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Testing the nullity of GARCH coefficients :

correction of the standard tests and relative

efficiency comparisons

Christian Francq∗and Jean-Michel Zakoïan†

Abstract: This article is concerned by testing the nullity of coefficients in GARCH models.

The problem is non standard because the quasi-maximum likelihood estimator is subject

to positivity constraints. The paper establishes the asymptotic null and local alternative

distributions of Wald, score, and quasi-likelihood ratio tests. Efficiency comparisons under

fixed alternatives are also considered. Two cases of special interest are: (i) tests of the

null hypothesis of one coefficient equal to zero and (ii) tests of the null hypothesis of no

conditional heteroscedasticity. Finally, the proposed approach is used in the analysis of

a set of financial data and leads to reconsider the preeminence of GARCH(1,1) among

GARCH models.

The quasi-maximum likelihood estimator (QMLE), which is the most widely-used

estimator for GARCH models, possesses a non standard asymptotic distribution when

the true parameter has zero coefficients. It follows that tests currently implemented in

softwares, such as the t-ratio test, the Wald test or the Likelihood Ratio (LR) test, are
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not valid for testing that some GARCH coefficients are equal to zero. For any sequence

of local parameters tending to the boundary of the parameter space at the rate n1/2, the

asymptotic distribution of the QMLE is established. This allows to correct the asymptotic

critical values of the above-mentioned tests and to compare their local asymptotic powers.

We give conditions under which the modified versions of the Wald and LR tests are locally

asymptotically optimal for testing the nullity of one coefficient, and we show that these

tests dominate the usual two-sided score test. For testing that the ARCH coefficients are

all equal to zero, we show that a one-sided version of the score test enjoys the property of

being locally asymptotically most stringent somewhere most powerful. We also compute

and compare the Bahadur slopes of several conditional homoscedasticity tests, showing

that the asymptotic performance of a given test strongly depends on the efficiency concept

(e.g. Bahadur or Pitman) chosen.

Keywords : Asymptotic efficiency of tests, Boundary, Chi-bar distribution,

GARCH model, Quasi Maximum Likelihood Estimation, Local alternatives.

1 Introduction

Despite the development of stochastic volatility models, the class of generalized

autoregressive conditionally heteroscedastic (GARCH) models introduced by Engle

(1982) and generalized by Bollerslev (1986) remains very popular in finance. This

is testified by the body of work using this class for financial applications such as

Value At Risk, Option Pricing, and portfolio analysis. Contrary to a common

opinion, a GARCH model is not a simple structure and before proceeding to its

estimation, it is sensible to make sure that such a sophisticated model is justified.

When a GARCH effect is present in the data, it is of interest to test if the orders of

the fitted models can be reduced, by testing the nullity of the higher-lag ARCH or
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GARCH coefficient. In practice, testing the nullity of parameters in the GARCH

framework is achieved by applying standard tests, such as the Wald test, the Rao-

score (or Lagrange Multiplier) test and the Likelihood Ratio test. These standard

tests are provided by most standard time series packages currently available for

GARCH estimation (e.g. GAUSS, RATS, SAS, SPSS).

Unfortunately, as we will see, this common practice may be based on an invalid

asymptotic theory. Tests in GARCH models have received much less attention

than the theory of estimation. Despite its apparent simplicity, the problem of

testing that some coefficients are equal to zero in a GARCH model is non trivial.

The reason is that the Quasi Maximum-Likelihood Estimator (QMLE) is positively

constrained. It follows that the standard distributions for some widely used tests

are not asymptotically valid.

The primary objective of this paper is to derive asymptotically valid critical

values for the Wald, Rao-score and Quasi-Likelihood Ratio (QLR) statistics. Given

the variety of possible tests we decided to limit ourselves to the most widely used

procedures. Our second goal is to compare the efficiencies of those tests under fixed

and local alternatives. We will use the approximate Bahadur slope criterion and

the Pitman analysis for power comparisons.

The most important cases for applications are: (i) tests of the null hypothesis

of one coefficient equal to zero and (ii) tests of the null hypothesis of no conditional

heteroscedasticity. In these two special cases, detailed asymptotic efficiency (local

and non local) comparisons can be done. For the nullity of one coefficient, the

widely used Student’s test will be also considered. A special attention will be

given to testing conditional homoscedasticity. In this case we will also compare the

three general tests with the Lee and King (1993) test, which exploits the one-sided

nature of the alternatives and enjoys optimality properties.

There exists a large amount of literature dealing with testing problems in
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which, under the null hypothesis, the parameter is at the boundary of the main-

tained assumption. Such problems have been considered e.g. by Chernoff (1954),

Bartholomew (1959), Perlman (1969), Gouriéroux, Holly and Monfort (1982). Sev-

eral papers consider one-sided alternatives. These include Wolak (1989), Rogers

(1986), Silvapulle and Silvapulle (1995), King and Wu (1997); see the latter pa-

per for further references. Other papers on tests focus on ARCH or GARCH

models. Andrews (2001) considered testing conditional homoscedasticity against

a GARCH(1,1) model. This testing problem, involving a nuisance parameter un-

der the null, is not considered in the present paper. The one-sided nature of the

ARCH models entails positive autocorrelations of the squares at all lags, resulting

in a spectral mode at frequency zero. Hong (1997) and Hong and Lee (2001) pro-

posed tests for ARCH effects using spectral density estimators at frequency zero

of a squared regression residual series. Dufour et al. (2004) used Monte-Carlo

tests techniques which do not rely on asymptotic results. Tests of ARCH(1)-type

effects in autoregressive processes, possibly with unit root, have been considered by

Klüppelberg, Maller, van de Vyver and Wee (2002). Lee and King (1993), which

will be directly used in the present paper, and Demos and Sentana (1998), who

considered similar testing problems, will be commented later on.

By comparison, the present paper has three characteristics: (i) it deals with

general GARCH(p, q) models, (ii) it considers testing the nullity of an arbitrary sub-

set of coefficients, with the restriction that identifiability is required under the null,

(iii) it relies on mild technical assumptions, taking into account recent improve-

ments in the estimation of GARCH models. In particular, we rely on Francq and

Zakoian (2007) (hereinafter FZ) in which the asymptotic properties of the QMLE

of GARCH models with some coefficients being zero have been investigated. The

present paper goes one step further by considering testing problems, which have

not been studied in FZ. Moreover, investigation of the asymptotic local powers
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requires an extension of FZ estimation results to the case of local alternatives to a

parameter at the boundary.

The article is organized as follows. Section 2 presents the estimation results,

in particular when the true parameter value is on the boundary, and the main

test statistics. Section 3 determines their asymptotic null distributions. Section

4 establishes the asymptotic distribution of the QMLE under sequences of local

alternatives to the null parameter value. Section 5 uses these results to compare

the local powers of the tests. Efficiency comparisons in the sense of Bahadur are

also considered. Sections 6 and 7 apply these results to the two main examples:

testing the nullity of one coefficient and testing the absence of ARCH effect. Section

8 is devoted to an application to financial time series in which the preeminence of

the GARCH(1,1) model is reconsidered. Section 9 concludes. Proofs are relegated

to an appendix.

If a matrix A is semi-positive definite, a semi-norm of a vector x of appropriate

dimension is defined by ‖x‖A = (x′
Ax)1/2. The notation a

c
= b will stand for

a = b + c. For a vector x, inequalities such as x > 0 or x ≥ 0 have to be

understood componentwise. Let δ0 denote the Dirac mass at 0 and χ2
k the chi-

square distribution with k degrees of freedom. The mixture of δ0 with probability

p and χ2
k with probability 1 − p will be denoted by pδ0 + (1 − p)χ2

k.

2 Model and test statistics

Assume that the observed time series ǫ1, . . . , ǫn is generated by the GARCH(p, q)

model






ǫt =
√

htηt

ht = ω0 +
∑q

i=1 α0iǫ
2
t−i +

∑p
j=1 β0jht−j , ∀t ∈ Z

(1)
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where θ0 := (ω0, α01, . . . , α0q, β01, . . . , β0p) is a parameter vector and the noise

sequence (ηt) is iid with mean 0 and variance 1. Under the positivity constraints

ω0 > 0, α0i ≥ 0 (i = 1, . . . , q), β0j ≥ 0 (j = 1, . . . , p),

Bougerol and Picard (1992) showed that a unique nonanticipative strictly stationary

solution (ǫt) exists if and only if γ(A0) < 0 where, for any norm ‖ · ‖ on the space

of the (p + q) × (p + q) matrices, γ(A0) = limt→∞
1
t log ‖A0tA0,t−1 . . . A01‖ a.s.

and

A0t =





















α01:q−1η
2
t α0qη

2
t β01:p−1η

2
t β0pη

2
t

Iq−1 0 0 0

α01:q−1 α0q β0p−1 β0p

0 Ip−1 0





















with α01:q−1 = (α01 . . . α0q−1), β01:p−1 = (β01 . . . β0p−1) and Ik being the k × k

identity matrix. A nonanticipative solution (ǫt) of Model (1) is such that ǫt is a

measurable function of the ηt−i, i ≥ 0. Note that Nelson and Cao (1992) derived

necessary and sufficient conditions for the positivity of the volatility process σ2
t .

However these conditions are not very explicit and thus seem difficult to use for

statistical purposes.

The primary objective of this article is to develop a methodology for testing

the nullity of a sub-vector of θ0. More precisely, and without loss of generality we

consider testing the nullity of the last d2 coefficients of θ0, split into two components

as θ0 = (θ
(1)
0 ,θ

(2)
0 )′, where θ

(i)
0 ∈ R

di , d1 + d2 = p + q + 1 = d. The null hypothesis

is thus

H0 : θ
(2)
0 = 0d2×1 i.e. Kθ0 = 0d2×1 with K =

(

0d2×d1 , Id2

)

and let

H : θ
(1)
0 > 0 i.e. Kθ0 > 0 with K =

(

Id1 , 0d1×d2

)
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denote our maintained assumption. To proceed, we define the vector of param-

eters as θ = (θ1, . . . , θp+q+1)
′, with θ1 = ω, and the parameter space Θ as any

compact subset of [0,∞)p+q+1 that bounds the first component away from zero.

For technical reasons we also assume that Θ contains some hypercube of the form

[ω, ω] × [0, ε]p+q, for some ε > 0 and ω > ω > 0.

To define the QMLE, the initial values are, for simplicity, taken equal to zero,

i.e. ǫ2
0 = . . . = ǫ2

1−q = σ̃2
0 = . . . = σ̃2

1−p = 0, and the variables σ̃2
t (θ) are recursively

defined, for t ≥ 1, by

σ̃2
t (θ) = ω +

q
∑

i=1

αiǫ
2
t−i +

p
∑

j=1

βj σ̃
2
t−j .

A QMLE of θ is defined as any measurable solution θ̂n of θ̂n = arg minθ∈Θ l̃n(θ),

where l̃n(θ) = n−1
∑n

t=1 ℓ̃t, and ℓ̃t = ℓ̃t(θ) = ℓ̃t(θ; ǫn, . . . , ǫ1) =
ǫ2t
σ̃2

t
+ log σ̃2

t .

