A steady state is a pair (k*, a*) such that.

k* BUS (5 )k
k* :A *\ vV —B /\—1 3\a
w (@) a* (1) (Aw (a*) k* — ga*

) — 9,

(10)



L1, RPU ()

Ap (@) +1 =6 = fug g (11)

To simplify the algebra, we follow Cazzavillan and Pintus (2004) and use the parameters A and

B to normalize the steady state.

Proposition 1. Under the assumptions on the utility and production functions, (k*,a*) = (1,1) is
a normalized steady state (NSS) of the dynamic system (9) and (10) if and only if g is not too large,
A*w (1) > g+1, ,BuQ[(—))(l +9g)+1—10] < Uj(1) and lim.—ocUi(c) < #Ug(l), where A* is

w(1)

the unique solution of Ap (1) +1—§ = u, 1{_6 A[is((ll) ]}

Proof. See the Appendix A.1. =
Multiplicity of steady states can arise in our model. For brevity, we just analyze the local

dynamics around the NSS.?

4. Local dynamics analysis

Let us linearize the dynamic system (9) and (10) around the NSS (1,1). We shall define eq and e

as the elasticities of the functions 2(a) and R(a) evaluated at the NSS. In addition, let 6 = %‘1*) =

Q(l) = A*w(l) >g+1, R = Rl(

) Ry = Ry(ch), and R3 = R3(1). Then, we have the following

proposition.

Proposition 2. The linearized dynamics generated by the two-dimensional system (9) and (10)
around the NSS are determined by the determinant D and the trace T of the Jacobian matrix

associated with Eqgs. (9) and (10).

0—1—g g 0—1—g +9€Q—g

= _——— _1 J—
dhrir = [0+ == (B — )k + Bz — 1)~

?Thanks to Yoichi Gokan for pointing this out to us.



I3 g Ry 0—1-g g
dapr = = - 0 Ry — =) }dk
ler|dat i1 {1_R2 (9—g)(1—R2)+1—R2[ + R (R3 9—g)]} : +
R3 989—9 R2 9_1_9 069_9
—~ Oleq — 1) — ———7 d
Yomto—gi-m 1-mite Y R, (st ")lkdail3)

where g = TV99Q(1) = V599 and V59 € (0, 1) is the steady state labor income tax rate. Moreover,

the expressions of D and T are:

1 Oeq —g 9—1—g< 95Q—g)]}
T = ——SR3+——=—Ro|0(eq—1)— —— | R3 + + (14
BT o R e R e e a4
0—1—g g
0 __J
+ Rl (R3 0 — )7
_ feq (1 —I-Rg) (15)
lerl (1 — Ro)

The way to analyze the local stability of the normalized steady state is to study the variation
of the trace T and the determinant D, i.e. the sum and the product, respectively, of the roots of
the characteristic polynomial Q(7) = 72 — T'r + D, in the (T, D) plane when some parameters are
made vary continuously. There is a local eigenvalue which is equal to +1 when 1 —T + D = 0. It is
represented by the line (AC) in Fig. 1. Moreover, one eigenvalue is equal to —1 when 1+7+ D = 0.
That is to say, (T, D) lies on the line (AB). Finally, the two eigenvalues are complex conjugate
of modulus 1, when (7', D) belongs to the segment [BC] of equation D = 1, |T'| < 2. Since both
characteristic roots are equal to zero when both T and D are 0, then, by continuity, they have
modulus less than one if and only if (7}, D) lies in the interior of the triangle ABC, which is defined
by |T| < |1+ D|, |D| < 1. In this case, the steady state is locally indeterminate given that the unique
predeterminate variable is k. If |T'| > |1 + D|, the stationary state is a saddle-point. Finally, in the
complementary region |T'| < |1+ D|,|D| > 1, the steady state is a source.

The diagram below can also be used to study local bifurcations. When the point (7, D) crosses

the interior of the segment [BC|, a Hopf bifurcation will occur. If, instead, the point crosses the line



(AB), one eigenvalue goes through —1. In that case, a flip bifurcation will occur. Finally, when the
point crosses the line (AC), one eigenvalue goes through +1, one expects an exchange of stability
between (1,1) and another steady state through a transcritical bifurcation.

