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Sup-tests for linearity in a general nonlinear AR(1) model

when the supremum is taken over the full parameter space ∗

Christian Francq†, Lajos Horvath‡and Jean-Michel Zakoïan§

Abstract

We consider linearity testing in a general class of nonlinear time series model of

order 1, involving a nonnegative nuisance parameter which (i) is not identified under

the null hypothesis and (ii) gives the linear model when equal to zero. This paper

studies the asymptotic distribution of the Likelihood Ratio test and asymptotically

equivalent supremum tests. The asymptotic distribution is described as a functional

of chi-square processes and is obtained without imposing a positive lower bound for

the nuisance parameter. The finite sample properties of the sup-tests are studied by

simulations.

1 Introduction

Building nonlinear time series models is, in general, a difficult task which requires a large

amount of care. As can be seen from recent studies comparing the forecast accuracy

of linear AR models and nonlinear models on real macroeconomic time series, a careful

specification of the nonlinear models is required to produce forecasts that improve upon

linear forecasts (see Stock and Watson (1999), Teräsvirta, van Dijk and Medeiros (2004)).

In general, nonlinear models (such as the Threshold AR (TAR), the Smooth Transition

Autoregressive (STAR) regime-switching or bilinear models) contain the linear one as par-

ticular case but often, some of the parameters are not identified when linearity holds. This
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is, for example, the case of the threshold value in the TAR framework. This identifiability

problem results in parameter inconsistency and, if the series under consideration is close to

be linear, the nonlinear model is bound to produce forecasts that are unreliable compared

to linear ones. It is therefore essential to test first for linearity before fitting any particular

nonlinear model.

The aim of this paper is to consider linearity testing in a relatively general, first-order

nonlinear framework. Given the unlimited number of nonlinear models it is not possible

to nest all of them in a general class. Many of them, however, can be seen as particular

cases of a nonlinear AR(1) model of the form

Yt = µ0 + {a0 + b0H(γ0, Yt−1)}Yt−1 + ǫt, ǫt ∼ IID(0, σ2), (1.1)

for some function H defined on Γ × R, for some set Γ ⊂ R containing 0, and such that

H(0, ·) = 0. Clearly, the specification of the function H may include more than one

parameter but we only need to underline the parameter γ0 controlling the nullity of the

function H. Examples and precise assumptions will be given in the next sections. We

are interested in testing the linearity hypothesis b0 = 0. Problems of this nature, where

a nuisance parameter γ0 is present only under the alternative hypothesis, often occur

in econometric models and have been considered by many authors. See, among others,

Davies (1977, 1987), King and Shively (1993), Andrews and Ploberger (1995), Hansen

(1996), Stinchcombe and White (1998).

The contribution of this paper is to derive the asymptotic distribution of supremum

tests, namely the Likelihood Ratio (LR) test, and asymptotically equivalent sup-Wald and

Lagrange Multiplier (LM) tests, without bounding the nuisance parameter away from zero.

The difficulty is that, when γ0 approaches zero the nonlinear term vanishes in (1.1) and

the Fisher information matrix becomes singular. In the literature, this problem is typi-

cally circumvented by imposing a lower bound for the nuisance parameter. We avoid this

restriction. To our knowledge, this is the first paper deriving the asymptotic distribu-

tion of a supremum test with a nuisance-parameter range implying a case of noninvertible

information matrix.

The paper is organized in the following way: Section 2 discusses the model and gives

stationarity conditions. Section 3 derives the asymptotic properties of the Least Squares

Estimator (LSE) of (a0, b0) under the null assumption of linearity, i.e. b0 = 0. Section

4 defines the LR, Wald and LM-like tests which are based on the LSE. The asymptotic
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null distribution is derived. Section 4 also presents a Monte Carlo study, in which the

supremum tests enjoy good size and power properties. This study compares the powers

of the sup-tests and of tests based on expansions of the function H(·, y), which are often

used in practice. The appendix provides proofs of the results given in the paper.

2 Examples and stationarity conditions

Before turning to the framework of this paper, leaving the function H unspecified, it is

of interest to present special cases of (1.1) that have been popular in forecasting applica-

tions. See Tong (1990) and Teräsvirta, van Dijk and Medeiros (2004) for a more complete

discussion.

One example is the exponential autoregressive (EXPAR) model introduced by Haggan

and Ozaki (1981) which, after reparameterization, is obtained for

H(γ0, y) = 1 − e−γ0y2
(2.1)

The parameter γ0 is often referred to as the slope parameter. Model (1.1) includes other

smooth transition models, such as the Logistic Smooth Transition AutoRegressive (LSTAR

model, introduced in the time series literature by Luukkonen, Saikkonen and Teräsvirta

(1988). In this latter model, we have H(γ0, y) = H(γ0, c, y) = (1 + e−γ0(y−c))−1 − 1/2

where c is a location coefficient allowing for asymmetries in the conditional mean of Yt.

When c = 0 the model is simply

H(γ0, y) =
1

1 + e−γ0y
− 1

2
. (2.2)

Letting the slope parameter γ0 → ∞, we obtain the two-regime Self-Exciting Threshold

AutoRegressive (SETAR) model of Tong and Lim (1980). The SETAR model will not

be covered by the results of this paper, however, because smoothness assumptions on the

function H will be required.

The existence of strict stationarity solutions to (1.1) can be investigated using Markov

chains theory. The following result is an immediate consequence of Tjøstheim (1990,

Theorem 4.1 and Lemma 6.1).

Theorem 2.1 Suppose that ǫt has a positive density function over the real line. Then, if

there exists r,K > 0 such that

sup
y

|a0 + b0H(γ0, y)| < K, sup
|y|>r

|a0 + b0H(γ0, y)| < 1
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there exists a strictly stationary and geometrically ergodic solution to model (1.1). More-

over, for any k > 1, if E|ǫt|k < ∞ then E|Yt|k < ∞.

For example the EXPAR model admits a strictly stationary solution whenever |a0+b0| < 1

and γ0 ≥ 0. For other models, such as the LSTAR, γ0 > 0 is not required for stationarity

but is a natural constraint for interpretation and identifiability (see e.g. Teräsvirta et al

(2004)). For this reason we will take throughout a compact nuisance parameter space of

the form Γ = [0, γ]. Now we turn to the LS estimation.

3 Asymptotic properties of the LSE of µ0, a0 and b0 under

the linear model

Let Y1, . . . , Yn be observations of a non anticipative strictly stationary solution of (1.1).

Recall that the function H is known from the statistician. Throughout we assume that

A0: H(0, ·) = 0 and H(γ, ·) is not identically 0, for any γ > 0,

so that the standard AR(1) model is obtained for γ0 = 0 but also for b0 = 0. Thus it is not

restrictive to assume γ0 > 0 and interpret γ0 as a nuisance parameter, which is not present

when b0 = 0. Notice also that b0 cannot be identified when γ0 = 0. For a given value γ

of γ0, the LSE of θ0 = (µ0, a0, b0)
′ coincides with the Gaussian quasi-maximum likelihood

estimator and is defined as any measurable solution of

θ̂ := (µ̂γ , âγ , b̂γ) = arg max
θ∈Θ

Ln(θ) = arg min
θ∈Θ

Qn(θ),

where

Ln(θ) = −n

2
log 2πσ2 − n

2σ2
Qn(θ), Qn(θ) = n−1

n∑

t=2

ǫ2
t (θ)

with

ǫt(θ) = Yt − µ − {a + bH(γ, Yt−1)}Yt−1.

Assuming γ > 0, the LSE of (µ0, a0, b0)
′ is explicitly given, when Jn(γ) is nonsingular, by




µ̂γ

âγ

b̂γ


 :=


 δ̂γ

b̂γ


 = J−1

n (γ)




n−1
∑n

t=2 Yt

n−1
∑n

t=2 YtYt−1

n−1
∑n

t=2 YtYt−1H(γ, Yt−1)


 , (3.1)
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where

Jn(γ) =




1 Un,1,0 Un,1,1(γ)

Un,1,0 Un,2,0 Un,2,1(γ)

Un,1,1(γ) Un,2,1(γ) Un,2,2(γ)


 ,

Un,i,j(γ) = n−1
n∑

t=2

Y i
t−1H

j(γ, Yt−1), (3.2)

for i = 0, 1 and j = 0, 1, 2, with the convention 00 = 1. It can be shown that, under

appropriate moment assumptions and Assumption A4 below, when γ > 0 the matrix

Jn(γ) is almost surely invertible, at least for large n. See Chesher (1984), Lee and Chesher

(1986), Rotnitzky, Cox, Bottai and Robins (2000) for cases where the information matrix

is singular for any value of the nuisance parameter.

Under the constraint b0 = 0 the restricted LSE for (µ0, a0) is simply


 µ̃

ã


 := δ̃ = J̃−1

n


 n−1

∑n
t=2 Yt

n−1
∑n

t=2 YtYt−1


 , J̃n =


 1 Un,1,0

Un,1,0 Un,2,0


 . (3.3)

We will now derive asymptotic properties of the LS estimator under the linear model. We

assume that H admits second-order partial derivatives with respect to γ, and we make the

following assumptions on the first and second partial derivatives H1(γ, y) = ∂H(γ, y)/∂γ

and H2(γ, y) = ∂2H(γ, y)/∂γ2.

