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Abstract

Given a random sample from a parametric model, we show how indirect inference estima-
tors based on appropriate nonparametric density estimators (i.e., simulation-based minimum
distance estimators) can be constructed that, under mild assumptions, are asymptotically
normal with variance-covarince matrix equal to the Cramér-Rao bound.

1 Introduction

Suppose we observe a random sample X1; : : : ; Xn from a distribution P , and we are in the
classical situation where one maintains a parametric model M =fP (�) : � 2 �g of probability
measures P (�), indexed by the set � � R

b, for statistical inference. Under the assumption
of correct speci�cation of the parametric model, i.e., P = P (�0) for a (unique) �0 2 �, the
maximum likelihood estimator (MLE) is a natural estimator of �0 (as well as of P (�0)), since it
is asymptotically e¢cient under standard regularity conditions.
There are several reasons, however, why maximum likelihood might nevertheless not be the

method of choice, and alternatives, that ideally are also asymptotically e¢cient, are of interest.
A �rst such reason is rather classical (e.g., Huber (1972), Beran (1977), Millar (1981) Donoho

and Liu (1988), Lindsay (1994)) and comes from robustness considerations: A good estimator for
�0 should be robust against misspeci�cations ofM. A lesson from the above-mentioned literature
is the following: If one wants an estimator of �0 that is robust against perturbations of P (�0) in
some metric �(�; �), then one should rather use �minimum distance estimators� of the following
form: if ~Pn is a suitable (typically nonparametric) �-consistent estimator of P , estimate � by the
minimizer over � of

Qn(�) := �( ~Pn; P (�)): (1)

Under several assumptions, Beran (1977) showed the interesting result that, if � is the Hellinger-
distance, and if ~Pn is some kernel density estimator, such minimum-distance estimators are not
only robust, but actually simultaneously asymptotically e¢cient, so that they outperform the
MLE in this sense. We will discuss the asymptotic e¢ciency aspect of his result in more detail
below.
A second, more practical reason against the use of the MLE that has arisen in recent appli-

cations in econometrics and biostatistics is related to the fact that in these applications analytic
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expressions for the densities in the parametric model, and hence for the likelihood function, are
not available (or intractable for numerical purposes). For example, the data may be modeled by
an equation of the form Xi = g("i; �0), but the implied parametric density may not be analyti-
cally tractable, e.g., because g is complicated or "i is high-dimensional. The same problem occurs
naturally also in estimation of dynamic nonlinear models including stochastic di¤erential equa-
tions, we refer to Smith (1993), Gourieroux, Monfort and Renault (1993), Gallant and Tauchen
(1996), Gallant and Long (1997) and the monograph Gourieroux and Monfort (1996) for several
concrete examples. This problem has led to a growing literature about so-called indirect infer-
ence methods, where other estimators than the MLE are suggested, often based on simulations,
see the just mentioned references and Jiang and Turnbull (2004). From a conceptual point of
view, the main idea behind the indirect inference approach can be phrased as follows:

1. For each � 2 �, simulate a sample X1(�); :::; Xk(�) of size k from the distribution P (�)
(which is often possible in the examples alluded to above, e.g., by perusing the equations
de�ning the model).

2. Based on each simulated sample as well as on the true data, compute estimators ~Pk(�)
and ~Pn in a not necessarily correctly-speci�ed but numerically tractable auxiliary model
Maux. [For example, by maximum likelihood ifMaux is �nite-dimensional.]

3. Choose a suitable metric � onMaux, and estimate �0 by minimizing over � the objective
function

Qn;k(�) := �( ~Pn; ~Pk(�)): (2)

In most of the indirect inference literature, the auxiliary modelMaux is also �nite-dimensional
(so that one in fact estimates a �nite-dimensional parameter in Step 2 rather than the probability
measure directly), and the resulting procedure can be shown to be consistent and asymptotically
normal (under standard regularity conditions, see Gourieroux and Monfort (1996)). However,
the procedure is asymptotically e¢cient only if Maux happens to be correctly speci�ed. This
assumption is certainly restrictive and often unnatural if Maux is of �xed �nite dimension.
Therefore Gallant and Long (1997) suggested that choosing Maux with dimension increasing
in sample size should result in estimators that are asymptotically e¢cient, the idea being that
this essentially amounts to choosing an in�nite-dimensional auxiliary modelMaux for which the
assumption of correct speci�cation is much less restrictive.
In the present paper we show in some generality that indirect inference estimators based on

suitable nonparametric estimators ~Pn and ~Pk(�) with common choices for the tuning parameters
(�sieve�-dimensions), including rate-optimal choices, are asymptotically e¢cient in the sense that
they are asymptotically normal with asymptotic variance equal to the Cramér-Rao bound. To the
best of our knowledge, no proof of this fact was known before, although there are some related
results that need mentioning. We comment on the literature in some detail below, but �rst wish
to discuss the main ideas behind our results. [Robustness issues, misspeci�cation ofM, as well
as uniformity in the asymptotic normality result are not treated explicitly in this paper; for the
latter two issues in a related context see Gach (2009).]
From the discussion so far it transpires that indirect inference estimators from (2) are min-

imum distance estimators, with the important (and nontrivial) modi�cation that P (�) in (1)
is replaced by an estimator based on simulations from P (�). It is therefore of interest to �rst
brie�y revisit Beran�s (1977) asymptotic e¢ciency result: For simplicity, consider the Fisher-
metric �F (f; g)

2 :=
R
(f � g)2p�10 , where p0 is the density of P , instead of the Hellinger distance.

[Note that the Fisher-metric is closely related to the Hellinger distance when f and g are near

p0.] If �̂n is the minimizer of Qn in (1), then, after a suitable Taylor expansion, asymptotic
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e¢ciency of
p
n(�̂n� �0) essentially reduces to proving two separate results: The �rst is to prove

asymptotic normality for the gradient of (1) at �0, namely

p
n

Z
s(�0)d( ~Pn � P (�0)); (3)

where the �in�uence function� s(�0) equals r�p(�0)p�10 . Note that s(�0) coincides with the
e¢cient in�uence function in this problem, showing that � = �F is a natural choice. The
second step is to control the remainder term in the Taylor expansion, which essentially requires
convergence of ~Pn to P = P (�0) (in the sense of L

p-convergence of the respective densities for
certain values of p). Beran (1977) implicitly proved these two results under relatively restrictive
conditions if ~Pn is a kernel density estimator with certain bandwidths, and if � is the Hellinger
metric. It is typically not sensible (and for the most interesting metrics � in fact not possible)
to take ~Pn to be the empirical measure itself, but rather ~Pn should be some smoothed version
of it. In this case, one cannot directly apply a standard central limit theorem to (3). However,
recent results in empirical process theory (Nickl (2007), Giné and Nickl (2008, 2009b)) establish
exactly such limit theorems for various density estimators. Furthermore, these limit theorems
also hold for density estimators that simultaneously deliver optimal convergence rates in Lp-type
loss functions, which is potentially relevant for good control of the remainder term. (We should
note that this simultaneous optimality property is related to what Bickel and Ritov (2003) label
the �plug-in property� of the density estimator ~Pn, cf. also Section 3 in Nickl (2007) for more
discussion.) Using similar methods we �rst prove a Beran-type result (Theorem 2), under quite
weak (if not sharp) conditions, for the case where � = �F (but with the unknown p0 replaced by
an estimator), and where the underlying nonparametric estimator is based on a L2-projection of
the empirical measure onto spaces of piecewise polynomials spanned by dyadic B-splines.

Once asymptotic normality of the minimum distance estimator in (1) is established, the
question arises how the simulation step in (2) should be approached. Here two proof strategies
arise:

1. The �rst method is to show that the objective function Qn;k with simulations is stochasti-
cally close, uniformly over�, to the objective functionQn where no simulation is performed.
If

sup
�2�

jQn;k(�)�Qn(�)j (4)

has a su¢ciently fast rate of convergence to zero (in probability), then it is not di¢cult to
show, using a result from Gach (2009), that the asymptotic distribution of the simulated
indirect inference estimator obtained from minimizing (2) is the same as the one of the
classical minimum distance estimator discussed in the previous paragraph. It turns out
that proving that the expression in (4) has a su¢ciently fast rate of convergence to zero
can be done by deriving sharp bounds for the stochastic processes

�p
n

Z
fd( ~Pk(�)� P (�))

�

�2�;f2F

;

where F is a relevant class of functions, and again we can apply recent techniques from
empirical processes here (cf. Nickl (2007), Giné and Nickl (2008, 2009b) together with
moment inequalities in Giné and Koltchinskii (2006)). We prove that if one performs
simulations of order k >> n2, then the indirect inference estimators are asymptotically
equivalent to the classical minimum distance estimators. A main advantage of this proof
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strategy is that no di¤erentiability properties of the objective functionQn;k have to be used,
and that in turn a large class of simulation mechanisms is admissible. More importantly,
this proof strategy allows for the presumably critical condition � > 1=2 on the underlying
density p0, where � is the index governing the regularity of p0.

2. The method of proof described above works if many simulations are performed (k >> n2).
However, this condition is not intrinsic to the problem, and the case where the number of
simulations k is of a smaller order than n2 is also of interest. In particular, in the case where
k=n! �, 0 < � <1, one has to expect that the asymptotic variance of simulated indirect
inference estimators is in�ated by the factor (1+1=�). If one is interested in these cases, the
(comparably) �brute force� methods described in the previous paragraph cannot be used.
Alternatively, one can try to apply the usual M -estimation asymptotic normality proof
to the criterion function Qn;k(�). Among other things this requires di¤erentiation of the
simulated estimators Pk(�) with respect to �. Since Pk(�) is constructed by applying an ap-
proximate identity to the empirical measure from the simulated sample, the proofs become
more delicate in this case. [Di¤erentiating an approximate identity h�1K(X(�)=h) w.r.t. �
introduces a �penalty� of an additional h�1 from the chain rule.] We are able, nevertheless,
to establish asymptotic normality of the simulated indirect inference estimator with these
simulation sizes as well, under slightly stronger conditions (on the underlying density and
the simulation mechanism), and with the expected in�ation of variances if limn k=n <1.
Again, the empirical process techniques mentioned in the previous paragraphs, together
with some facts from approximation theory, are central to our proofs.

We should comment on some related literature. Related papers are Gallant and Long (1997)
and Fermanian and Salanié (2004). The �rst paper studies the case where ~Pn is based on
nonparametric MLEs over sieves spanned by Hermite-polynomials, but their limiting result is
only informative if the sieve dimension stays bounded (so that e¢ciency of the estimator is only
established if the true density is a �nite linear combination of Hermite-polynomials). Fermanian
and Salanié (2004) propose di¤erent (but somewhat related) procedures, and establish asymptotic
e¢ciency of their estimators under several high level conditions, which, as they admit themselves,
are very stringent. Even in the simplest model they consider, they need to have simulations of
order k � n6, and the nonparametric estimators considered seem to be only sensible if the true
density is very smooth. There are also some other related recent papers on this topic, Altissimo
and Mele (2009) and Carrasco, Chernov, Florens, Ghysels (2007), whose proofs, however, are
incomplete or incorrect.
The outline of the paper is as follows: After some preliminaries in Section 2, we introduce the

model and assumptions, de�ne the auxiliary spline projection estimators as well as the indirect
inference estimator in Section 3 and present the main result (Theorem 1) on asymptotic e¢ciency
of the indirect inference estimator. Some basic facts on dyadic splines are summarized in Section
4. Section 5 is devoted to the proof of Theorem 1. Section 6 develops auxiliary convergence rate
results for the auxiliary spline projection estimators needed in the proof of Theorem 1. Section 7
establishes a uniform central limit theorem for spline projection estimators that is also essential
in the proof of the main result. Three appendices contain further technical results on Besov
spaces, projections onto Schoenberg spaces, and moment inequalities for empirical processes.

2 Preliminaries and Notation

We denote the Euclidean norm of a vector x 2 Rb by kxk and the associated operator norm
of a matrix A by kAk. With Lp := Lp([0; 1]; �), 1 � p < 1, we denote the vector space
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of Borel-measurable p-fold integrable real-valued functions on [0; 1], where � denotes Lebesgue
measure on [0; 1], the (semi)norm on Lp being denoted by khkp. Furthermore, khk1 stands for
the supremum norm (not the essential supremum norm) of a real-valued function h de�ned on
[0; 1]. If H is a vector- or matrix-valued function on [0; 1] then kHkp is shorthand for kkHkkp and
similarly for the supremum norm. By L1 we denote the space of all bounded Borel-measurable
real-valued functions on [0; 1] endowed with the supremum norm. For a (measurable) real-valued
function g on R and 1 � p < 1 we write kgkp;R to denote its Lp-(semi)norm (w.r.t. Lebesgue
measure on R); and we write kgk1;R for the supremum norm (not the essential supremum norm).
For sequences an and bn of positive real numbers we write an � bn to denote the fact that the
sequence an=bn is bounded away from zero and in�nity.
We next introduce Besov spaces. For a function g : R! R and z 2 R, the di¤erence operator

�z is de�ned by �zg(�) = g(�+ z)� g(�) and inductively by �azg(�) = �z(�a�1z g(�)) for integer
a � 2. For h : [0; 1]! R, we de�ne �az(h)(x) as above if x; x+ az 2 [0; 1], and set �az(h)(x) = 0
otherwise. For 0 < s <1 we de�ne function spaces Bs on [0; 1] as follows.

De�nition 1 For s 2 (0;1), a 2 (s;1) \ N, and h 2 L2 de�ne

khks;2 := khk2 + sup
0 6=jzj<1

jzj�sk�az(h)k2:

De�ne further
Bs := Bs21 = fh 2 L2 : khks;2 <1g:

The space Bs does not depend on a in the sense that di¤erent choices of a > s result in
equivalent (semi)norms. For de�niteness we shall always choose a to be the smallest integer
larger than s in the sequel. It is well-known (Proposition 7 in Appendix A) that for s > 1=2 every
function in Bs is �-almost everywhere equal to a (uniquely determined) continuous function in Bs.
It thus proves useful to de�ne for s > 1=2 the Banach-space (Bs; k �ks;2) where Bs = Bs\C([0; 1])
and C([0; 1]) denotes the set of continuous real-valued functions on [0; 1].
A little re�ection shows that Bs is just the usual Besov (or generalized Lipschitz) space Bs21

as, e.g., de�ned in Chapter 2, Section 10 of DeVore and Lorentz (1993) (with the only di¤erence
that there Bs is viewed as a space of equivalence classes of functions). The space Bs contains
the classical Sobolev space of order s as a subset. Recall that for integer s the Sobolev space of
order s > 0 is given by

Ws
2 =

�
h 2 L2 : Di

wh 2 L2 for 0 � i � s, i integer
	
;

where Dw denotes the weak di¤erential operator. Then for integer s > 0

khks;2 � C(s)
X

0�i�s

kDi
whk2 (5)

holds for some universal constant C(s) and all h in the Sobolev space of order s; cf. p.46 and p.52f
in DeVore and Lorentz (1993). Some further properties of Besov spaces and their relationship to
splines that we shall need in the sequel are summarized in Appendix A.

