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1 Introduction

Long-range dependence in the financial time series has been discussed in plenty of

research papers (e.g. [1], [2], [3], [4], [5], [6], [7], [8] and [9]). However, majority of the

papers interpret the results on the basis of simple comparison of estimated self-similarity

parameter – Hurst exponent H – with its asymptotic limit of 0.5. Hurst exponent of 0.5

indicates two possible processes – either independent [10] or short-range dependent process

[11]. If 5.0H , the process has significantly positive correlations at all lags and is said to be

long-range dependent with positive correlations [12] or persistent [13]. On the other hand, if

5.0H , it has similar properties to the previous case as it has significantly negative



correlations at all lags and the process is said to be long-range dependent with negative

correlations [12] or anti-persistent [14].

However, the estimates for pure Gaussian process N(0,1) can strongly deviate from the

limit of 0.5 ([15] and [1]). Moreover, the most used methods are biased by short-range

dependence ([16] and [17]) and there is only one method which is frequently used for the time

series with short-range dependent processes present – modified rescaled range. Therefore, we

present our original simulations and estimates for the confidence intervals and expected

values of Hurst exponent for rescaled range analysis [18] and modified rescaled range [17]

and apply the results on the time series of Dow Jones Industrial Average.

In Section 2, we present and describe both techniques in detail. In Section 3, we show

results of Monte Carlo simulations for time series lengths from 512 to 131072 observations

and uncover the significant difference between estimated results for each method which

enables us to distinguish between short-range and long-range dependence in the underlying

process. In Section 4, we show that returns of DJI between 1944 and 2009 did not show any

long-range dependence. On the other hand, the measures of volatility – squared and absolute

returns – show strong persistence even when cleared from the potential short-range

dependence.

2 Hurst exponent estimation methods

Rescaled range analysis was developed by Edwin Hurst while working as an engineer

in Egypt [18] and was later applied to financial time series by Mandelbrot [19]. In the

procedure, one takes continuous (logarithmic) returns of the time series of length T and

divides them into N adjacent sub-periods of length υ while TN  . Each sub-period is

labeled as In with Nn ,...,2,1 . Moreover, each element in In is labeled rk,n with ,...,2,1k .

For each sub-period, one calculates new series of accumulated deviations from the arithmetic

mean values (called profile) as
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where nr is an arithmetic mean of returns of sub-period In.

The procedure follows in calculation of the range, which is defined as a difference

between maximum and minimum value of profile Xk,n, and standard deviation of the profile

for each sub-period. Each range
nIR is standardized by corresponding standard deviation

nIS

and forms the rescaled range as
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The process is repeated for each sub-period of length υ and we arrive at the average

rescaled range
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The length υ is increased and the whole process is repeated. We use the procedure

used in [15], so that we use the length υ equal to the power of a set integer value (the method

is based on the theory of multiplicative cascades which are used for a construction of fractal

time series, for more details see [20] and [21]). Thus, we set a basis b and a maximum power

pmax so that we get sub-periods of length max2 ,...,, p
bbb and Tb p max . Moreover, we set a

minimum power pmin so that we get max1minmin ,...,, ppp
bbb

 .

We get average rescaled ranges (R/S)υ for corresponding sub-interval lengths υ.

Rescaled range then scales as

  H
cSR  / , (2.4)

where c is a positive finite constant independent of υ ([22] and [3]).

The linear relationship in double-logarithmic scale indicates the power scaling [15].

To uncover the scaling law, we use a simple ordinary least squares regression on logarithms

of each side of the previous equation. We suggest using logarithm with basis equal to b. Thus,

we get

   bbb HcSR loglog/log  , (2.5)

where H is Hurst exponent.

As the R/S analysis is known for a long time, it has been a subject to a lot of testing

and criticism. The method is mostly criticized for its problematic use for heteroskedastic time

series [3] and for the series with short-term memory ([23] and [24]).

The complicated use for heteroskedastic time series which is due to use of sample

standard deviation together with a filtration of a constant trend makes R/S analysis sensitive

to non-stationarities in the underlying process. M-R/S presented by Lo [17] differs only

slightly from the original R/S and that is in the calculation of
nIS . Nevertheless, it deals with

both heteroskedasticity and short-term memory by modified definition of standard deviation.