A1: |H1(γ, y)| ≤ K (|y|α1 + 1)

A2: |H2(γ, y)| ≤ K (|y|α2 + 1)

A3: |H2(γ, y) − H2(γ
′, y)| ≤ K|γ − γ′|α (|y|α3 + 1) , with some 1/2 < α ≤ 1,

where α1 ≥ 0, α2 ≥ 0, α3 ≥ 0 and K are constants. In the sequel we use the notation

K as a generic constant whose value can change. Conditions A1 and A2 are needed for

the existence of the limit process in Theorem 3.1 below. The proofs are based on Taylor

expansions of H(·, y) and A3 is used to control the remainder terms.

Elementary calculations show that A1-A3 hold for the EXPAR model with α1 = 2,

α2 = 4 and α3 = 6 and α = 1. Also, the LSTAR model satisfies A1-A3 with α1 = 1,

α2 = 2 and α3 = 3 and α = 1. Similarly, for any constant c and any β > 0, the generalized

EXPAR

H(γ, y) = 1 − e−γ|y−c|β
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and the generalized LSTAR

H(γ, y) =
1

1 + e−γ|y−c|βsign(y)
− 1

2
, where sign(y) =





1 y > 0

0 y = 0

−1 y < 0

,

satisfy A1-A3. An other example is the normal STAR model of Chan and Tong (1986),

defined by H(γ, y) = Φ{γ(y − c)}− 1/2, where Φ(·) is the N (0, 1) cumulative distribution

function. In all these models, other nuisance parameters c and/or β may be present, but

vanish under the linearity hypothesis b0 = 0. The results obtained in the sequel will hold

for any fixed values of c and β.

We have



µ̂γ − µ0

âγ − a0

b̂γ − b0


 = J−1

n (γ)




Sn,0,0

Sn,1,0

Sn,1,1(γ)


 ,


 µ̃ − µ0

ã − a0


 = J̃−1

n


 Sn,0,0

Sn,1,0


 (3.4)

where

Sn,i,j(γ) = n−1
n∑

t=2

ǫtY
i
t−1H

j(γ, Yt−1).

We will also need to consider the sums

Tn,i(γ) = n−1
n∑

t=2

ǫtYt−1Hi(γ, Yt−1), i = 1, 2.

Our first result establishes the weak convergence of the processes {Sn,i,j(γ), Tn,i(γ), γ > 0}.
For any γ > 0, the symbol

D[0,γ]
=⇒ denotes the weak convergence in the Skorokhod space

D[0, γ]. The existence of the variances of the Sn,i,j(γ) and Tn,i(γ) requires E|Y0|κ < ∞
with κ = 2 + 2max(α1, α2), i.e. E|ǫ0|κ < ∞ under H0. For testing against EXPAR we

need Eǫ10
0 < ∞ and Eǫ6

0 < ∞ in the LSTAR model. However the tightness condition,

which is used in the proof of the following theorem, requires a stronger moment condition.

Theorem 3.1 Let b0 = 0 and suppose E|Y0|κ < ∞ with κ = 2 + 2max(α1, α2, α3). Then,

under A0-A3, for any γ > 0,
√

n

σ
(Sn,0,0, Sn,1,0, Sn,1,1(γ), Tn,1(γ), Tn,2(γ))

D[0,γ]
=⇒

(
W (1),

∫

R

x dW (F (x)),

∫

R

xH(γ, x) dW (F (x)),

∫

R

xH1(γ, x) dW (F (x)),

∫

R

xH2(γ, x) dW (F (x))

)
,

where W is a standard Brownian motion and F (x) = P (Y0 ≤ x).
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For the next result we need the following assumption.

A4: For any constants K1,K2 and any 0 ≤ γ ≤ γ,

P [Y0 = K1Y0H(γ, Y0) + K2] < 1 and P [Y0 = K1Y0H1(0, Y0) + K2] < 1.

We can now state the following result, which is proved in the Appendix. By convention,

for γ = 0 we set µ̂γ = µ̃, âγ = ã, γb̂γ = 0 and b̂γYt−1H(γ, ·) = 0.

Theorem 3.2 Under the assumptions of Theorem 3.1 and A4 we have

sup
0≤γ≤γ

|µ̂γ − µ0| = OP (n−1/2), sup
0≤γ≤γ

|µ̂γ − µ̃| = OP (n−1/2),

sup
0≤γ≤γ

|âγ − a0| = OP (n−1/2), sup
0≤γ≤γ

|âγ − ã| = OP (n−1/2), sup
0≤γ≤γ

γ|b̂γ | = OP (n−1/2).

Now we turn to asymptotic properties of the constrained and unconstrained LS esti-

mators of σ2, which are respectively defined by

σ̃2 =
1

n

n∑

t=2

(Yt−µ̃− ãYt−1)
2, σ̂2

γ =
1

n

n∑

t=2

{Yt−µ̂γ− âγYt−1− b̂γYt−1H(γ, Yt−1)}2. (3.5)

The proof of the following result is in the Appendix.

Theorem 3.3 Under the assumptions of Theorem 3.2 we have

sup
0≤γ≤γ

|σ̂2
γ − σ2| = oP (1).

4 Linearity testing

Given that model (1.1) involves four parameters, a natural idea would be to consider the

QMLE of the vector (µ0, a0, b0, γ0). The asymptotic properties of this estimator could be

derived when no identifiability problem arises, that is b0γ0 6= 0. The constraint b0 6= 0 is

however an important restriction. When b0 = 0 the parameter γ0 is not identified, so that

we do not know the behaviour of the QMLE when the data generating process is an AR(1).

Consequently the test of

H0 : b0 = 0 against H1 : b0 6= 0

is not standard. We first consider a strategy based on setting an arbitrary value to γ.

Then the testing problem can be easily solved by a standard test, using for example the

Wald, Lagrange-Mutiplier (LM) or Likelihood-Ratio (LR) principle.
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4.1 Setting an arbitrary value γ

Fixing an arbitrary value of γ for the nuisance parameter, a convenient form for the Wald-

type, LM-type and LR-type statistics is given by

Wn(γ) = n
σ̃2 − σ̂2

γ

σ̂2
γ

, LMn(γ) = n
σ̃2 − σ̂2

γ

σ̃2
, LRn(γ) = n log

σ̃2

σ̂2
γ

. (4.1)

The form of these statistics is obtained under normal errors, but we do not make this

assumption in the sequel. The expression for the LR statistic is the standard one. For the

Wald statistic, the standard expression is

Wn(γ) = n
b̂2
γ

σ̂2
b̂γ

, where σ̂2
b̂γ

= σ̂2
γJ−1

n (γ)(3, 3).

The form given in (4.1) for Wn(γ), and similarly for LMn(γ), relies on the linearity of the

model when γ is fixed. See for example Godfrey (1988), Gouriéroux and Monfort (1995).

For every γ > 0, the three statistics Wn(γ), LMn(γ) and LRn(γ), are asymptotically

χ2
1 distributed under H0. Note that the tests based on those statistics are in general

consistent, even for alternatives such that γ0 6= γ. However this procedure may lack

of power for alternatives where γ0 is far from γ. In other words, the test statistics are

sensitive to γ so this coefficient cannot be selected in a completely arbitrary way if it is

not known. On the other hand, when γ0 is unknown, then its LS estimator γ̂ can be found

by minimizing σ̂2
γ over Γ = [0, γ]. A plug-in approach seems natural, but the asymptotic

null distribution of Wn(γ̂), LRn(γ̂), and LMn(γ̂) is no longer χ2
1.

4.2 Using supremum statistics

The sup-LR statistic is defined by

LRn = sup
γ∈Γ

LRn(γ) = n log
σ̃2

σ̂2
, where σ̂2 = inf

γ∈Γ
σ̂2

γ = Qn(θ̂).

Sup-Wald and LM statistics can similarly be defined as

Wn = sup
γ∈Γ

Wn(γ) = n
σ̃2 − σ̂2

σ̂2
, LMn = sup

γ∈Γ
LMn(γ) = n

σ̃2 − σ̂2

σ̃2
.

Note that the sup-LR statistic is actually the conventional LR statistic, i.e. LRn = LRn(γ̂)

where γ̂ = arg infγ∈Γ σ̂2
γ is the LS estimator of γ0. In the next theorem we will obtain the

asymptotic null distribution of the LR, LM and Wald statistics. As can be seen from

8



0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

Distribution of W and of Wn and Wn(0.5) under H0 for n=100
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W

Figure 1: For the EXPAR model, kernel density estimator of the distribution of Wn(0.5) (in dotted line)

and limiting distribution of Wn(0.5) (the χ2
1 distribution in thin full line), kernel density estimator of the

distribution of Wn = supγ∈[0,100] Wn(γ) (in dashed line) and kernel density estimator of the distribution

of W (i.e. the limiting distribution of Wn, in thick full line). The density estimators are obtained by

computing the statistics on N = 5, 000 independent replications of N (0, 1) simulated samples of length

n = 100 for the first two kernel density estimators, and of length 500 for the last one.