3 Main Results

Let X1; : : : ; Xn be independent and identically distributed (i.i.d.) on a compact interval in R
with law P and Lebesgue-density p0. Without loss of generality we shall take this interval to
be [0; 1]. We assume that a parametric model P� is given, i.e., P� = fp(�) : � 2 �g, where
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the functions p(�) : [0; 1] ! R are probability densities and the parameter space � is a subset
of Rb. The probability measure on [0; 1] corresponding to p(�) will be denoted by P (�). We
consider here the case where direct likelihood methods for estimation of � cannot be used for
the reasons outlined in the introduction. Suppose, however, that it is feasible to obtain for each
� 2 � simulated data Xi(�) via

Xi(�) = �(Vi; �); i = 1; :::; k;

that are distributed i.i.d. with density p(�) and that are independent of the original sample. [The
simulation mechanism may result from an equation for the data as described in Section 1, but
may also be obtained in some other way.] More precisely, we assume that the random variables
Vi driving the simulation mechanism are i.i.d. with values in some measurable space (V;V), the
distribution on V induced by Vi being denoted by �; furthermore, we assume that for every � 2 �,
the V-measurable function �(�; �) : V ! [0; 1] is such that the law of �(Vi; �) has density p(�); and
that the collection of random variables fVig is independent of the collection fXig. As the main
result depends only on the distribution of the random variables Xi and Vi, we can assume without
loss of generality that the original data Xi as well as the variables Vi are de�ned as the respective
coordinate projections on the product probability space ([0; 1]1 � V1;B1

[0;1] 
V1; P1 
 �1);
we shall denote by Pr the product probability measure P1
�1. The basic framework outlined
above will be maintained throughout the rest of the paper.
We next construct auxiliary estimators for p0 from the original data as well as from the

simulated data. The estimator of p0 based on the original data is a spline projection estimator
based on B-splines of order r� � 1 and is given by

pn;j;r�(y) =
2j�1X

l=�r�+1

̂
(r�)
lj N

(r�)
lj (y)

with

̂
(r�)
lj =

2j�1X

m=�r�+1

2jg
(r�)lm
j

Z

[0;1]

N
(r�)
mj (x)dPn(x):

Here N
(r�)
lj denote the B-spline basis functions forming a basis for the Schoenberg space Sj(r�)

and the coe¢cients g
(r�)lm
j are the elements of 2�j times the inverse of the Gram matrix of the

B-spline basis N
(r�)
lj ; see Section 4 for de�nitions. Furthermore, Pn = n�1

Pn
i=1 �Xi

denotes the
empirical measure of the original data. The positive integer j represents a tuning parameter
that governs the dimension of the approximating space (�sieve�) spanned by the B-spline basis.
Similarly, from each simulated data set Xi(�), we construct estimators for p(�) based on order-r
B-splines via

pk;J;r(�)(y) =

2J�1X

l=�r+1

̂
(r)
lJ (�)N

(r)
lJ (y) (6)

with

̂
(r)
lJ (�) =

2J�1X

m=�r+1

2Jg
(r)lm
J

Z

[0;1]

N
(r)
mJ(x)dPk(�)(x) (7)

and Pk(�) = k�1
Pk
i=1 �Xi(�). Note that r� and r need not take the same value, nor need j and

J . [For example, r = 4 would correspond to using cubic splines for the construction of pk;J;r(�),
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while r� = 1 would correspond to using the Haar basis for the construction of pn;j;r� .] In the
sequel we shall often write pk;J;r(�; y) for pk;J;r(�)(y) and similarly p(�; x) for p(�)(x).
The idea behind indirect inference is that, given the parametric model is correctly speci�ed

in the sense that p0 = p(�0) �-almost everywhere for some �0 2 �, the particular value of �
corresponding to the simulation-based estimator pk;J;r(�) closest to pn;j;r� (in an appropriate

metric) should provide a reasonable estimator �̂n;k of �0, since pn;j;r� will estimate p0 = p(�0)
(�-a.e.) consistently (under appropriate assumptions and choices of j, J , and k). That is, as

explained in Section 1, the estimator �̂n;k can be viewed as a simulation-based version of a
minimum distance estimator.
To implement this idea we introduce the indirect inference objective function measuring

closeness of pn;j;r�and pk;J;r(�)

Qn;k(�) := Qn;k;j;J;r�;r(�) =
� R 1

0
(pn;j;r� � pk;J;r(�))2p�1n;j;r�d� on the event An

0 otherwise
; (8)

where An = fpn;jn;r�(y) > 0 for every y 2 [0; 1]g, which is measurable as is easily seen. Note
that Qn;k(�) : [0; 1]1 � V1 ! R is B1

[0;1] 
 V1-measurable for every � 2 � as a consequence

of Tonelli�s Theorem since pn;j;r� and pk;J;r(�) are both jointly measurable (w.r.t. the combined
data and the argument y) and since An is measurable. Furthermore, since all functions involved
are piecewise polynomials with dyadic breakpoints, the integral featuring in the de�nition of
Qn;k(�) can be computed in a numerically e¢cient way.

Remark 1 (i) We have chosen to assign Qn;k(�) the value zero on the complement of An for
convenience. Since the event An will be seen to have probability approaching 1 under our as-
sumptions, this particular assignment is irrelevant for asymptotic considerations. However, from
a more practical point of view, one might want to use the objective function

R
pn;j;r�>0

(pn;j;r� �
pk;J;r(�))

2p�1n;j;r�d� instead, which clearly coincides with Qn;k on An.
(ii) In principle, auxiliary estimators other than spline projection estimators could be used in

the de�nition of Qn;k(�). We do not pursue this in this paper but see Gach (2009). We note
that standard kernel density estimators are inappropriate here because of boundary e¤ects.

An indirect inference estimator �̂n;k := �̂n;k;j;J;r�;r is now de�ned to be any measurable
function that satis�es

inf
�2�

Qn;k(�) = Qn;k(�̂n;k): (9)

For the sake of simplicity, we shall use the abbreviation Qn;k to denote Qn;k;j;J;r�;r as well as
Qn;k;jn;Jk;r�;r, the precise meaning always being clear from the context. [A similar comment

applies to �̂n;k, as well as to Qn and �̂n de�ned later in Section 5.2.] That such an estimator
exists is shown in the next proposition, the proof of which can be found in Appendix B.

Proposition 1 Suppose � is compact in Rb and that the simulation mechanism �(v; �) is con-
tinuous on � for every v 2 V. Furthermore, assume that r� � 1 and r � 2 hold. Then there
exists a B1

[0;1] 
V1-measurable mapping �̂n;k satisfying (9).

We now introduce the following assumptions on the parametric model that will be used to
prove the main result.

Assumption P1: (i) The parameter space � is a compact subset of Rb. There exists
a �0 2 � such that p0 = p(�0) �-almost everywhere. Furthermore, p(�) = p(�0) �-almost
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everywhere implies � = �0. The mapping � 7! p(�; x) is continuous on � for every x 2 [0; 1]. The
density p(�0) is positive on [0; 1].
(ii) P� is a bounded subset of B� for some � > 1=2.
(iii) �0 is an interior point of �. There is an open ball B(�0) � � with center �0 such that the

map � 7! p(�; x) is twice continuously di¤erentiable on B(�0) for every x 2 [0; 1]. Furthermore,
Z 1

0

sup
�2B(�0)

kr�p(�; x)k2 dx <1;
Z 1

0

sup
�2B(�0)

r2�p(�; x)
 dx <1;

and
R 1
0
r�p(�0; x)r�p(�0; x)0p(�0; x)�1dx is positive de�nite. [Here r� denotes the gradient

w.r.t. � written as a column vector and r2� denotes the matrix of second derivatives.]
(iv) For some & > 1=2

@p(�0; �)
@�q

2 B&

holds for every q = 1; :::; b.

Assumption P1(i) is a standard assumption that implies consistency of the maximum like-
lihood estimator. In particular, it expresses the fact that the parametric model is correctly
speci�ed and that the true parameter value is identi�able. Assumption P1(iii) in conjunction
with P1(i) is a typical assumption used to establish asymptotic normality of the maximum likeli-
hood estimator and the information matrix equality. Assumption P1(ii) requires the parametric
density functions to behave "regularly" as functions of x (uniformly in �), the condition being
quite weak: Note that if � is close to 1=2 the density functions are not even required to be
di¤erentiable, all that is required is essentially that the functions are "L2-Hölder continuous" of
order � , uniformly over �. [Given compactness of �, a su¢cient condition for Assumption P1(ii)
is that P� � B� for some � > 1=2 and that the map � ! p(�) from � to B� is continuous;
in fact, continuity of the map � ! kp(�)k�;2 already su¢ces. A simple su¢cient condition for
this (with � = 1) is continuity of � ! kp(�)k2 and � ! kDwp(�)k2 on �, cf. (5).] In a similar
vein, Assumption P1(iv) imposes an analogous weak regularity condition on the derivative of
p(�) (w.r.t. �) at � = �0.
For parts of the main result we will need to supplement assumption P1 by the following

assumption.

Assumption P2: (i) The set
n
@p(�;�)
@�q

: q = 1; : : : ; b; � 2 B(�0)
o
is a relatively compact

subset of L2 where B(�0) is de�ned in Assumption P1.
(ii) The set

n
@2p(�;�)
@�q@�q0

: q; q0 = 1; : : : ; b; � 2 B(�0)
o
is a bounded subset of L2, i.e.,

sup
�2B(�0)

Z 1

0

r2�p(�; x)
2 dx <1:

These assumptions are not restrictive. For example, Assumption P2(i) is satis�ed if the
indicated set of functions is a bounded subset of a Besov space Bs with s only satisfying s > 0,
which is a very weak condition.
We also need assumptions on the simulation mechanism �. The basic assumption will be that

the function � satis�es a Hölder continuity condition in � (Assumption R(i)). For some of the
results we shall need an additional assumption including twice di¤erentiability in a neighborhood
of �0 (Assumption R(ii)).
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Assumption R: (i) The function � is uniformly Hölder in �, more precisely, for some 0 <
L <1 and some 0 < � � 1

sup
v2V

���(v; �)� �(v; �0)
�� � L

� � �0
�

holds for all �, �0 2 �.
(ii) There is an open ball B(�0) � � with center �0 such that the map � ! �(v; �) is twice

continuously di¤erentiable on B(�0) for every v 2 V and

sup
v2V;�2B(�0)

kr��(v; �)k <1; sup
v2V;�2B(�0)

kr2��(v; �)k <1:

Furthermore, for some 0 < L0 <1 and some 0 < � � 1

sup
v2V

r2��(v; �)�r2��(v; �0)
 � L0

� � �0
�

holds for all �, �0 2 B(�0).

Assumptions on the parametric model P� and assumptions on the simulation mechanism � are
of course interrelated. For example, one could in principle only impose appropriate assumptions
on � and then deduce the existence of a P� with the required properties from those assumptions;
see Gach (2009) for some discussion. However, as this does not seem to lead to a transparent
catalogue of assumptions, we have chosen to formulate the assumptions in the form given above.
We now �rst establish consistency of the indirect inference estimator. The assumptions used

for the consistency result in the subsequent proposition are stronger than what is actually needed
for such a result, but we do not strive for utmost generality in the consistency result as this is
not the main focus of the paper. The proof is given in Section 5.1.

Proposition 2 Suppose Assumptions P1(i),(ii) and R(i) are satis�ed and that r� � 2 and r � 2
hold. If jn ! 1 as n ! 1 and Jk ! 1 as k ! 1 in such a way that for some � > 1=2 we
have supn�1 2

jn(2�+1)=n <1 and supk�1 Jk2
Jk(2�+1)=k <1, then

�̂n;k ! �0 in Pr -probability as n ^ k !1:

We note that the condition on jn is, e.g., satis�ed if 2
jn � n with 0 <  < 1=2. A

similar comment applies to Jk. In particular, the �textbook�-choice  = 1=(2� + 1) with � from
Assumption P1(ii) is covered.
For the main result we need to distinguish several cases characterized by the behavior of the

number k(n) 2 N of simulated data as a function of sample size n:

Assumption S1: limn!1 k(n)=n2 =1.
Assumption S2: limn!1 k(n)=n =1.
Assumption S3: limn!1 k(n)=n = � for some 0 < � <1.

The theorem given below is the main result and shows that, under appropriate conditions on
the resolution levels jn and Jk, the indirect inference estimator �̂n;k is asymptotically normal and
has the same limiting distribution as the maximum likelihood estimator provided the number
k(n) of simulated data grows su¢ciently fast as a function of sample size n. This is established
under the quite weak assumption R(i) if k(n) grows faster than n2. If k(n) is only required to grow
faster than n, the same result is obtained under somewhat stronger assumptions (Assumption
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R, � > 3=2, r � 4). Under the latter assumptions, the theorem also shows that in case k(n)
behaves asymptotically like n, the indirect inference estimator is still asymptotically normal
but its asymptotic variance covariance matrix is then in�ated by a factor 1 + 1=�, where � =
limn!1 k(n)=n. We also note that the condition � < r�^r in the subsequent theorem is virtually
no restriction as discussed in Remark 2 below. The proof of the subsequent theorem is deferred
to Section 5.

Theorem 1 Suppose r � 2 and r� � 2 hold and Assumption P1 is satis�ed for some 1=2 < � <
r� ^ r. Suppose that 2jn � n1=(2�+1) and 2Jk(n) � k(n)1=(2�+1).
a. Suppose one of the following two conditions holds:

1. Assumptions R(i) and S1 hold.
2. Assumptions P2, R, and S2 hold, and that � > 3=2, r � 4 are satis�ed.

Then p
n
�
�̂n;k(n) � �0

�
!d N(0; I(�0))

as n!1 where I(�0) =
�R 1

0
r�p(�0; x)r�p(�0; x)0p(�0; x)�1dx

��1
is the Cramér-Rao bound.

b. Suppose Assumptions P2, R, and S3 hold for some 0 < � < 1, and that � > 3=2, r � 4
are satis�ed. Then p

n
�
�̂n;k(n) � �0

�
!d N (0; (1 + 1=�)I(�0))

as n!1.

We note that the rates of increase for 2jn and 2Jk(n) speci�ed in the above theorem are
precisely the rate-optimal choices based on mean integrated squared error. As already alluded
to prior to the theorem, in Part a of the theorem there is a trade-o¤ between the stringency of
assumptions on the model and the simulation mechanism on the one hand and the assumptions on
the rate of increase of k(n) (Assumptions S1 versus S2) on the other hand. While the particular
form of the trade-o¤ is a consequence of two di¤erent methods of proof employed for Part a1 and
Part a2 (and thus may in principle be an artefact), it seems plausible that some sort of trade-o¤
is intrinsic to the problem.