The new equation is defined with a use of auto-covariance γ of the selected sub-interval In up

to the lag ξ as follows
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Thus, R/S turns into a special case of M-R/S with 0 [25]. The most problematic

and also the crucial issue of the new standard deviation measure is the number of lags which

are used for its estimation [26]. If the chosen lag is too low, it omits lags which may be

significant and therefore still biases estimated Hurst exponent by the short-term memory in

the time series. On the other hand, if the used lag is too high, the finite-sample distribution

deviates significantly from its asymptotic limit [27].

Majority of authors does not deal with the optimal lag choice and set several different

lags which they use and examine the differences of the results (e.g. [28] and [29]).

Nevertheless, there are two estimators of optimal lag suggested in the literature. The first one

proposed by Lo [17] is the more complicated and still the most used one. The optimal lag is

based on the first-order autocorrelation coefficient  1̂ :
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The second one by Chin [30] is based on the length of the sub-interval only and sets

the optimal lag as
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Note that optimal lag ξ*
is recalculated for each length of specific sub-period υ.

Optimal lags for different sub-period lengths are shown in Chart 2-1.

[CHART 2-1 AROUND HERE]

The method based on serial autocorrelations differs significantly with the changing

correlations. In the case of low serial autocorrelations around 0.1, ξ*
is lower than the other

method up to 162 . However, if serial autocorrelation is doubled to 0.2 or even increased to

0.3, the differences between suggested lags ξ*
become significant. Autocorrelations of higher

magnitude are rarely present in the financial time series [31]. Couillard & Davison [32] and

Teverovsky, Taqqu & Willinger [27] show that M-R/S is biased towards rejecting any long-

term memory in the process when high number of lags is used. Moreover, method of Lo [17]

sets the optimal lag correctly only if the underlying process is AR(1) [33]. It implies that in



the case of significant short-term memory in the process, the method of Lo would lead to

biased estimates of H. Moreover, if the short-term memory is not significant or low, the

method of Lo does not significantly differ from the method of Chin. It is visible from Chart 2-

1 that for sub-period lengths up to 500, there is no difference between both methods with the

autocorrelation of 0.2 and only a difference of one lag for the autocorrelation of 0.3.

Therefore, the use of rather complicated version with serial autocorrelations does not differ

significantly for the most used time series lenghts. Furthermore, for the purposes of

simulations which are performed in Section 3.2, the use of the method of Lo would not lead

us to strong results as the first order auto-correlation of an independent process is equal to

zero, the suggested optimal lag would be zero as well and M-R/S would turn to R/S. Hence,

we stick to the method of Chin [30].

3 Finite sample properties

3.1. R/S analysis

For the R/S analysis, we depict the results presented in recent research papers ([32],

[15] and [1]) and then, we turn to the results of our simulations. Note that we provide such

division for R/S solely as there are only several papers concerning with finite sample

properties of M-R/S.

3.1.1. Recent results

R/S analysis has one significant advantage compared to the other methods – as it is

known and tested for over 50 years, the methods for testing have been well developed and

applied [34].

The condition for a time series to reject long-term dependence is that 5.0H .

However, it holds only for infinite samples and therefore is an asymptotic limit. The

correction for finite samples is thoroughly tested in [32]. There are two methods used and

both are based on estimating theoretical rescaled ranges for specific sub-intervals lengths.

The first method is the one of Anis & Lloyd [35], which we note AL76, and states the

expected value of rescaled range as
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Peters [1] proposes “empirical correction”, which we note P94 and defines expected

rescaled range as
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The author of [1] argues that AL76 overestimates rescaled ranges for small υ. That is

why    212  was added into equation to make it fit better the real data for small υ.

Moreover, the gamma functions   were substituted by 2 as when beta function   is

used as a substitute of gamma function and Stirling’s approximation is applied, Peters obtains

      2221  . It is needed to mention that Peters used an approximation of an

approximation when stating the equality. The exact application of Stirling’s approximation

yields       12221   [36].

However, Couillard & Davison [32] tested the assertion and came up with different

results – AL76 estimates rescaled range for small samples ( 500 ) much more accurately

and insignificantly underestimates rescaled range for large samples ( 500 ) compared to

P94. Authors also tested the asymptotic standard deviation of H (we use the same

notation  H̂ ) which is essential for hypothesis testing. They argue that the Peters’ statement

in [1] that   TH 1ˆ  is again only an asymptotic limit and is significantly biased for finite

number of observations and come to new estimate based on simulations up to 10000T . The

estimate states that standard deviation of H behaves as   31ˆ TeH  .

Unfortunately, Couillard & Davison [32] only tested the estimators up to 1000

and standard deviations up to 10000T . However, the time series are often much longer.