As in Cazzavillan and Pintus (2004), we focus on two parameters, the elasticity of capital-labor
substitution (o) and the relative curvature of the second-period utility function Rz. To be more
precise, we shall first fix the technology, i.e. 0, the elasticities ¢ and cg, as well as R; and Rs,
and make Ry vary continuously in the open interval (0,1). This means that we will consider the
parametrized curve (T'(R2), D(R2)) when Ry lies in the interval (0,1). From the expressions of D
and T given in the above proposition, one sees that (17'(R2), D(Rz2)) describes a half-line A which
starts from the point (Ty(o), Do(0)) for Re = 0, where Tp(o) is the trace in (14) and Dg(o) is the

determinant in (15) when R = 0. In addition, the slope of A is

D'(Ry) feq (1 + R3)
() — -+
TG 010 (1) + 0 Rall S50 — 50+ 4502)

(16)

and does not depend on Rs.

Using the same method as in Cazzavillan and Pintus (2004, p. 464), we express the elasticities
eq and er as functions of the depreciation rate §, the share of capital in total income 0 < s(a) =
ap(a)/f(a) < 1, and the elasticity of capital-labor substitution o(a) > 0. It is easy to find that

s(a) 1—s(a) (17)

Q= and leg| = p(a) @)

o(a)

where p (a) = S(a)a(a)i?l)f(;()a))(l_é) € (0,1] (see Cazzavillan and Pintus 2004, footnote 3 on p. 464).

Moreover, the coordinates of the origin of the half-line A(o) as functions of the elasticity parameter



o are:

1 o(Rs— 7% ) + 7%
To(o) = g4+ 0-179 1 ( )+< ) =

Dy (o) = Se%tf;‘ >0,

where s = s(a*), 0 = 0(a*), p = p(a*) = S(a*)g(as)(a ()19((;(3 sy and o = o(a*). We can easily see
that the the slope of the half-line A(o) is sH(1+FRs) .
i 8 (T gty P
Assumption 2. R3 > ﬁ - 1+9€1*9 = l_ff,is - 1+9_£97NSS. It corresponds to the case of
R Ry

NSS not large. This condition can be met for a

small distortionary labor income tax rates, that is, 7
sufficiently high R3 (if labor supply elasticity is finite), so that the slope of A is positive.?
To understand the main results, it is useful to relate the parameter 6 and 7759 to the consumption—

0(1—7NSS)—1
0

to—wage ratio. It is easy to show that ¢;/Q\ = . From this equation, one can recover the

results by Cazzavillan and Pintus (2004) when 7759 = 0.

If s and 6 are kept fixed and o is regarded as an independent parameter, we find that as o
increases from zero to +oo, the point (Tp (o), Do (0) moves along a flat half-line A;. More precisely,
Ty (o) increases from a finite number to +oo along the flat line (A1), but Dy (o) doesn’t change.
In addition, A(o) pivots rightward and it has a positive slope when o = 0, and horizontal when
o = +00, but the origin (7j (¢) , Do (o) moves to the right along the line A;.

In order to get local indeterminacy, first, we need that Dg(o) < 1, which requires that s and 6
are small enough, i.e., a sufficiently low share of capital in total income and a sufficiently low ratio
of consumption while young to saving (¢t = 6(1 —7V5%) — 1 in the NSS). As Cazzavillan and Pintus
(2004) point out, the latter requirement is crucial to local indeterminacy. Adding endogenous labor

__NSSy_q1 .
income tax rate will be helpful to local indeterminacy since in our case, ¢1/Q\ = w is

3In Lloyd-Braga et al. (2007), they assume that capital externalities are almost zero, s < 1/2, v > 1 and a > o
Yy g Yy Y
(see, assumption 5 in their paper) to ensure that the slope of A is positive.

10



smaller than that in Cazzavillan and Pintus (2004). Second, we should impose other requirements
as in Cazzavillan and Pintus (2004, paragraphs 1 and 2 on p. 466).