Remark 2 (i) The condition � < r� ^ r in the above theorem is not really a restriction on P�
and can always be achieved in the following sense: If Assumption P1 holds with � � r� ^ r, it
holds with � replaced by any � 0 satisfying 1=2 < � 0 < r� ^ r as well, since B� is continuously
imbedded in B� 0 for �

0 � � . Consequently, the above theorem can be applied with � 0 replacing �
(requiring also � 0 > 3=2 for Parts a2 and b). [The restriction � < r� ^ r in the theorem simply
expresses the fact that the rate of increase of jn and Jk is not only governed by the degree of
"regularity" � of the densities in P�, but also by the degrees of "regularity" of the splines used
to estimate p0 and p(�), respectively, i.e., by r� and r.]
(ii) The argument underlying (i) also shows that 2jn � n1=(2�

0+1) and 2Jk(n) � k(n)1=(2�
0+1)

are feasible in Theorem 1 as it stands as long as 1=2 < � 0 � � (and � 0 > 3=2 for Parts a2 and b)
are satis�ed. A careful examination of the proof shows that the range for 2jn and 2Jk(n) , under
which the conclusion of the theorem holds, is actually somewhat wider. However, we abstain from
providing such results as they quickly get unwieldy.
(iii) If in Part a2 of Theorem 1 the Assumption S2 is strengthened by assuming a particular

growth-rate for k(n) such as, e.g., k(n) = n�, 1 < � � 2, this can be used to relax the assumption
� > 3=2. We refrain from presenting such results.
(iv) If k(n) is such that 0 < lim inf k(n)=n <1, but lim sup k(n)=n =1, then the distribution

p
n
�
�̂n;k(n) � �0

�
does not possess a limit, but �oscillates� between accumulation points of the

form N (0; I(�0)) and N (0; (1 + 1=�)I(�0)) where now � = lim infn!1 k(n)=n.
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(v) A result similar to Part a1 of Theorem 1 can be proved in case r� = 1. Since this requires
a separate proof, we do not give such a result for the sake of brevity.

Under Assumption P1 the expression 	(�) =
R 1
0
r�p(�)r�p(�)0p(�)�1d� depends continu-

ously on � by dominated convergence. Hence, 	(��)�1 is a consistent estimator for I(�0) for
every consistent estimator ��. However, this observation is not very helpful in the context of
indirect inference as then expressions for the density p(�) are typically not available. An alter-
native consistent estimator that is feasible to compute is described in the next proposition which
is proved in Section 5.5. In the following proposition let ��n;k stand for an arbitrary consistent
estimator that depends on the original data and perhaps also on the simulated data. Of course,
under the assumptions of Proposition 2 we may take ��n;k = �̂n;k.

Proposition 3 Suppose Assumptions P1(i)-(iii), P2(i), and R(ii) hold. Suppose further that
��n;k ! �0 in probability as n ^ k ! 1. Assume r0� � 2 and r0 � 3. If j0n ! 1 as n ! 1 and

J 0k ! 1 as k ! 1 in such a way that for some � > 1=2 we have supn�1 2
j0n(2�+1)=n < 1 and

also J 0k2
3J0k=k ! 0, then

�Z 1

0

r�pk;J0k;r0(��n;k)r�pk;J0k;r0(��n;k)
0p�1n;jn;r0�d�

��1

is well-de�ned on an event that has probability converging to 1, and is a consistent estimator for
I(�0) as n ^ k !1.

Observe that the condition on j0n is satis�ed if 2
j0n � n with 0 <  < 1=2; similarly, the

condition on J 0k is satis�ed if 2
J0k � n with 0 <  < 1=3. The reason for allowing r0 to di¤er

from r in Theorem 1, is to be able to construct a consistent estimator for I(�0) also in cases
where r = 2. Allowing J 0k to be di¤erent from Jk has the advantage of avoiding a constraint on
� .

4 Dyadic Splines

Let Tj = ftl := l2�j : l = 1; : : : ; 2j � 1g be a dyadic set of knots in [0; 1], where j 2 N, the set
of nonnegative integers. A function S : [0; 1] ! R is a (dyadic) spline of order r � 2 if on each
of the intervals [0; t1), (tl; tl+1) for l = 1; : : : ; 2

j � 2, and (t2j�1; 1], it is a polynomial of degree
not larger than r � 1, and on at least one of the intervals it is a polynomial of degree exactly
r � 1. The Schoenberg spaces Sj(r) considered here consist of all splines of order less than or
equal to r that are r � 2 times continuously di¤erentiable on [0; 1] (using one-sided derivatives
on the boundary of [0; 1]). For r = 1 we de�ne the Schoenberg space Sj(1) to be the space of all
functions S : [0; 1] ! R that are constant on the intervals [0; t1), [tl; tl+1) for l = 1; : : : ; 2

j � 2,
and [t2j�1; 1]. The Schoenberg spaces are linear spaces of dimension 2

j + r � 1. For r � 2 the
B-spline basis for Sj(r) is given by fN (r)

lj : l = �r + 1; : : : ; 0; 1; : : : ; 2j � 1g with

N
(r)
lj (x) = N (r)(2jx� l) for x 2 [0; 1];

where N (r) is the B-spline-function (of order r) given by the r-fold convolution

N (r)(u) = 1[0;1) � ::: � 1[0;1)(u) for u 2 R;

cf., e.g., Chapter 5 in DeVore and Lorentz (1993). In case r = 1 we set

N
(1)
lj (x) = N (1)(2jx� l) for x 2 [0; 1];
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for l = 0; 1; : : : ; 2j � 2, where N (1)(u) = 1[0;1)(u), but we set

N
(1)
lj (x) = 1[0;1](2

jx� l) for x 2 [0; 1]

if l = 2j � 1. The B-spline basis functions N (r)
lj are nonnegative, bounded by 1 in absolute value,

and form a partition of unity, i.e.,

2j�1X

l=�r+1

N
(r)
lj (x) = 1 for x 2 [0; 1]; (10)

for every j; r 2 N.
The Schoenberg space Sj(r) is a �nite-dimensional linear subspace of L2. The ortho-projection

�
(r)
j from L2 onto Sj(r) is given by

�
(r)
j (f) =

2j�1X

l=�r+1


(r)
lj (f)N

(r)
lj

where


(r)
lj (f) =

2j�1X

m=�r+1

2jg
(r)lm
j

Z 1

0

N
(r)
mj (x)f(x)dx

and g
(r)lm
j is the (l;m)-element of the inverse of the (2j + r � 1)� (2j + r � 1) matrix

G
(r)
j =

 Z 2j

0

N (r)(u� l)N (r)(u�m)du
!

l;m

:

Note that G
(r)
j is a symmetric bandmatrix with bandwidth r. The projection can now also be

written as

�
(r)
j (f)(y) =

Z 1

0

K
(r)
j (x; y)f(x)dx (11)

with the kernel given by

K
(r)
j (x; y) = 2j

2j�1X

l=�r+1

2j�1X

m=�r+1

g
(r)lm
j N (r)(2jx�m)N (r)(2jy � l):

We shall frequently need to bound the maximal row-sum of the absolute values of the elements

of the inverse of G
(r)
j , i.e., the `

1-operator norm of the inverse of G
(r)
j . For this we use the

following special case of a result in Shadrin (2001, Theorem I and Section 4.2).

Proposition 4 For every r 2 N there exist constants 0 < dr <1 (independent of j) such that
for every j 2 N 

�
G
(r)
j

��1
1!1

� dr

where k�k1!1 denotes the `1-operator norm on R2
j+r�1.
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We furthermore note that for r � 2 the Schoenberg space Sj(r) is contained in the Sobolev
space of order r�1, and thus is also contained in Br�1. In fact, for every r � 1 we have that Sj(r)
is contained in Bs for s � r � 1=2 (DeVore and Lorentz (1993), Chap. 12, Lemma 3.1). Some
approximation properties of splines that we shall use in the sequel are summarized in Appendix
A.
For the spline projection estimators de�ned in Section 3 we make the useful observation that

for every J � 1 and r � 1
kpk;J;r(�)k1 � 2Jdr(2J + r � 1) (12)

holds uniformly in � 2 �, k � 1, and v1; : : : ; vk 2 V. [To see this note that the B-spline basis
functions are uniformly bounded by 1 and that the coe¢cients satisfy

���̂(r)lJ (�)
��� � 2Jdr uniformly

in � 2 �, k � 1, �r + 1 � l � 2J � 1, and v1; : : : ; vk 2 V by Proposition 4.] The analogous
relation is true for kpn;j;r�k1, as well as for kEpk;J;r(�)k1 and kEpn;j;r�k1.

5 Proofs

We shall use repeatedly in this section the fact that �0 := infx2[0;1] p(�0; x) > 0 under Assump-
tions P1(i),(ii) (as p(�0) is continuous and positive on [0; 1] under these assumptions).

5.1 Proof of Proposition 2

De�ne the function

Q(�) =

Z 1

0

(p(�0)� p(�))2p�1(�0)d�; (13)

which is real-valued and is continuous in � by dominated convergence, observing that �0 > 0
and that Assumption P1(ii) implies sup-norm boundedness of P� in view of the discussion
following Proposition 7 in Appendix A. The unique minimizer of Q(�) over � is �0 in view of
the identi�ability assumption made in Assumption P1(i). To establish consistency, it is hence
su¢cient to prove

sup
�2�

jQn;k(�)�Q(�)j ! 0

in probability as n ^ k ! 1. Note that this supremum is measurable as Qn;k(�) and Q(�)
are continuous and � is separable. [For continuity of Qn;k see the proof of Proposition 1 in
Appendix B.] Consider the set A�n =

�
infy2[0;1] pn;jn;r�(y) � �0=2

	
, which is clearly measurable.

Since �0 > 0 as noted above, Corollary 2 (applied with t = � ^ � ^ 1 and noting that p(�0) is a
continuous version of p0 in view of Assumption P1(i)) implies that Pr(A

�
n) ! 1 as n ! 1. A

simple calculation now shows that on the event A�n (since A
�
n � An)

Qn;k(�)�Q(�) =

Z 1

0

(pn;jn;r� � p(�0))
�
1� p(�)2

pn;jn;r�p(�0)

�
d�+

Z 1

0

(pk;Jk;r(�)� p(�))2p�1n;jn;r�

+2

Z 1

0

(pk;Jk;r(�)� p(�))
�

p(�)

pn;jn;r�
� 1
�
d�
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holds. On A�n we can then obtain the bound

sup
�2�

jQn;k(�)�Q(�)j � kpn;jn;r� � p(�0)k1
�
1 + 2��20 sup

�2�
kp(�)k21

�

+2��10 sup
�2�

kpk;Jk;r(�)� p(�)k
2
1

+ sup
�2�

kpk;Jk;r(�)� p(�)k1
�
2 + 4��10 sup

�2�
kp(�)k1

�
:

The sup-norm boundedness of P� together with Corollaries 1 and 2 (applied with t = � ^ � ^ 1)
then complete the proof.

5.2 An Intermediate Result

Consider the objective function

Qn(�) := Qn;j;r�(�) =

� R 1
0
(pn;j;r� � p(�))

2
p�1n;j;r�d� on the event An

0 otherwise
; (14)

corresponding to the �ideal� case k = 1. Let �̂n := �̂n;j;r� denote an arbitrary measurable
minimizer of (14) over �. [The existence of such an estimator is established in Proposition 10 in
Appendix B.]

Theorem 2 Suppose r� � 2 holds and Assumption P1 is satis�ed with 1=2 < � < r�. If
2jn � n1=(2�+1), then, as n!1,

p
n
�
�̂n � �0

�
!d N (0; I(�0)) :

Proof. Consistency of �̂n follows from Proposition 11 in Appendix B by choosing � in that
proposition su¢ciently close to 1=2. It follows that �̂n 2 B(�0) with probability tending to 1,

and hence �̂n belongs to the interior of � with probability tending to 1. In the following we work

only on the intersection of the event
n
�̂n 2 B(�0)

o
with A�n =

�
infy2[0;1] pn;jn;r�(y) � �0=2

	

which also has probability converging to 1 as a consequence of Corollary 2 (applied with some
t satisfying 1=2 < t � � ^ 1). Note that kpn;jn;r�k1 < 1 holds, and that

p�1n;jn;r�

1
� 2=�0

on the event A�n. Furthermore, by Assumption P1(ii) the function p(�) is bounded, uniformly
in �, cf. Proposition 7 and the attending discussion in Appendix A. Assumption P1(iii) and
dominated convergence then show that Qn(�) is twice continuously di¤erentiable on the open
ball B(�0) with derivatives given by

r�Qn(�) = �2
Z 1

0

(pn;jn;r� � p(�)) p�1n;jn;r�r�p(�)d�;

r2�Qn(�) = 2
Z 1

0

p�1n;jn;r�r�p(�)r�p(�)
0d�� 2

Z 1

0

(pn;jn;r� � p(�)) p�1n;jn;r�r
2
�p(�)d�; (15)

and these derivatives are measurable functions for every � 2 B(�0). Since �̂n is an interior

maximizer of Qn (on the event considered), we have that r�Qn(�̂n) = 0. Consequently, a
standard Taylor expansions gives

0 = r�Qn(�̂n) = r�Qn(�0) +r2�Q�n(�̂n � �0); (16)
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where the i-th row of r2�Q�n equals the corresponding row of r2�Qn evaluated at a mean-value ~�
(i)

n

which may depend on the row-index (measurability of ~�
(i)

n being no concern here). We now �rst
establish that n1=2r�Qn(�0) is asymptotically normal with mean zero and variance-covariance
matrix 4

R 1
0
r�p(�0)r�p(�0)0p�1(�0)d�. To this end write (�1=2)n1=2r�Qn(�0) as

p
n

Z 1

0

(pn;jn;r� � p(�0)) p(�0)�1r�p(�0)d�+

p
n

Z 1

0

(pn;jn;r� � p(�0)) (p�1n;jn;r� � p(�0)
�1)r�p(�0)d�;

both terms being measurable. The �rst term in the above display now converges to the required
limit by Theorem 4 (applied with t = � , and some s satisfying 1=2 < s < 1, s � & ^ �) and
the Cramér-Wold device: To see this, observe that p0 2 Bt by Assumption P1(i),(ii) (since
p0 = p(�0) �-a.e.). Furthermore, for every � 2 Rb, � 6= 0, the function f = p(�0)