Therefore, we present the results of our original simulations in following subchapter.

3.1.2. Original results

We performed original tests for time series lengths from 92512 T up to

172131072 T . The lengths of the time series were chosen with respect to the fact that the

time series of lower lengths were shown to be rather volatile [15]. The need for an estimator

of a standard deviation of Hurst exponent and the exponent itself is much more urgent for

hypothesis testing than the estimators of rescaled ranges. Therefore, the simulations are

performed for  HE and  H̂ only.



All steps of R/S analysis on 10000 time series drawn from standardized normal

distribution  1,0N for 51229 T up to 131072217 T were performed.  HET and

 HT̂ were estimated for each T. Hurst exponent was estimated by log-log regression

according to the presented procedure. Averaged rescaled ranges applied in the regression were

the ones for 24 22  T . The logic behind this step is rather intuitive – very small scales can

bias the estimate as standard deviations are based on very few observations; on the other

hand, large scales can bias the estimate as outliers or simply extreme values are not averaged

out [1].

Nonetheless, R/S estimators were tested against empirically obtained  HET . We

compared the simulated H with the ones estimated by AL76, P94 and corrected P94

procedure which is based on exact Stirling’s approximation. We note the corrected procedure

as P94c further on. AL76 contained gamma functions up to 25628  and approximation

for higher ones as gamma function for high values of υ can still cause problems to modern

analytical softwares.  HET was obtained from rescaled ranges by log-log regression

according to the power law of R/S analysis in Section 2.

The results for estimated H based on AL76, P94 and P94c are summed in Table 3-1.

[TABLE 3-1 AROUND HERE]

We can see that all estimates are converging to 0.50 with increasing T which is as

expected. Note that we don’t get very close to asymptotic H even for high T. However, we

can’t really say much about estimated Hurst exponents without the simulations.

The results for  HET ,  HT̂ and corresponding descriptive statistics together with

Jarque-Bera test [37] for normality are summed in Table 3-2, probability functions are

showed in Chart 3-1a.

[TABLE 3-2 AROUND HERE]

[CHART 3-1 AROUND HERE]

The estimates of Hurst exponent are not equal to 0.5 as predicted by the asymptotic

theory. Therefore, one must be careful when accepting or rejecting hypothesis about long-

term dependence present in time series solely on its divergence from 0.5. This statement is



most valid for short time series. Chart 3-2 presents the results together with estimations of H

based on AL76, P94 and P94c. However, the Jarque-Bera test rejected normality of Hurst

exponent estimates for time series lengths of 512, 65536 and 131072 and therefore, we should

use percentiles rather than standard deviations for the estimation of confidence intervals [15].

Nevertheless, the differences for mentioned estimates not normally distributed are only of the

order of the tenths of the thousandth and therefore, we present confidence intervals based on

standard deviations for R/S.

[CHART 3-2 AROUND HERE]

[CHART 3-3 AROUND HERE]

In Chart 3-3, we present the estimated confidence intervals for 90%, 95% and 99%

two-tailed significance level. From the chart, we can see that all shown confidence intervals

are quite wide for short time series. Even if time series of 512 observations yields H equal to

0.65, we can’t reject the hypothesis of an independent process even at 90% significance level.

Specific values are presented in Table 3-3. The table shows that AL76 outperforms (measured

by mean squared error - MSE) both P94 and P94c. Interestingly, P94c strongly outperforms

P94. Nonetheless, we suggest AL76 for expected value of H for different T than we have

tested here.

[TABLE 3-3 AROUND HERE]

Standard deviations of Hurst exponent  HT̂ were also tested and compared with the

estimations of Peters [1] and Couillard & Davison [32]. Just for reminder, authors propose

that   TH 1ˆ  and   31ˆ TeH  , respectively. Chart 3-4 shows the differences between

predicted and simulated values.

[CHART 3-4 AROUND HERE]

Both estimators underestimate expected standard deviation  HT̂ . The estimator for

infinite sample underestimates  HT̂ more strongly. Therefore, we present new estimate of



standard deviation, which is presented in Chart 3-4 as a solid line, as   3.01ˆ TH   .

Comparison of methods together with MSE is presented in Table 3-4.

[TABLE 3-4 AROUND HERE]

New method for estimation of expected standard deviation of Hurst exponent is three

times more efficient than one of Couillard & Davison [32] and fifteen times more efficient

than one of Peters [1] and therefore, we suggest it for estimation of  HT̂ for any T from the

tested interval and based on same procedure
1
.