An ergodic and stationary approximation (σ2
t (θ)) of the sequence (σ̃2

t (θ)) is ob-

tained as follows. Under the strict stationarity condition γ(A0) < 0 and if
∑p

j=1 βj < 1, denote by
(

σ2
t

)

=
{

σ2
t (θ)

}

the strictly stationary, ergodic and nonan-

ticipative solution of σ2
t = ω +

∑q
i=1 αiǫ

2
t−i +

∑p
j=1 βjσ

2
t−j, for all t. Note that

σ2
t (θ0) = ht. Let Aθ(z) =

∑q
i=1 αiz

i and Bθ(z) = 1 −∑p
j=1 βjz

j . By convention,

Aθ(z) = 0 if q = 0 and Bθ(z) = 1 if p = 0. Under the conditions

A1: θ0 ∈
◦
Θ where

◦
Θ denotes the interior of Θ,

A2: γ(A0) < 0 and
∑p

j=1 βj < 1, ∀θ ∈ Θ,

A3: η2
t has a non-degenerate distribution with Eη2

t = 1 and κη = Eη4
t < ∞,

A4: if p > 0, Aθ0(z) and Bθ0(z) have no common root, Aθ0(1) 6= 0, and α0q +

β0p 6= 0,

it can be shown (see Francq and Zakoian, 2004) that the information matrix J =
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Eθ0

(

1
σ4

t (θ0)

∂σ2
t (θ0)
∂θ

∂σ2
t (θ0)
∂θ

′

)

is well-defined and the QMLE is asymptotically normal:

√
n(θ̂n − θ0)

L→ N
{

0, (κη − 1)J−1
}

, κη = Eη4
t . (2)

A1 is a standard assumption for the asymptotic normality, but in the GARCH

framework it constrains the coefficients to be positive. It is important to note

that A2 -A4 are sufficient for the strong consistency. In A2, the strict stationarity

condition is imposed only at the value θ0. For all other parameter values, it is

sufficient to make the given assumption on the βi coefficients. Assumptions A3

and A4 are made for identifiability reasons.

The usual forms of the Wald, Rao-score and QLR statistics follow, and are

given by

Wn =
n

κ̂η − 1
θ̂

(2)′

n

{

KĴ
−1
n K

′
}−1

θ̂
(2)

n ,

Rn =
n

κ̂η|2 − 1

∂ l̃n

(

θ̂n|2
)

∂θ′ Ĵ
−1
n|2

∂ l̃n

(

θ̂n|2
)

∂θ
,

Ln = n
{

l̃n

(

θ̂n|2
)

− l̃n

(

θ̂n

)}

,

where θ̂n|2 denotes the restricted (by H0) estimator of θ0, κ̂η, κ̂η|2 denote consis-

tent estimators of κη, and Ĵn, Ĵn|2 denote consistent estimators of the information

matrix J. In general, Ĵn and κ̂η are derived using the unconstrained estimator θ̂n,

whereas Ĵn|2 and κ̂η|2 are computed using θ̂n|2. For instance, one can take

Ĵn =
1

n

n
∑

t=1

1

σ̃4
t (θ̂n)

∂σ̃2
t (θ̂n)

∂θ

∂σ̃2
t (θ̂n)

∂θ′ , Ĵn|2 =
1

n

n
∑

t=1

1

σ̃4
t (θ̂n|2)

∂σ̃2
t (θ̂n|2)

∂θ

∂σ̃2
t (θ̂n|2)

∂θ′ ,

and

κ̂η =
1

n

n
∑

t=1

ǫ4
t

σ̃4
t (θ̂n)

, κ̂η|2 =
1

n

n
∑

t=1

ǫ4
t

σ̃4
t (θ̂n|2)

,

because
1

n

n
∑

t=1

ǫ2
t

σ̃2
t (θ̂n)

=
1

n

n
∑

t=1

ǫ2
t

σ̃2
t (θ̂n|2)

= 1, a.s. (3)
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Note that the latter equalities imply that

Ln =
1

n

n
∑

t=1

log
σ̃2

t (θ̂n|2)

σ̃2
t (θ̂n)

, a.s.

One rejects the null hypothesis for large values of Wn,Rn,Ln. In the next section,

we give the asymptotic distributions of these statistics under the null hypothesis.

3 Non standard asymptotic null distributions

FZ underlined that, among the assumptions required for the asymptotic normality

(2), A1 is quite restrictive since it implies θ0 > 0 componentwise. Indeed if, say,

θ0i = 0, the variable
√

n(θ̂ni − θ0i) =
√

nθ̂ni is nonnegative and thus cannot be

asymptotically normal. Note that this problem cannot be solved by blowing up

the parameter space Θ outside the positive quadrant, since the variable σ̃2
t (θ) must

be positive for the loglikelihood to be well-defined.

Thus, to obtain the asymptotic distribution of
√

n(θ̂n − θ0) under H0, A1 is

replaced by the following assumption. Let θ0(ε) be the vector obtained by replacing

all zero coefficients of θ0 by a number ε.

A1’: θ0(ε) ∈
◦
Θ for some ε > 0, where

◦
Θ denotes the interior of Θ.

Assumption A1’, though compatible with H0, is intended to prevent θ0 from reach-

ing the upper bound of Θ. In some cases, no moment assumption on the observed

process (ǫt) will be required. In other cases a moment condition is necessary. The

following two assumptions will be made alternately.

A5: Eθ0ǫ
6
t < ∞,

A6: {j | β0,j > 0} 6= ∅ and

j0
∏

i=1

α0i > 0 for j0 = min{j | β0,j > 0}.
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Note that A6 does not cover the ARCH case, where all the β0i coefficients are equal

to zero. Let Λ = R
d1× [0,∞)d2 . The following result displays the asymptotic distri-

bution of the QMLE and of the score vector ∂ln(θ0)/∂θ where ln(θ) = n−1
∑n

t=1 ℓt,

and ℓt = ℓt(θ) = ǫ2
t /σ

2
t + log σ2

t .

Theorem 1 (Francq and Zakoian, 2007) If H0, A1’, A2–A4 and either A5 or

A6 hold,

√
n(θ̂n − θ0)

d→ λΛ := arg inf
λ∈Λ

{λ − Z}′ J {λ − Z} , Z ∼ N
{

0, (κη − 1)J−1
}

,

√
n

∂ln(θ0)

∂θ

d→ N {0, (κη − 1)J} ,

where in the definition of J, derivatives with respect to the last d2 components are

replaced by right derivatives.

The asymptotic distribution of the QMLE is thus non standard when the true

parameter has coefficients equal to zero, but it can be easily simulated. Note

that λΛ can be interpreted as the projection of Z, for the metric defined by J,

onto the convex set Λ = {λ ∈ R
d | Kλ ≥ 0}. The faces of Λ are sections of

the subspaces {λ ∈ R
d | Kiλ = 0}, where the Ki are obtained by cancelling

0, 1 or several rows of K. Projecting Z onto those subspaces yields the vectors

λKi = PiZ, where Pi = Id − J
−1

K
′
i

(

KiJ
−1

K
′
i

)−1
Ki. The solution is thus

obtained as

λΛ =Z1lΛ(Z) + 1gΛc(Z) × argminλ∈C‖λ − Z‖J = Z1lΛ(Z) +

2d2−1
∑

i=1

PiZ1lDi(Z), (4)

where C = {λKi : i = 1, . . . , 2d2 − 1 and KλKi ≥ 0} is the set of admissible pro-

jections (those with nonnegative last d2 components) and the Di form a partition

of R
d. For instance, when all the coefficients α0i are equal to zero in an ARCH(q)

model (d1 = 1, d2 = q, d = q + 1), it can be seen that (4) reduces to

λΛ =

(

Z1 + ω

d
∑

i=2

Z−
i , Z+

2 , · · · , Z+
d

)′

. (5)
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We are now in position to derive the asymptotic distributions of the three test

statistics introduced in Section 2. Let Ω = K
′ {(κη − 1)KJ

−1
K

′}−1
K. Note

that for any z = (z(1), z(2))′ ∈ R
d we have z

′
Ωz = ‖z(2)‖{var(Z(2))}−1 where Z =

(Z(1),Z(2))′ is as in Theorem 1.

Theorem 2 Under H0 and the assumptions of Theorem 1 we have

Wn
d→ W = λΛ′

ΩλΛ, (6)

Rn
d→ χ2

d2
, (7)

Ln
d→ L = −1

2
(λΛ − Z)′J(λΛ − Z) +

1

2
Z
′
K

′ {
KJ

−1
K

′}−1
KZ

= −1

2

{

inf
Kλ≥0

‖Z − λ‖2
J − inf

Kλ=0
‖Z − λ‖2

J

}

. (8)

An interesting point is that, contrary to the standard situation, the asymptotic

distributions of those statistics are not the same. Only the score statistic has

the standard χ2
d2

distribution, which is a consequence of the gaussian asymptotic

distribution of the score vector under H0. This implies that the standard Rao score

test remains valid whatever the position of θ0, in the interior or on the boundary

of Θ. On the contrary, valid tests based on the Wald and LR statistics require

correction of the usual critical values. This problem is well known in situations

where the parameter is constrained both under the null and the alternatives (see

Chernoff (1954) and the references in the introduction).

By Theorem 2, tests of asymptotic level α are defined by the critical regions

{Wn > w1−α}, {Rn > χ2
d2,1−α}, {Ln > l1−α}

where w1−α, χ2
d2,1−α and l1−α are the (1 − α)-quantiles of the distributions of

W, χ2
d2

,L respectively. In the sequel the first test is referred to as the modified Wald

test. The standard Wald test is defined by {Wn > χ2
d2,1−α} and its asymptotic

level is not equal to α. Similar remarks apply to the QLR test.
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4 Non regularity of the QMLE under local al-

ternatives

For local power comparisons, the asymptotic distribution of the QMLE under

sequences of local alternatives to the null parameter value θ0 is required. Let

θn = θ0 + τ/
√

n, where τ = (τ0, . . . , τp+q)
′ ∈ (0,+∞)p+q+1 is such that θn ∈ Θ,

at least for sufficiently large n.

We need to precisely define the data generating process. Write A0 = A(θ0)

and assume that A2 holds. For n large enough, γ {A(θ0 + τ/
√

n)} < 0 and we

can define the nonanticipative and strictly stationary solution (ǫt,n)t∈Z
of







ǫt,n =
√

ht,n ηt

ht,n = ω0 + τ0√
n

+
∑q

i=1

(

α0i + τi√
n

)

ǫ2
t−i,n +

∑p
j=1

(

β0j +
τq+j√

n

)

ht−j,n, ∀t ∈ Z

where (ηt) is iid (0, 1). Given the observations ǫ1,n, . . . , ǫn,n, the QMLE satisfies

θ̂n = arg min
θ∈Θ

1

n

n
∑

t=1

ℓ̃t,n(θ), ℓ̃t,n(θ) = ℓ̃t(θ; ǫn,n, . . . , ǫ1,n) =
ǫ2
t,n

σ̃2
t,n

+ log σ̃2
t,n, (9)

where σ̃t,n = σ̃t,n(θ) is obtained by replacing ǫu by ǫu,n, 1 ≤ u < t, in σ̃t but,

for simplicity, with initial values independent of n. Similarly σ2
t,n(θ) is defined by

replacing ǫu by ǫu,n, u < t, in σ2
t (θ). Denote by Pn,τ the distribution of (ǫt,n).

Theorem 3 Let θ0 ∈ Θ and let τ ∈ (0,+∞)p+q+1. Let (θ̂n) be a sequence of

QMLE satisfying (9). Then, if A2-A4 hold, θ̂n → θ0, Pn,τ−a.s. as n → ∞.

Moreover, if the assumptions of Theorem 1 hold then
√

n(θ̂n−θn) is asymptotically

distributed under Pn,τ as λΛ(τ ) − τ where

λΛ(τ ) = arg inf
λ∈Λ

{λ − Z − τ}′ J {λ − Z − τ} , with Z ∼ N
{

0, (κη − 1)J−1
}

.

Given the limiting distribution of a statistic under P0 = Pn,0, a usual method

for establishing its limiting distribution under Pn,τ is to use Le Cam’s third
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lemma (see e.g. van der Vaart p 90, 1998). Because the sequence {√n(θ̂n −
θ0)

′, log Ln(θ0 + τ/
√

n) − log Ln(θ0)} is not asymptotically Gaussian, denot-

ing by Ln the likelihood function, Le Cam’s third lemma seems difficult to ap-

ply. The same problem was encountered by Ling (2007). However the pre-

vious theorem can be established directly. For brevity the proof of Theo-

rem 3 and of several other results are not given here, but are available at

http://www.amstat.org/publications/jasa/supplemental_materials..