�1�0r�p(�0)
belongs to B&^� as a consequence of Assumption P1(ii),(iv) and Proposition 7 in Appendix A.
Hence F = ffg � Bs. The conditions on jn in Theorem 4 follow from the assumption on jn in
the current theorem. Finally note that P (f) = 0 under Assumption P1. The second term in the
above display is bounded in norm (on the event A�n) by

n1=2
Z 1

0

(pn;jn;r� � p(�0))
2
p(�0)

�1p�1n;jn;r� kr�p(�0)k d�

� (2=�20) sup
x2[0;1]

kr�p(�0; x)kn1=2 kpn;jn;r� � p(�0)k
2
2 ;

noting that
p(�0)�1


1
� ��10 , and that @

@�q
p(�0) is bounded on [0; 1] for every q since it

belongs to B& with & > 1=2 by Assumption P1(iv). By Lemma 3 the r.h.s in the above display
is Op(n

�1=22jn + n1=22�2jn� ) which is op(1) because of � > 1=2.
Next we show that r2�Q�n converges to the positive de�nite matrix r2�Q(�0) in (outer) prob-

ability. To this end we �rst show that r2�Qn(�) converges to r2�Q(�) uniformly over B(�0) in
probability where Q(�) has been de�ned in (13). By Assumption P1 and dominated convergence
we have that Q(�) is twice continuously di¤erentiable on B(�0) with

r2�Q(�) = 2
Z 1

0

p(�0)
�1r�p(�)r�p(�)0d�� 2

Z 1

0

(p(�0)� p(�)) p(�0)�1r2�p(�)d�:

We now see that

r2�Qn(�)�r2�Q(�)

= 2

Z 1

0

(p�1n;jn;r� � p(�0)
�1)r�p(�)r�p(�)0 � 2

Z 1

0

(pn;jn;r� � p(�)) (p�1n;jn;r� � p(�0)
�1)r2�p(�)

+2

Z 1

0

(p(�0)� pn;jn;r�) p(�0)�1r2�p(�)
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and we obtain (the supremum being measurable because of continuity of r2�Qn and r2�Q on
B(�0))

sup
�2B(�0)

r2�Qn(�)�r2�Q(�)
 (17)

� 2 kpn;jn;r� � p(�0)k1 sup
�2B(�0)

�Z 1

0

p�1n;jn;r�p(�0)
�1 kr�p(�)k2 d�

+

Z 1

0

jpn;jn;r� � p(�)j p�1n;jn;r�p(�0)
�1
r2�p(�)

 d�+
Z 1

0

p(�0)
�1
r2�p(�)

 d�
�

� kpn;jn;r� � p(�0)k1

"

4��20

Z 1

0

sup
�2B(�0)

kr�p(�)k2 d�

+

 

4��20

 

kpn;jn;r�k1 + sup
�2B(�0)

kp(�)k1

!

+ 2��10

!Z 1

0

sup
�2B(�0)

r2�p(�)
 d�

#

= op(1);

by Assumption P1 and Corollary 2 (applied with a t satisfying 1=2 < t � � ^ 1). Since r2�Q(�)
is continuous at �0 as shown above and since �̂n is consistent, convergence of r2�Q�n to r2�Q(�0)
in (outer) probability follows.
The central limit theorem for the score together with the convergence result for r2�Q�n just

established delivers now the desired result: rewrite (16) as

0 = n1=2r�Qn(�0) +r2�Q(�0)n1=2(�̂n � �0) +
�
r2�Q�n �r2�Q(�0)

�
n1=2(�̂n � �0);

observe that r2�Q(�0) is positive de�nite by Assumption P1(iii), and that the third term on the

r.h.s. is of lower order than the second one. This implies that n1=2(�̂n � �0) is stochastically
bounded, and the desired result then easily follows.

For the same reasons as given in Remark 2, the condition � < r� in the above theorem is not
really a restriction. Furthermore, examining the proof shows that the conclusions of the theorem
also hold for other choices of 2jn : e.g., the theorem (without the condition � < r�) holds for
2jn � n� with � satisfying 1= (2 ((� ^ r�) + (& ^ � ^ 1))) < � < 1=2.

5.3 Proof of Part a1 of Theorem 1

We �rst provide an auxiliary result that relates the objective function Qn;k(�) to the somewhat
simpler objective function Qn(�) studied in the preceding section. Note that k is not linked to
n in the subsequent proposition.

Proposition 5 Suppose r � 2 and r� � 2 hold and Assumptions P1(i),(ii) are satis�ed for some
1=2 < � < r�^ r. Suppose further that Assumption R(i) is satis�ed and that 2jn � n1=(2�+1) and
2Jk � k1=(2�+1). Then for every " > 0 there exists a positive real number M(") and a natural
number N(") such that

Pr

�
k1=2 sup

�2�
jQn;k(�)�Qn(�)j > M(")

�
< " (18)

holds for all n � N(") and all k � 1.
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Proof. First note that the supremum in (18) is measurable since Qn;k(�) and Qn(�) are con-
tinuous in � as noted before, cf. Section 5.1. For given " > 0 choose N(") large enough such
that for n � N(") we have Pr (A�n) > 1 � " where A�n =

�
infy2[0;1] pn;jn;r�(y) � �0=2

	
. This is

possible by Corollary 2. A simple calculation shows that on the event A�n

Qn;k(�)�Qn(�) =
Z 1

0

(pk;Jk;r(�)� p(�))
�
pk;Jk;r(�) + p(�)

pn;jn;r�
� 2
�

holds. Choose s to satisfy 1=2 < s < � ^ 1. Applying Corollaries 1 and 2 (with t = s) shows that
for the given " > 0 there exists a positive �nite D such that the events

A��n;k =

�
sup
�2�

kpk;Jk;r(�)ks;2 � D; kpn;jn;r�ks;2 � D

�

have probability not less than 1 � " for every k � 1 and n � 1. Applying Proposition 7 in
Appendix A, we conclude that there exists a �nite positive D0, depending only on D, �0, and
sup�2� kp(�)ks;2 (which is �nite by Assumption P1(ii) and continuous embedding of B� in Bs),
such that on A�n \A��n;k

sup
�2�

(pk;Jk;r(�) + p(�))p
�1
n;jn;r�

� 2

s;2
� D0

holds. Thus for every M > 0, all k � 1, and all n � N(")

Pr

�p
k sup
�2�

jQn;k(�)�Qn(�)j > M

�

� Pr

 (
p
k sup
�2�

sup
kfks;2�D0

����

Z 1

0

(pk;Jk;r(�)� p(�))fd�
���� > M

)

\A�n \A��n;k

!

+ 2"

� Pr

��p
k sup
�2�

kPk;Jk;r(�)� P (�)kF > M

��
+ 2"

where F denotes ff 2 Bs : kfks;2 � D0g and k�kF is de�ned before Theorem 3. Choose an s0

satisfying 1=2 < s0 < s. Then Theorem 3 (applied with t = �) implies for every k � 1
p
k sup
�2�

kPk;Jk;r(�)� P (�)kF �
p
k sup
�2�

kPk;Jk;r(�)� Pk(�)kF +
p
k sup
�2�

kPk(�)� P (�)kF

= Op

�p
k2�Jk(�+s) + 2�Jk(s�s

0) + 1
�
= Op(1):

[Measurability of the suprema on the r.h.s. in the �rst line of the above display is established
in the proof of Theorem 3. The argument given there also establishes measurability of the
supremum on the l.h.s.] This completes the proof (noting that the l.h.s. in the above display is
certainly a real-valued random variable for every k).

The closeness of Qn;k and Qn expressed in the previous result translates into closeness of the
minimizers of these functions with the help of the following simple but useful lemma which is
taken from Gach (2009). Note that M2 below is smooth but M1 need not be so. This is relevant
as Qn;k is not guaranteed to be smooth under the assumptions of Part a1 of Theorem 1, whereas
Qn is in view of Assumption P1.
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Lemma 1 Let U be a nonempty convex open subset of Rb. Suppose we are given functions
M1 : U ! R and M2 : U ! R, such that M2 is twice partially di¤erentiable on U with Hessian
satisfying

inf
x2U

y0r2xM2(x)y � c kyk2 (19)

for every y 2 Rb and some 0 < c < 1. If m1 2 U and m2 2 U minimize M1 and M2 over U ,
respectively, we have

km1 �m2k � 2c�1=2
r
sup
u2U

jM1(u)�M2(u)j

where k�k denotes the Euclidean norm on Rb.

Proof. Assume that minimizers m1 and m2 exist, since otherwise there is nothing to prove. [By
convexity of U and the assumption on the Hessian the minimizer m2 is unique.] Since m2 is a
minimizer of the twice partially di¤erentiable function M2 on the convex open set U , we have

M2(m1) =M2(m2) + 2
�1(m1 �m2)

0r2xM2( ~m)(m1 �m2)

(using a pathwise Taylor series expansion) where ~m lies in the convex hull of fm1;m2g. We
conclude from the assumption on the Hessian that

km1 �m2k � (2c�1)1=2
p
jM2(m1)�M2(m2)j: (20)

Observe next that

M1(m1)�M2(m2) �M1(m2)�M2(m2) � sup
u2U

jM1(u)�M2(u)j

and
M1(m1)�M2(m2) �M1(m1)�M2(m1) � � sup

u2U
jM1(u)�M2(u)j

so that
jM1(m1)�M2(m2)j � sup

u2U
jM1(u)�M2(u)j:

Consequently,

jM2(m1)�M2(m2)j � jM2(m1)�M1(m1)j+ jM1(m1)�M2(m2)j � 2 sup
u2U

jM1(u)�M2(u)j;

which, when plugged into (20), proves the lemma.

The proof of Part a1 of Theorem 1 is now as follows: Let U � B(�0) be a su¢ciently small
open ball around �0 such that the smallest eigenvalues of r2�Q(�) are bounded away from zero
by a positive constant, � say, uniformly in � 2 U . Such an U exists, since r2�Q(�) is continuous
on B(�0), as shown in Section 5.2, and since r2�Q(�0) is positive de�nite by Assumption P1.
Now apply Lemma 1 with M1 = Qn;k(n), M2 = Qn, and the set U just mentioned. Note that
condition (19) is then satis�ed for M2 = Qn and c = �=2 on an event En that has probability
converging to 1 in view of the choice of U and since it was shown in the proof of Theorem 2 that
r2�Qn(�) converges to r2�Q(�) uniformly on B(�0) in probability. Observe also that Proposition
5 implies

sup
�2�

jQn;k(n)(�)�Qn(�)j = Op(k(n)
�1=2):
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Taken together, this implies
�̂n;k(n) � �̂n

 = Op(k(n)
�1=4); (21)

which is op(n
�1=2) in view of Assumption S1. Part a1 of Theorem 1 now follows from asymptotic

normality of
p
n
�
�̂n � �0

�
which has already been established in Theorem 2.

5.4 Proof of the Remaining Parts of Theorem 1

Observe �rst that it su¢ces to show that every subsequence ni of n contains a further subsequence
ni(l) along which the claimed asymptotic normality result holds. Given ni, we may choose the
subsequence ni(l) in such a way that liml!1 k(ni(l))=n

2
i(l) exists (possibly being 1) since the

extended real line is compact. But the sequence k(ni(l)) can be viewed as the subsequence �k(ni(l))
of a sequence �k(n) for which limn!1

�k(n)=n2 exists (and necessarily equals liml!1 k(ni(l))=n
2
i(l)).

This shows that for the proof we may assume without loss of generality that limn!1 k(n)=n2

exists (possibly being 1). In the case where this limit is in�nite, the results then follow from
Part a1 which has already been proved in Section 5.3. Thus we may assume without loss of
generality not only that the limit of k(n)=n2 exists, but also that

lim
n!1

k(n)=n2 <1: (22)

We shall make this assumption for the remainder of this section.
Under Assumption R and if r � 4 the mapping

� 7! pk;J;r(�; y) =
2J�1X

l=�r+1

2J�1X

m=�r+1

2Jg
(r)lm
J

 

k�1
kX

i=1

N
(r)
mJ(�(Vi; �))

!

N
(r)
lJ (y)

is twice continuously di¤erentiable on B(�0) for every y and every realization of V1; : : : ; Vk by
the chain rule. Similarly as in the proof of Theorem 2, it su¢ces to work only on the event

A�n \
n
�̂n;k(n) 2 B(�0)

o
which has probability converging to 1 in view of Proposition 2 (applied

with � > 1=2 su¢ciently close to 1=2) and Corollary 2 (applied with some t satisfying 1=2 < t �
� ^ 1). Note that

p(�0)�1

1
� �0, and that

p�1n;jn;r�

1
� 2=�0 holds on the before mentioned

event; we shall use these facts repeatedly in the sequel. Using this, (12), boundedness of N
(r)
mJ

and of its �rst two derivatives as well as Assumption R, one concludes from the dominated
convergence theorem that also the objective function Qn;k de�ned in (8) is twice continuously
di¤erentiable on the neighborhood B(�0) with derivatives (measurable for every � 2 B(�0))

r�Qn;k(�) = �2
Z 1

0

(pn;jn;r� � pk;Jk;r(�))p�1n;jn;r�r�pk;Jk;r(�)d�;

r2�Qn;k(�) = 2

Z 1

0

p�1n;jn;r�r�pk;Jk;r(�)r�pk;Jk;r(�)d�

�2
Z 1

0

(pn;jn;r� � pk;Jk;r(�))p�1n;jn;r�r
2
�pk;Jk;r(�)d�: (23)

Since �̂n;k(n) is an interior maximizer of Qn;k(n) (on the event considered), we clearly have that
r�Qn;k(n)(�̂n;k(n)) = 0. Consequently, a standard Taylor expansions gives

0 = r�Qn;k(n)(�̂n;k(n)) = r�Qn;k(n)(�0) +r2�Q�n;k(n)(�̂n;k(n) � �0); (24)
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where the i-th row of r2�Q�n;k(n) equals the corresponding row of r
2
�Qn;k(n) evaluated at a mean-

value ~�
(i)

n;k(n) which may depend on the row-index (measurability of the mean-value being of no

concern). We next show that
p
nr�Qn;k(n)(�0) is asymptotically normal and that r2�Q�n;k(n)

converges in (outer) probability to the positive de�nite matrix r2�Q(�0). The asymptotic nor-
mality of

p
n
�
�̂n;k(n) � �0

�
then follows along the same lines as in the last paragraph of the

proof of Theorem 2.
Step 1: CLT for the score

p
nr�Qn;k(n)(�0).