Figure 1, this distribution can be far from the standard χ2(1). This is obviously due to

the identifiability problem (γ̂ is not consistent to any value under the null assumption).

The sup-Wald statistic is also the conventional Wald statistic. This is less straight-

forward than it is for the LR statistic because the model is no longer linear when γ is

not fixed, so it is not obvious that a form equivalent to (4.1) holds for the standard Wald

statistic. However we have

Wn(γ̂) = n
b̂2
γ̂

σ̂2
b̂γ̂

= n
σ̃2 − σ̂2

γ̂

σ̂2
γ̂

= n
σ̃2 − σ̂2

σ̂2
= Wn,

noting that σ̂2 = σ̂2
γ̂ . The same remark holds for the LM statistic.

The main result of this paper is the following, providing the asymptotic null distribution

of the supremum test statistics.
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Theorem 4.1 Suppose the conditions of Theorem 3.3, in particular the null hypothesis

H0, hold. Then, for any γ > 0

Wn = sup
γ∈[0,γ]

Wn(γ) =⇒ W := sup
γ∈(0,γ]

W(γ),

where for γ > 0,

W(γ) =
{V (0)Z(γ) − V (γ)Z(0) − ∆(γ)σW (1)}2

σ2D(γ)Var(Y0)
,

with

Z(γ) =

∫

R

x{H(γ, x) + 1} dW (F (x)),

V (γ) = Cov(Y0, Y0{H(γ, Y0) + 1}),

∆(γ) = EY 2
0 EY0H(γ, Y0) − EY0EY 2

0 H(γ, Y0),

D(γ) = Var(Y0)Var(Y0H(γ, Y0)) − {Cov(Y0, Y0H(γ, Y0))}2.

Moreover,

sup
γ∈[0,γ]

LMn(γ) =⇒ sup
γ∈(0,γ]

W(γ), sup
γ∈[0,γ]

LRn(γ) =⇒ sup
γ∈(0,γ]

W(γ).

Contrary to the standard situation (γ fixed) where the asymptotic distribution is a χ2(1)

whatever the model, the law of W depends on the model, through the function H.

Notice that W(γ) is not defined when γ = 0 because D(0) = 0. However, the limiting

distribution of W(γ) when γ → 0 is nondegenerate and is that of a χ2(1). Lemma A.7

below shows that we can define W(0) as

lim
γ→0

W(γ) = W(0),

where the limit exists with probability one. It is clear that the law of W(0) is not the

limiting distribution of Wn(0), which is always equal to zero (because σ̃2 and σ̂2
γ , as defined

in (3.5), are equal when γ = 0). In other words,

lim
n

lim
γ→0

Wn(γ) = 0, a.s., but lim
γ→0

lim
n

Wn(γ) ∼ χ2(1).

It is important to notice that we do not require that γ be bounded away from zero.

The supremum can be taken over all possible values of the nuisance parameter, instead

of restricting γ to a compact subset excluding 0 as it is done when testing for structural
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change (see Andrews, 1993). The reason is that, when testing for a structural break, the

asymptotic distribution of the test statistic indexed by the nuisance parameter π, say, is

a function of a Brownian Bridge. Thus, when taking the supremum over the full range

of values of π, the statistic diverges under the null hypothesis (see Andrews, Corollary 1,

1993). In our setup, the asymptotic distribution of the tests statistics indexed by γ is a

process whose supremum is well-behaved for all possible values of the nuisance parameter

belonging to a bounded set. 1

This theorem can be adapted to deal, more generally, with statistics of the form

g({Wn(γ), γ ∈ [0, γ]}) for arbitrary functions g which are continuous with respect to

the uniform metric (and likewise for LMn(·) and LRn(·)). The use of a function g that

differs from the sup function can depend on the alternatives of interest. See Andrews and

Ploberger (1994) for discussion of different statistics of this form.

4.3 Model without intercept

When the intercept is not present in Model (1.1), i.e. when

Yt = {a0 + b0H(γ0, Yt−1)}Yt−1 + ǫt, ǫt ∼ IID(0, σ2), (4.2)

the results are slightly different. The tests statistics are still of the form (4.1) but with

σ̃2 = min
a

1

n

n∑

t=2

(Yt − aYt−1)
2, σ̂2

γ = min
a,b

1

n

n∑

t=2

{Yt − aYt−1 − bYt−1H(γ, Yt−1)}2.

We give them without proof, keeping the previous notations with obvious adaptations.

Theorem 4.2 Suppose that H0 : b0 = 0 in Model (4.2). Let the assumptions of Theorem

3.1 be satisfied. Then, the results of Theorem 4.1 continue to hold with

W(γ) =
{V (0)Z(γ) − V (γ)Z(0)}2

σ2D(γ)EY 2
0

,

V (γ), Z(γ) as in Theorem 4.1, and D(γ) = EY 2
0 EY 2

0 H2(γ, Y0) − {EY 2
0 H(γ, Y0)}2.

It can be noted that the asymptotic distribution depends on constants and {Z(γ), γ ≥ 0},
which is a zero mean Gaussian process with covariance kernel

K(γ, γ′) = EZ(γ)Z(γ′) = σ2E
[
Y 2

0 {H(γ, Y0) + 1}
{
H(γ′, Y0) + 1

}]
.

1We thank a referee for pointing out to us the difference between the two kinds of testing problems.
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It is interesting to see that in general, unless if EY0H(γ, Y0) = 0, the distribution of the

process {W(γ), γ > 0} is not simply obtained from that of Theorem 4.1 with µ0 replaced

by 0.

4.4 Implementation

We now focus on the practical implementation of the tests of this paper. For simplicity, we

present the results for Model (4.2) without intercept. Some of the results of this section

are not new but are given for the reader’s convenience.

4.4.1 Computation of the test statistics

We focus on the LM statistic which is very easy to compute. Following Godfrey (1988),

the LMn(γ) test can be implemented as follows: 1) fit an AR(1) model, compute the

residuals ǫ̃t and the residual sum of squares RSS = nσ̃2, 2) regress linearly ǫ̃t on Yt−1 and

Yt−1H(γ, Yt−1), compute the residual sum of squares RSSγ and the uncentered determina-

tion coefficient R2
γ of the regression. Noting that the residuals of the second regression are

also the residuals of the regression of Yt on Yt−1 and Yt−1H(γ, Yt−1), we have RSSγ = nσ̂2
γ ,

which gives LMn(γ) = nR2
γ = n(RSS − RSSγ)/RSS.

The Fn(γ) test is an alternative which is asymptotically equivalent to the LMn(γ) test,

but might perform better in finite sample. With this test we reject H0 when

Fn(γ) = (n − 2)(RSS − RSSγ)/RSSγ

is greater than the 1 − α quantile of the Fisher-Snedecor F(1, n − 2) distribution.

For the computation of the LMn statistic we can replace 2) by 2’) compute the

residual sum of squares RSSγ̂ = nσ̂2 of the nonlinear regression model ǫ̃t = cYt−1 +

bYt−1H(γ, Yt−1) + ǫt. We have LMn = n(RSS − RSSγ̂)/RSSγ̂ .

4.4.2 Computation of the critical values

In view of (A.19) below, and following Hansen (1996), one can approximate the distribution

of supγ∈[0,γ] Wn(γ) by that of

sup
γ∈[0,γ]

Ŵn(γ), Ŵn(γ) =
{Vn(0)Z◦

n(γ) − Vn(γ)Z◦
n(0)}2

Dn(γ)Un,2,0
,

12



where Vn(0) = Un,2,0, Vn(γ) = Un,2,1(γ)+Un,2,0, where Un,2,j(γ) and Dn(γ) are defined by

(3.2) and (A.20), and where {Z◦
n(γ), γ ≥ 0} is, conditionally on the observation Y1, . . . , Yn,

a zero mean Gaussian process with covariance kernel

Kn(γ, γ′) = EZ◦
n(γ)Z◦

n(γ′) =
1

n

n∑

t=2

Y 2
t−1{H(γ, Yt−1) + 1}{H(γ′, Yt−1) + 1}].

The conditional distribution of supγ∈[0,γ] Ŵn(γ) can be obtained by the following algo-

rithm. For i = 1, . . . , N :

(i) generate a N (0, 1) sample ǫ
(i)
1 , . . . , ǫ

(i)
n ;

(ii) set Z
(i)
n (γ) = n−1/2

∑n
t=2 ǫ

(i)
t Yt−1 {H(γ, Yt−1) + 1};

(iii) set Ŵ
(i)
n (γ) =

{
Vn(0)Z

(i)
n (γ) − Vn(γ)Z

(i)
n (0)

}2
D−1

n (γ)U−1
n,2,0;

(iv) compute supγ∈[0,γ] Ŵ
(i)
n (γ).