When the true value θ0 is not on the boundary, i.e. when H0 does not hold,

λΛ(τ )− τ = Z is independent of τ . However, it is seen that under H0, the QMLE

does not converge to its asymptotic distribution locally uniformly since λΛ(τ )− τ

generally depends on τ . Thus, the QMLE is regular in the interior of Θ but not

on the whole parameter space (see e.g. van der Vaart p 115, 1998).

5 Power comparisons

In this section, we consider two popular efficiency measures, in order to compare the

asymptotic power functions of the tests. We start by Bahadur’s (1960) approach in

which the efficiency of a test is measured by the rate of convergence of its p-value

under a fixed alternative H1 : θ
(2)
0 > 0.

5.1 Bahadur slopes

Let

J(θ) = Eθ0

(

1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′

)

, D(θ) = Eθ0

[

1

σ2
t (θ)

∂σ2
t (θ)

∂θ(2)

(

1 − σ2
t (θ0)

σ2
t (θ)

)]

.

Let SW(t) = P(W > t), SR(t) = P(R > t) where R ∼ χ2
d2

, and SL(t) = P(L > t),

be the asymptotic survival functions of the Wald, score and QLR statistics under

the null hypothesis H0.
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Proposition 1 Under the alternative H1 : θ
(2)
0 > 0 and under A1’, A2-A4, the

approximate Bahadur slope of the Wald test is

lim
n→∞

− 2

n
log SW(Wn) =

1

κη − 1
θ

(2)′

0

(

KJ
−1

K
′)−1

θ
(2)
0 , a.s. (10)

Moreover, under A5 and the conditions (43), (44) and (46) discussed in the ap-

pendix, the approximate Bahadur slope of QLR test is

lim
n→∞

− 2

n
log SL(Ln) = Eθ0

(

log
σ2

t (θ0|2)

σ2
t (θ0)

)

, (11)

where θ0|2 is the a.s. limit of θ̂n|2. If in addition D(θ0|2) 6= 0,

lim
n→∞

− 2

n
log SR(Rn) =

1

κη|2 − 1
D

′(θ0|2)KJ
−1
0|2K

′
D(θ0|2), (12)

where J0|2 = J(θ0|2) and κη|2 is the kurtosis coefficient of σ−1
t (θ0|2)ǫt under H1.

It follows that the Wald, score and QLR tests are consistent, in the sense that the

probability of rejecting H0 tends to one under H1.

The term "approximate" Bahadur slopes serves to distinguish the limits in (10)

and (12) from other quantities, called "exact" Bahadur slopes, which are defined

by substituting the non-asymptotic survival functions for the asymptotic ones (e.g.

P (Xn > t) for SW(t), where Xn is distributed as Wn under θ
(2)
0 = 0) in the

above definitions. We are unable to pursue the exact versions because we do not

have large-deviation results for the statistics Wn, Rn and Ln. For a discussion of

approximate and exact slopes, see Bahadur (1967). In the Bahadur sense, a test is

considered more efficient than another one when its slope is greater. This approach

is sometimes criticized (see e.g. van der Vaart (1998)) and is not easy to use in our

framework because the information matrices J and J0|2 are not known in closed

form. Numerical comparisons can be done however as will be seen later.
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5.2 Pitman analysis

Whereas Bahadur’s approach considers non-local alternatives and compares the

rates at which the P -values of two tests converge to zero, the Pitman approach

considers sequences of local alternatives, and compares the local asymptotic pow-

ers of the tests. We denote by χ2
k(c) the noncentral chi-square distribution with

noncentrality parameter c and k degrees of freedom. The asymptotic distribu-

tions of the 3 test statistics under the local alternatives are given in the following

theorem.

Theorem 4 Under the assumptions of Theorem 3, we have

Wn
d→ W(τ ) = λΛ(τ )′ΩλΛ(τ ), (13)

Rn
d→ χ2

d2

{

τ ′
Ωτ
}

, (14)

Ln
d→ L(τ ) = −1

2

{

λΛ
τ − Z − τ

}′
J
{

λΛ
τ − Z − τ

}

+
κη − 1

2
(Z + τ )′Ω(Z + τ )

= −1

2

{

inf
Kλ≥0

‖Z + τ − λ‖2
J − inf

Kλ=0
‖Z + τ − λ‖2

J

}

. (15)

It is seen that the asymptotic distribution of the Rao statistic is very different

from that of the two other statistics. The following proposition establishes that

the asymptotic distributions of the Wald and the rescaled Quasi-Likelihood Ratio

statistics are actually the same under the null or under the local alternatives.

Proposition 2 With the assumptions of Theorems 1 or 3, Wn
oP (1)
= 2

κ̂η−1Ln.

Note that under non-local alternatives the Wald and rescaled Quasi-Likelihood

Ratio tests might have different powers.

6 Testing the nullity of one coefficient

In this section, we are interested in testing assumptions of the form

H0 : α0i = 0 (or H0 : β0j = 0) (16)
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for some given i ∈ {1, . . . , q} (or j ∈ {1, . . . , p}). This is for instance the case when

a GARCH(p − 1, q) (or a GARCH(p, q − 1)) is tested against a GARCH(p, q). In

practice, the most widely used test for a simple hypothesis is the so-called t-ratio

defined, in the case of (16), by

tn =
α̂ni

σ̂α̂ni

(or
β̂nj

σ̂β̂nj

)

with standard notations. The maintained assumption is that all other coefficients

are positive, so that d2 = 1. Let Φ(·) denote the N (0, 1) cumulative distribution

function, τ∗ = τd/σd and σ2
d = VarZd. The critical regions of asymptotic level α

and the local asymptotic powers are as follows.

Proposition 3 (a) Under (16) and the assumptions of Theorem 1, tests of asymp-

totic level α (for α ≤ 1/2) are defined by the critical regions

{tn > Φ−1(1−2α)}, {Wn > χ2
1,1−2α}, {Rn > χ2

1,1−α}, { 2

κ̂η − 1
Ln > χ2

1,1−2α}.

(b) Under the assumptions of Theorem 4, the local asymptotic power of the t-ratio,

Wald and QLR tests is

lim
n→∞

Pn,τ{tn > Φ−1(1 − 2α)} = lim
n→∞

Pn,τ{Wn > χ2
1,1−2α}

= lim
n→∞

Pn,τ{
2Ln

κ̂η − 1
> χ2

1,1−2α} = 1 − Φ(c1 − τ∗), (17)

and that of the score test is

lim
n→∞

Pn,τ{Rn > χ2
1,1−α} = 1 − Φ(c2 − τ∗) + Φ(−c2 − τ∗), (18)

where c1 = Φ−1(1 − α) and c2 = Φ−1(1 − α/2). (c) Moreover, for any τ > 0,

lim
n→∞

Pn,τ

{

Wn > χ2
1,1−2α

}

> lim
n→∞

Pn,τ

{

Rn > χ2
1,1−α

}

.
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Proposition 3(c) shows that, for testing the nullity of one GARCH coefficient, the

modified Wald test is locally asymptotically more powerful than the standard score

test.

Now we will see that the modified Wald test enjoys optimality properties. As-

sume that ηt has a density f such that ιf =
∫

{1 + yf ′(y)/f(y)}2 f(y)dy < ∞.

Note that ιf is σ2 times the Fisher information on the scale parameter σ > 0 in

the density family σ−1f(·/σ). From Drost and Klaassen (1997), Drost, Klaassen

and Werker (1997) and Ling and McAleer (2003) it is known that, under mild

regularity conditions, GARCH processes are locally asymptotically normal (LAN)

with information matrix

If =
ιf
4

E
1

σ4
t

∂σ2
t

∂θ

∂σ2
t

∂θ′ (θ0) =
ιf
4

J. (19)

In this framework the so-called local experiments {Ln(θ0 + τ/
√

n), τ ∈ Λ} con-

verge to the limiting gaussian experiment
{

N
(

τ , I−1
f

)

, τ ∈ Λ
}

(see van der Vaart

(1998) for details about LAN properties and the notion of experiments). Testing

Kθ0 = 0 corresponds to testing Kτ = 0 in the limiting experiment. Suppose that

X is N
(

τ , I−1
f

)

distributed. From the Neyman-Pearson lemma, the test rejecting

for large values of KX is uniformly most powerful against the alternatives Kτ > 0.

This optimal test has the power

π(τ ) = 1 − Φ



cα − Kτ
√

KI
−1
f K′



 , cα = Φ−1(1 − α). (20)

A test whose level and power jointly converge to α and to the bound in (20),

respectively, will be called asymptotically optimal.

Proposition 4 Assume that ηt has a density f such that ιf exists. For testing

that one GARCH coefficient is equal to zero, the modified t-ratio, Wald and QLR

tests are asymptotically optimal if and only if

f(y) =
aa

Γ(a)
exp(−ay2)|y|2a−1, a > 0, Γ(a) =

∫ ∞

0
ta−1 exp(−t)dt. (21)
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Table 1: Asymptotic levels in percentages of the standard Wald and QLR tests of

nominal level 5%, for testing the nullity of one coefficient.

κη 2 3 4 5 6 7 8 9 10

Standard Wald 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

Standard QLR 0.3 2.5 5.5 8.3 10.8 12.9 14.7 16.4 17.8

The score test is never asymptotically optimal.

To conclude this section, it is important to note that the standard Wald test {Wn >

χ2
1,1−α}, and also the standard t-ratio test {tn > Φ−1(1 − α)}, have asymptotic

level α/2. These two tests are therefore too conservative and may lead to select

too simple ARCH models. The standard QLR test {Ln > χ2
1,1−α} has the same

asymptotic level α/2 when κ = 3. However, when the distribution of ηt is highly

leptokurtic, which seems to be the case for many financial time series, Table 1

reveals that the standard QLR test can lead to overrejection of the null hypothesis.

7 Testing conditional homoscedaticity

In this section, we consider the case d1 = 1 with θ(1) = ω, p = 0 and d2 = q.

This case corresponds to the problem of testing the null hypothesis of no condi-

tional heteroscedasticity versus an ARCH(q) alternative. We therefore consider the

hypothesis

H0 : α01 = · · · = α0q = 0 (22)
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in the ARCH(q) model







ǫt = σtηt, ηt iid (0, 1)

σ2
t = ω0 +

∑q
i=1 α0iǫ

2
t−i, ω > 0, α0i ≥ 0.

(23)

7.1 Some simple test statistics

In his paper introducing ARCH, Engle (1982) noted that the score test is very

simple to compute. Indeed, Rn = nR2, where R2 is the determination coefficient of

the regression of ǫ2
t on a constant and ǫ2

t−1, . . . , ǫ
2
t−q. An asymptotically equivalent

version is

R∗
n =

n

(κ̂η|2 − 1)2

q
∑

i=1

{

1

n

n
∑

t=1

(1 − ǫ2
t

σ̂2
ǫ

)
ǫ2
t−i

σ̂2
ǫ

}2

= n

q
∑

i=1

ρ̂2
ǫ2(i), (24)

where σ̂2
ǫ = n−1

∑n
t=1 ǫ2

t , κ̂η|2 = (nσ̂4
ǫ )

−1
∑n

t=1 ǫ4
t and ρ̂ǫ2(i) is a standard estimator

of the i-th autocorrelation of (ǫ2
t ). The score statistic thus has the interpretation

of a portmanteau statistic for checking that (ǫ2
t ) is a white noise.

Another very simple test is obtained as follows. As remarked by Demos and

Sentana (1998), at the point θ0 = (ω0, 0, . . . , 0), the information matrix J = J(θ0)

takes a simple form and we have

(κη − 1)J−1 =

















(κη + q − 1)ω2
0 −ω0 · · · −ω0

−ω0

...