We decompose the score as follows:

r�Qn;k(n)(�0)

= �2
Z 1

0

(pn;jn;r� � p(�0))p(�0)�1r�p(�0)d�

+2

Z 1

0

(pk(n);Jk(n);r(�0)� p(�0))p(�0)�1r�p(�0)d�

+2

Z 1

0

(pn;jn;r� � pk(n);Jk(n);r(�0))
�
p(�0)

�1r�p(�0)� p�1n;jn;r�r�pk(n);Jk(n);r(�0)
�
d�

= I + II + III;

with each of the terms being measurable. We further observe that the terms I and II are
independent by construction of the simulation mechanism.
About Term I: As shown in the proof of Theorem 2

p
nI !d N(0;�)

where

� = 4

Z 1

0

r�p(�0)r�p(�0)0p(�0)�1d�:

About Term II: Exactly the same argument as given in the proof of Theorem 2 for term I,
except for using Theorem 3 instead of Theorem 4, establishes that

p
k(n)II !d N (0;�) :

But then
p
nII =

p
n=k(n)

p
k(n)II !d N

�
0;
1

�
�

�

under Assumption S3, and
p
nII converges to zero in probability under Assumption S2.

About Term III: By Cauchy-Schwarz and the triangle inequality we have the bound

kIIIk � 2
pn;jn;r� � pk(n);Jk(n);r(�0)


2

h�p(�0)�1 � p�1n;jn;r�
�
r�p(�0)


2

+
p�1n;jn;r�

�
r�pk(n);Jk(n);r(�0)�r�p(�0)

�
2

i

� 2
pn;jn;r� � pk(n);Jk(n);r(�0)


2

�
(2=�20) k(pn;jn;r� � p(�0))r�p(�0)k2

+(2=�0)
r�pk(n);Jk(n);r(�0)�r�p(�0)


2

i

� (4=�0)
h
kpn;jn;r� � p(�0)k2 +

p(�0)� pk(n);Jk(n);r(�0)

2

i
�

h
(1=�0) kpn;jn;r� � p(�0)k2 kr�p(�0)k1 +

r�pk(n);Jk(n);r(�0)�r�p(�0)

2

i
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with kr�p(�0)k1 being �nite in view of Assumption P1(iv) and Proposition 7 in Appendix A.
The r.h.s. of the above display is now

Op

0

@

0

@
r
2jn

n
+ 2�jn� +

s
2Jk(n)

k(n)
+ 2�Jk(n)�

1

A

0

@
r
2jn

n
+ 2�jn� +

s
23Jk(n)

k(n)
+ 2�Jk(n)s

1

A

1

A

for every 0 < s < r, s � & in view of Assumptions P1 and R as well as Lemmata 3 and 4.
Fixing such an s > 1=2, the expression in the above display is seen to be op(n

�1=2) under the
assumptions of Part a2 or Part b (in particular, � > 3=2), showing that

p
nIII is asymptotically

negligible.
This completes Step 1 and shows that

p
nr�Qn;k(n)(�0)!d N

�
0; (1 + ��1)�

�

under the assumptions of Part b, whereas under the assumptions of Part a2

p
nr�Qn;k(n)(�0)!d N (0;�) :

Step 2: Convergence of second order derivatives.
We have

r2�Q�n;k(n) �r2�Q(�0)
 �

r2�Q�n;k(n) �r2�Qyn
+

r2�Qyn �r2�Q(�0)


where r2�Qyn is the matrix r2�Qn row-wise evaluated at the mean-values ~�
(i)

n;k(n). In view of (17),

consistency of �̂n;k(n), and continuity of r2�Q at �0, the second term on the r.h.s. above converges
to zero in (outer) probability. We now show the same for the �rst term on the r.h.s. in the above
display: Note that the argument leading to (21) is also valid under the current assumptions, and

therefore we can conclude from (21), (22), and Theorem 2 that
�̂n;k(n) � �0

 = Op(k(n)
�1=4).

Consequently, it su¢ces to show that

sup
�2B(�0);k���0k�Mk(n)�1=4

r2�Qn;k(n)(�)�r2�Qn(�)
! 0

in probability for every 0 < M < 1, the above supremum being measurable (as the functions
involved are continuous). Now, by (23) and (15)

1

2

�
r2�Qn;k(n)(�)�r2�Qn(�)

�
=

Z 1

0

(pn;jn;r� � p(�))p�1n;jn;r�
�
r2�p(�)�r2�pk(n);Jk(n);r(�)

�
d�

�
Z 1

0

(p(�)� pk(n);Jk(n);r(�))p�1n;jn;r�r
2
�pk(n);Jk(n);r(�)d�

+

Z 1

0

p�1n;jn;r�

�
r�pk(n);Jk(n);r(�)r�pk(n);Jk(n);r(�)0 �r�p(�)r�p(�)0

�
d� = I � II + III:

About Term I: By the Cauchy-Schwarz and the triangle inequalities

kIk � 2��10
�
kpn;jn;r� � p(�0)k2 + kp(�0)� p(�)k2

�
�

hr2�pk(n);Jk(n);r(�)� Er
2
�pk(n);Jk(n);r(�)


2
+
r2�p(�)� Er2�pk(n);Jk(n);r(�)


2

i
:
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The �rst term on the r.h.s. of the above display is Op(n
��=(2�+1)) in view of Lemma 3

and the choice of jn. For the second term, observe that in view of Assumption P1(iii) we have

p(�; x)� p(�0; x) = r�p(��(x); x)0(� � �0) by the pathwise mean value theorem, and hence

kp(�0)� p(�)k2 �
 Z 1

0

sup
�2B(�0)

kr�p(�; x)k2 dx
!1=2

k� � �0k = O(k� � �0k)

holds for all � 2 B(�0). In view of Lemma 5 and the choice of Jk(n), the supremum over B(�0)

of the third term is Op(k(n)
(2��)=(2�+1)

p
log k(n)). Furthermore, note that

E
@2pk(n);Jk(n);r(�)

@�i@�i0
= �

(r)
Jk(n)

�
@2p(�)

@�i@�i0

�
(25)

holds for � 2 B(�0). [This is proved analogously as (38) in Section 6, making use of the dominance
assumptions on r2�p in Assumption P1, the uniform boundedness assumption on the derivatives
of � in assumption R(ii), the boundedness of the B-spline basis functions and their �rst two

derivatives (as r � 4 holds), as well as using that @2p(�)
@�i@�i0

2 L2 in view of Assumption P2(ii).]
The above established relation, together with the fact that the spectral matrix norm is bounded
by the Frobenius norm, implies that the supremum over B(�0) of the fourth term is bounded by

sup
�2B(�0)

bX

i;i0=1


@2p(�)

@�i@�i0
� �(r)Jk(n)

�
@2p(�)

@�i@�i0

�
2

� sup
�2B(�0)

bX

i;i0=1


@2p(�)

@�i@�i0


2

<1

the last inequality following from Assumption P2(ii). Consequently, in view of (22),

sup
�2B(�0);k���0k�Mk(n)�1=4

kIk

�
h
Op(n

��=(2�+1)) +O(k(n)�1=4)
i h
Op(k(n)

(2��)=(2�+1)
p
log k(n)) + const

i
= op(1)

under either the assumptions of Part a2 or Part b (since � > 3=2 > 4=3).
About Term II: By the Cauchy-Schwarz and the triangle inequalities

sup
�2B(�0)

kIIk � 2��10 sup
�2B(�0)

p(�)� pk(n);Jk(n);r(�)

2
�

sup
�2B(�0)

hr2�pk(n);Jk(n);r(�)� Er
2
�pk(n);Jk(n);r(�)


2
+
Er2�pk(n);Jk(n);r(�)


2

i

= Op(k(n)
��=(2�+1)

p
log k(n))

h
Op(k(n)

(2��)=(2�+1)
p
log k(n)) + const

i
(26)

where we have made use of Lemmata 3 and 5; and we have used the bound

sup
�2B(�0)

Er2�pk(n);Jk(n);r(�)

2
� sup
�2B(�0)

bX

i;i0=1


@2p(�)

@�i@�i0


2

<1

which follows from (25) and Assumption P2(ii). The r.h.s. of (26) is now op(1) since � > 3=2 > 1.
About Term III: By the Cauchy-Schwarz and the triangle inequalities

kIIIk � 2��10
r�pk(n);Jk(n);r(�)�r�p(�)


2

hr�pk(n);Jk(n);r(�)�r�p(�)

2
+ 2 kr�p(�)k2

i
:
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Now

sup
�2B(�0)

r�pk(n);Jk(n);r(�)� Er�pk(n);Jk(n);r(�)

2
= Op(k(n)

(1��)=(2�+1)
p
log k(n)) = op(1)

by Lemma 5 and since � > 3=2 > 1. Furthermore,

sup
�2B(�0)

Er�pk(n);Jk(n);r(�)�r�p(�)

2
�

bX

i=1

sup
�2B(�0)

E
@pk(n);Jk(n);r(�)

@�i
� @p(�)

@�i


2

=
bX

i=1

sup
�2B(�0)

�
(r)
Jk(n)

�
@p(�)

@�i

�
� @p(�)

@�i


2

;

the last equality holding as shown in (38) in Section 6. By Proposition 8 in Appendix A and As-
sumption P2(i) the r.h.s. in the above display is now o(1). Taken together, this provides a bound
for sup�2B(�0);k���0k�Mk(n)�1=4 kIIIk which converges to zero in probability. This completes the
proof of Step 2.

5.5 Proof of Proposition 3

Since ��n;k ! �0 by assumption, since �(�) :=
R 1
0
r�p(�)r�p(�)0p(�0)�1d� is continuous on the

neighborhood B(�0) of �0 by dominated convergence and Assumption P1(iii), and since �(�0)
is positive de�nite by the same assumption, it su¢ces to show that, uniformly over B(�0), the

expression �̂(�) =
R 1
0
r�pk;J0k;r0(�)r�pk;J0k;r0(�)

0p�1n;j0n;r0�d� converges to �(�) in probability as

n ^ k !1. Note that �̂(�) is well-de�ned on the event A�n which has probability converging to
1 in view of Corollary 2. In the sequel we only work on that event. Now

����̂(�)� �(�)
��� �

����

Z 1

0

r�p(�)r�p(�)0
�
p�1n;j0n;r0� � p(�0)

�1
�
d�

����

+

����

Z 1

0

�
r�pk;J0k;r0(�)r�pk;J0k;r0(�)

0 �r�p(�)r�p(�)0
�
p�1n;j0n;r0�d�

����

� 2��20 kpn;jn;r� � p(�0)k1
Z 1

0

sup
�2B(�0)

kr�p(�)k2 d�

+2��10 kr�pk;Jk;r0(�)�r�p(�)k2
�
kr�pk;Jk;r0(�)�r�p(�)k2 + 2 kr�p(�)k2

�
:

The �rst term on the r.h.s. is independent of � and converges to zero in probability by Corollary
2. The supremum over B(�0) of the second term converges to zero by essentially repeating the
argument that has been used in the very last step of the proof of Theorem 1.

6 Rates of Convergence for Spline Projection Estimators

This section contains the main stochastic bounds used to control remainder terms in the proofs
in Section 5. We �rst collect some simple facts about the B-splines N (r) that will repeatedly be
used in this section:

N (r)

1;R

� 1;
N (r)


1;R
= 1;

N (r)

2;R
� 1 for r � 1: (27)

The �rst relation is a direct consequence of the de�nition of N (r), the second one follows since
N(r) is � as a convolution of probability densities � a probability density again, and the third
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relation is a consequence of Young�s inequality. Furthermore, it is easy to see that N (r) is
continuously di¤erentiable for r � 3 with derivative N (r)0 given by

N (r)0 = N (r�1) �N (r�1)(� � 1): (28)

For r = 2, the B-spline N (2) is Lipschitz and only has a weak derivative N (2)0 which, in order to
have it de�ned everywhere, will always be taken as N (1) �N (1)(� � 1). The bounds

N (r)0

1;R

� 1;
N (r)0


1;R
� 2;

N (r)0

2;R
� 2 for r � 2 (29)

are then an immediate consequence of (27), (28), and the fact that N (r�1) is nonnegative. By
repeated application of (28) we can obtain bounds for higher-order derivatives, for example, we
shall need

N (r)00

1;R

� 2;
N (r)00


2;R
� 4 for r � 3; and

N (r)000

1;R

� 4 for r � 4: (30)

The above discussion also implies that N (r) for r � 2, N (r)0 for r � 3, and N (r)00 for r � 4 are
globally Lipschitz on R with Lipschitz constants bounded by 1, 2, and 4, respectively.
For f 2 Sj(r), r � 3, we denote in the following by f 0 its derivative (using one-sided deriva-

tives on the boundary of [0; 1]); for r = 2 we use f 0 to denote the weak derivative.

Lemma 2 Let f =
P2j�1
l=�r+1 �lN

(r)
lj where �l are real numbers and r � 1, i.e., f 2 Sj(r). Then

kfk2 � 2�j=2
0

@
2j�1X

l=�r+1

�2l

1

A

1=2

; (31)

kf 0k2 � 21+j=2
0

@
2j�1X

l=�r+1

�2l

1

A

1=2

for r � 2; (32)

and

kf 00k2 � 22+3j=2
0

@
2j�1X

l=�r+1

�2l

1

A

1=2

for r � 3: (33)

Furthermore, for every 0 < s0 � 1 there exists a �nite constant C0(s0) such that for every r � 2
and f as above

kfks0;2 � C0(s
0)2j(s

0�1=2)

0

@
2j�1X

l=�r+1

�2l

1

A

1=2

: (34)

Proof. The �rst claim is well-known, see, e.g., DeVore and Lorentz (1993), Theorem 5.4.2. To
prove (32), use (28) and the fact that N (r�1) vanishes outside of (0; r� 1) for r � 3 and outside
of [0; 1) for r = 2, to obtain (interpreting the equality modulo �-nullsets in case r = 2)

f 0(x) = 2j
2j�1X

l=�r+1

�lN
(r)0(2jx� l) = 2j

2j�1X

l=�r+1

�l

h
N (r�1)(2jx� l)�N (r�1)(2jx� l � 1)

i

= 2j
2j�1X

l=�(r�1)+1

�lN
(r�1)(2jx� l)� 2j

2j�1X

l=�(r�1)+1

�l�1N
(r�1)(2jx� l) =: f1 + f2:
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Using (31) for f1 and f2, we obtain

kf 0k2 � kf1k2 + kf2k2 � 21+j=2
0

@
2j�1X

l=�r+1

�2l

1

A

1=2

:

The third claim is proved similarly. To prove the �nal claim, we use the following interpolation
inequality: for every 0 < s0 � 1 there exists a �nite constant C�(s0) such that for every h 2 W1

2

khks0;2 � C�(s0)(khk2 + kDwhk2)s
0khk1�s02 (35)

holds. [This follows from (5) if s0 = 1; if s0 < 1 it follows from Theorem 6.7.1 in DeVore
and Lorentz (1993) applied to the intermediate spaces (R;R)s0;1, (L2;W1

2 )s0;1, and to the
operator that maps any real number a into ah, observing that (L2;W1

2 )s0;1 is equal to Bs0 up
to a equivalence of norms, cf. p.196 in DeVore and Lorentz (1993).] Observe that f 2 W1

2 if
r � 2. Now, using (35) with h = f , (31), and (32) completes the proof upon setting C0(s

0) =

(2:5)
s0
C�(s0).