Moreover, we have shown that a combination of a minimum scale of 16 trading days

with a maximum scale of a fourth of the time series length yields Hurst exponent value which

is very close to all AL76, P94 and P94c methods with standard deviations almost twice lower

than those of Weron [15]. Therefore, it implies that omitting of high scales is more important

and efficient than omitting of scales of 16 and 32 trading days for R/S analysis.

As an implication, we propose AL76 method for an estimation of expected value of H

with our estimate of standard deviation for a construction of confidence intervals for the

application on time series. Let us follow with M-R/S.

3.2. M-R/S analysis

M-R/S analysis is rather different from R/S analysis when the applications are

compared. R/S analysis is usually based on estimation of Hurst exponent itself [18]. On the

other hand, only V statistics, defined as

   SRV / , (3.3)

is usually constructed for a specific investment horizon (scale in our case) and compared to

critical values constructed by Lo [17] in the case of M-R/S. The same procedure is then

applied in several research papers – e.g. [38], [39], [11] and [27]. However, the efficiency of

critical values for V statistics of Lo [17] are criticized by Teverovsky, Taqqu & Willinger [27]

as they tend to reject long-range memory more frequently than expected. Morever, the

1
Different procedure can yield rather different results. For example, Weron [15] estimates Hurst exponent using

rescaled ranges for scales of at least 50 trading days but does not restrict scales from the top which results in

standard deviations almost twice a value of estimates presented in this thesis. Furthermore, the author proposes

the estimates for the time series length of 256 and shows 95% confidence intervals which are almost equal

extreme values of 0.2 and 0.8 for lower and upper confidence interval for the null hypothesis of independence.

This implies that if the same procedure is used for the real world time series of a length of 256 trading days, the

interpretation is very close to imposible.



estimates of V statistics and its critical values are hard to compare with estimates for H based

on R/S. To make the results robust, we take the same path as for R/S and simulate the same

random time series. We again simulated Hurst exponent for 10000 random time series drawn

from standardized Gaussian distribution for minimum time series length of 2
9

and maximum

one of 2
17

. The minimum and maximum scales are set accordingly to R/S. Unfortunately,

there are no theoretical estimates of modified rescaled range itself and therefore, we must

stick to simulated estimates only. Note that we use the method of Chin [30], which was

presented in Section 2, for estimation of optimal lag as it is the only method which bases the

optimal lag on sub-period length only compared to the method of Lo [17] which is based on

autocorrelations which would imply zero optimal lag and would turn M-R/S into R/S and the

simulations would be of no additional information.

The descriptive statistics for simulated random time series are summed in Table 3-5.

There are several interesting results. The estimates of H based on M-R/S are lower than those

based on R/S. This finding suggests that one must be cautious when making conclusions

based on comparison of Hurst exponents based on those two methods only. Moreover,

standard deviations of estimates based on M-R/S are lower than the ones of R/S method and

therefore, the estimates are more stable. On the other hand, distributions of Hurst exponent

estimates are not normal for almost all lengths of the time series and therefore, we must stick

to percentiles rather than standard deviation for the estimation of confidence intervals. The

distributions are illustrated in Chart 3-5.

[TABLE 3-5 AROUND HERE]

[CHART 3-5 AROUND HERE]

As the simulated estimates are not normally distributed, we do not present any fits for

estimated standard deviation as their use would not be of any help. Nevertheless, we present

the confidence intervals based on percentiles together with average simulated values for Hurst

exponent for M-R/S in Chart 3-6.

[CHART 3-6 AROUND HERE]

The most obvious result is the fact that the estimates of M-R/S are lower than those of

R/S. The difference is more profound for upper confidence interval and is very broad at lower



scales which in turn shows that R/S overestimates H much more than M-R/S while the

statement is more valid for lower scales. For graphical comparison, we present Chart 3-7

which shows 95% confidence intervals for both R/S and M-R/S.

[CHART 3-7 AROUND HERE]

We provide expected value of H together with estimates for 90%, 95% and 99% two-

tailed confidence intervals:
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Expected Hurst exponent decays rather slowly and does not reach a value of 0.50 up to

very high time series lengths. Nevertheless, we propose the use of above mentioned estimates

for the detection of significant long-term memory with short-term memory present as well

and the usage of both R/S and M-R/S for comparison.