−ω0

Iq

















. (25)

Because (κη − 1)KJ
−1

K
′ = Iq, a simple version of the Wald statistic is

W∗
n = n

q
∑

i=1

α̂2
i .

Note that W∗
n is not the usual Wald statistic defined in (3), which uses the estimator

Ĵn based on the unconstrained estimator θ̂n. However, the asymptotic null and
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local alternative distributions of Wald statistics are not affected by the choice of a

consistent estimator of J.

Lee and King (1993) proposed a test which exploits the one-sided nature of the

ARCH alternative. Their test rejects conditional homoscedasticity for large values

of

LKn = −
√

n1
′
q∂ l̃n

(

θ̂n|2
)

/∂θ(2)

σ̂LK
=

1√
nσ̂LK

q
∑

i=1

n
∑

t=1

(
ǫ2
t

σ̂2
ǫ

− 1)
ǫ2
t−i

σ̂2
ǫ

,

where σ̂2
LK is an estimator of the variance of the numerator and 1q = (1, . . . , 1)′ ∈

R
q. In view of (33), (35), (36), (37) and (25) one can take

σ̂2
LK = (κ̂η|2 − 1)1′

q

{

KĴn|2K
′ − (KĴn|2K

′
)(KĴn|2K

′
)−1(KĴn|2K

′)
}

1q

= (κ̂η|2 − 1)1′
q

{

KĴ
−1
n|2K

′
}−1

1q = q(κ̂η|2 − 1)2,

with K = (0q×1, Iq) and K = (1,01×q). It follows that

LKn =
1√
q

q
∑

i=1

√
nρ̂ǫ2(i).

This form is not exactly the expression given in Lee and King (hereafter LK), but

is asymptotically equivalent to it under the null (and under local alternatives). We

will see that the LK-test enjoys some optimality properties.

7.2 Asymptotic null distributions

Using the results of Theorem 1, we now state the asymptotic distributions of the

previous statistics under the null of independent observations. It was noted that

in the ARCH case, A6 could not be used and had to be replaced by the moment

assumption A5. In the case of conditional homoscedasticity we do not need this

assumption.
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Proposition 5 Under (22) and A3 we have

W∗
n

d→ 1

2q
δ0 +

q
∑

i=1





q

i





1

2q
χ2

i , R∗
n

d→ χ2
q, LKn

d→ N (0, 1), (26)

where the sum denotes a mixture of independent distributions.

Demos and Sentana (1998) obtained the same result for W∗
n by means of heuristic

arguments and results established by Wolak (1989) in the iid case. They wrote on

page 107 that their "analysis is based on the presumption that standard results

one inequality testing can be extended" to the GARCH case. Our results allow to

validate this presumption.

Simulation experiments (see Table 5 of the supplemental document at the JASA

supplemental materials website) of the tests based on an ARCH(2) model, show

that for reasonable sample lengths (e.g. n = 100), the sizes are never very far from

the theoretical ones.

7.3 Power comparisons under fixed alternatives

The next result allows to compare the efficiencies in the Bahadur sense of the "sim-

ple" tests for no conditional heteroscedasticity. Let ρǫ2 denote the autocorrelation

function of the process (ǫ2
t ), and let κǫ = Eθ0(ǫ

4
t )/{Eθ0(ǫ

2
t )}2. The following gives

the asymptotic relative efficiencies (ARE) of the simple conditional homoscedas-

ticity tests in the presence of ARCH.

Proposition 6 Let (ǫt) be a strictly stationary and nonanticipative solution of the
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ARCH(q) model (23) with E(ǫ4
t ) < ∞ and

∑q
i=1 α0i > 0. Then,

ARE(R∗/LK) := lim
n→∞

− 2

n
log SR(R∗

n){ lim
n→∞

− 2

n
log{1 − Φ(LKn)}}−1

=
q
∑q

i=1 ρ2
ǫ2(i)

{∑q
i=1 ρǫ2(i)}2 ≥ 1,

ARE(R∗/W∗) := lim
n→∞

− 2

n
log SR(R∗

n){ lim
n→∞

− 2

n
log SW(W∗

n)}−1

=

∑q
i=1 ρ2

ǫ2(i)
∑q

i=1 α2
0i

≥ 1,

ARE(R/W∗) := lim
n→∞

− 2

n
log SR(Rn){ lim

n→∞
− 2

n
log SW(W∗

n)}−1

=
κǫ − κη

κη(κǫ − 1)
∑q

i=1 α2
0i

≥ 1,

with equalities when q = 1.

Because a test is consistent whenever its slope is positive, these conditional ho-

moscedasticity tests are consistent under much more general assumptions than the

ARCH(q) alternative.

Versions of tests which are asymptotically equivalent under the null and lo-

cal alternatives may have different slopes. The asymptotic efficiencies derived in

Proposition 1 do not coincide with those just derived for the "simple" test statistics.

However, they can be evaluated by simulation. It can be seen that

θ0|2 =





Eθ0(ǫ
2
t )

0q×1



 , J = Eθ0(σ
−4
t ZtZ

′
t), J0|2 = {Eθ0(ǫ

2
t )}−2Eθ0(ZtZ

′
t),

with Zt = (1, ǫ2
t−1, . . . , ǫ

2
t−q)

′. The results displayed in Table 2 concern the

ARCH(1), for α1 ranging from 0 to 0.4, with gaussian conditional distributions.

Note that when q = 1 the AREs computed in Proposition 6 are equal to 1. More-

over, the slope of the Rao statistic given by (12) coincides with those of the other

versions of the score, and is equal to α2
1. It is seen from Table 2 that

W ≺ L ≺ R ∼ R∗ ∼ W∗ ∼ LK
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Table 2: Asymptotic efficiencies of the score and QLR tests relative to the Wald

test for testing conditional homoscedasticity in an ARCH(1). The number of repli-

cations of the ratio is N = 10, the expectations are evaluated by empirical means

of size 10,000,000.

α1 0.1 0.2 0.3 0.4 0.5

ARE(R∗/W) 1.7 2.3 2.9 3.4 4.0

ARE(L/W) 1.4 1.8 2.2 2.7 3.3

where S ≺ T means that a test S is less efficient than T, and S ∼ T means that the

two tests have the same slope. Table 3 reports efficiency results for an ARCH(2)

and shows, in particular, that the equivalence observed in the case q = 1 does not

hold in general. Colors, from blue to red, indicate the rankings of those tests. To

summarize, the tests can be ranked as follows

W ≺ L ≺ W∗ ≺ R ≺ R∗.

The LK cannot be ranked in general: it can have the lowest or the highest asymp-

totic efficiency depending on the parameter values.

7.4 Power comparisons under local alternatives

Under mild regularity conditions, in the limiting experiment our testing problem

corresponds to testing Kτ = 0 with one observation X = (X1, . . . ,Xq+1)
′ ∼

N (τ , I−1
f ). Let

•
τ be a point of Λ whose last q components are equal to some c > 0,

and let
◦
τ=

•
τ −I

−1
f K

′(KI
−1
f K

′)−1
K

•
τ , so that K

◦
τ= 0. By the Neyman-Pearson

lemma, the most powerful test for testing τ =
◦
τ against τ =

•
τ rejects for large
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Table 3: Asymptotic efficiencies of conditional homoscedasticity tests relative to the Wald

test, for an ARCH(2) alternative. The number of replications of the slopes is N = 10,

the expectations are evaluated by empirical means of size 10,000,000. Missing values

correspond to the non existence of the 4th-order moment or to α01 = α02 = 0.

ARE(L/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 1.4 1.8 2.2 2.7 3.3

0.1 1.4 1.5 1.8 2.1 2.6 3.2

0.2 1.8 1.8 2.0 2.4 2.9 -

0.3 2.2 2.3 2.5 2.9 - -

0.4 2.7 2.8 3.1 - - -

0.5 3.3 3.5 - - - -

ARE(R∗/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 1.7 2.3 2.9 3.4 4.0

0.1 1.7 1.9 2.4 2.9 3.4 4.0

0.2 2.4 2.7 3.1 3.6 4.2 -

0.3 3.2 3.6 4.1 4.7 - -

0.4 4.0 4.7 5.3 - - -

0.5 5.0 5.9 - - - -

ARE(R/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 1.7 2.3 2.9 3.4 4.0

0.1 1.7 1.7 2.1 2.6 3.1 3.6

0.2 2.3 2.3 2.5 2.8 3.3 -

0.3 2.9 2.9 3.0 3.3 - -

0.4 3.4 3.5 3.6 - - -

0.5 4.0 4.1 - - - -

ARE(W∗/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 1.7 2.3 2.9 3.4 4.0

0.1 1.7 1.6 2.0 2.4 2.9 3.4

0.2 2.3 1.9 2.0 2.2 2.6 -

0.3 2.9 2.4 2.2 2.3 - -

0.4 3.4 2.9 2.6 - - -

0.5 4.0 3.4 - - - -

ARE(LK/W) α02

α01 0 0.1 0.2 0.3 0.4 0.5

0 - 0.8 1.1 1.4 1.7 2.0

0.1 1.0 1.9 2.2 2.5 2.9 3.3

0.2 1.7 2.6 3.1 3.6 4.1 -

0.3 2.4 3.4 4.1 4.7 - -

0.4 3.4 4.5 5.3 - - -

0.5 4.5 5.7 - - - -
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values of

(X− •
τ )′If (X− •

τ ) − (X− ◦
τ )′If (X− ◦

τ ) = 2
•
τ
′
K

′(KI
−1
f K

′)−1
KX + constant.

Since by (19) and (25),

KI
−1
f K

′ = 4ι−1
f (κη − 1)−1

Iq, (27)

it is easy to see that this test rejects for large values of
∑q+1

i=2 Xi. This test is

therefore uniformly most powerful to test τ1 = · · · = τq = 0 versus τ1 = · · · = τq >

0. Similarly it can be shown that the tests which are somewhere most powerful

(SMP) in Λ \ (0,∞) × {0}q reject for large values of d
′
X with d ∈ [0,∞)q+1 and

Kd 6= 0. Such a test is uniformly most powerful for testing τ1 = · · · = τq = 0

versus τ = cd, c > 0. Of course, an optimal test in the "direction" d may have a

very low power in other directions. The test rejecting for large values of
∑q+1

i=2 Xi is

however most stringent somewhere most powerful (MSSMP) (the reader is referred

to Shi (1987), Shi and Kudô (1987)1 and the references therein for the concept of

MSSMP and SMP test). In view of (27), this MSSMP test has the power

π(τ ) = 1 − Φ



cα −
∑q

i=1 τi
√

4qι−1
f (κη − 1)−1



 , cα = Φ−1(1 − α). (28)

The following corollary gives the local asymptotic powers of the conditional ho-

moscedasticity tests considered in this section, and shows that the LK test is

locally asymptotically MSSMP (Lee and King (1993) exhibit another optimality

property for their test). The concept of locally asymptotically MSSMP test has

been proposed by Akharif and Hallin (2003) in order to cope with one-sidedness in

hypothesis testing.

1The authors greatly thank Professor Shi for sending them these two papers.
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Proposition 7 Under the local alternatives Hn(τ ), τ > 0, and the assumptions

of Theorem 3 with p = 0, d1 = 1 and d2 = q, we have

λΛ(τ ) =

(

(Z1 + τ1) + ω
d
∑

i=2

(Zi + τi)
−, (Z2 + τ2)

+, · · · , (Zd + τd)
+

)′

, (29)

where Z ∼ N
{

0, (κη − 1)J−1
}

and (κη − 1)J−1 is given in (25). Thus, the local

asymptotic power of the modified Wald, score and LK tests are given by

lim
n→∞

P {Wn > w1−α} = P

{

q
∑

i=1

(Ui + τi)
21l{Ui+τi>0} > w1−α

}

lim
n→∞

P
{

Rn > χ2
q,1−α

}

= P

{

χ2
q

(

q
∑

i=1

τ2
i

)

> χ2
q,1−α

}

lim
n→∞

P {LKn > cα} = 1 − Φ

(

cα −
∑q

i=1 τi√
q

)

, (30)

where U = (U1, . . . , Uq)
′ ∼ N (0, Iq).