Lemma 3 Assume r � 1 and let � 2 �.
a. Suppose the density p(�) is bounded. Then for all k � 1 and J � 1

E kpk;J;r(�)� Epk;J;r(�)k22 � C1(�; r)
2J

k
;

where C1(�; r) = (
r+1
2 )d

2
r kp(�)k1 with dr de�ned in Proposition 4. Furthermore, for r � 2 and

0 < s0 � 1
E kpk;J;r(�)� Epk;J;r(�)k2s0;2 � C0(s

0)2C1(�; r)
2J(2s

0+1)

k

holds for all k � 1 and J � 1, where C0(s0) is given in Lemma 2.
b. If p(�) 2 L2, then for every k

lim
J!1

kEpk;J;r(�)� p(�)k2 = 0:

If p(�) 2 Bt for some 0 < t < r then for all k � 1 and J � 1

kEpk;J;r(�)� p(�)k2 � 2�Jtc0t kp(�)kt;2 ;

where c0t is the constant given in Proposition 8 in Appendix A.
c. If the assumptions of Part a (Part b) hold for (a version of) p0 and r� in place of p(�)

and r, respectively, then the results in Part a (Part b) also apply mutatis mutandis to pn;j;r� .

Proof. In view of Lemma 2, the de�nition of pk;J;r(�), (31) and (34), it su¢ces to bound
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(r)
lJ (�)� Ê
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in order to prove Part a. We obtain
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2

� 2J
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2J�1X
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J
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� 2J

k
kp(�)k1

0

@
2J�1X

m=�r+1

���g(r)lmJ
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1

A

2

� 2J

k
d2r kp(�)k1 ; (36)

where we have used independence, (31), and Proposition 4. This establishes Part a. [Measur-
ability of the L2-norm is obvious, and measurability of the Besov-norm follows from Appendix

B.] Since Epk;J;r(�) = �
(r)
J (p(�)), Part b follows from Proposition 8 in Appendix A. Part c is

proved completely analogously.

Lemma 4 Assume r � 3 and let � be an interior point of � such that the partial derivative
@�(v;�)
@�q

at � exists for every v 2 V.
a. Suppose the density p(�) is bounded and supv2V

���@�(v;�)@�q

��� < 1. Then for all k � 1 and

J � 1

E


@pk;J;r(�)

@�q
� E@pk;J;r(�)

@�q


2

2

� C2(�; r)
23J

k
;

where C2(�; r) = 2(r + 1)d
2
r kp(�)k1 supv2V

���@�(v;�)@�q

���
2

.

b. Suppose there exists an open ball B(�) � � with center � such that @p(�;x)@�q
and @�(v;�)

@�q
exist

on B(�) for every x 2 [0; 1] and v 2 V, suppose @p(�;�)
@�q

belongs to Bs for some 0 < s < r, and

that Z 1

0

sup
�02B(�)

����
@p(�0; x)

@�q

���� dx <1;
Z

V

sup
�02B(�)

����
@�(v; �0)

@�q

���� d�(v) <1:

Then for all k � 1 and J � 1
E

@pk;J;r(�)

@�q
� @p(�)

@�q


2

� 2�Jsc0s

@p(�)

@�q


s;2

;

where the constant c0s is de�ned in Proposition 8 in Appendix A. [If
@p(�;�)
@�q

2 Bs is weakened to
@p(�;�)
@�q

2 L2, then limJ!1

E @pk;J;r(�)
@�q

� @p(�)
@�q

 = 0 holds.]

Proof. Observe that pk;J;r is di¤erentiable at � because r � 3 is assumed. To prove Part a note
that

@pk;J;r(�)

@�q
� E@pk;J;r(�)

@�q
=

2J�1X

l=�r+1

 
@̂

(r)
lJ (�)

@�q
� E@̂

(r)
lJ (�)

@�q

!

N
(r)
lJ ;

26



and that the L2-norm of this expression is measurable by Fubini�s Theorem; also note that the
expectations in the above display exist since the B-spline basis functions are bounded and since

supv2V

���@�(v;�)@�q

��� <1 has been assumed. Now, using the chain rule and (32), we obtain

E
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� E@̂
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!2
� 22J
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2 Z 1
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p(�; x)dx (37)
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� 23J+2

k
d2r sup

v2V

����
@�(v; �)

@�q

����
2

kp(�)k1 :

An application of Lemma 2 then completes the proof of Part a.
To prove Part b, note that

Z

V

@

@�q
N
(r)
mJ(�(v; �))d�(v) =

@

@�q

Z

V

N
(r)
mJ(�(v; �))d�(v)

=
@

@�q

Z 1

0

N
(r)
mJ(x)p(�; x)dx =

Z 1

0

N
(r)
mJ(x)

@

@�q
p(�; x)dx;

where the two-fold interchange of integration and di¤erentiation is permitted by dominated
convergence in view of the maintained dominance assumptions on the derivatives of � and p as
well as the boundedness of the B-spline basis functions and their �rst derivative. Consequently,

E
@pk;J;r(�; y)

@�q
= 2J

2J�1X

l=�r+1

2J�1X

m=�r+1
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(r)lm
J
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V

@

@�q
N
(r)
mJ(�(v; �))d�(v)N

(r)
lJ (y) (38)

= 2J
2J�1X

l=�r+1

2J�1X

m=�r+1

g
(r)lm
J

Z 1

0

N
(r)
mJ(x)

@

@�q
p(�; x)dxN

(r)
lJ (y) = �

(r)
J

�
@

@�q
p(�)

�
;

and Part b now follows immediately from Proposition 8 in Appendix A.

Lemma 5 a. Suppose Assumption R(i) is satis�ed, r � 2, � is a bounded subset of Rb, and
sup�2� kp(�)k1 < 1. Then there exist �nite positive constants C3 and C4, depending only on
�, b, �, r, and sup�2� kp(�)k1 but not on k and J , such that

E sup
�2�

kpk;J;r(�)� Epk;J;r(�)k22 � C3
2JJ

k
;

holds for all k � 1 and J � 1 satisfying 2JJ � C4k. Furthermore, for 0 < s0 � 1

E sup
�2�

kpk;J;r(�)� Epk;J;r(�)k2s0;2 � C0(s
0)2C3

2J(2s
0+1)J

k
(39)

holds for all k � 1 and J � 1 satisfying 2JJ � C4k where C0(s
0) is given in Lemma 2.
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b. Suppose Assumption R(ii) is satis�ed for some interior point �0 of �, sup�2B(�0) kp(�)k1 <
1 and r � 3 hold. Then there exist �nite positive constants C5 and C6, depending only on B(�0),
b, �, r and sup�2B(�0) kp(�)k1 but not on k and J , such that for every q = 1; : : : ; b

E sup
�2B(�0)


@

@�q
pk;J;r(�)� E

@

@�q
pk;J;r(�)


2

2

� C5
23JJ

k

holds for all k � 1 and J � 1 satisfying 2JJ � C6k.
c. Suppose the assumptions of Part b are satis�ed except that now r � 4. Then there exist

�nite positive constants C7 and C8, depending only on B(�0), b, �, r and sup�2B(�0) kp(�)k1 but
not on k and J , such that for every q; q0 = 1; : : : ; b

E sup
�2B(�0)


@2

@�q@�q0
pk;J;r(�)� E

@2

@�q@�q0
pk;J;r(�)



2

2

� C7
25JJ

k

holds for all k � 1 and J � 1 satisfying 2JJ � C8k.

Proof. a. By Lemma 2 we have

E sup
�2�

kpk;J;r(�)� Epk;J;r(�)k22 � 2�J
2J�1X

l=�r+1

E sup
�2�

�
̂
(r)
lJ (�)� Ê

(r)
lJ (�)

�2
:

Note that the suprema in the above display are measurable as the functions over which the
suprema are taken depend continuously on � in view of assumption R(i) and r � 2. We bound
the r.h.s. in the above display by applying the moment inequality given in Proposition 12 in
Appendix C: �x an arbitrary l and express the corresponding summand in the above display as

E sup
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(r)
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(r)
lJ (�)
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=
22J

k2
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(40)
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2J�1X
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(r)
mJ(�(v; �))� EN

(r)
mJ(�(Vi; �))

i

and set Hl;J;r = fh�;l : � 2 �g. Furthermore, set U = drmax
�
2; sup�2� kp(�)k1=21

�
and �2 =

2�JU2. Then 0 < � � U holds, and using the calculations that have led to (36) we obtain for
every � 2 �

Eh2�;l(Vi) � E

0

@
2J�1X
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g
(r)lm
J N

(r)
mJ(�(v; �))
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2

� 2�Jd2r kp(�)k1 � 2�Jd2r sup
�2�

kp(�)k1 � �2:

Furthermore, using (27), we obtain for every � 2 �

sup
v2V

jh�;lj � 2dr
N (r)


1;R

� 2dr � U:

We next bound the uniform L1-covering numbers of Hl;J;r: observe that the elements of Hl;J;r
satisfy for �, �0 2 �

sup
v2V

��h�;l(v)� h�0;l(v)
�� � 2J+1drL

� � �0
� ; (41)
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where L, � are the Hölder constants from Assumption R(i) and where we have made use of the
fact that N (r) has Lipschitz constant bounded by 1 for r � 2; cf. the discussion at the beginning
of this section. Since � is assumed to be bounded in Rb, it can be covered by fewer than M=�b

open balls with centers �i 2 � and radius �, for 0 < � � 1 where M depends only on �. By (41),
the functions h�i;l in Hl;J;r corresponding to the �i�s give rise to a covering of Hl;J;r by sup-norm
balls of radius 2J+1drL�

�. Consequently, the L1-covering numbers satisfy

N(Hl;J;r; L1(V); ") �M

�
2J+1drL

"

�b=�
for 0 < " � 2J+1drL: (42)

Replacing M by M� = M max
�
1; (U=(2drL))

b=�
�
in (42), guarantees that (42) then holds for

0 < " � 2U , which leads to
N(Hl;J;r; L1(V); ") � (AU=")v for 0 < " � 2U; (43)

for v = max(b=�; 2) and A = max
�
2J+1M

�=b
� drLU

�1; 2e
�
, where we have also enforced v � 2

and A > e. Note that, apart from the factor 2J , A depends only on �, b, � (via � and L), r (via
dr), and sup�2� kp(�)k1. Observe that Hl;J;r contains a countable sup�norm dense subset in
view of (41) and separability of �. Hence the expectation bound in Part a of Proposition 12 in
Appendix C applied to this subset and with b0 = v�1 now yields the existence of positive �nite
constants C 03 and C

0
4 both depending only on �, b, �, r, and sup�2� kp(�)k1, such that for all

J 2 N and all k � C 042
JJ

E sup
�2�

�����

kX

i=1

h�;l(Vi)

�����

2

� C 03k2
�JJ: (44)

Since this bound does not depend on the summation index l, the proof of the �rst claim is
complete upon setting C3 = (r + 1)C

0
3=2 and C4 = 1=C

0
4. The second claim follows immediately

from applying (34) in Lemma 2 to the l.h.s. of (39) and using (40) and (44), the measurability
of the supremum in (39) following from Appendix B.
b. Observe that pk;J;r is continuously di¤erentiable on B(�0) because of r � 3 and Assumption

R(ii). Similarly as in Part a we have measurability of the suprema and obtain from Lemma 2
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and �2 = 2�JU2. Then 0 < � � U holds (where we exclude the trivial case U = 0). Observing

that N
(r)0
mJ (x) = 2

JN (r)0(2Jx�m) by the chain rule, we obtain, using the same calculations that
have led to (37), for � 2 B(�0)

Eh
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Furthermore, for every � 2 B(�0)
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where we have made use of (29). To bound the uniform L1-covering numbers of H(1)
l;J;r, observe

that the elements of H(1)
l;J;r satisfy for �, �

0 2 B(�0)
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�2B(�0)
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kr��(v; �)k2
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 � 2Jc�
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 ;

where we have made use of (29), of the bound on the Lipschitz constant of N (r)0 given at the
beginning of this section, and of the boundedness of B(�0); the constant c� is �nite and depends
only on �, r, and B(�0). Proceeding as in the proof of Part a we obtain

N(H(1)
l;J;r; L

1(V); ") � (AU=")v for 0 < " � 2U;

for v = max(b; 2) and A = max
�
2JM1=bmax(c�U

�1; 1); 2e
�
with M only depending on B(�0).

Note that, apart from the factor 2J , A depends only on B(�0), b, �, r and sup�2B(�0) kp(�)k1.
Part a of Proposition 12 in Appendix C applied to a countable sup-norm dense subset of H(1)

l;J;r

and with b0 = v�1 now yields the existence of positive �nite constants C 05 and C
0
6 depending

only on B(�0), b, �, r and sup�2B(�0) kp(�)k1, such that for all J 2 N and all k � C 062
JJ
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holds. Since this bound does not depend on l, the proof is complete upon setting C5 = (r+1)C
0
5=2

and C6 = 1=C
0
6.

c. The proof is similar to the proof of Part b: Observe that pk;J;r is twice continuously
di¤erentiable on B(�0) because of r � 4 and Assumption R(ii). By Lemma 2 we have
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sup
�2B(�0)

kp(�)k1=21

"

2 sup
�2B(�0)

sup
v2V

r2��(v; �)
2 + 32 sup

�2B(�0)

sup
v2V

kr��(v; �)r��(v; �)0k2
#1=29=

;

and �2 = 2�JU2. Then 0 < � � U holds (where we exclude the trivial case U = 0), and for
� 2 B(�0) we have

Eh
(2)2
�;l (Vi) � 23�3Jd2r sup

�2B(�0)

kp(�)k1 sup
�2B(�0)

sup
v2V

����
@2�(v; �)

@�q@�q0

����

2

+25�Jd2r sup
�2B(�0)

kp(�)k1 sup
�2B(�0)

sup
v2V

����
@�(v; �)

@�q

@�(v; �)

@�q0

����
2

� �2;

using a calculation similar to the one that has led to (37) and making use of Lemma 2. Similarly,
for � 2 B(�0) we obtain

sup
v2V

���h(2)�;l (v)
��� � 2dr

�
2�J sup

v2V

����
@2�(v; �)

@�q@�q0

����
N (r)0


1;R

+ sup
v2V

����
@�(v; �)

@�q

@�(v; �)

@�q0

����
N (r)00


1;R

�
� U;

using
N (r)0


1;R

� 1 and
N (r)00


1;R

� 2, cf. (29), (30). Furthermore, for �, �0 2 B(�0) we get
again using (29), (30), the bounds for the Lipschitz constants of N (r)0 and N (r)00 given at the
beginning of this section, and boundedness of B(�0)

sup
v2V

���h(2)�;l (v)� h
(2)
�0;l(v)

��� � 21�JdrL
0
� � �0

�

+12dr sup
�2B(�0)

sup
v2V

kr��(v; �)k sup
�2B(�0)

sup
v2V

r2��(v; �)
� � �0



+2J+3dr sup
�2B(�0)

sup
v2V

kr��(v; �)k sup
�2B(�0)

sup
v2V

kr��(v; �)k2
� � �0



� 2Jc��
� � �0

�

with the constant c�� being �nite and depending only on B(�0), r, �. Proceeding as in the proof
of Part a we obtain

N(H(2)
l;J;r; L

1(V); ") � (AU=")v for 0 < " � 2U;

where now v = max(b=�; 2) and A = max
�
2JM�=bmax(c��U

�1; 1); 2e
�
with M only depending

onB(�0). Again, apart from the factor 2
J , A depends only onB(�0), b, �, r, and sup�2B(�0) kp(�)k1.
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Part a of Proposition 12 in Appendix C applied to a countable sup-norm dense subset of H(2)
l;J;r

and with b0 = v�1 now yields the existence of positive �nite constants C 07 and C
0
8 depending

only on B(�0), b, �, r, and sup�2B(�0) kp(�)k1, such that for all J 2 N and all k � C 082
JJ

E sup
�2�

�����

kX

i=1

h
(2)
�;l (Vi)

�����

2

� C 07k2
�JJ

holds. Since this bound does not depend on l, the proof is complete upon setting C7 = (r+1)C
0
7=2

and C8 = 1=C
0
8.