Note that possibility of R/S analysis to be biased by short-term memory process is

actually an advantage of the method since H equal to 0.5 can mean either independent or

short-term dependent process. Therefore, H based on R/S which is out of confidence intervals

only suggests that the process is dependent since short-term memory overestimates H [17]. If

R/S analysis could not be biased by short-term memory process, it would be impossible to say

whether an estimate of H=0.5 means independence or short-term dependence, it would only

reject long-term memory of the process. However, the use of both R/S and M-R/S enables us

to distinguish between the two types of memory. If both methods show significant

dependence, the process is long-term dependent. If R/S analysis shows significant dependence

and M-R/S analysis does not, the process is short-term dependent. If R/S analysis shows no

significant dependence the process is independent. If we use R/S and M-R/S separately, we

can arrive at ambiguous results as R/S analysis can only tell us that the time series is either

not long-term dependent or not independent and M-R/S analysis can only tell us that either

the time series is not long-term dependent or it is. However, the rejection of long-term



dependence on the basis of M-R/S would still leave us with two very different options –

independence or short-term dependence.

4 Application

We apply the estimated confidence intervals on the time series of Dow Jones

Industrial Average (DJI). The time series lengths chosen range from 512 to 16384 trading

days between 28.3.1944 and 28.5.2009. As daily returns do not ussually exhibit short-term

memory, we test squared returns and absolute returns as measures of volatility as they were

already shown to exhibit strong autocorrelations [31] and therefore are ideal data to test

whether the underlying process is short-range dependent, long-range dependent or

combination of both. The results are presented in Table 4-1; confidence intervals are shown in

Chart 4-1, Chart 4-2 and Chart 4-3.

[TABLE 4-1 AROUND HERE]

[CHART 4-1 AROUND HERE]

[CHART 4-2 AROUND HERE]

[CHART 4-3 AROUND HERE]

Returns of DJI are independent for all time series lengths which was expected as it

was shown in majority of research papers (e.g. [2] and [3]). However, measures of volatitlity

show quite strong implications about long-range dependence. Even when the series were

filtered from basic short-range dependence, the evidence of peristence remains. Nevertheless,

the differences between estimates of R/S and M-R/S are higher than for the simulated time

series which implies that there is short-range dependence present in the underlying process as

well as long-range dependence. Moreover, the results suggest that dependence of any kind is

more prevalent for the absolute returns when compared with squared returns as the measure of

volatility.
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Chart 2-1 Comparison of different optimal lags for M-R/S

“Lo0.1”, “Lo0.2” and “Lo0.3” stand for the first method with serial

autocorrelations 0.1, 0.2 and 0.3, respectively, and “Chin” stands for the second

method.

Chart 3-1 Distributions of simulated Hurst exponents
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Chart 3-1: (a) R/S, (b) M-R/S: Charts show distributions of simulated Hurst exponents. For each time series length,

10000 simulations have been run with minimum scale of 16 and maximum scale of one fourth of the time series length.

Chart 3-2 Predicted and simulated Hurst exponent for R/S
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Chart 3-3 Confidence intervals for R/S
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Chart 3-4 Standard deviation of Hurst exponent for R/S
“simulated SD” marks standard deviations based on our simulations, “E(SD) – IS”

stands for an expected standard deviation of an infinite sampe from Peters (1994),

“E(SD) – FS” stands for an expected standard deviation of a finite sample from

Couillard & Davison (2005) and “linear fit” marks the ordinary least squares fit on

double logarithmic scale.



Chart 3-5 Confidence intervals and expected values of simulated Hurst exponents based on M-R/S
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Chart 3-6 Comparison of 95% confidence intervals of simulated Hurst exponents based on R/S and M-R/S
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Chart 4-1 Results for DJI returns for R/S and M-R/S with 90% confidence intervals
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Chart 4-2 Results for DJI squared returns for R/S and M-R/S with 99% confidence intervals
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Chart 4-3 Results for DJI absolute returns for R/S and M-R/S with 99% confidence intervals
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Table 3-1 Comparison of Anis & Llloyd’s and Peters’ formula for long series

T AL76 P96 P96c

512 0,5686 0,5992 0,5858

1024 0,5611 0,5833 0,5729

2048 0,5513 0,5708 0,5624

4096 0,5455 0,5607 0,5540

8192 0,5411 0,5525 0,5470

16384 0,5361 0,5458 0,5412

32768 0,5318 0,5402 0,5363

65536 0,5282 0,5356 0,5322

131072 0,5254 0,5316 0,5287

Table 3-2 Descriptive statistics of simulated of H for R/S

512 1024 2048 4096 8192 16384 32768 65536 131072

mean 0,5763 0,5647 0,5570 0,5494 0,5430 0,5380 0,5338 0,5296 0,5267

SD 0,0551 0,0404 0,0310 0,0246 0,0199 0,0162 0,0138 0,0118 0,0102

skewness 0,0104 0,0003 -0,0231 -0,0316 -0,0223 -0,0331 -0,0329 0,0068 -0,0762

excess kurtosis -0,1316 0,0730 -0,0595 -0,0567 0,0220 -0,0271 0,0136 -0,1108 0,0237