Under the assumptions of Proposition 4, the LK test is asymptotically MSSMP

(in the sense that the right-hand side of (30) is equal to the upper bound π(τ )

defined by (28)) if and only if the density f of ηt belongs to the class defined by

(21).

It is well known that there exists no satisfactory notion of optimality for testing

hypothesis on multidimensional parameters. The LK test is asymptotically optimal

in the direction α1 = · · · = αq, but there is no objective reason to favour this

direction. As shown in Figure 1, the local asymptotic power of LK test may be

lower than that of the Wald test, and even lower than that of the score test.

The conclusion drawn from the comparison of the local asymptotic powers remains

valid for our simulation experiments, which are not reported here to save space.

The Rao test is clearly dominated by the three other ones, whatever the sample
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Figure 1: Local asymptotic power of the Wald, score and LK tests for testing

conditional homoscedasticity with an ARCH(2) model where α1 = α2 = τ/
√

n

(left figure) and α1 = τ/
√

n, α2 = 0 or α1 = 0, α2 = τ/
√

n (right figure).

size. The asymptotic superiority of the one-sided LK test, when the alternative is

symmetric in the ARCH coefficients, is reflected in finite samples. However, when

the alternative is not symmetric, the LK test can be much less powerful than its

competitors, both asymptotically and in finite samples. For this reason it cannot

be recommended to practitioners.

8 Application: should GARCH(1,1) be univer-

sally used ?

Despite the large number of studies on the probabilistic and statistical properties of

general GARCH(p, q) models, with p and q greater than 1, the GARCH(1,1) model

remains the most widely used by practitioners, and also by academic researchers.

The selection of the GARCH orders rarely relies on statistical tests, but is motivated

by a common belief that the GARCH(1,1) is sufficient to capture the properties

of financial series and that higher-order models may be unnecessarily complicated.

In this section, we aim to show, through a sufficiently large and representative set

of financial series, that this practice can be questionable.
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The data of this section consist of daily and weekly returns of a set of 10

indexes, namely the CAC, DAX, DJA, DJI, DJT, DJU, FTSE, Nasdaq, Nikkei,

and SP500, and of 5 exchange rates. The samples extend from January 2, 1990,

to March 25, 2008, for the daily stock market returns, from January 2, 1980, to

March 24, 2008, for the weekly stock market returns (except for the indices for

which such historical data do not exist) and from January 2, 1999, to March 31,

2008, for the exchange rates. Descriptive statistics not reported here, show that

the autocorrelations for the squares are highly significant but that the return series

do not display significant autocorrelations. The GARCH(1,1) model is chosen as

the benchmark model and is tested, successively, against the GARCH(1,2), the

GARCH(1,3), the GARCH(1,4) and the GARCH(2,1). In each case, the three

tests of this paper are applied. The empirical p-values of the Wald, score and LR

tests are displayed in Table 4. This table indicates that: 1) the results of the tests

highly depend on the alternative, 2) the p-values of the three tests can be quite

different, 3) for most of the series, the evidence is strong against the benchmark

GARCH(1,1) model. Points 1) and 2) are not surprising if one admits that the

data generating process (DGP) is probably neither the GARCH model of the null,

nor one of the alternatives. Due to the positivity constraints, it is possible (see for

instance the DJU returns) that the fitted GARCH(1,2) model satisfies α̂2 = 0 with

∂ l̃n(θ̂n|2)/∂α2 >> 0. In such a situation, where the estimate is at the boundary

and the score is strongly positive, the Wald and LR test do not reject whereas the

score rejects the GARCH(1,1). In other situations, the Wald or the LR test allow

to reject the GARCH(1,1) and the score fails to reject (see e.g. the daily returns of

the DAX for the GARCH(1,4) alternative). Of course, the validity of these results

require that the assumptions of Theorem 2 hold true. For the estimated models,

the coefficients are far from violating the strict stationarity constraints. Moreover,

the estimates of α1 and β1 are sufficiently far from zero, which makes Assumption
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A6 quite plausible. An assumption which we cannot verify is the existence of

Eη4
t . An extension of the paper by Hall and Yao (2003) to the case where some

coefficients are equal to zero would allow to handle the situation where Eη4
t = ∞,

but this is left for future research.

This study leads us to suggest the use of several tests and several alternative

models. Adopting the conservative Bonferroni procedure (rejecting if the minimal

p-value multiplied by the number of tests is less than a given level α), one rejects the

GARCH(1,1) null hypothesis for 16 series among the 24 series considered in Table 4.

Procedures which are less conservative than Bonferroni’s approach could be applied

(see e.g. Wright, 1992), but without changing the overall conclusion: the notion

that the GARCH(1,1) model is sufficient for financial data can be misleading.

The R code used to produce Table 4, as well as comple-

mentary illustrations and detailed proofs of technical results, can

be downloaded from the JASA supplemental materials website at

http://www.amstat.org/publications/jasa/supplemental_materials.

9 Concluding remarks

The usual methodology for testing the nullity of coefficients in GARCH models

is based on the standard Wald, score and QLR statistics. This article has shown

that caution is needed in the use of such statistics, because the null hypothesis

puts the parameter at the boundary of the parameter space. From the derivation

of the asymptotic null and local alternative distributions of those statistics, four

main conclusions can be drawn: i) the asymptotic sizes of the standard Wald and

QLR tests can be very different from the nominal levels based on (invalid) χ2

distributions; ii) the modified tests of this paper tackle the boundary problem;

moreover, iii) the modified Wald and QLR tests remain equivalent under the null

29



Table 4: p-values for tests of the null hypothesis of a GARCH(1, 1) model for

stock market and change rate returns.

Index alternative

GARCH(1,2) GARCH(1,3) GARCH(1,4) GARCH(2,1)

Wn Rn Ln Wn Rn Ln Wn Rn Ln Wn Rn Ln

daily stock returns

CAC 0.018 0.069 0.028 0.006 0.000 0.003 0.049 0.269 0.075 0.500 0.457 0.500

DAX 0.004 0.002 0.005 0.002 0.000 0.001 0.004 0.257 0.028 0.335 0.022 0.119

DJA 0.318 0.653 0.323 0.471 0.379 0.475 0.156 0.255 0.118 0.500 0.407 0.500

DJI 0.089 0.203 0.098 0.168 0.094 0.179 0.191 0.181 0.203 0.500 0.024 0.500

DJT 0.500 0.743 0.500 0.649 0.004 0.649 0.725 0.064 0.724 0.364 0.229 0.251

DJU 0.500 0.000 0.500 0.648 0.000 0.648 0.707 0.000 0.707 0.004 0.000 0.002

FTSE 0.131 0.210 0.119 0.158 0.357 0.143 0.314 0.481 0.303 0.414 0.678 0.380

Nasdaq 0.053 0.263 0.092 0.067 0.002 0.123 0.014 0.023 0.040 0.500 0.222 0.500

Nikkei 0.010 0.003 0.008 0.090 0.479 0.143 0.120 0.693 0.187 0.201 0.000 0.015

SP 500 0.116 0.190 0.107 0.075 0.029 0.055 0.223 0.086 0.210 0.500 0.178 0.500

weekly stock returns

CAC 0.030 0.133 0.049 0.036 0.245 0.064 0.105 0.327 0.163 0.500 0.857 0.500

DAX 0.007 0.000 0.000 0.324 0.756 0.337 0.482 0.984 0.495 0.094 0.000 0.000

DJA 0.500 0.229 0.500 0.666 0.319 0.666 0.782 0.595 0.782 0.108 0.264 0.145

DJI 0.500 0.784 0.500 0.656 0.747 0.656 0.793 0.912 0.793 0.000 0.525 0.036

DJT 0.500 0.012 0.500 0.658 0.005 0.658 0.740 0.008 0.740 0.128 0.009 0.050

DJU 0.500 0.000 0.500 0.651 0.000 0.651 0.753 0.000 0.753 0.000 0.000 0.000

FTSE 0.500 0.673 0.500 0.663 0.728 0.663 0.001 0.000 0.001 0.168 0.002 0.046

Nasdaq 0.439 0.900 0.445 0.683 0.644 0.683 0.802 0.907 0.802 0.218 0.378 0.190

Nikkei 0.221 0.528 0.245 0.140 0.455 0.158 0.159 0.378 0.173 0.500 0.747 0.500

SP 500 0.498 0.992 0.497 0.632 0.166 0.632 0.743 0.447 0.743 0.000 0.001 0.001

daily exchange rate returns

$/¤ 0.106 0.082 0.052 0.022 0.017 0.005 0.066 0.000 0.001 0.500 0.000 0.500

¥/¤ 0.030 0.000 0.001 0.625 0.117 0.628 0.270 0.000 0.198 0.130 0.000 0.000

£/¤ 0.353 0.747 0.365 0.338 0.781 0.349 0.588 0.900 0.597 0.234 0.527 0.244

CHF/¤ 0.162 0.000 0.032 0.642 0.236 0.642 0.613 0.255 0.628 0.011 0.000 0.000

C$/¤ 0.500 0.516 0.500 0.627 0.710 0.627 0.024 0.000 0.002 0.048 0.032 0.020
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and local alternatives; iv) the usual Rao test remains valid for testing a value on

the boundary, but looses its local optimality properties;

For the two special cases considered in this paper, the approaches of Bahadur

and Pitman allow efficiency comparisons, and shed light on the relative merits of the

different tests. For the nullity of one coefficient, the modified Wald and QLR tests

are locally asymptotically optimal, when the conditional density belongs to a class

which is not restricted to the standard Gaussian. For the absence of conditional

heteroscedasticity, several simple tests can be used, which have different powers

under fixed alternatives. Efficiency comparisons for the ARCH(1) and ARCH(2)

models suggest that the different versions of the score test are preferable to the

other competitors in the Bahadur ARE sense. However, inverse conclusions are

drawn when the local approach is adopted. Indeed, the score test appears to be

locally dominated by the equivalent Wald and QLR tests. The one-sided version

of the score test proposed by Lee and King enjoys optimality properties, but only

for alternatives in certain directions. A simple version of the Wald test, rejecting

the null when the sum of the squared coefficients is large, can be recommended for

testing for ARCH. From both local and non local points of view, our theoretical

study and numerical experiments suggest that the behavior of this test is always

close to the optimum.

Our analysis of a representative set of financial assets suggests that the

GARCH(1,1) is certainly over-represented in financial studies. Lack of applica-

tion of appropriate tests may cause under-identification of the GARCH orders.

The results presented in this study, which are simple to apply, although they are

based on a non standard asymptotic theory, may help remedying this situation.
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Appendix: Two technical proofs

A.1 Proof of Theorem 2

The convergence in distribution (6) is a direct application of the continuous map-

ping theorem, since
√

nθ̂
(2)′

n = K
√

n(θ̂n − θ0)
L→ KλΛ under H0 by Theorem

1.