Following Cazzavillan and Pintus (2004), we consider the case (I) where Dy(o) < 1, Tp(0) <
1+ Do(0), slopea(c) > slopea(c) and the latter (slopea (o)) is bigger than 1. Here o is the value of
o such that the line A; intersects the line (AC). It is easy to know that the half-line A(o) intersects
the interior of the segment BC for o in (0,0p), where oy is the value of o such that A(o) goes
through C. Then we know that, for all o in (0, o), the half-line A intersects not only the line (AC)
at Ry = Raop, but also the segment BC at Ry = Ropr. When o moves beyond og, A will not cross
the interior of the segment BC, but it can cross the line AC up to ¢ = o7, where o7 is the value of
o such that the slopea (o) is one. When o > o, the slopea (o) is less than one. We provide these
parameters here.*

s+ (1—s)(1-19)
(1—3)9 '

(1= Ropr) Rixy — 258858 — 0 (0) Ronr 25522 + 0 (0) Ron Fa

X (6) RyRs — 2495 1 3 (0) Ry Rop + x (9) RzH (9 —1-9) (Rs - e%g)

Rogp = 1—(1+ R3)6x(0) >0, where x (f) =

og = S

_1_
WhereXl 2—9—6R—1(R3—ﬁ)

g
or =
0—1—
o+ =) (157
$(0—1-9) (9D — ) +50x (0) By +5 (1-0)
T = J ,WhereF1:R3—L.
Fix (9) 0—g
+ 2XOR g\ (0) Ry — 6 11—
Ror = X2 a x () Rs X 0=9 ,WhereX2:«9—1+F1—9 ]%1 g'

Xa + @ [9 (s —0)— '9_}%1_9 ( s0 +0F1)}

YFor how to derive these parameters, see the appendix A.2. in Cazzavillian and Pintus (2004). It means that ou
is the solution of T'(R2m) = 2; or is the solution of slopea(o)= 1; Rom is the solution of D(R2) = 1; Rar solves

11



In fact, four possible dynamics in case (I) are the same as in Cazzavillian and Pintus (Fig. 1-2004,
pp. 463, 466) except that the critical values of the independent parameter o and the bifurcation
parameter Ry are different from those in their model. We summarize these results in the following

theorem.

Theorem 1. Let (a*,k*) = (1,1) be a normalized steady state which is set according to the proce-
dure outlined in proposition 1. Then, under assumptions 1, 2, and those stated in the appendix A.2,
the following holds.

(i) 0 < 0 < @: the steady state (1,1) is a sink for Ry < Rap, undergoes a Hopf bifurcation at Ry
= Ropy, and becomes a source for Ry > Raoy;

(i) @ < 0 < op: the steady state (1,1) is a saddle for Ry < Rar, undergoes a transcritical
bifurcation at Re = Rop, becomes a sink for Ror < Ry < Rop, undergoes a Hopf bifurcation at
Ry = Rop, and becomes a source for Ry > Raop;

(iii) og < o < op: the steady state (1,1) is a saddle for Re < Ror, undergoes a transcritical
bifurcation at Ry = Ror, and becomes a source for Ry > Ror;

(iv) o > or: the steady state (1,1) is a saddle for all Ry in the open interval (0, 1).

Proof. See Appendix A.2. m
We then turn to analyze the case (II) where the origin (75(0), Do(0)) lies outside the triangle

ABC and the slope of the half-line A(o) is steeper than that of the line connecting the origin with

the point C. This means that T(0) > 1+ Dg(0), Do(0) < 1, 1 < Tp(0) < 2 and slopea (0) > 12:%?((8)).
Similar to Cazzavillan and Pintus (2004), we have the same theorem 2 except that the critical values

of the independent parameter o and the bifurcation parameter Ry are different from those in their

model.

Theorem 2. Let (a*,k*) = (1,1) be a steady state which is set according to the procedure outlined

12



in proposition 1. Then, under Assumptions 1, 2, and those stated in the appendix A.3, the following
results hold.

(i) 0 < 0 < op: the steady state (1,1) is a saddle for Re < Rop, undergoes a transcritical
bifurcation at Ry = Rasr, becomes a sink for Ror < Ro < Rop, undergoes a Hopf bifurcation at
Ry = Roy, and becomes a source for Ry > Roy;

(ii) oy < o < op: the steady state (1,1) is a saddle for Ry < Ror, undergoes a transcritical
bifurcation at Ry = Ror, and becomes a source for Ry > Ror;

(iii) o > or: the steady state (1,1) is a saddle for all Ry in the open interval (0, 1).