Conditional on Y1, . . . , Yn, the sequence supγ∈[0,γ] Ŵ
(i)
n (γ), i = 1, . . . , N constitutes an iid

sample of the random variable supγ∈[0,γ] Ŵn(γ). At the nominal level α, the common

critical value cα of the tests of rejection regions
{

sup
γ∈[0,γ]

Wn(γ) > cα

}
,

{
sup

γ∈[0,γ]
LMn(γ) > cα

}
or

{
sup

γ∈[0,γ]
LRn(γ) > cα

}

will be defined as being the empirical (1 − α)-quantile of the artificial sample

supγ∈[0,γ] Ŵ
(i)(γ), i = 1, . . . , N .

4.4.3 Cases where the limiting law is parameter-free

We now describe a situation where the previous algorithm (i)-(iv) can be avoided, and the

critical values of the test can be obtained once and for all. Assume that

H(γ, y) = h(γyk), (4.3)

for some integer k and some measurable function h(·). Note that the previous assumption

is satisfied in the EXPAR case (2.1) with k = 2, and in the LSTAR case (2.2) with k = 1,

when the location parameter c = 0.

Denote by σ2
Y0

the variance of Y0. Let V̆ (γ), D̆(γ) and K̆(γ, γ′) be obtained by replacing

Y0 by σ−1
Y0

Y0 and σ2 by 1 in the definition of V (γ), D(γ) and K(γ, γ′) given in Theorem

4.2, and let the process {Z̆(γ) = σ−1σ−1
Y0

Z(γσ−k
Y0

), γ ≥ 0}. By (4.3) we conclude

V (γ) = σ2
Y0

V̆ (γσk
Y0

), D(γ) = σ4
Y0

D̆(γσk
Y0

), K(γ, γ′) = σ2σ2
Y0

K̆(γσk
Y0

, γ′σk
Y0

)

13



and {Z̆(γ), γ ≥ 0} is a zero mean Gaussian process with covariance kernel K̆(γ, γ′). We

thus have

sup
γ∈(0, σ−k

Y0
γ]

W(γ) = sup
γ∈(0, σ−k

Y0
γ]

W̆(γσk
Y0

) = sup
γ∈(0,γ]

W̆(γ),

where

W̆(γ) =

{
V̆ (0)Z̆(γ) − V̆ (γ)Z̆(0)

}2

D̆(γ)E(σ−2
Y0

Y 2
0 )

.

Note that when ǫt is Gaussian, the moments V̆ (γ), D̆(γ) and E(σ−2
Y0

Y 2
0 ), as well as the

distribution of the process Z̆(·), do not depend on any unknown parameter. In particular

the kernel is explicitly given by

K̆(γ, γ′) =

∫
y2{H(γ, y) + 1}{H(γ′, y) + 1} 1√

2π
e−y2/2dy.

We deduce that in the Gaussian case, i.e. when ǫt is Gaussian, the asymptotic distribution

of

sup
γ∈0, σ̂−k

Y
γ]

Wn(γ), σ̂2
Y =

1

n

n∑

t=1

Y 2
t −

(
1

n

n∑

t=1

Yt

)2

is parameter-free under H0 (i.e. does not depend on a0 and σ2). In consequence, the

distribution of supγ∈[0,σ̂−k
Y

γ] Wn(γ) can be approximated by that of the Wald statistic W̆n

obtained by replacing Y1, . . . , Yn by a N (0, 1) sample ǫ1, . . . , ǫn in Wn = supγ∈(0, γ] Wn(γ).

Based on empirical quantiles over N = 100, 000 independent replications of W̆n with

n = 500, Table 1 displays approximated critical values for the EXPAR model (2.1). Note

that in this model the regressor Yt−1 exp
(
−γY 2

t−1

)
→ 0 in probability as γ → ∞. More

precisely, straightforward computation shows that var
{
Yt exp

(
−γY 2

t

)}
= (1 + 4γ)−3/2 ≃

0.01varYt when γ = 5 and Yt ∼ N (0, 1). Thus, for an EXPAR model with parameter

|a0| + |b0| < 1 (which, by Theorem 2.1, guarantees the stationarity) and γ0 such that

γ0var(Yt) > 5, the part of the variance which is explained by the nonlinear term is low.

This heuristic argument and Monte Carlo experiments lead us to think that any choice of γ

between 2 and 5 is suitable. Note that when γ → 0 the critical value of the sup-test tends

to the critical value of a standard test, i.e. the (1 − α)-quantile of the χ2
1 distribution.

Approximated critical values of the sup-tests based on the LSTAR model (2.2) are given

in Table 2. Note that, in view of the remark given after Theorem 4.2, Tables 1 and 2 are

also valid for the model with intercept (1.1) when the intercept µ0 = 0.
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Table 1: Asymptotic critical values of the sup-tests of the hypothesis H0 : b0 = 0 in the EXPAR

model (2.1)-(4.2) with ǫt ∼ N (0, σ2).

α χ2

1
(1−α) γ

0.04 0.08 0.12 0.16 0.2 0.4 0.6 0.8 1 2 3 4 5

1% 6.6 6.8 6.9 6.9 7.1 7.2 7.5 7.7 7.9 8.0 8.4 8.6 8.8 8.8

5% 3.8 4.0 4.1 4.1 4.2 4.3 4.5 4.7 4.8 5.0 5.3 5.4 5.6 5.7

10% 2.7 2.8 2.9 2.9 3.0 3.1 3.3 3.4 3.6 3.7 4.0 4.1 4.3 4.3

Table 2: As Table 1, for the LSTAR model (2.2)-(4.2).

α χ2

1
(1−α) γ

0.04 0.08 0.12 0.16 0.2 0.4 0.6 0.8 1 2 3 4 5

1% 6.6 6.6 6.6 6.6 6.6 6.6 6.7 6.7 6.8 6.9 7.1 7.2 7.3 7.3

5% 3.8 3.9 3.9 3.9 3.9 3.9 3.9 4.0 4.0 4.1 4.3 4.4 4.4 4.4

10% 2.7 2.7 2.7 2.7 2.7 2.7 2.8 2.8 2.9 2.9 3.1 3.1 3.2 3.2

4.5 Monte Carlo experiments

For testing linearity against smooth transition autoregressive models, such as the LSTAR,

the test (hereafter LST) proposed by Luukkonen et al (1988) is the most commonly used

(see Tong, 1990, and Granger and Teräsvirta, 1993). When applied to the LSTAR model

(2.2), the simplest version of the LST test, denoted by 1-LST, consists in testing a1 = 0

in the auxiliary model

Yt = a0Yt−1 + a1Y
2
t−1 + ǫt. (4.4)

This auxiliary model is obtained from the Taylor expansion H(γ, y) = γy/4 + o(γ) and

a reparameterization of the model (see Luukkonen et al, 1988). The second-order Taylor

expansion of H(γ, y) is the same as the first one: H(γ, y) = γy/4 + o(γ2). The third-order

Taylor expansion H(γ, y) = γy/4 − γ3y3/48 + o(γ3) leads to the 2-LST version, which
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consists in testing a1 = a2 = 0 in the auxiliary model

Yt = a0Yt−1 + a1Y
2
t−1 + a2Y

4
t−1 + ǫt. (4.5)

These tests are extremely simple and easy to implement, their critical values being re-

spectively the quantiles χ2
1(1 − α) and χ2

2(1 − α). The same approach can be used for

the EXPAR model (2.1), and leads to the 1-LST test of a1 = 0 in the auxiliary model

Yt = a0Yt−1 + a1Y
3
t−1 + ǫt, and the 2-LST test of a1 = a2 = 0 in the auxiliary model

Yt = a0Yt−1 + a1Y
3
t−1 + a2Y

5
t−1 + ǫt.

The sup and LST tests of linearity have been applied to N = 1, 000 independent

simulations of size n = 100 of model (4.2), for different non linear terms H(γ0, Yt−1)

and different values of the parameters a0, b0 and γ0. Two versions of the sup-tests are

considered, corresponding to γ = 2 and γ = 5. The critical values of these tests are taken

from Table 1 and Table 2. Table 3 displays the relative frequency of rejection of the null

H0 : b0 = 0 at the nominal level α = 1%, 5% and 10%. With the designs I and II, in which

the null hypothesis holds, the relative rejection frequency over the N = 1, 000 replications

is almost always within the 0.05 significant limits, which are 0.3% and 1.7% for α = 1%,

3.6% and 6.4% for α = 5%, and 8.1% and 11.9% for α = 10%. The rare exceptions are

displayed in bold type in Table 3. For the designs III and IV, the null hypothesis does not

hold and, as expected, the sup-tests are more powerful than the LST tests. In Table 3 the

highest rejection frequencies are underlined. One can see that the rejection frequencies of

the LM, LR and Wald tests are systematically in the increasing order, both under the null

and under the alternative, which is a well known (see e.g. Godfrey, 1988) consequence of

the forms of the test statistics. In summary, all the tests well control the error of the first

kind, the sup-tests are more powerful than the LST tests and are not too sensitive to the

choice of γ. Note however that the LST tests remain very attractive for their simplicity

and their relative good performance.