We now turn to the proof of (7). Since θ̂
(1)

n|2 is a consistent estimator of θ
(1)
0 > 0,

we have θ̂
(1)
n|2 > 0 for n large enough. Therefore ∂ l̃n

(

θ̂n|2
)

/∂θi = 0 for i = 1, . . . , d1,

or equivalently

∂ l̃n

(

θ̂n|2
)

∂θ
= K

′
∂ l̃n

(

θ̂n|2
)

∂θ(2)
. (31)

A Taylor expansion yields

√
n

∂ l̃n(θ̂n|2)

∂θ

oP (1)
=

√
n

∂ln(θ0)

∂θ
+ J

√
n
(

θ̂n|2 − θ0

)

. (32)

The last d2 components of this vector relation give

√
n

∂ l̃n(θ̂n|2)

∂θ(2)

oP (1)
=

√
n

∂ln(θ0)

∂θ(2)
+ KJ

√
n
(

θ̂n|2 − θ0

)

, (33)

and the first d1 components give

0
oP (1)
=

√
n

∂ln(θ0)

∂θ(1)
+ KJK

′√
n
(

θ̂
(1)
n|2 − θ

(1)
0

)

, (34)

using

θ̂n|2 − θ0 = K
′ (

θ̂
(1)
n|2 − θ

(1)
0

)

. (35)

In view of (34), we have

√
n
(

θ̂
(1)
n|2 − θ

(1)
0

)

oP (1)
= −

(

KĴn|2K
′)−1 √

n
∂ln(θ0)

∂θ(1)
. (36)
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Using (31), (33), (35) and (36) we obtain

Rn =
n

κ̂η|2 − 1

∂ln(θ̂n|2)

∂θ(2)′
KĴ

−1
n|2K

′∂ln(θ̂n|2)

∂θ(2)

oP (1)
=

n

κη − 1

∥

∥

∥

∥

∥

∂ln(θ̂n|2)

∂θ(2)

∥

∥

∥

∥

∥

2

KJ−1K′

oP (1)
=

n

κη − 1

∥

∥

∥

∥

∂ln (θ0)

∂θ(2)
+ KJK

′ (
θ̂

(1)

n|2 − θ
(1)
0

)

∥

∥

∥

∥

2

KJ−1K′

oP (1)
=

n

κη − 1

∥

∥

∥

∥

∂ln (θ0)

∂θ(2)
− KJK

′ (
KJK

′)−1 ∂ln(θ0)

∂θ(1)

∥

∥

∥

∥

2

KJ−1K′

.

Now recall that under H0





W1

W2



 :=

√

n

κη − 1





∂ln(θ0)

∂θ
(1)

∂ln(θ0)

∂θ
(2)





d→ N







0,J =





J11 J12

J21 J22











. (37)

Using KJ
−1

K
′ =

(

J22 − J21J
−1
11 J12

)−1
it follows that the asymptotic distribu-

tion of Rn is that of
(

W2 − J21J
−1
11 W1

)′ (
J22 − J21J

−1
11 J12

)−1 (
W2 − J21J

−1
11 W1

)

under H0, which follows the χ2
d2

distribution since W2 − J21J
−1
11 W1 ∼

N
(

0,J22 − J21J
−1
11 J12

)

.

Turning to the proof of (8) and using (35) and (36), several Taylor expansions

give

ñln

(

θ̂n|2
)

oP (1)
= nln (θ0) + n

∂ln (θ0)

∂θ′

(

θ̂n|2 − θ0

)

+
n

2

(

θ̂n|2 − θ0

)′
J

(

θ̂n|2 − θ0

)

oP (1)
= nln (θ0) −

n

2

∂ln (θ0)

∂θ(1)′

(

KJK
′)−1 ∂ln(θ0)

∂θ(1)
, (38)

nln

(

θ̂n

)

oP (1)
= nln (θ0) + n

∂ln (θ0)

∂θ′

(

θ̂n − θ0

)

+
n

2

(

θ̂n − θ0

)′
J

(

θ̂n − θ0

)

. (39)

By subtraction,

Ln
oP (1)
= −n

{

1

2

∂ln (θ0)

∂θ(1)′

(

KJK
′)−1 ∂ln(θ0)

∂θ(1)

+
∂ln (θ0)

∂θ′

(

θ̂n − θ0

)

+
1

2

(

θ̂n − θ0

)′
J

(

θ̂n − θ0

)

}

. (40)
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Under H0, by showing
√

n





∂ln(θ0)
∂θ

θ̂n − θ0





L→





−JZ

λΛ



 it can be seen that the

asymptotic distribution of Ln is the law of

L = −1

2
Z
′
J
′
K

′
J
−1
11 KJZ + Z

′
J
′λΛ − 1

2
λΛ′

JλΛ.

Now, because

J
′
K

′
J
−1
11 KJ = J − (κη − 1)Ω with (κη − 1)Ω =





0 0

0 J22 − J21J
−1
11 J12



 ,

the conclusion easily follows from

L = −1

2
Z
′
JZ +

1

2
Z
′(κη − 1)ΩZ + Z

′
J
′λΛ − 1

2
λΛ′

JλΛ

= −1

2
(λΛ − Z)′J(λΛ − Z) +

κη − 1

2
Z
′
ΩZ. (41)

A.2 Proof of Proposition 1.

Under H1 we have limn→∞
Wn
n = 1

κη−1θ
(2)′

0

(

KJ
−1

K
′)−1

θ
(2)
0 . Thus, (10) is ob-

tained by showing that

log SW(x) ∼ log P (χ2
d2

> x) x → ∞, (42)

and noting that Wn → ∞ and limx→∞ log P (χ2
d2

> x) ∼ −x/2 (Bahadur, 1960).

The behaviour of the two other statistics is more intricate because θ̂n|2 does

not converges to θ0 under H1. Under general conditions, see White (1982),

θ0|2 = arg min
θ∈Θ: θ

(2)=0
Eθ0{ℓt(θ)} exists and is unique. (43)

and the QMLE θ̂n|2 in the misspecified (by H0) model verifies, almost surely,

θ̂n|2 → θ0|2. (44)
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For the existence, moments of order 4 are required. For the uniqueness, a necessary

condition is the local identifiability of θ0|2 (see White, 1982). This is achieved in

our model because it can be shown that, for any θ ∈ Θ

J(θ) = Eθ0

(

1

σ4
t (θ)

∂σ2
t (θ)

∂θ

∂σ2
t (θ)

∂θ′

)

is a positive definite matrix. (45)

Let J
∗
0|2 = J

∗(θ0|2) where J
∗(θ) = Eθ0

(

∂2ℓt

∂θ∂θ
′ (θ)

)

. The existence of J
∗(θ) is

ensured when Eǫ6
t < ∞. Note that J

∗(θ0) = J(θ0) but J
∗(θ0|2) 6= J(θ0|2). It

follows from the a.s. convergence of θ̂n|2 to θ0|2 that, similar to (32)-(33),

0 =
√

n
∂ l̃n(θ̂n|2)

∂θ(1)

oP (1)
=

√
n

∂ln(θ0|2)

∂θ(1)
+ KJ

∗
0|2K

′√
n
(

θ̂
(1)

n|2 − θ
(1)
0|2

)

,

and then, assuming that

KJ
∗
0|2K

′
is non-singular, (46)

√
n
(

θ̂
(1)
n|2 − θ

(1)
0|2

)

oP (1)
= −(KJ

∗
0|2K

′
)−1√n

∂ln(θ0|2)

∂θ(1)

= −(KJ
∗
0|2K

′
)−1 1√

n

n
∑

t=1

1

σ2
t (θ0|2)

∂σ2
t (θ0|2)

∂θ(1)

(

1 − σ2
t (θ1)

σ2
t (θ0|2)

η2
t

)

.

Note that the summand is centered because θ0|2 minimizes the limit criterion

Eθ0
{ℓt(θ)}. However it is not a martingale difference. To apply a central limit

theorem, one can rely on the strong mixing properties of GARCH processes. Such

properties require additional assumptions on the density of ηt (see e.g. Carrasco

and Chen (2002), Francq and Zakoian (2006)) and are beyond the scope of this

paper. Applying this central limit theorem we have under H1,

√
n
(

θ̂n|2 − θ0|2
)

= OP (1). (47)

Therefore

√
n

∂ l̃n(θ̂n|2)

∂θ(2)

oP (1)
=

√
n

∂ln(θ0|2)

∂θ(2)
+ KJ

∗
0|2

√
n
(

θ̂n|2 − θ0|2
)

oP (
√

n)
=

√
n

∂ln(θ0|2)

∂θ(2)
.
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It follows that, using the convergence of Ĵn|2 to J0|2, and of κ̂η|2 to κη|2,

Rn

n

oP (1)
=

1

κη|2 − 1

∥

∥

∥

∥

∥

∂ l̃n(θ̂n|2)
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∥
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1
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∥

∂ln(θ0|2)

∂θ(2)

∥

∥

∥

∥

2

KJ
−1
0|2

K′

,

from which (12) can be deduced by application of the ergodic theorem and argu-

ments already used to establish (10). Now similar to (38) and (39) we have

ñln

(

θ̂n|2
)

oP (1)
= nln

(

θ0|2
)

+ n
∂ln
(

θ0|2
)

∂θ′

(

θ̂n|2 − θ0|2
)

+
n

2

(

θ̂n|2 − θ0|2
)′

J
∗
0|2

(

θ̂n|2 − θ0|2
)

,

nln

(

θ̂n

)

oP (1)
= nln (θ0) + n

∂ln (θ0)

∂θ′

(

θ̂n − θ0

)

+
n

2

(

θ̂n − θ0

)′
J

(

θ̂n − θ0

)

.

It follows, using (47), that

Ln

n

oP (1)
= ln

(

θ0|2
)

− ln (θ1)
oP (1)
= Eθ0{ℓt(θ0|2) − ℓt(θ1)},

from which (11) can be deduced, using

Eθ0

(

σ2
t (θ0)

σ2
t (θ0|2)

)

= 1. (48)

The consistency of the three tests follows from the positivity of the Bahadur slopes.

From (10) it is seen that, in view of the positive definiteness of J, the Wald test is

consistent. In (12) the positivity of the right-hand side is ensured if D(θ0|2) is not

equal to zero. The consistency of the QLR test follows from

−Eθ0

(

log
σ2

t (θ0)

σ2
t (θ0|2)

)

≥ − log Eθ0

(

σ2
t (θ0)

σ2
t (θ0|2)

)

= 0,

by (48) and Jensen’s inequality, with strict inequality when σ2
t (θ0|2) 6= σ2

t (θ0). The

latter is a consequence of the identifiability assumptions A3-A4.
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Testing the nullity of GARCH coefficients:

complementary results

A Proof of Theorem 4

By arguments used in the proof of Theorem 3, it can be shown that with
probability 1 under Pn,τ

Ĵn =
1

n

n
∑

t=1

1

σ̃4
t,n(θ̂n)

∂σ̃2
t,n(θ̂n)

∂θ

∂σ̃2
t,n(θ̂n)

∂θ′ → J as n → ∞.

The convergence in distribution (13) is then obtained by the same arguments
as in the proof of (6), using Theorem 3. With the notation introduced in
(37) a Taylor expansion gives

√

κη − 1

(

W1

W2

)

oP (1)
=

√
n

(

∂ln(θn)

∂θ
(1)

∂ln(θn)

∂θ
(2)

)

+ J
√

n(θ0 − θn)

d→ N {−Jτ , (κη − 1)J} .

For the convergence in distribution we use
√

n∂ln(θn)
∂θ

d→ N (0, (κη − 1)J) ,
which is established in the proof of Theorem 3, and we note that

√
n(θ0 −

θn) = −τ . We then have

(W2 − J21J
−1
11 W1) ∼ N

{

−
(

J22 − J21J
−1
11 J12

) τ (2)

√

κη − 1
,J22 − J21J

−1
11 J12

}

,

and (14) follows by the arguments used to establish (7). Similarly, (15)
follows from the arguments used to prove (8) and from

√
n

( ∂ln(θ0)
∂θ

θ̂n − θ0

)

L→
( −J(Z + τ )

λΛ(τ )

)

.

B Proof of Proposition 2.