JB statistic 7,4569 2,1800 2,3895 3,0314 1,0196 2,1440 1,8737 5,2405 9,9080

p-value 0,0240 0,3362 0,3028 0,2197 0,6006 0,3423 0,3919 0,0728 0,0071

Table 3-3 Simulated Hurst exponents compared with predicted ones for R/S

512 1024 2048 4096 8192 16384 32768 65536 131072 MSE

E(H) 0,5763 0,5647 0,5570 0,5494 0,5430 0,5380 0,5338 0,5296 0,5267

Upper CI 0,6843 0,6438 0,6178 0,5977 0,5820 0,5698 0,5608 0,5528 0,5466

Lower CI 0,4684 0,4856 0,4962 0,5011 0,5040 0,5062 0,5068 0,5065 0,5069

AL76 0,5686 0,5611 0,5513 0,5455 0,5411 0,5361 0,5318 0,5282 0,5254 0,000015

P96 0,5992 0,5833 0,5708 0,5607 0,5525 0,5458 0,5402 0,5356 0,5316 0,000160

P96c 0,5858 0,5729 0,5624 0,554 0,547 0,5412 0,5363 0,5322 0,5287 0,000028



Table 3-4 Comparison of standard deviations for R/S

512 1024 2048 4096 8192 16384 32768 65536 131072 MSE

mean 0,5763 0,5647 0,5570 0,5494 0,5430 0,5380 0,5338 0,5296 0,5267

SD 0,0551 0,0404 0,0310 0,0246 0,0199 0,0162 0,0138 0,0118 0,0102

E(SD) – IS 0,0442 0,0313 0,0221 0,0156 0,0110 0,0078 0,0055 0,0039 0,0028 0,000077

E(SD) – FS 0,04598 0,0365 0,02897 0,02299 0,01825 0,01448 0,0115 0,00912 0,00724 0,000015

E(SD) - AFS 0,04899 0,03979 0,03232 0,02625 0,02132 0,01732 0,01407 0,01143 0,00928 0,000005

Table 3-5 Descriptive statistics of simulated of H for M-R/S

512 1024 2048 4096 8192 16384 32768 65536 131072

mean 0,5393 0,5365 0,5337 0,5304 0,5278 0,5245 0,5223 0,5198 0,5182

SD 0,0485 0,0360 0,0284 0,0233 0,0192 0,0161 0,0139 0,0117 0,0101

skewness -0,1088 -0,1048 -0,0393 -0,0693 -0,0824 0,0061 -0,0619 -0,0077 -0,0317

excess kurtosis 0,1919 0,0933 -0,0930 0,1823 0,0068 -0,0187 0,0282 0,1272 -0,0317

JB statistic 34,9582 21,8861 6,2216 21,7428 11,3207 0,2170 6,7039 6,7651 2,1094

p-value 0,0000 0,0000 0,0446 0,0000 0,0035 0,8972 0,0350 0,0340 0,3483

Table 4-1 Results for returns, squared returns and absolute returns of DJI

R/S M-R/S R/S M-R/S R/S M-R/Stime series
length

date
DJI DJI^2 |DJI|

512 17.5.2007 - 28.5.2009 0,57959 0,57008 0,78575 0,64679 0,8726 0,69091

1024 4.5.2005 - 28.5.2009 0,52382 0,50653 0,79564 0,69061 0,85555 0,72549

2048 4.4.2001 - 28.5.2009 0,54155 0,52541 0,79852 0,69347 0,84432 0,72605

4096 24.2.1993 - 28.5.2009 0,54208 0,53943 0,78574 0,67812 0,83834 0,71652

8192 10.12.1976 - 28.5.2009 0,53114 0,5285 0,78726 0,68649 0,8658 0,74884

16384 28.3.1944 - 28.5.2009 0,55062 0,54396 0,77972 0,68452 0,83769 0,73325

bold italics values show significance at 99% level of significance, bold values show significance at 95% level of
significance