Perhaps the reader is interested in studying the impact of small labor income tax rates on the
conditions leading to local indeterminacy, as shown in Figure 1 (or Theorem 1). The lemma 1 in
the appendix shows that if 1_7% < # < 01 holds, indeterminacy can arise. Here #; is a critical

value above which local indeterminacy can not arise. The next proposition will show that 6; can be

7_NSS') NSS

increasing in the level of labor income tax rates ( provided that 7 is not too large. Then,

increasing the size of distortionary taxes from zero can enlarge the range of the values of 6 that are

13



compatible with local indeterminacy.

Proposition 3. Under the assumptions of Theorem 1, the critical lower bound, 61 above which

local indeterminacy can not arise, is increasing in the level of labor income tax rates provided that

the distortionary tax rate (V%) is not too large. Moreover, Ry > 111:225 —

0 .
T will be

Ry

met if the utility function in the first period of life is close enough to logarithmic (Ry = 1) and 7V5%
is not too large.

Case: s=0.3 and §=1
15 T T T T

theta0

12 1 1 1 1 1 1 1 1 |
0 0.05 0.1 0.15 0.2 0.25 0.3 035 04 0.45
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Figure 3. The Case: s = 0.3 and § = 1. #; (the vertical axis) is not a monotone function of 7V59,

The following numerical example shows how the share of wage devoted to savings has to be large
for local indeterminacy to arise (6 should be small) and how endogenous labor income tax rates are
helpful to local indeterminacy: this is consistent with recent works, for example, Schmitt-Grohe and
Uribe (1997) and Gokan (2006).5 In particular, Schmitt-Grohe and Uribe (1997) have shown that, in
a standard neoclassical growth model, the indeterminacy condition obtained in their fiscal increasing
returns model has a close correspondence with the one obtained in the productive increasing returns
model of Benhabib and Farmer (1994). However, we show that, in an overlapping generations model
with endogenous labor and consumption in both periods of life, the indeterminacy condition obtained
in our model may also have a close correspondence with the one obtained in the productive increasing
returns model of Lloyd-Braga, Nourry and Venditti (2007): both labor externalities and endogenous
labor income tax rates are helpful to local indeterminacy.®

We illustrate, using numerical examples, our main results that increasing steady state labor
income tax rates may enlarge the range of parameter values (o) associated with multiple equilibria.
To fix ideas and ease comparisons with Cazzavillan and Pintus (2004), we set s = 0.3 and § = 1,
where full capital depreciation is perfectly consistent with the time period implied by the OLG
setting, whereas the chosen value of the capital share in total output is close to the one that Schmitt-
Grohe and Uribe (1997) use. We further assume that 7V°9 can take the values of 0.1, 0.12, 0.14,
0.16 and 0.18. These values can imply the lower and upper bounds on 6 (i.e., 1_7% and 601). The
values of R; and R3 must belong to the relevant intervals defined in lemma 1. And we assume
that Ry = 0.99 and R3 = 0.62.7 Similar to Cazzavillan and Pintus (2004), we can show that total

consumption, including consumption by the old agents, has to be less than 45% of output in the case

SFor a given level of 8, indeterminacy is more likely, the larger the steady state labor income tax rates.
®The reader can compare our indeterminacy result with those in Lloyd-Braga et al. (2007).
"For how to select these proper values of R; and Rs, see the matlab programs which are available upon request.
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of Fig. 1.

Considering the elasticity of capital-labor substitution, we find that the condition o < o, which
is necessary to get endogenous fluctuations, places a upper bound on o. It is easy to find that
o < or. Numerical examples show that o > s and, therefore, that o < s < op. This suggests
that oy may be below the capital share, and that o7 may be above the capital share. In fact, we
illustrate that, irrespective of the values for Ry and R3, o decreases when 6 increases, for a given

NSS

T and; oy increases when 77V5%

increases, for a given 6.8 The former conclusion has already
been found by Cazzavillan and Pintus (2004). While the latter shows that endogenous labor income

tax rates are helpful to local indeterminacy.

og | ™V =01 |V =012 | 7V =014 | V99 =0.16 | 7V5Y = 0.18
0=122| 0215 0.227 0.238 0.249 0.260
0=125| 0.188 0.200 0.212 0.223 0.233
0=130| 0.135 0.148 0.159 0.171 0.181
0=135| 0.071 0.083 0.094 0.105 0.115

Table 1.