We start by introducing some notations. Let

Jn,τ =
∂2ln(θn)

∂θ∂θ′ , Zn,τ = −J
−1
n,τ

√
n

∂ln(θn)

∂θ
,

1



where, for ease of notation, ln is as in Section 2, but with variables indexed
by {t, n} instead of t. In the proof of Theorem 3 it is proved that

√
n(θ̂n − θ0)

oP (1)
= λΛ

n,τ := arg inf
λ∈Λ

‖Z̃n,τ − λ‖Jn,τ

oP (1)
= arg inf

λ∈Λ
‖Z̃n,τ − λ‖J,

where Z̃n,τ = Zn,τ + τ . We then have

Wn =
n

κ̂η − 1
(θ̂

(2)

n − θ
(2)
0 )′

{

KĴ
−1

K
′
}−1

(θ̂
(2)

n − θ
(2)
0 )

oP (1)
=

n

κη − 1
(θ̂n − θ0)

′
K

′ {
KJ

−1
K

′}−1
K(θ̂n − θ0)

= ‖√n(θ̂n − θ0)‖2
Ω

oP (1)
= ‖λΛ

n,τ‖2
Ω
.

Now, similarly to (4), we have

λΛ
n,τ

oP (1)
= Z̃n,τ1lΛ(Z̃n,τ) +

2d2−1
∑

i=1

PiZ̃n,τ1lDi
(Z̃n,τ), (49)

where Pi = Id − J
−1

Mi and Mi = K
′
i (KiJ

−1
K

′
i)
−1

Ki. It follows that

Wn
oP (1)
= ‖Z̃n,τ‖2

Ω
1lΛ(Z̃n,τ) +

2d2−1
∑

i=1

‖PiZ̃n,τ‖2
Ω
1lDi

(Z̃n,τ).

Let Zn = −J
−1
n

√
n∂ln(θ0)

∂θ
. Turning to Ln, using (40) we obtain, similarly to

(41)

Ln
oP (1)
= −1

2
Z

′
nJZn +

κη − 1

2
Z

′
nΩZn + Z

′
nJ

′λΛ
n,τ − 1

2
λΛ′

n,τJλΛ
n,τ

= −1

2
(λΛ

n,τ − Zn)′J(λΛ
n,τ − Zn) +

κη − 1

2
Z

′
nΩZn.

A Taylor expansion shows that Zn
oP (1)
= Zn,τ + τ = Z̃n,τ , from which we

deduce

Ln
oP (1)
= −1

2
‖λΛ

n,τ − Z̃n,τ‖2
J

+
κη − 1

2
‖Z̃n,τ‖2

Ω
.

2



By (49) we have

1

2
‖Z̃n,τ − λΛ

n,τ‖2
J

=
1

2

2d2−1
∑

i=1

‖(Id − Pi)Z̃n,τ‖2
J
1lDi

(Z̃n,τ)

=
κη − 1

2

2d2−1
∑

i=1

‖Z̃n,τ‖2
Ωi

1lDi
(Z̃n,τ),

where Ωi = (κη − 1)−1(Id − Pi)
′
J(Id − Pi) = K

′
i ((κη − 1)KiJ

−1
K

′
i)
−1

Ki.
Moreover

‖Z̃n,τ‖2
Ω

= ‖Z̃n,τ‖2
Ω
1lΛ(Z̃n,τ) +

2d2−1
∑

i=1

‖Z̃n,τ‖2
Ω
1lDi

(Z̃n,τ).

It follows that

2

κη − 1
Ln − Wn

oP (1)
=

2d2−1
∑

i=1

(

‖Z̃n,τ‖2
Ω
− ‖Z̃n,τ‖2

Ωi
− ‖PiZ̃n,τ‖2

Ω

)

1lDi
(Z̃n,τ)

=
2d2−1
∑

i=1

‖Z̃n,τ‖2
Ω−Ωi−P′

iΩPi
1lDi

(Z̃n,τ) = 0

because Ω−Ωi −P
′
iΩ = 0. This equality is obtained by noting that Ki is of

the form Ki = BiK for some matrix Bi (recall that Ki is deduced from K

by cancellation of rows). Hence P
′
iΩPi = P

′
i(Ω − Mi) = P

′
iΩ and

(I −Pi)
′
Ω = K

′
i

(

KiJ
−1

K
′
i

)−1
KiJ

−1
K

′ (
KJ

−1
K

′)−1
K

= K
′
i

(

KiJ
−1

K
′
i

)−1
BiK = Ωi.

C Proof and illustration of Proposition 3.

C.1 Proof

(a) We have Λ = R
d1 × [0,∞), K = (0, . . . , 0, 1) and

λΛ = Z1lZd≥0 + PZ1lZd<0

3



with Z = (Z1, . . . , Zd)
′, P = Id − J

−1
K

′ (KJ
−1

K
′)
−1

K. It follows that

λΛ = Z− Z−
d c

where Z−
d = Zd1lZd<0, and c = E(ZdZ)/Var(Zd) is the last column of J

−1

divided by the (d, d)-element of this matrix. Note that the last component
of λΛ = (λΛ

1 , . . . , λΛ
d )′ is λΛ

d = Z+
d := Zd1lZd>0. It is also seen that λΛ

i = Zi if
and only if Cov(Zi, Zd) = 0.

In view of Proposition 2, it follows that

W =
2

κη − 1
L =

{

λΛ
d

}2

VarZd

= U21lU≥0 ∼
1

2
δ0 +

1

2
χ2

1

where U ∼ N (0, 1). The distribution of W is known as a χ2 distribution
(see Kudô, A multivariate analogue of the one-sided test. Biometrika 50,
403–418, 1963).

It can be noted that tn =
√

Wn, because tn ≥ 0. It follows that the
asymptotic distribution of tn is the law of U1lU≥0.

(b) Arguing as in the case τ = 0, it can be shown that the last com-
ponent of λΛ(τ ) is λΛ

d (τ ) = (Zd + τ d) 1lZd+τd>0. We deduce that under the
assumptions of Theorem 4

W(τ ) =
2

κη − 1
L(τ ) =

{

λΛ
d (τ )

}2

VarZd
∼
(

U +
τd

σd

)2

1ln
U+

τd
σd

>0
o,

where U ∼ N (0, 1). Equalities (17) and (18) follow.
(c) Note that (17) is the power of the test of critical region {X > c1} for

testing the null hypothesis H0 : EX = 0 versus the alternative H1 : EX =
τ ∗ > 0, when the unique observation X follows a gaussian distribution with
unknown mean EX and variance 1. The power (18) is that of the two-
sided test {|X| > c2}. The two tests {X > c1} and {|X| > c2} have the
same level, but it is well-known that the first test is uniformly most powerful
under one-sided alternatives of the form H1.

C.2 Illustration

Point (c) of the proposition shows that, for testing the nullity of one GARCH
coefficient, the modified Wald test is locally asymptotically more powerful
than the standard score test. This is illustrated in Figure C.2.

4



1 2 3 4

0.2

0.4

0.6

0.8

1

τ ∗

Figure 2: Local asymptotic power of the Wald test (full line) and of the score test

(dashed line) for testing that one GARCH coefficient is equal to zero.

D Proof of Proposition 4.

In view of (17) and (20), the Wald test is asymptotically optimal if and only
if (κη − 1)KJ

−1
K

′ = KI
−1
f K

′, which is equivalent to (κη − 1) = 4/ιf . We
have
∫

(y2 − 1)

(

1 +
f ′(y)

f(y)
y

)

f(y)dy = Eη2
t − 1 +

∫

y3f ′(y)dy −
∫

yf ′(y)dy

= lim
a,b→∞

[y3f(y)]−b
a −

∫

3y2f(y)dy + 1

= −2.

Thus, the Cauchy-Schwarz inequality yields

4 ≤
∫

(y2 − 1)2f(y)dy

∫
(

1 +
f ′(y)

f(y)
y

)2

f(y)dy = (Eη4
t − 1)ιf

with equality iff there exists a 6= 0 such that 1+ηtf
′(ηt)/f(ηt) = −2a (η2

t − 1)
a.s. The latter equality holds iff f ′(y)/f(y) = −2ay + (2a − 1)/y almost
everywhere. The solution of this differential equation, under the constraint
f ≥ 0 and

∫

f(y)dy = 1, is given by (21). Note that when f is defined
by (21), we have κη =

∫

y4f(y)dy = a(a + 1)/a2 = 3 iff a = 1/2 which
corresponds to the case ηt ∼ N (0, 1).
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E Proof of Proposition 5.

Under (22), thorough inspection of the proof (given in FZ) shows that Theo-
rem 1 holds without the moment assumption in A5 (and without A6 which
does not make sense in the ARCH case). In particular we have, for some
constant C,

Eθ0 sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

∂2ℓt(θ)

∂θ∂θ′

∥

∥

∥

∥

= Eθ0 sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

{

2
ǫ2
t

σ2
t

− 1

}{

1

σ2
t

∂σ2
t

∂θ

}{

1

σ2
t

∂σ2
t

∂θ′

}∥

∥

∥

∥

≤ Eθ0

∥

∥C(1 + ǫ2
t )
∥

∥E sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

{

1

σ2
t

∂σ2
t

∂θ

}{

1

σ2
t

∂σ2
t

∂θ′

}∥

∥

∥

∥

< ∞,

where the first inequality follows from the independence between ǫt and σ2
t

and its derivative under (22), and the second inequality follows from E(ǫ4
t ) =

ω2E(η4
t ) < ∞.

In view of (5), the asymptotic distribution of n
∑d

i=2 α̂2
i is therefore that of

∑d
i=2

(

Z+
i

)2
, where the Zi are iid N (0, 1). The asymptotic null distribution

of W∗
n follows.

F Proof of Proposition 6.

By arguments used in the proof of Proposition 1,

log{1 − Φ(LKn)} ∼ −LK2
n/2.

Moreover

LK2
n

n
→ 1

q

(

q
∑

i=1

ρǫ2(i)

)2

, a.s. (50)

Similarly, in view of (24)

R∗
n

n
→

q
∑

i=1

ρ2
ǫ2(i), a.s. (51)
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The expressions for the asymptotic efficiencies follow. Using

(q−1

q
∑

i=1

ai)
2 ≤ q−1

q
∑

i=1

a2
i ,

for any real numbers ai, we then have ARE(R∗/LK) ≥ 1, with equality when
q = 1. To show that ARE(R∗/W∗) ≥ 1 note that, because (ǫ2

t ) has an AR(q)
representation under H1, and because ρǫ2(i) ≥ 0, for i = 1, . . . , q,

ρǫ2(i) = α1ρǫ2(i − 1) + · · ·+ αi−1ρǫ2(1) + αi

+αi+1ρǫ2(1) + · · · + αqρǫ2(q − i)

≥ αi,

with equality when q = 1. The conclusion directly follows.
Finally, introducing the linear innovation νt = (η2

t − 1)σ2
t (θ0) of ǫ2

t under
the alternative, we have

Rn

n
→ 1 − Var(νt)

Var(ǫ2
t )

=
κǫ − κη

κη(κǫ − 1)
, a.s. (52)

The desired inequality ARE(R/W∗) ≥ 1 is equivalent to

κǫ(κ
−1
η −

q
∑

i=1

α2
i ) ≥ 1 −

q
∑

i=1

α2
i .

On the other hand, straight computation of Eσ4
t yields

κǫ(κ
−1
η −

q
∑

i=1

α2
i ) = 1 −

(

q
∑

i=1

αi

)2

+ 2
∑

i<j

αiαj

E(ǫ2
t−iǫ

2
t−j)

(Eǫ2
t )

2
≥ 1 −

q
∑

i=1

α2
i ,

using again ρǫ2(i) ≥ 0.