Appendix

Proof of Theorem 3.1. The first step is the convergence of the finite dimensional

distributions. Note that the sequences of variables involved in the Sn,i(γ) and Tn,i(γ)

are square-integrable stationary martingale differences. The conclusion follows from the

central limit theorem of Billingsley (1961).
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Table 3: Empirical size and power of tests of the linearity hypothesis H0 at the nominal level α.

The rejection frequency are computed on N = 1, 000 independent replications of simulations of

length n = 100.

Model α Sup-tests γ = 2 Sup-tests γ = 5 1-LST 2-LST

W LM LR W LM LR W LM LR W LM LR

1% 1.3 1.0 1.1 1.3 0.8 1.1 1.0 0.9 1.0 1.2 0.8 1.0

I 5% 5.7 4.6 5.1 5.4 4.4 4.7 4.9 4.5 4.8 5.5 4.2 4.8

10% 10.6 9.4 9.8 10.1 9.4 10.1 9.2 8.5 9.1 10.9 9.9 10.3

1% 1.4 1.0 1.4 1.5 1.0 1.1 1.5 1.3 1.4 1.1 0.7 0.7

II 5% 5.9 5.1 5.6 6.7 5.6 6.0 5.8 5.1 5.5 5.9 5.3 5.7

10% 10.7 10.2 10.4 10.8 10.4 10.5 11.6 11.0 11.3 12.4 11.3 11.8

1% 6.3 4.4 5.3 5.7 4.3 4.9 1.4 1.0 1.1 5.3 3.9 4.4

III 5% 19.0 16.8 17.6 16.9 14.8 15.9 7.0 6.4 6.7 14.5 12.6 13.5

10% 27.5 25.8 26.5 27.2 25.9 26.5 13.2 12.8 13.0 22.5 21.0 21.9

1% 24.9 20.9 22.6 26.3 22.4 24.2 18.2 16.5 17.2 19.8 14.8 17.8

IV 5% 48.1 45.8 47.0 50.5 48.2 49.5 40.4 38.9 39.6 40.2 37.0 39.1

10% 61.9 60.7 61.6 64.2 62.9 63.6 54.5 53.4 53.9 53.2 50.8 51.7

I: EXPAR model under H0: Model (2.1)-(4.2) with a0 = b0 = 0, ǫt ∼ N (0, 1)

II: LSTAR model under H0: Model (2.2)-(4.2) with a0 = b0 = 0, ǫt ∼ N (0, 1)

III: EXPAR model under H1: Model (2.1)-(4.2) with a0 = b0 = γ0 = 0.4, ǫt ∼ N (0, 1)

IV: LSTAR model under H1: Model (2.2)-(4.2) with a0 = b0 = 0.4,γ0 = 4, ǫt ∼ N (0, 1)
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It remains to show that the sequences are tight. We have, by the independence between

ǫt and Yt−1, for some γ1 between γ and γ′,

n

n − 1
E

(√
n

σ
{Sn,1,1(γ) − Sn,1,1(γ

′)}
)2

= E[Y 2
0 {H(γ, Y0) − H(γ′, Y0)}2]

= E[Y 2
0 H2

1 (γ1, Y0)](γ − γ′)2

≤ KE[Y 2
0 (|Y0|α1 + 1)2](γ − γ′)2 ≤ K(γ − γ′)2,

where the last inequalities follow from A1 and the existence of E(Y 2+2α1
0 ) under b0 = 0.

For any γ′ ∈ (0, γ), forgetting the asymptotically irrelevant factor n/(n − 1), we simi-

larly have

E

(√
n

σ
{Tn,1(γ) − Tn,1(γ

′)}
)2

= E[Y 2
0 {H1(γ, Y0) − H1(γ

′, Y0)}2]

= E[Y 2
0 H2

2 (γ1, Y0)](γ − γ′)2

≤ KE[Y 2
0 (|Y0|α2 + 1)2](γ − γ′)2 ≤ K(γ − γ′)2,

E

(√
n

σ
{Tn,2(γ) − Tn,2(γ

′)}
)2

= E[Y 2
0 {H2(γ, Y0) − H2(γ

′, Y0)}2]

≤ KE[Y 2
0 (|Y0|α3 + 1)2](γ − γ′)2α ≤ K(γ − γ′)2.

The tightness follows from Theorem 12.3 of Billingsley (1968, p. 95). To complete the

proof let us show that the limiting Gaussian process has the form given by the theorem.

The processes
√

nTn,i(γ) and
√

nSn,i,j(γ), i, j = 0, 1, are in the form

n−1/2
∑n

t=2 ǫtℓ(γ, Yt−1) with some function ℓ. Since ǫt and Yt−1 are independent, we get

that for any γ, γ′

E

{
n−1/2

n∑

t=2

ǫtℓ1(γ, Yt−1)n
−1/2

n∑

s=2

ǫsℓ2(γ
′, Ys−1)

}
= E

(
ǫ2
0

)
E
{
ℓ1(γ, Y0)ℓ2(γ

′, Y0)
}

= σ2

∫

R

ℓ1(γ, y)ℓ2(γ
′, y)dF (y).

Thus we computed the covariance structure of the limiting Gaussian process. So it is

enough to show that the stochastic integrals in the limit have the same covariance structure.

It is easy to see that

E

∫

R

ℓ1(γ, y)dW (F (y))

∫

R

ℓ2(γ, x)dW (F (x)) =

∫

R

ℓ1(γ, y)ℓ2(γ
′, y)dF (y),

and therefore the representation is established.
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✷

Before proving Theorem 3.2, we establish the following lemmas. A proof is given for

the reader’s convenience but can be found elsewhere in a much more general framework

(see for example Pötscher and Prucha (1989)).

Lemma A.1 Let (Zt(γ)) denote a strictly stationary and ergodic real-valued process with

E|Z0(γ)| < ∞, for any γ ∈ Γ where Γ is a real compact set. Assume that

∣∣Zt(γ) − Zt(γ
′)
∣∣ ≤ At

∣∣γ − γ′
∣∣α , (A.1)

where α > 0 and (At) is a strictly stationary and ergodic process with EA0 < ∞. Then

sup
γ∈Γ

∣∣∣∣∣
1

n

n∑

t=1

Zt(γ) − EZ0(γ)

∣∣∣∣∣ → 0 a.s.

Proof. The compact set Γ is covered by m balls B(γi, δ) of center γi, i = 1, . . . ,m, and

radius δ > 0. We have

sup
γ∈Γ

∣∣∣∣∣
1

n

n∑

t=1

Zt(γ) − EZ0(γ)

∣∣∣∣∣ ≤ c1n + c2n + c3n,

where

c1n = max
i=1,...,m

sup
γ∈B(γi,δ)

∣∣∣∣∣
1

n

n∑

t=1

Zt(γ) − Zt(γi)

∣∣∣∣∣ ,

c2n = max
i=1,...,m

∣∣∣∣∣
1

n

n∑

t=1

Zt(γi) − EZ0(γi)

∣∣∣∣∣ ,

c3n = max
i=1,...,m

sup
γ∈B(γi,δ)

|EZ0(γi) − EZ0(γ)| .

By (A.1) and the ergodic theorem

c1n ≤ δα 1

n

n∑

t=1

At → δαEA0 and c2n → 0 a.s.

Condition (A.1) entails that |EZ0(γ) − EZ0(γ
′)| ≤ EA0 |γ − γ′|α. Thus c3n ≤ δαEA0 and

the conclusion follows.

✷

Lemma A.2 Under the assumptions of Theorem 3.2 we have |Sn,i,0| = OP (n−1/2), for

i = 0, 1, and

sup
γ∈[0,γ]

|Sn,1,1(γ)| = OP (n−1/2), sup
γ∈[0,γ]

|Tn,j(γ)| = OP (n−1/2) for j = 1, 2. (A.2)
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Proof. This is a direct consequence of Theorem 3.1.

✷

Lemma A.3 Under the assumptions of Theorem 3.2 we have

sup
γ∈[0,γ]

|Un,i,j(γ) − EY i
0Hj(γ, Y0)| → 0, a.s., i = 1, 2, j = 0, 1, 2. (A.3)

Moreover, for any δ > 0 there exists ǫ > 0 such that

lim
n→∞

sup
γ∈(0,ǫ]

∣∣∣∣
Un,i,j(γ)

γj
− EY i

0 Hj
1(0, Y0)

∣∣∣∣ < δ, a.s. (A.4)

Proof. First note that the expectations in (A.3) exist by A1 and

Y 2
0 H i(γ, Y0) ≤ KγiY 2

0 (|Y0|α1 + 1)i, (A.5)

which is integrable because E|Y0|2+2α1 < ∞. The convergence in (A.3) follows, using

Lemma A.1 and Assumptions A1-A3. The following expansions around γ = 0 hold. For

some ν1, ν2 ∈ (0, γ),

Un,i,1(γ) =
γ

n

n∑

t=2

Y i
t−1H1(0, Yt−1) +

γ2

2n

n∑

t=2

Y i
t−1H2(ν1, Yt−1),

Un,i,2(γ) =
1

n

n∑

t=2

Y i
t−1H

2(γ, Yt−1)

=
γ2

n

n∑

t=2

Y i
t−1{H2

1 (ν2, Yt−1) + H(ν2, Yt−1)H2(ν2, Yt−1)}. (A.6)

Hence

sup
γ∈(0,ǫ]

∣∣∣∣
Un,i,1(γ)

γ
− EY i

0 H1(0, Y0)

∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

t=2

Y i
t−1H1(0, Yt−1) − EY i

0 H1(0, Y0)

∣∣∣∣∣

+ sup
γ∈[0,ǫ]

∣∣∣∣∣
γ

2n

n∑

t=2

Y i
t−1H2(ν1, Yt−1)

∣∣∣∣∣ .