Corollary 1 Suppose Assumption R(i) is satis�ed and r � 2. Suppose further that � is a
bounded subset of Rb and that fp(�) : � 2 �g is bounded in Bt for some 1=2 < t � 1. If Jk 2 N
satis�es

sup
k�1

2Jk(2t+1)Jk=k <1; (45)

then sup�2� kpk;Jk;r(�)kt;2 is stochastically bounded, i.e.,

lim
M!1

sup
k�1

Pr

�
sup
�2�

kpk;Jk;r(�)kt;2 > M

�
= 0:

If (45) holds and Jk ! 1 for k ! 1, then, for every 0 < t0 < t, sup�2� kpk;Jk;r(�) � p(�)kt0;2
as well as sup�2� kpk;Jk;r(�)� p(�)k1 converge to zero in (outer) probability as k !1.

Proof. Observe that under (45) we have 2JkJk � C4k for k large enough, where C4 is as in
Lemma 5, and that fp(�) : � 2 �g is sup-norm bounded. Now, using Lemma 5 together with
Ljapunov�s inequality as well as Proposition 9 in Appendix A, we arrive, for k large enough, at

E sup
�2�

kpk;Jk;r(�)kt;2 � E sup
�2�

kpk;Jk;r(�)� Epk;Jk;r(�)kt;2 + sup
�2�

kEpk;Jk;r(�)kt;2

� C0(t)
p
C32

Jkt

r
2JkJk
k

+ sup
�2�

k�(r)Jk (p(�))kt;2

� C0(t)
p
C3 sup

k�1
2Jkt

r
2JkJk
k

+ c00t sup
�2�

kp(�)kt;2 <1;

where we have used the already established fact that Epk;Jk;r(�) = �
(r)
Jk
(p(�)). [Measurabil-

ity of sup�2� kpk;Jk;r(�)kt;2 follows from Appendix B.] Together with the observation that
E sup�2� kpk;Jk;r(�)kt;2 < 1 for every k � 1, this completes the proof of the �rst claim. Next,
Lemma 5 (applied with s0 = t0) gives for k large enough (E� denoting outer expectation)

E� sup
�2�

kpk;Jk;r(�)� p(�)kt0;2 � E sup
�2�

kpk;Jk;r(�)� Epk;Jk;r(�)kt0;2 + sup
�2�

k�(r)Jk (p(�))� p(�)kt0;2

� C0(t
0)
p
C32

Jkt
0

r
2JkJk
k

+ 2�Jk(t�t
0)c000t;t0 sup

�2�
kp(�)kt;2;

where we have used Proposition 9 in Appendix A in the �nal step. The upper bound now
converges to zero as k !1. The claim regarding the sup-norm now follows from Proposition 7
in Appendix A.

The following corollary is proved analogously using Lemma 3 instead of Lemma 5, with
measurability of the relevant quantities following from Appendix B.
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Corollary 2 Suppose r� � 2 and that p0 2 Bt for some 1=2 < t � 1. If jn 2 N satis�es
sup
n�1

2jn(2t+1)=n <1; (46)

then kpn;jn;r�kt;2 is stochastically bounded, i.e.,
lim
M!1

sup
n�1

Pr (kpn;jn;r�kt;2 > M) = 0:

If (46) holds and jn ! 1 for n ! 1, then, for every 0 < t0 < t, kpn;jn;r� � p0kt0 as well as
kpn;jn;r� � ~p0k1 converge to zero in probability as n!1, where ~p0 is the continuous version of
p0.

7 Uniform Central Limit Theorems for Spline Projection

Estimators

We now study the di¤erence between the random measure Pk;J;r(�) given by

dPk;J;r(�)(y) = pk;J;r(�; y)dy

and Pk(�), acting on Besov classes by integration. In the following k�kF stands for supf2F j�(f)j,
where � is a (signed) measure.

Theorem 3 Suppose Assumption R(i) is satis�ed, r � 2, � is a bounded subset of Rb, and
fp(�) : � 2 �g is a bounded subset of Bt for some t, 0 < t < r. Let F be a (non-empty) bounded
subset of Bs for some s, 1=2 < s < 1. Then for every 1=2 < s0 � s there is a �nite positive
constant C9, depending only on s, s

0, t, F , �, b, �, L, and fp(�) : � 2 �g but not on J and k,
such that for every J � 1 and k � 1

E sup
�2�

kPk;J;r(�)� Pk(�)kF � C9(2
�J(t+s) + 2�J(s�s

0)k�1=2): (47)

Furthermore,
sup
�2�

kPk(�)� P (�)kF = Op(k
�1=2) (48)

holds. Finally, if Jk !1 as k !1 satis�es 2�Jk(t+s) = o(k�1=2), then for every � 2 �
p
k (Pk;Jk;r(�)� P (�)) `1(F) GP (�);

where GP (�) is a sample-bounded and sample-continuous generalized P (�)-Brownian bridge in-
dexed by F . Here  `1(F)denotes convergence in law as de�ned in Chapter 1 of van der Vaart
and Wellner (1996).

Proof. We �rst note that sup�2� kPk;J;r(�)� Pk(�)kF and sup�2� kPk(�) � P (�)kF are mea-
surable since they can be represented as suprema over countable dense subsets of � and F in
view of Assumption R(i), r � 2, and separability of F . For f 2 F we can write, using (6), (7),

(11) and symmetry of the projection kernel K
(r)
J ,

(Pk;J;r(�)� Pk(�))(f) =
1

k

kX

i=1

�Z 1

0

f(y)K
(r)
J (Xi(�); y)dy � f(Xi(�))

�

=
1

k

kX

i=1

(�
(r)
J (f)� f)(Xi(�)) = (Pk(�)� P (�))(�(r)J (f)� f) +

Z 1

0

(�
(r)
J (f)� f)(y)p(�)(y)dy

= A+B:
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Consider �rst term B: Using f 2 L2, p(�) 2 L2, self-adjointness and idempotency of the projec-
tion Id� �(r)J we obtain

����

Z 1

0

�
�
(r)
J (f)� f

�
(y)p(�)(y)dy

���� =

����

Z 1

0

��
Id� �(r)J

�
f
�
(y)
��
Id� �(r)J

�
p(�)

�
(y)dy

����

�
f � �(r)J (f)


2

p(�)� �(r)J (p(�))

2

� c0sc
0
t kfks;2 kp(�)kt;2 2�J(s+t); (49)

where we have used Proposition 8 for the last inequality. Consider next the term A: De�ne for
J � 1 the class of functions

FJ;r;� =

�Z 1

0

K
(r)
J (�(�; �); y)f(y)dy � f(�(�; �)) : f 2 F ; � 2 �

�

=
n
(�
(r)
J (f)� f)(�(�; �)) : f 2 F ; � 2 �

o
; (50)

which allows us to write

E sup
�2�

sup
f2F

���(Pk(�)� P (�))(�(r)J (f)� f)
��� =

1

k
E sup
h2FJ;r;�

�����

kX

i=1

(h(Vi)� Eh(Vi))
�����
. (51)

Choose an arbitrary s0 satisfying 1=2 < s0 � s and observe that (�
(r)
J (f) � f) 2 Bs � Bs0 since

F � Bs by assumption and that SJ(r) � Bs � Bs0 in view of s < 1 < r � 1=2. Propositions 7
and 9 in Appendix A then give

sup
h2FJ;r;�

sup
v2V

jh(v)� Eh(Vi)j � 2 sup
h2FJ;r;�

sup
v2V

jh(v)j � 2 sup
f2F

�(r)J (f)� f

1

� 2cs0 sup
f2F

�(r)J (f)� f

s0;2

� 2cs0c000s;s0 sup
f2F

kfks;2 2�J(s�s
0) =: U

where U <1 since F is a (non-empty) bounded subset of Bs. We may assume U > 0, the case
U = 0 being trivial. Since FJ;r;� contains a countable sup-norm dense subset in view of Proposi-
tion 6 below, we may apply the moment inequality from Proposition 12, part b, in Appendix C

to (51) (with U as above, � = U , A0 = c�s
0

=
�
2cs0c

000
s;s0 supf2F kfks;2

�
, and with w = 1=s0) and

make use of the entropy bound in Proposition 6 below with "� = 4cs0c
000
s;s0 supf2F kfks;2 � 2U .

This gives the bound

E sup
�2�

sup
f2F

���(Pk(�)� P (�))(�(r)J (f)� f)
��� � 2�J(s�s

0)+1k�1=2cs0c
000
s;s0 sup

f2F
kfks;2 b2

where the constant b2 only depends on A
0 and w. Together with (49), this proves the bound

(47). To prove the second claim, de�ne the class

F� = ff(�(�; �)) : f 2 F ; � 2 �g (52)

and note that F� is uniformly bounded since F is and that

sup
�2�

kPk(�)� P (�)kF =
1

k
sup
h2F�

�����

kX

i=1

(h(Vi)� Eh(Vi))
�����
:
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Now (48) follows since F� is a universal Donsker class by Proposition 6 below. The third claim of
the theorem follows immediately from (47) with s0 chosen to satisfy s0 < s, from the assumptions
on Jk, and from the universal Donsker property of ff(�(�; �)) : f 2 Fg for every �, which it
inherits from F�.
Proposition 6 Suppose Assumption R(i) is satis�ed, r � 2, and � is a bounded subset of Rb.
Let F be a (non-empty) bounded subset of Bs, 1=2 < s < 1. Let FJ;r;� and F� be de�ned as in
(50) and (52). Then for every 1=2 < s0 � s and every "� > 0 there exists a (positive) �nite
constant c�, depending only on s, s0, F , �, b, �, L, and "� but not on J , such that for every
J � 1

logN(FJ;r;�; L1(V); ") � 2�J(s�s
0)=s0c�"�1=s

0

for 0 < " � "� (53)

holds. Furthermore, for every "� > 0 there exists a (positive) �nite constant c�� (depending only
on s, F , �, b, �, L, and "�) such that

logN(F�; L1(V); ") � c��"�1=s for 0 < " � "� (54)

holds. In particular, F� and FJ;r;� are universal Donsker classes.
Proof. Let s0 be as in the proposition. By Proposition 9

sup
f2F

�(r)J (f)� f

s0;2

� 2�J(s�s0)c000s;s0 sup
f2F

kfks;2 = 2�J(s�s
0)D <1; (55)

where the constant D depends only on s, s0, and F . As a consequence,

GJ :=
n
(�
(r)
J (f)� f) : f 2 F

o

is contained in a ball UJ in Bs0 of radius 2�J(s�s
0)D. Using entropy bounds for balls in Besov

spaces (e.g., Theorem 15.6.1 in Lorentz, v.Golitschek, and Makovoz (1996)) we obtain

logN(GJ ; L1([0; 1]); ") � 2�J(s�s
0)=s0c(s; s0;F)"�1=s0 for 0 < " <1

where the �nite and positive constant c(s; s0;F) depends only on s, s0, and F (in particular,
it is independent of J). [Setting p = 2, q = 1 in Lorentz, v.Golitschek, and Makovoz (1996)
we actually obtain the above bound only in the ess-sup norm. However, since GJ consists of
continuous functions only and since we can always assume that the centers of the covering ess-
sup norm balls belong to GJ (perhaps at the expense of doubling "), we immediately obtain the
same bound for the supremum-norm.]
To prove the entropy bound for FJ;r;� = fg(�(�; �)) : g 2 GJ ; � 2 �g we proceed as follows:

Note that the elements of GJ are Hölder continuous of order s0 � 1=2 with Hölder constants
uniformly bounded by 2�J(s�s

0)c1(s
0; D), with 0 < c1(s

0; D) < 1 depending only on s0 and
D, since GJ � UJ � Bs0 and since for 1=2 < s0 < 1 the space Bs0 is continuously embedded
into Cs

0�1=2, cf. Proposition 7 in Appendix A. De�ne � = (�(s0 � 1=2))�1 with � de�ned

in Assumption R1. For 0 < " � 1 set � =
�
2J(s�s

0)"
��

and cover � by �-balls with centers

�1; : : : ; �N(�;�) where N(�;�) satis�es N(�;�) � max(1;M(�)=�b) for some constant M(�)
only depending on �. Let g1; : : : ; gN(GJ ;L1([0;1]);") be the centers of L

1([0; 1])-balls of radius "
covering Gj . We then have for g(�(�; �)) 2 FJ;r;� using Assumption R1

sup
v2V

jg(�(v; �))� gi(�(v; �l)j

� sup
v2V

jg(�(v; �))� g(�(v; �l))j+ sup
v2V

jg(�(v; �l))� gi(�(v; �l))j

� 2�J(s�s
0)c1(s

0; D) (L j� � �lj�)s
0�1=2

+ sup
x2[0;1]

jg(x)� gi(x)j �
�
c1(s

0; D)L1=� + 1
�
"
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for suitable choice of i and l. Consequently, we obtain for 0 < " � 1

logN(FJ;r;�; L1(V);
�
c1(s

0; D)L1=� + 1
�
") � logN(GJ ; L1([0; 1]); ") + logN(�;�)

� c(s; s0;F)
�
2J(s�s

0)"
��1=s0

+ log+
�
M(�)=(2J(s�s

0)")b�
�
� c�2

�J(s�s0)=s0"�1=s
0

;

for a suitable �nite constant c� only depending on s, s
0, F , �, b, and �, but not on J . After a

simple substitution, this gives (53) for 0 < " � c1(s
0; D)L1=� + 1. Appropriately adjusting the

multiplicative constant in this so-obtained bound gives (53) for all 0 < " � "�; note that the
adjustment of the constant only introduces an additional dependence on "� (but no dependence
on J). The entropy bound (54) for F� is proved in a similar (even simpler) way. The Donsker
property of FJ;r;� and F� now follows from (53), (54) and Theorem 2.8.4 in van der Vaart and
Wellner (1996), noting that FJ;r;� and F� are uniformly bounded in view of Proposition 7 and
that the bracketing covering numbers are dominated by the sup-norm covering numbers.