We are now in a position to intuitively explain why endogenous labor income tax rates are helpful
to local indeterminacy. Cazzavillan and Pintus (2004) have already shown that when intertemporal
substitution in consumption across periods is introduced, endogenous fluctuations require very low
values of the propensity to consume out of wage income of the young generation (in our model,
(1—7N99)— %) In addition, endogenous fluctuations require elasticities of capital-labor substitution

that are well below the share of capital in total income. We find that (1) for a given 6, adding labor

8 Again, R; and R3 must belong to the relevant intervals defined in lemma 1.
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income tax rates (7V59)

will make the ratio of consumption while young to saving smaller, thus
making sunspots more likely to occur and; (2) for a given , adding tax rates will make the upper
bound on o associated with multiple equilibria (o) larger although this bound is still less than
the share of capital in total income. To be more precise, endogenous fluctuations arise due to the
interaction of two conflicting effects: when the capital stock increases, it leads to an increase in wage
rate and, therefore, an increase in savings which leads the capital stock in the next period to be
higher. However, capital accumulation is followed by a decrease in the real interest rate that will
depress savings and/or capital accumulation. In other words, the initial wage increase will be offset
by a decrease of the real interest rate. In our model, there is one force which tends to strengthen
the conflicting effects of wage and interest rate movements: increasing labor income tax rates makes
smaller the share of consumption out of wage income in the first period of life, thus making the rise

in savings larger. Different from Cazzavillan and Pintus (2006), increasing tax rates can not change

the sensitivity of the interest rate with respect to variations in the capital stock (the elasticity of

s(a)—1

NSS
o(a) )

R with respect to k is ery = p(a) < 0 and does not depend on T Considering these
two reasons, it is expected that the larger labor income tax rates, the higher the impact of the wage
variation on savings (that is, the lower the consumption—to-wage ratio) that is required for cyclical

equilibria to occur.

5. Concluding Remarks

We study a version of Diamond’s OLG model modified to allow for consumption in both periods
and endogenous labor income tax rates. We have shown that local indeterminacy of the steady state
prevails, when income tax rates are not too large, as long as the fraction of young-age consumption
out of wage income is small enough. More importantly, we found that increasing the size of tax

distortions increases the range of values of the consumption-to-wage ratio associated with multiple

17



equilibria. We related this result to the fact that adding labor income tax rates

(7NV59) will make

the ratio of consumption while young to saving smaller, thus making sunspots more likely to occur.

This explains why endogenous income taxes are helpful to local indeterminacy in the OLG model

with first-period consumption and it is also useful to understand why labor income tax rates can

lead to local indeterminacy in the infinite-horizon model (Schmitt-Grohe and Uribe, 1997).
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6. Appendix:

A.1. Proof of Proposition 1
If (k*,a*) = (1,1) is a normalized steady state of the dynamic system (9) and (10), we have the

following: (¢} is the steady state of the first period consumption.)

Aw () =g~ 1= BU) o) = i >0, (D-1)
Ap(1)+1— 6= “51{5[,45?4(%)— - (D-2)

If ¢ is not too large, A > % can make cj larger than zero. It is easy to find that S[Aw (1) —

glua[Ap (1)+1—48] = U4 (1) and the LHS term is an increasing function of A. In order to have a unique

A* satisfying (D-2), we require that S[Aw (1) — glua[Ap (1) +1—=6]| ,_s+1 < Uz (1). It is equivalent to

w(l

—

ﬁuﬂ%(l%—g)%—l—é] < Uj(1). We can easily get B* from (D-1) after we pin down the unique A* from

(D-2). In particular, we can rewrite (D-1) as follows: Aw(lj);g_lU{(Aw(lj)B_g_l) = AXS()S?;IU{(I). It
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is easy to see that Aw(lj)g_g -1 U{(Aw(lj)g_g _1) is a decreasing function of B. In order to have the unique

B*, we should impose the restriction: lime_oclU](c) < S2W=1=9777(1).