By the ergodic theorem

1

n

n∑

t=2

Y i
t−1H1(0, Yt−1) → EY i

0H1(0, Y0), a.s.

Moreover, by A2 and because E|ǫt|2+α2 < ∞,

∣∣∣∣∣
1

n

n∑

t=2

Y i
t−1H2(ν1, Yt−1)

∣∣∣∣∣ ≤
K

n

n∑

t=2

Y i
t−1(|Yt−1|α2 + 1) → KEY i

0 (|Yt−1|α2 + 1) < ∞, a.s.
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It follows that a.s.

lim
n→∞

sup
γ∈(0,ǫ]

∣∣∣∣
Un,i,1(γ)

γ
− EY i

0H1(0, Y0)

∣∣∣∣ ≤ ǫK. (A.7)

Now in view of (A.6), by A1-A2 and another Taylor expansion of H(·, Yt−1) around 0 we

have, for some ν3 ∈ (0, ν2),

sup
γ∈(0,ǫ]

∣∣∣∣
Un,i,2(γ)

γ2
− EY i

0 H2
1 (0, Y0)

∣∣∣∣ ≤
∣∣∣∣∣
1

n

n∑

t=2

Y i
t−1H

2
1 (0, Yt−1) − EY i

0 H2
1 (0, Y0)

∣∣∣∣∣

+ sup
γ∈(0,ǫ]

∣∣∣∣∣
ν2

n

n∑

t=2

Y i
t−12H1(ν3, Yt−1)H2(ν3, Yt−1)

∣∣∣∣∣

+ sup
γ∈(0,ǫ]

∣∣∣∣∣
1

n

n∑

t=2

Y i
t−1H(ν2, Yt−1)H2(ν1, Yt−1)

∣∣∣∣∣

≤
∣∣∣∣∣
1

n

n∑

t=2

Y i
t−1H

2
1 (0, Yt−1) − EY i

0 H2
1 (0, Y0)

∣∣∣∣∣

+ ǫK

∣∣∣∣∣
1

n

n∑

t=2

Y i
t−1(|Yt−1|α1 + 1)(|Yt−1|α2 + 1)

∣∣∣∣∣ .

Thus, by arguments already given, a.s.

lim
n→∞

sup
γ∈(0,ǫ]

∣∣∣∣
Un,i,2(γ)

γ2
− EY i

0 H2
1 (0, Y0)

∣∣∣∣ ≤ ǫK.

This, together with (A.7), shows that (A.4) holds for ǫ sufficiently small. The proof of

Lemma A.3 is complete.

✷

Recall that

Dn(γ) = det{Jn(γ)}

= {Un,2,2(γ) − U2
n,1,1(γ)}{Un,2,0 − U2

n,1,0} − {Un,2,1(γ) − Un,1,0Un,1,1(γ)}2, (A.8)

and let D(γ) = det{J(γ)} where

J(γ) =




1 U1,0 U1,1(γ)

U1,0 U2,0 U2,1(γ)

U1,1(γ) U2,1(γ) U2,2(γ)


 , Ui,j(γ) = EY i

0Hj(γ, Y0).

Let also A = det{J (1)} where

J (1) =




1 U1,0 U
(1)
1,1

U1,0 U2,0 U
(1)
2,1

U
(1)
1,1 U

(1)
2,1 U

(1)
2,2


 , U

(1)
i,j = EY i

0Hj
1(0, Y0).
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Lemma A.4 Under the assumptions of Theorem 3.2 we have

sup
γ∈[0,γ]

|Dn(γ) − D(γ)| → 0, a.s., (A.9)

and D(γ) > 0 for any γ > 0. Moreover, for any δ > 0 there exists ǫ > 0 such that

lim
n→∞

sup
γ∈(0,ǫ]

∣∣∣∣
Dn(γ)

γ2
− A

∣∣∣∣ < δ, a.s. (A.10)

where A > 0.

Proof. The convergence in (A.9) follows from Lemma A.3, and (A.5) for the existence of

the expectations. We have

∣∣∣∣
Dn(γ)

γ2
− A

∣∣∣∣

≤Var(Y0)

∣∣∣∣∣
Un,2,2(γ) − U2

n,1,1(γ)

γ2
− Var{Y0H1(0, Y0)}

∣∣∣∣∣

+

∣∣∣∣
Un,2,1(γ) − Un,1,0Un,1,1(γ)

γ
− Cov{Y0, Y0H1(0, Y0)}

∣∣∣∣
2

+
|Un,2,2(γ) − U2

n,1,1(γ)|
γ2

|Un,2,0 − U2
n,1,0 − Var(Y0)|

+ 2
|Un,2,1(γ) − Un,1,0Un,1,1(γ)|

γ

∣∣∣∣
Un,2,1(γ) − Un,1,0Un,1,1(γ)

γ
− Cov{Y0, Y0H1(0, Y0)}

∣∣∣∣ .

Note that by (A.4), for ǫ sufficiently small

lim
n→∞

sup
γ∈(0,ǫ]

∣∣∣∣
Un,i,j(γ)

γj

∣∣∣∣ ≤ K, a.s. (A.11)

Then the convergence in (A.10) straightforwardly follows from Lemma A.3. Note that

D(γ) =Var{Y0H(γ, Y0)}Var(Y0) − Cov2{Y0H(γ, Y0), Y0},

A =Var{Y0H1(0, Y0)}Var(Y0) − Cov2{Y0H1(0, Y0), Y0}.

The non-negativity of D(γ) and A follows from the Cauchy-Schwarz inequality. Moreover,

D(γ) = 0 and A = 0 are precluded by Assumption A4.

✷

Lemma A.5 Under the assumptions of Theorem 3.2 we have, for any δ > 0

lim
ǫ→0

lim
n→∞

P

[
n−1/2 sup

γ∈(0,ǫ]

∣∣∣∣∣
1

γ

n∑

t=2

ǫtYt−1H(γ, Yt−1) −
n∑

t=2

ǫtYt−1H1(0, Yt−1)

∣∣∣∣∣ > δ

]
= 0.
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Proof. By the mean-value theorem we have, for some ν ∈ (0, γ),

n∑

t=2

ǫtYt−1H(γ, Yt−1) = γ
n∑

t=2

ǫtYt−1H1(0, Yt−1) +
γ2

2

n∑

t=2

ǫtYt−1H2(ν, Yt−1).

Thus

n−1/2 sup
γ∈(0,ǫ]

∣∣∣∣∣
1

γ

n∑

t=2

ǫtYt−1H(γ, Yt−1) −
n∑

t=2

ǫtYt−1H1(0, Yt−1)

∣∣∣∣∣ ≤
ǫ

2
sup

γ∈[0,ǫ]

√
n |Tn,2(γ)| .

In view of Lemma A.2, by definition of a variable bounded in probability, the conclusion

follows.

✷

Lemma A.6 Under the assumptions of Theorem 3.2

sup
γ∈(0,γ]

∣∣∣∣
√

nSn,1,1(γ)

γ

∣∣∣∣ = OP (1).

Proof. For any δ > 0 we have

P

(
sup

γ∈(0,γ]

∣∣∣∣
√

nSn,1,1(γ)

γ

∣∣∣∣ > δ

)
≤ c1,n(δ, ǫ) + c2,n(δ, ǫ) + c3,n(δ)

where ǫ is an arbitrary point of the interval (0, γ], and

c1,n(δ, ǫ) =P

(
sup

γ∈(ǫ,γ]

∣∣∣∣
√

nSn,1,1(γ)

γ

∣∣∣∣ >
δ

3

)
,

c2,n(δ, ǫ) =P

(
n−1/2 sup

γ∈(0,ǫ]

∣∣∣∣∣
1

γ

n∑

t=2

ǫtYt−1H(γ, Yt−1) −
n∑

t=2

ǫtYt−1H1(0, Yt−1)

∣∣∣∣∣ >
δ

3

)
,

c3,n(δ) =P

(∣∣∣∣∣
1√
n

n∑

t=2

ǫtYt−1H1(0, Yt−1)

∣∣∣∣∣ >
δ

3

)
.