An analogous result holds for the random measure Pn;j;r� given by dPn;j;r�(y) = pn;j;r�(y)dy.
The proof of this result is similar to, in fact simpler than, the proof of Theorem 3 and thus is
omitted.

Theorem 4 Suppose r� � 2, and p0 2 Bt for some t, 0 < t < r�. Let F be a (non-empty)
bounded subset of Bs for some s, 1=2 < s < 1. Then for every 1=2 < s0 � s there is a �nite
positive constant C10 independent of j (only depending on s, s

0, t, F , and p0) such that for every
j � 1 and k � 1

E kPn;j;r� � PnkF � C10(2
�j(t+s) + 2�j(s�s

0)n�1=2):

Furthermore, kPn�PkF = Op(n
�1=2) holds. Finally, if jn !1 as n!1 satis�es 2�jn(t+s) =

o(n�1=2), then p
n (Pn;jn;r� � P ) `1(F) GP ;

where GP is a sample-bounded and sample-continuous generalized P -Brownian bridge indexed by
F .

A Appendix: Some Properties of Besov Spaces and Ap-

proximation by Splines

In the following, we summarize some simple properties of the spaces Bs. For 0 < s � 1 and
bounded f : [0; 1]! R denote by

kfks;1 = kfk1 + sup
x;y2[0;1];x 6=y

jf(x)� f(y)j
jx� yjs

the usual Hölder norm and denote by Cs the set of all functions f with �nite kfks;1. For
simplicity we restrict ourselves to the case s < 1 in the following proposition.

Proposition 7 Let 1=2 < s < 1.
a. Every f 2 Bs is �-a.e. equal to a function ~f 2 Cs�1=2 and

 ~f

1
�
 ~f

(s�1=2);1

� cs

 ~f

s;2
= cs kfks;2

holds for some �nite (positive) constant cs that depends only on s.
b. If f 2 Bs and h 2 Bs, then kfhks;2 � 2cs kfks;2 khks;2. If h 2 Bs satis�es � :=

infx2[0;1] h(x) > 0, then k1=hks;2 � ��1 + ��2 khks;2.
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Proof. a. Observe that Bs coincides (up to norm equivalence) with the intermediate space
(L2;W1

2 )s;1 (DeVore and Lorentz (1993), p.196) and hence coincides with the Besov space
Bs;2;1((0; 1)) de�ned in Adams and Fournier (2003) (the fact that the latter is de�ned on the
open unit interval being irrelevant). The claim then follows from applying Theorem 7.37 in
Adams and Fournier (2003) (with m = n = 1, j = 0, p = 2, q =1).
b. Since s < 1 by assumption, we may set a = 1 in the de�nition of the Besov (semi)norm.

Elementary calculations then show that

kfhks;2 � kfks;2 esssup jhj+ khks;2 esssup jf j � 2cs kfks;2 khks;2

in view of Part a. The second claim follows since clearly k1=hk2 � ��1 and since elementary
calculations give

�zh�1

2
� ��2 k�zhk2.

The above proposition, together with the continuous embedding of Bt into Bs for t � s
(DeVore and Lorentz (1993), p.56), immediately guarantees for every t > 1=2 the existence of a
constant ct, 0 < ct <1, such that for every f 2 Bt there exists a (unique) continuous ~f , �-a.e.
equal to f , such that k ~fk1 � ctk ~fkt;2 = ctkfkt;2. In particular, bounded subsets of Bt, t > 1=2,
are sup-norm bounded.
As is well known, functions in Bs can be approximated by elements of the Schoenberg spaces

Sj(r), the error decreasing as j increases. We summarize these facts in the following proposition.

Proposition 8 Suppose r 2 N.
a. If h 2 L2, then the ortho-projection operator �(r)j from L2 onto the Schoenberg space Sj(r)

satis�es

lim
j!1

k�(r)j (h)� hk2 = 0:

If H is a relatively compact subset of L2, then

lim
j!1

sup
h2H

k�(r)j (h)� hk2 = 0:

b. If h 2 Bs for some s 2 (0; r), then

k�(r)j (h)� hk2 � 2�jsc0skhks;2;

for every j 2 N, where the (positive) �nite constant c0s depends only on s.

Proof. To prove the �rst claim in Part a, observe that by Proposition 2.4.1 and (12.3.2) in
DeVore and Lorentz (1993)

k�(r)j (h)� hk2 � 2C(r) sup
0<z�2�j

k�rz(h)k2

for some universal constant C(r). By continuity of translation in L2(R) (cf., e.g., Folland (1999),
Proposition 8.5) the right-hand side converges to zero as j !1 (note that k�rz(h)k2 is less than
or equal to the corresponding expression that is obtained when h is viewed as a function on R
which is zero outside of [0; 1]). The second claim in Part a follows since for every " > 0 and "-net

fhl : 1 � l � N(")g for H we have that kh� hlk2 � " implies k�(r)j (h)� �
(r)
j (hl)k2 � " and thus

sup
h2H

k�(r)j (h)� hk2 � max
1�l�N(")

k�(r)j (hl)� hlk2 + 2"

holds. For the proof of Part b use Proposition 2.4.1 and (12.3.2) in DeVore and Lorentz (1993)
(where one sets p = 2, n = 2j) together with the de�nition of the Besov-norm.
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Proposition 9 Suppose r 2 N. Let h 2 Bs for some s 2 (0; r � 1=2). Then

k�(r)j (h)ks;2 � c00skhks;2;

for every j 2 N, where the (positive) �nite constant c00s depends only on s. Furthermore, for every
s0 2 (0; s]

k�(r)j (h)� hks0;2 � 2�j(s�s
0)c000s;s0khks;2

for every j 2 N, where the (positive) �nite constant c000s;s0 depends only on s and s0.

Proof. By Theorem 12.3.3. in DeVore and Lorentz (1993) (with p = 2, � = r � 1=2, q = 1,
� = s, and dn;r(�)2 de�ned on p.358 of that reference) we have

k�(r)j (h)ks;2 = k�(r)j (h)k2 + sup
0 6=jzj<1

jzj�sk�rz(�
(r)
j (h))k2

� khk2 + es sup
n�0

2nsdn;r(�
(r)
j (h))2

� khk2 + es sup
n�0

2nsk�(r)n (�
(r)
j (h))� �

(r)
j (h)k2

� khk2 + es sup
0�n<j

2nsk�(r)n (h)� �
(r)
j (h)k2 � khks;2 + 2esc0skhks;2

for some universal constant es, where we have used Proposition 8 in the last step. To prove the
second claim we argue as before and then use Proposition 8 to obtain

k�(r)j (h)� hks0;2 � k�(r)j (h)� hk2 + es0 sup
n�0

2ns
0k�(r)n (�

(r)
j (h)� h)� (�

(r)
j (h)� h)k2

� k�(r)j (h)� hk2 + es0
�
2js

0k�(r)j (h)� hk2 + sup
n>j

2ns
0k�(r)n (h)� hk2

�

� 2�jsc0skhks;2 + es0
�
2j(s

0�s)c0skhks;2 + sup
n>j

2n(s
0�s)c0skhks;2

�

� 2�j(s�s
0)(1 + 2es0)c

0
skhks;2:

B Appendix: Consistency of the Indirect Inference Esti-

mator and Measurability Issues

Proof of Proposition 1. Because of continuity of the B-spline basis functions for r � 2
and continuity of � ! �(v; �) for every v 2 V, the map � ! pk;J;r(�)(y) is continuous for every
y 2 [0; 1]. Furthermore, pn;j;r� and pk;J;r(�) are bounded on [0; 1], the latter one uniformly in �, in
view of the discussion surrounding (12). Next note that the set An appearing in the de�nition of
Qn;k coincides with the event

�
infy2[0;1] pn;j;r�(y) > 0

	
, since pn;j;r� is continuous on [0; 1] in case

r� > 1, and is piecewise constant in case r� = 1. Hence, by the dominated convergence theorem,
Qn;k is continuous (and real-valued) on � if pn;j;r�(y) > 0 for every y 2 [0; 1]; and the same
conclusion trivially holds in the other case. As mentioned before, Qn;k(�) : [0; 1]1 � V1 ! R is
B
1
[0;1]
V1-measurable for every � 2 �. Since � is compact, existence of a measurable minimizer

then follows, e.g., from Lemma A3 in Pötscher and Prucha (1997).
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Proposition 10 Suppose � is compact in Rb, that the map � ! p(�; x) is continuous on �
for every x 2 [0; 1] and that sup�2� kp(�)k1 < 1. Furthermore, assume that r� � 1 holds.

Then there exists a B1
[0;1] 
 V1-measurable �̂n that minimizes Qn(�) over �. (In fact, �̂n is

B
1
[0;1]-measurable as it does not depend on the simulations.)

Proof. Since kpn;j;r�k1 < 1 and since on the event An also infy2[0;1] pn;j;r� > 0 holds, the
assumptions on p(�) and the dominated convergence theorem imply that Qn is real-valued and
continuous in � on the event An; and the same conclusion trivially holds on the complement of
An. Furthermore, B

1
[0;1]
V1-measurability of Qn(�) : [0; 1]1�V1 ! R for every � 2 � follows

from Tonelli�s Theorem since pn;j;r� is jointly measurable (and An is measurable). Since � is
compact, existence of a measurable minimizer then follows, e.g., from Lemma A3 in Pötscher
and Prucha (1997).

Proposition 11 Suppose Assumptions P1(i),(ii) are satis�ed and r� � 2 holds. If jn ! 1 as
n!1 in such a way that for some � > 1=2 we have supn�1 2

jn(2�+1)=n <1 then

�̂n ! �0 in Pr -probability as n!1;

where �̂n has been de�ned in Section 5.2.

The proof of this result is completely analogous to the proof of Proposition 2 and is thus
omitted.

Remark 3 (Measurability issues) (i) For every J � 1, r � 1, and � 2 �, the expressions
kpk;J;r(�)k2, kpk;J;r(�)k1, and kpk;J;r(�)ks;2 (for s � r � 1=2) are measurable functions of
v1; : : : ; vk, since the coe¢cients ̂

(r)
lJ (�) are measurable. This is obvious for the L2-norm, but

holds in general for the following reason: observe that any one of the norms mentioned, when

restricted to SJ(r), is a continuous function of the coe¢cients ̂(r)lJ (�) because SJ(r) is �nite-
dimensional. The same is true if pk;J;r(�) is replaced by pk;J;r(�)�Epk;J;r(�) or pk;J;r(�)� p(�),
in the latter case provided the respective norm of p(�) is �nite. [The argument is the same, except
that SJ(r) is to be replaced by the linear span of SJ(r)[fp(�)g for establishing the latter claim.]
Analogous statements obviously also hold for pn;j;r� for every j � 1, r � 1. (ii) The reasoning
just given in fact establishes that the above mentioned norms of pk;J;r(�) and pk;J;r(�)�Epk;J;r(�)
are continuous functions of �, provided the coe¢cients ̂

(r)
lJ (�) (and Ê

(r)
lJ (�)) are continuous in

� (which is, e.g., the case if r � 2 and Assumption R(i) holds); consequently, suprema over � of
the above mentioned norms of pk;J;r(�) and pk;J;r(�)�Epk;J;r(�) are then measurable. [We note
that this argument does not apply to suprema of norms of pk;J;r(�)� p(�), because p(�) may not
vary in a �nite-dimensional space when � varies.]

C Appendix: Moment Bounds for Empirical Processes

The following moment inequalities can be deduced from a general theorem in Giné and Koltchin-
skii (2006) and a re�nement with explicit constants in Giné and Nickl (2009a).

Proposition 12 Let Zi, i 2 N, be i.i.d. random variables with values in a measurable space
(S;A) and common law R. Let F be a countable R-centered class of real valued measurable
functions from (S;A) to R. Assume that F is uniformly bounded by a �nite positive constant U
and let further �; 0 < � � U , be some constant satisfying supf2F Ef

2(Zi) � �2.
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a. Assume that the L2(Q)-covering numbers satisfy

sup
Q
logN(F ;L2(Q); �) � v log

�
AU

�

�
; 0 < � � 2U;

for some A > e and v � 2 (the supremum extending over all probability measures Q on S).
Then, for every b0 > 0 satisfying

n�2 � b0vU
2 log (5AU=�) for all n 2 N; (56)

there exists a �nite positive constant b1(v; b0), that depends only on v and b0, such that for every
n 2 N

E



nX

i=1

f(Zi)



2

F

� b1(v; b0)n�
2 log

AU

�

holds.
b. Assume that the L2(Q)-covering numbers satisfy

sup
Q
logN(F ;L2(Q); �) �

�
A0U

�

�w
; 0 < � � 2U;

for some 0 < A0 < 1 and 0 < w < 2. Then, for all n 2 N and some positive constant b2, that
depends only on A0; w, we have

E



nX

i=1

f(Zi)


F

� b2
p
nU:

Proof. Since the results depend only on the distribution of kPn
i=1 f(Zi)kF , we may assume

w.l.o.g. that � as in Giné and Koltchinskii (2006) � the random variables are realized as coordinate
projections on the in�nite product space of (S;A). The second claim of the proposition then
follows directly from Theorem 3.1 in Giné and Koltchinskii (2006) applied to the class F 0 =
ff=U : f 2 Fg with envelope F = 1 and H(x) = (A0x)w for x � 1=2 and H(x) = 0 for 0 � x <
1=2. The �rst claim is proved as follows: By Proposition 3.1 in Giné, Lata÷a and Zinn (2000)
(applied to F [ (�F) and observing that �2 in that reference is bounded by n�2 in our notation)
we have

E



nX

i=1

f(Zi)



2

F

� K2

2

4
 

E



nX

i=1

f(Zi)


F

!2
+ 2n�2 + 4U2

3

5 ;

where K is a universal constant. We then bound the �rst term on the right-hand side by using
Proposition 3 in Giné and Nickl (2009a) and simplify the resulting bound using (56), A > e, and
U=� � 1 to arrive at the result.
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