Arw(l)—g
A.2. Proof of Theorem 1
T4/ T2-4p 1202
Lemma 1. Let ﬁ <0<0= 5% 1o , where Y = (2—6)(1—5)(1—71\(’3)8)—(213_%;;)5—)(1—3)(1—5)71\755
and ¢ = (175)2(kTNSS)Qzi(_l‘sszgl_;?vj\;ssj)ﬂqyms(175). Moreover, we assume that Ry > R; and
_ = _ 0-1-0x(0)+ —X P —[0(1—TNSS) 1] o8 = oo _
Ry < Ry < Ry, where Ry = s, By = 20 and By =

[6(1—7NV55)—1] (R3*1Zi]%

1+0x(0) (1+Rs) —0— e

), with H(lﬂ_ 5 = Xx(0). Then we have the following results: the origin

(Th(0), Do(0)) lies inside the ABC' triangle and the half line A(o) intersects the interior of the
segment BC at 0 =0 (Tp (0) < 1+ Dg(0), Do(0) < 1). Moreover, we have slopea(0) > slopea(a) >

slopea (o) > slopea(or) = 1.

Proof. Similar to Cazzavillan and Pintus (2004), Do(0) < 1 is satisfied iff 0 < Ry < 1520 =

ﬁ;}, where x (0) = W and p = m. This requires that § < 6 = @ and s <
[9(177.1\155)71](1337 NSs )

To (0) < 1+ Do(0) is satisfied iff Ry > Ry = Hax(e)(HRs)_e_l;gfs with Ry > Rz =
1—+NSS

0—1—x(0) (e—ﬁ)

0500 . Since Ry > 1, we need that Ry < 1, which is equivalent to
0 FNSS
R3 > Rg _ 0—1-— HX(G) + 1_X7—N)SS - [‘9(1 - TNSS) - 1] 1—_,NSS

1+ 0x(0) — 0(1 — 7N59) ’

where 1+0x(6) — (1 — 7V55) > 0. 1+ 0x(0) = 0(1— 7V55) > 0 holds iff § < 6 = =52 =L— It

(1—7NSS)(1—s)—s"

is easy to verify that if 6 > (1_71\,2%, the binding upper bound on 0 is 5, as < 0. Otherwise, if

0 < M%%, the binding upper bound on 6 is 0, as 0>0. In addition, Rs > Eg. Then we have
that Do(0) < 1 and Ty (0) < 1+ Do(0) iff Ry > Ry and R3 < R3 < }:%3, provided that either 6 < 6,

when 6 < W, or 6 < 5, when § > MEW The inequality R3 < Rz < }:23 holds iff
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the polynomial holds.

1—4)?
P1(19> :¢92_T9+1(_7-—N?S'S <0,

W1th¢ _ (1—8) (1— NSS)2 s(1—s)(1— TNSS)+S +8TNSS(1 s) and Y = (2—6)(1—8)(1—TNSS)—28(1—5)—(1—8)(1—5)TNSS'

(1—5)2(1—7N59) (1—s)(1—7N5S)
— Ty /T2 —4¢7 a 13)53
In addition, P;(f) has a root in (ﬁ, 0), which is 61 = 5% . And P;(0) < 0 holds

for all 0 € (—xss NSS,9 ). When § > (1_TN§§)(1_8), 1_71]\,55 <0< 0 < @ can hold for properly chosen
parameters. A numerical example is 7V°° = 0.1, § = 1 and s = 0.3.
Following Cazzavillan and Pintus (2004), it is easy to show that slopea(0) > slopea(T) >

slopea(og) > slopea(or) =1. =

A.3. Proof of Theorem 2.