Theorem 3.1 and the continuous mapping theorem show that

sup
γ∈(ǫ,γ]

∣∣∣∣
√

nSn,1,1(γ)

γ

∣∣∣∣⇒ sup
γ∈(ǫ,γ]

∣∣∣∣
σ

γ

∫

R

yH(γ, y)dW (F (y))

∣∣∣∣ , as n → ∞.

Since the limit is finite with probability one we get for any ǫ > 0

lim
δ→∞

lim
n→∞

c1,n(δ, ǫ) = 0.

By Lemma A.5 we have for all δ

lim
ǫ→0

lim
n→∞

c2,n(δ, ǫ) = 0.
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The central limit theorem of Billingsley (1961), for square-integrable stationary martingale

differences, yields that, as n → ∞,

1√
n

n∑

t=2

ǫtYt−1H1(0, Yt−1) ⇒ σ

∫ ∞

−∞
yH1(0, y)dW (F (y)).

Thus we have

lim
δ→∞

lim
n→∞

c3,n(δ) = 0.

For all τ > 0 let us chose δτ such that limn→∞c3,n(δτ ) < τ , let ǫτ > 0 such that

limn→∞c2,n(δτ , ǫτ ) < τ , and let δ∗τ > 0 such that limn→∞c1,n(δ∗τ , ǫτ ) < τ . Because c1,n(·, ǫ),
c2,n(·, ǫ), and c3,n(·) are decreasing functions, we have

lim
n→∞

P

(
sup

γ∈(0,γ]

∣∣∣∣
√

nSn,1,1(γ)

γ

∣∣∣∣ > δ

)
≤ lim

n→∞
c1,n(δ, ǫτ ) + c2,n(δ, ǫτ ) + c3,n(δ) < 3τ

for all δ ≥ max{δτ , δ∗τ}. The conclusion follows.

✷

Proof of Theorem 3.2. Denote by J∗
n(γ) =

(
J∗

n,i,j(γ)
)

the matrix of cofactors of Jn(γ).

By (3.4) we have

√
n|âγ − a0|

≤ 1

|Dn(γ)| {|J
∗
n,2,1(γ)||√nSn,0,0| + |J∗

n,2,2(γ)||√nSn,1,0(γ)| + |J∗
n,2,3(γ)||√nSn,1,1(γ)|}.

(A.12)

Note that D being a continuous function, we have infγ∈[ǫ,γ] D(γ) > 0, for any ǫ > 0. Thus,

in view of

inf
γ∈[ǫ,γ]

|Dn(γ)| ≥ inf
γ∈[ǫ,γ]

D(γ) − sup
γ∈[ǫ,γ]

|Dn(γ) − D(γ)|

we have

sup
γ∈[ǫ,γ]

1

|Dn(γ)| = OP (1)

by Lemma A.4. Moreover by Lemma A.3 supγ∈[ǫ,γ] |Un,i,j(γ)| = OP (1), for i = 1, 2 and

j = 0, 1, 2. Thus supγ∈[ǫ,γ] |J∗
n,i,j(γ)| = OP (1). Then it follows from (A.12) and Lemma

A.2 that supγ∈[ǫ,γ] |âγ − a0| = OP (n−1/2) for all ǫ > 0. Now we have

inf
γ∈(0,ǫ]

γ−2|Dn(γ)| ≥ A − sup
γ∈(0,ǫ]

|γ−2Dn(γ) − A| ≥ A

2
,
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a.s. for n sufficiently large and ǫ sufficiently small, by Lemma A.4. Thus, for such n and

ǫ we have a.s.

sup
γ∈(0,ǫ]

√
n|âγ − a0|

≤ 2

A

{
√

n|Sn,0,0| sup
γ∈(0,ǫ]

|J∗
n,2,1(γ)|

γ2
+ sup

γ∈(0,ǫ]

|J∗
n,2,2(γ)|

γ2
sup

γ∈(0,ǫ]
|√nSn,1,0|

+ sup
γ∈(0,ǫ]

|J∗
n,2,3(γ)|

γ
sup

γ∈(0,ǫ]

|√nSn,1,1(γ)|
γ

}
.

It follows from (A.11) and Lemmas A.2 and A.6 that supγ∈(0,ǫ] |âγ − a0| = OP (n−1/2) for

ǫ small enough. Thus we have shown that supγ∈(0,γ] |âγ − a0| = OP (n−1/2) for all γ > 0.

We prove that supγ∈(0,γ] |µ̂γ − µ0| = OP (n−1/2) for all γ > 0 by the same arguments.

Turning to b̂γ we have by (3.4), with b0 = 0, for n sufficiently large and ǫ sufficiently

small

sup
γ∈(0,ǫ]

√
n|γb̂γ | ≤

2

A

{
√

n|Sn,0,0| sup
γ∈(0,ǫ]

|J∗
n,3,1(γ)|

γ
+ sup

γ∈(0,ǫ]

|J∗
n,3,2(γ)|

γ
sup

γ∈(0,ǫ]
|√nSn,1,0|

+ |J∗
n,3,3| sup

γ∈(0,ǫ]

|√nSn,1,1(γ)|
γ

}
.

By the arguments already given we thus find that supγ∈[0,γ] |γb̂γ | = OP (n−1/2).

Finally, ã − a0 = {Sn,1,0 − Sn,0,0Un,1,0}/{Un,2,0 − U2
n,1,0} = OP (n−1/2) which allows to

conclude that

sup
γ∈(0,γ]

|âγ − ã| ≤ sup
γ∈(0,γ]

|âγ − a0| + |ã − a0| = OP (n−1/2).

The same arguments allow to prove that supγ∈(0,γ] |µ̂γ − µ̃| = OP (n−1/2). The proof of

Theorem 3.2 is now complete.

✷
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Proof of Theorem 3.3. We have

σ̂2
γ =

1

n

n∑

t=2

{ǫt + (µ0 − µ̂γ) + (a0 − âγ)Yt−1 − b̂γYt−1H(γ, Yt−1)}2

=
1

n

n∑

t=2

ǫ2
t + (a0 − âγ)2

1

n

n∑

t=2

Y 2
t−1 + b̂2

γ

1

n

n∑

t=2

Y 2
t−1H

2(γ, Yt−1) +
2

n
(a0 − âγ)

n∑

t=2

ǫtYt−1

− b̂γ
2

n

n∑

t=2

ǫtYt−1H(γ, Yt−1) − (a0 − âγ)b̂γ
2

n

n∑

t=2

Y 2
t−1H(γ, Yt−1) +

n − 1

n
(µ0 − µ̂γ)2

+ (µ0 − µ̂γ)

{
2

n

n∑

t=2

ǫt +
2

n
(a0 − âγ)

n∑

t=2

Yt−1 − b̂γ
2

n

n∑

t=2

Yt−1H(γ, Yt−1)

}

=
1

n

n∑

t=2

ǫ2
t + (a0 − âγ)2Un,2,0 + {γb̂γ}2 Un,2,2(γ)

γ2
+ 2(a0 − âγ)Sn,1,0

− 2
√

nγb̂γ

√
nSn,1,1(γ)

nγ
− 2(a0 − âγ)γb̂γ

Un,2,1(γ)

γ
+

n − 1

n
(µ0 − µ̂γ)2

+ 2(µ0 − µ̂γ)

{
Sn,0,0 + (a0 − âγ)Un,1,0 − γb̂γ

Un,1,1(γ)

γ

}
.

The conclusion follows from the weak law of large numbers, Lemmas A.2, A.3 and A.6 and

Theorem 3.2.

✷

Lemma A.7 If the conditions of Theorem 3.3 are satisfied, then

lim
γ↓0

W(γ) = W(0) a.s.

where

W(0) =

{
V (0)

∫
R

yH1(0, y) dW (F (y)) − EY 2
0 H1(0, Y0)

∫
R

y dW (F (y)) − ∆1σW (1)
}2

AVar(Y0)
,

∆1 = EY 2
0 EY0H1(0, Y0) − EY0EY 2

0 H1(0, Y0) and A is defined before Lemma A.4.

Proof. The dominated convergence theorem and Assumptions A0 and A1 entail that

D(γ)

γ2
→ A as γ → 0.

Also, the same arguments show that, when γ → 0

V (γ) − V (0)

γ
= EY 2

0

H(γ, Y0)

γ
→ EY 2

0 H1(0, Y0),

∆(γ)

γ
= EY 2

0 EY0
H(γ, Y0)

γ
− EY0EY 2

0

H(γ, Y0)

γ
→ ∆1.
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Next we show that

Z(γ) − Z(0)

γ
=

σ

γ

∫

R

yH(γ, y)dW (F (y)) → σ

∫

R

yH1(0, y)dW (F (y)) (A.13)

a.s. as γ ↓ 0. We define the following process on [0, γ]:

u(γ) =

∫

R

y
1

γ
H(γ, y)dW (F (y)) if 0 < γ ≤ γ

and

u(0) =

∫

R

yH1(0, y)dW (F (y)).