It needs the following lemma.

vty —a 09
(—-NS5) |
Lemma 2. Let 5 NSS <0< by = , with y = 2

5 and assume that

S
T (1—s)(1—7NSS)
fr— 20— x(0)

. - 1-0x(0) - 5 TNSS
either R3 < Rz = axz(e()), if I,TlNSS <0 <0, or Rg < Rg = = TNSé\;Si] + 1 ~NS5 if 01 <0 < 0.
= 0(1—rN59) 1] (14 R3)8[Rg— —Too5 x0T,
Moreover, we assume that Ry > Ry = oa-") ]{( 2 [ ’ 1_7N2(51:]§§]SV)SSI} I_TNSS}. Then we
(14+R3)0[2—0(1+x(0)+ = —wsg—

have Tp(0) > 1+ Do(0), Do(0) < 1, 1 < Tp(0) < 2 and slopea(0) > 1211;8((8))_ In other words, the

origin (Tp(0), Do (0)) lies outside the triangle ABC and the slope of the half-line A(o) is steeper than

that of the line connecting the origin with the point C.

Proof. We require that R3 < Ry = 1;52%89) in order to get Do(0) < 1. If (7p(0), Do(0)) lies outside

the triangle ABC, it implies that Tp (0) > 1 + Dp(0). This inequality holds iff

[6(1 — 7N59) — 1] (R3 — 1 fziis)

1+ 0x(0) (1 + Rs) — 6 — 20

T

R, <R1=

Y

~ 0—1—x(0) (60— —L<<
with R3 > R3 = X )egd g)l—TNSS)
NSS )

0(1—7N9%)~1|( Rs——"—xgg
o (R Ewss) g g X0 >0, ie., Py (0) =02 —yo+ (1—08)/ (1 —7V55) <

2—0— X( ) ) 1-7NSS
1—7N

. Ri > 0 implies that Ry > Towss. To (0) < 2 iff Ry > R,
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0, where y = 2 — m It is easy to know that the polynomial P» () has one root in

2 4(1_ __NSs\1/2 _
((1 — TNSS)_l ,—i—oo), which is 09 = yH[y?—401 6)é(1 i) and less than 6. This means that if

(1 _ 7_NSS)*1 < 0y < 0, we have Ty (0) < 2.

x(9)
2_0_1_TNSS 7.NSS

Since R; € (0,1), ﬁl < 1 implies that R3 < }:%3 = PN + w53 ﬁ:), is another upper

bound on Rs. Notice that Rs (#) and Rs (0) are decreasing in 6. To be accurate, Rs (0) goes down

from [1— x (1 — 7955)71) /(1 7N55)] / [x (1 = 7955)71) /(1= 755)] to [1 — Bz (62)] /B (62).

whereas ﬁg (0) goes down from +oo to % In order to have a unique € in the interval

((1 —TNSS)_l,Qg) such that ?53 = ?53, we require that ﬁg (02) > lf:—f,zs, or, 0 > % + 7NSS,
which can hold for small 7V59. The unique  satisfying ?{3 = ?{3, is the same #; obtained in lemma
1. As a result, one has }:23 > }:%3, for 0 in ((1 - TNSS)*l,Ol), and ﬁg < ?33, for 6 in (01,02). Put

it differently, when 6 is fixed in ((1 — rNSS )1, 92), there is only one upper bound on R3, which is

either l:23, when 6 € ((1 - NS5 =1 01), or }:23, when 0 € (601,02).

=l

Another condition is that slopea (0) > (1 — Dy(0))/ (2 — Ty (0)). It implies that Ry > Ry =
0(1-7V5S)—1){ (14 Ry)0| Ry— oo — @] 4 1 =
i) ]{( ) [ ° 1TNE(SI:N§§V)SSJ 1*TNSS}. It is easy to see that, as long as R3 < R3 =

(14+R3)0[2—0(14+x(0)) |+ =7~z —
6
2—6— 1351\7)55 ~NSS

=855y —1] T T-;Ns8) ﬁl < 1. Furthermore, ﬁl > ﬁl holds for 6 € ((1 —TNSS)*l,Og). The

reason is that sign(ﬁl - }:%1) :Sign((Q —0— l_XT(JQV)SS> - (Rg - ﬁ:—i;) 6(1— TNSS) —1]). If the

— _p__ x(9) g = E
conditions Dg(0) < 1 and R3 < R3 = 9(1_7}\755]\;3_31 + 111:}323 hold, Ry > R;. It follows that Ry > Ry

implies that Tp(0) < 2 and slopea(0) > 12:%)((8)) hold as long as Dy(0) < 1 and R3 < R hold. We

are done. ®m
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