The assertion in (A.13) is established if we show that u(γ) is almost surely continuous on

[0, γ]. It follows from the definition that u(γ) is a centered Gaussian process. Also,

E {u(γ) − u(0)}2 =

∫

R

{
y

(
1

γ
H(γ, y) − H1(0, y)

)}2

dF (y)

and

1

γ
H(γ, y) − H1(0, y) = H1(γ, y) +

γ

2
H2(γ

∗, y) − H1(0, y) = γH2(γ
∗∗, y) +

γ

2
H2(γ

∗, y)

for some γ∗ and γ∗∗ between 0 and γ. Thus, conditions A0 and A2 yield

E {u(γ) − u(0)}2 ≤ Cγ2

for some constant C. On the other hand, for all 0 < γ ≤ γ′ ≤ γ we have

E
{
u(γ′) − u(γ)

}2
=

∫

R

{
y

(
1

γ
H(γ, y) − 1

γ′
H(γ′, y)

)}2

dF (y)

≤2

∫

R

(
y
H(γ, y) − H(γ′, y)

γ

)2

dF (y)

+ 2

∫

R

(
y
H(γ′, y)

γ′

γ′ − γ

γ

)2

dF (y)

≤C

(
γ − γ′

γ

)2

for some constant C. Thus we have

d(γ, γ′) :=
[
E
{
u(γ) − u(γ′)

}2
]1/2

≤





Cγ′ 0 = γ < γ′ ≤ γ

C γ′−γ
γ 0 < γ < γ′ ≤ γ.

Following Adler (1990) we provide an upper bound for the minimal number of d-balls of

radius ǫ which cover [0, γ]. According to Theorem 1.1 in Adler (1990, p.4), it is enough

to show that the number of d-balls is bounded by a polynomial function of 1/ǫ. The

27



center of the first ball is at 0 and it covers the interval [0, ǫ/C]. Then the centers of the

other balls are ǫ/C + iǫ2/C2, 1 ≤ i ≤ [γC/ǫ2] + 1. Indeed, when γ′ = ǫ/C + iǫ2/C2 and

γ = ǫ/C + (i − 1)ǫ2/C2 then d(γ, γ′) ≤ C(γ′ − γ)/γ = ǫ2/(Cγ) ≤ ǫ. Since the number of

covering cloud d-balls is bounded by a multiple of 1/ǫ2, the almost sure continuity of u(γ)

is established. Thus (A.13) holds. The conclusion then follows from

W(γ) =

{
V (0)Z(γ)−Z(0)

γ − V (γ)−V (0)
γ Z(0) − ∆(γ)

γ σW (1)
}2

σ2 D(γ)
γ2 EY 2

0

.

✷

Proof of Theorem 4.1. By (3.1)-(3.3) we have

δ̂γ − δ̃ = −J̃−1
n J12

n (γ)b̂γ where Jn(γ) =


 J̃n J12

n (γ)

J21
n (γ) Un,2,2(γ)


 .

Considering σ̂2
γ and σ̃2 as values of a same function at the points (δ̂γ , b̂γ)′ and (δ̃, 0)′

respectively, a second-order Taylor expansion gives, for any γ > 0

σ̃2 = σ̂2
γ +

1

2
(δ̂γ − δ̃, b̂γ)2Jn(γ)(δ̂γ − δ̃, b̂γ)′

= σ̂2
γ + (δ̂γ − δ̃)′J̃n(δ̂γ − δ̃) + Un,2,2(γ)b̂2

γ + 2J21
n (γ)(δ̂γ − δ̃)b̂γ

= σ̂2
γ + b̂2

γ

{
Un,2,2(γ) − J21

n (γ)J̃−1
n J12

n (γ)
}

= σ̂2
γ + b̂2

γ{J−1
n (γ)(3, 3)}−1

when Eǫ2
t < ∞. Thus we have

Wn(γ) = n
b̂2
γ

σ̂2
γJ−1

n (γ)(3, 3)

=

{
n1/2Sn,1,1(γ) − J21

n (γ)J̃−1
n n1/2(Sn,0,0, Sn,1,0)

′
}2

σ̂2
γ{Un,2,2(γ) − J21

n (γ)J̃−1
n J12

n (γ)}

=

{
n1/2Zn(γ) − (Vn,1(γ), Vn,2(γ))J̃−1

n n1/2(Sn,0,0, Sn,1,0)
′
}2

σ̂2
γ{Un,2,2(γ) − J21

n (γ)J̃−1
n J12

n (γ)}
,

=

{
n1/2Zn(γ)Vn(0) − Vn(γ)n1/2Zn(0) − ∆n(γ)n1/2Sn,0,0

}2

σ̂2
γ(Un,2,0 − U2

n,1,0)Dn(γ)
, (A.14)

where for i = 1, 2,

Vn,i(γ) =
1

n

n∑

t=2

Y i
t−1{H(γ, Yt−1) + 1}, Vn(γ) = Vn,2(γ) − Vn,1(γ)Vn,1(0),
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∆n(γ) = Un,2,0Un,1,1(γ) − Un,1,0Un,2,1(γ),

Dn(γ) = det{Jn(γ)} = {Un,2,2(γ)−U2
n,1,1(γ)}{Un,2,0−U2

n,1,0}−{Un,2,1(γ)−Un,1,0Un,1,1(γ)}2,

Zn(γ) = n−1
n∑

t=2

ǫtYt−1{H(γ, Yt−1) + 1}.

A straightforward adaptation of Theorem 3.1 shows that for any γ > 0,

(√
n

σ
Zn(γ),

√
n

σ
Sn,0,0,W

∗
n

)
D[0,γ]×R×R

=⇒ (Z(γ),W (1),W(0)) ,

where

W
∗
n =

{
Var(Y0)n

−1/2
n∑

t=2

ǫtYt−1H1(0, Yt−1) − Cov(Y0, Y0H1(0, Y0))n
−1/2

n∑

t=2

ǫtYt−1

−∆1n
−1/2

n∑

t=2

ǫt

}2

{σ2AVar(Y0)}−1,

and W(0) is defined in Lemma A.7. Note that the same Brownian motion is used in the

definitions of Z(γ) and W(0). Thus we get that for all 0 < γ < γ

(Wn(γ),W∗
n)

D[γ,γ]×R
=⇒ (W(γ),W(0)) (A.15)

In view of (A.15) we have

(
sup

γ∈[γ,γ]
Wn(γ),W∗

n

)
=⇒

(
sup

γ∈[γ,γ]
W(γ),W(0)

)
. (A.16)

By (A.14), Lemmas A.3 and A.5 and Theorems 3.2 and 3.3 we have for all δ > 0

lim
ǫ→0

lim
n→∞

P

(
sup

γ∈[0,ǫ]
|Wn(γ) − W

∗
n| > δ

)
= 0. (A.17)

Also by Lemma A.7 we have for all δ > 0

lim
ǫ→0

P

(
sup

γ∈[0,ǫ]
|W(γ) − W(0)| > δ

)
= 0. (A.18)

For any fixed x ∈ R and all δ > 0 and 0 < ǫ < γ, we have

P

(
sup

γ∈[0,γ]
Wn(γ) ≤ x

)
≤ P

(
sup

γ∈[ǫ,γ]
Wn(γ) ≤ x,W∗

n ≤ x + δ

)

+ P

(
sup

γ∈[0,ǫ]
|Wn(γ) − W

∗
n| > δ

)
.
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Using (A.16) and (A.17), we obtain for all τ > 0

lim
n→∞

P

(
sup

γ∈[0,γ]
Wn(γ) ≤ x

)
≤ P

(
sup

γ∈[ǫ,γ]
W(γ) ≤ x,W(0) ≤ x + δ

)
+ τ

≤ P

(
sup

γ∈[0,γ]
W(γ) ≤ x + δ

)
+ P

(
sup

γ∈[0,ǫ]
|W(γ) − W(0)| > δ

)
+ τ

for ǫ small enough. Using (A.18), we obtain

lim
n→∞

P

(
sup

γ∈[0,γ]
Wn(γ) ≤ x

)
≤ P

(
sup

γ∈[0,γ]
W(γ) ≤ x + δ

)
+ 2τ.

Since the inequality holds for all δ and τ , we have

lim
n→∞

P

(
sup

γ∈[0,γ]
Wn(γ) ≤ x

)
≤ P

(
sup

γ∈[0,γ]
W(γ) ≤ x

)
.

Using similar arguments, we obtain

lim inf
n→∞

P

(
sup

γ∈[0,γ]
Wn(γ) ≤ x

)
≥ P

(
sup

γ∈[0,γ]
W(γ) < x

)
.

Thus the proof is complete.

✷

Proof of Theorem 4.2. The arguments of the proof of Theorem 4.1 can be used, replacing

(A.14) by

Wn(γ) =

{
Un,2,0n

1/2Sn,1,1(γ) − Un,2,1(γ)n1/2Sn,1,0

}2

σ̂2
γDn(γ)Un,2,0

=

{
Vn,2(0)n

1/2Zn(γ) − Vn,2(γ)n1/2Zn(0)
}2

σ̂2
γDn(γ)Un,2,0

, (A.19)

where

Dn(γ) = Un,2,0Un,2,2(γ) − U2
n,2,1(γ). (A.20)

✷
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