G Proof of (3)

We only prove the second equality, the first one being obtained by the same
arguments. Recall that θ̂n|2 minimizes

l̃n(θ) = n−1
n
∑

t=1

ǫ2
t

σ̃2
t

+ log σ̃2
t

7



under the constraint θ(2) = 0. For any c > 0, there exists θ̂
∗
n|2 such that

σ̃2
t (θ̂

∗
n|2) = cσ̃2

t (θ̂n|2) for all t ≥ 0. Note that θ̂
∗
n|2 6= θ̂n|2 iff c 6= 1. For instance,

for the GARCH(1,2) constrained by θ(2) = β2 = 0, if θ̂n|2 = (ω̂, α̂1, β̂1, 0) then

θ̂
∗
n|2 = (cω̂, cα̂1, β̂1, 0). Let f(c) = l̃n(θ̂

∗
n|2). The minimum of f is obtained at

only one point given by

c = n−1

n
∑

t=1

ǫ2
t

σ̃2
t (θ̂n|2)

.

Thus, for this value c, we have θ̂
∗
n|2 = θ̂n|2. Hence c = 1 with probability 1,

which is the announced result.

H Proof of (5)

To avoid unnecessary computations, we only prove this formula in the case
q = 2. Let θ0 = (ω0, 0, 0). We have d2 = 2, d1 = 1, Λ = R × (0,∞)2,

K = K1 =

(

0 1 0
0 0 1

)

, K2 = (0, 1, 0), K3 = (0, 0, 1)

and

Z =





Z1

Z2

Z3



 ∼ N







0,Σ = (κη − 1)J−1 =





(κη + 1)ω2
0 −ω0 −ω0

−ω0 1 0
−ω0 0 1











.

Thus, using KΣK
′ = I2 and KiΣK

′
i = 1 for i = 2, 3, we get

P1Z = (Z1 + ω0(Z2 + Z3), 0, 0)′ ,

P2Z = (Z1 + ω0Z2, 0, Z3)
′ ,

P3Z = (Z1 + ω0Z3, Z2, 0)′ .

Let also P0 = I3. We have

‖PiZ − Z‖2
J

= (κη − 1)















0 for i = 0
Z2

2 + Z2
3 for i = 1

Z2
2 for i = 2

Z2
3 for i = 3

This shows that

λΛ =
(

Z1 + ω0Z
−
2 + ω0Z

−
3 , Z+

2 , Z+
3

)′
.

8



I Proof of (42)

In view of (4),

log SW(x) = log P(‖λΛ‖2
Ω

> x)

= log P(‖Z‖2
Ω
1lΛ(Z) +

2d2−1
∑

i=1

‖PiZ‖2
Ω
1lDi

(Z) > x).

Because ‖PiZ‖2
Ω
≤ ‖Z‖2

Ω
we have

log SW(x) ≤ log P(‖Z‖2
Ω

> x)

= log P(‖Z(2)‖2
{var(Z(2))}−1 > x)

= log P(χ2
d2

> x).

Moreover, letting U = var−1/2(Z(2))Z(2), which follows the N (0, Id2) distri-
bution, we have

log SW(x) ≥ log P(‖Z‖2
Ω
1lΛ(Z) > x)

= log P(‖Z(2)‖2
{var(Z(2))}−11lZ(2)≥0 > x)

= log P(‖U‖21lU∈C > x)

= log{P(‖U‖2 > x)P(U ∈ C)}
for the cone C = {u ∈ R

d2 : var1/2(Z(2))u > 0}. Thus (42) follows.

J Proof of (45)

In Francq and Zakoian (2004), it is shown that J(θ0) is positive definite. The
same proof can be conducted for θ 6= θ0.

K Proof of Theorem 3.

Throughout, all expectations are taken with respect to the distribution of
(ηt). Let C and ρ be generic constants, whose values will be modified along
the proofs, such that C > 0 and 0 < ρ < 1.

Let ℓt,n(θ) =
ǫ2t,n

σ2
t,n(θ)

+ log σ2
t,n(θ), so that the theoretical and empirical

objective functions can still be denoted ln(θ) = n−1
∑n

t=1 ℓt,n(θ), and l̃n(θ) =

n−1
∑n

t=1 ℓ̃t,n(θ).

9



Denote by A0t,n the matrix obtained by substituting θn for θ0 in the
definition of A0t. The following inequalities, which are straightforward con-
sequences of τ > 0, will be used throughout. For any n ≥ n0, we have
A0t,n0 ≥ A0t,n ≥ A0t (componentwise), and thus, under A2, for n ≥ n0 and
n0 sufficiently large

ǫ2
t,n0

≥ ǫ2
t,n ≥ ǫ2

t , and σ2
t,n0

(θ) ≥ σ2
t,n(θ∗) ≥ σ2

t (θ̃) (53)

for any θ ≥ θ∗ ≥ θ̃.

K.1 Consistency of θ̂n.

Following the scheme of proof of Theorem 2.1 in FZ, we will establish the
following intermediate results.

i) lim
n→∞

sup
θ∈Θ

|ln(θ) − l̃n(θ)| = 0, a.s.

ii) lim
n→∞

ln(θn) = Eℓt(θ0), a.s.

iii) for any θ 6= θ0 there exists a neighborhood V (θ) such that

lim inf
n→∞

inf
θ
∗∈V (θ)

l̃n(θ∗) > Eℓ1(θ0), a.s.

First we show i). Similar to (A.2) in FZ we have σ2
t,n(θ) =

∑∞
k=0 B

k(1, 1)ct−k,n, where ct,n = ω +
∑q

i=1 αiǫ
2
t−i,n and

B =











β1 β2 · · · βp

1 0 · · · 0
...
0 · · · 1 0











.

Let c̃t,n be obtained by replacing ǫ2
0,n, . . . , ǫ2

1−q,n by their initial values in ct,n.
We have

σ̃2
t,n =

t−(q+1)
∑

k=0

B
k(1, 1)ct−k,n +

t−1
∑

k=t−q

B
k(1, 1)c̃t−k,n + B

t(1, 1)σ̃2
0.

10



Thus, almost surely,

sup
θ∈Θ

|σ2
t,n − σ̃2

t,n|

= sup
θ∈Θ

∣

∣

∣

∣

∣

q
∑

k=1

B
t−k(1, 1) (ck,n − c̃k,n) + B

t(1, 1)
(

σ2
0,n − σ̃2

0

)

∣

∣

∣

∣

∣

≤ sup
θ∈Θ

{

q
∑

k=1

B
t−k(1, 1) (ck,n0 + c̃k,n0) + B

t(1, 1)
(

σ2
0,n0

+ σ̃2
0

)

}

≤ Cρt, ∀t. (54)

Proceeding as in FZ (2004), we obtain, almost surely, for n ≥ n0,

sup
θ∈Θ

|ln(θ) − l̃n,τ(θ)| ≤ Cn−1
n
∑

t=1

ρtǫ2
t,n + Cn−1

n
∑

t=1

ρt

≤ Cn−1
n
∑

t=1

ρtǫ2
t,n0

+ Cn−1.

The a.s. convergence of n−1
∑n

t=1 ρtǫ2
t,n0

to 0 follows by the arguments used in
the aforementioned paper, provided n0 is sufficiently large so that γ(A0n0) <
0. Hence i) is established.

Now we will prove ii). We have

ln(θn) =
1

n

n
∑

t=1

ǫ2
t,n

σ2
t,n

+ log σ2
t,n =

1

n

n
∑

t=1

η2
t +

1

n

n
∑

t=1

log σ2
t,n.

In the right-hand side of the last equality, the first sample mean converges
to 1, a.s., and the second one is between 1

n

∑n
t=1 log σ2

t and 1
n

∑n
t=1 log σ2

t,n0
.

By the ergodic theorem, these sample means a.s. converge to E log σ2
t and

E log σ2
t,n0

respectively, when n → ∞ (the existence of such expectations
was shown in FZ (2004), Proof of Theorem 2.1, under the strict stationarity
condition). The latter expectation decreases to the former one when n0 tends
to infinity, which establishes ii).

It remains to show iii). For any θ ∈ Θ and any positive integer k, let
Vk(θ) be the open ball with center θ and radius 1/k. Proceeding as in FZ

11



(2004), and in view of (53), we find that

lim inf
n→∞

inf
θ
∗∈Vk(θ)∩Θ

l̃n(θ∗) ≥ lim inf
n→∞

n−1

n
∑

t=1

inf
θ
∗∈Vk(θ)∩Θ

ℓt,n(θ∗)

= lim inf
n→∞

n−1

n
∑

t=1

inf
θ
∗∈Vk(θ)∩Θ

(

log σ2
t,n +

ǫ2
t,n

σ2
t,n

)

(θ∗)

≥ lim inf
n→∞

n−1
n
∑

t=1

inf
θ
∗∈Vk(θ)∩Θ

(

log σ2
t +

ǫ2
t

σ2
t,n0

)

(θ∗)

= E inf
θ
∗∈Vk(θ)∩Θ

(

log σ2
t +

ǫ2
t

σ2
t,n0

)

(θ∗).

The last equality follows from the ergodic theorem for stationary and ergodic
processes (Xt) such that E(Xt) exists in R∪{+∞} (see Billingsley (1995)2 p.
284 and 495). In the last equality, the infimum is larger than infθ

∗∈Θ(log ω∗)
which ensures the existence of its expectation. By the Beppo-Levi theorem,

when k and n0 increase to ∞, E infθ
∗∈Vk(θ)∩Θ

(

log σ2
t +

ǫ2t
σ2

t,n0

)

(θ∗) increases

to Eℓ1(θ). In view of Eℓ1(θ) > Eℓ1(θ0), which was shown in FZ (2004), iii)
is proved.

K.2 Asymptotic normality of the score at θn.

For the sake of brevity we will only establish the asymptotic distribution of
θ̂n under the assumptions A1’, A2–A4 and A6. The proof can be straight-
forwardly adapted when A5, instead of A6, holds. We will show that, when
n tends to infinity

n−1/2
n
∑

t=1

∂

∂θ
ℓ̃t,n(θn)

d→ N (0, (κη − 1)J) , (55)

and

n−1

n
∑

t=1

∂2

∂θi∂θj
ℓ̃t,n(θ∗

ij)
P→ J(i, j), (56)

2Probability and Measure. John Wiley, New York.
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for any θ∗
ij between θn and θ̂n. Let n0 be a sufficiently large integer so that

γ(A0n0) < 0 and θn0 ∈
◦
Θ. We will show that

a) E

∥

∥

∥

∥

∂ℓt,n0(θn0)

∂θ

∂ℓt,n0(θn0)

∂θ′

∥

∥

∥

∥

< ∞, E

∥

∥

∥

∥

∂2ℓt,n0(θn0)

∂θ∂θ′

∥

∥

∥

∥

< ∞,

b) n−1/2

n
∑

t=1

∂

∂θ
ℓt,n(θn)

d→ N (0, (κη − 1)J) , (57)

c) E sup
n≥n0

sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

∂2ℓt,n(θ)

∂θ∂θ′

∥

∥

∥

∥

< ∞,

d)

∥

∥

∥

∥

∥

n−1/2

n
∑

t=1

{

∂ℓt,n(θn)

∂θ
− ∂ℓ̃t,n(θn)

∂θ

}∥

∥

∥

∥

∥

→ 0 and (58)

sup
θ∈V(θ0)∩Θ

∥

∥

∥

∥

∥

n−1

n
∑

t=1

{

∂2ℓt,n(θ)

∂θ∂θ′ − ∂2ℓ̃t,n(θ)

∂θ∂θ′

}∥

∥

∥

∥

∥

P→ 0, (59)

e) n−1
n
∑

t=1

∂2

∂θi∂θj

ℓt,n(θn) → J(i, j) a.s, (60)

f) for all i, j, k ∈ {1, . . . , p + q + 1}, E sup
n≥n0

sup
θ∈V(θ0)∩Θ

∣

∣

∣

∣

∂3ℓt,n(θ)

∂θi∂θj∂θk

∣

∣

∣

∣

< ∞,

for some neighborhood V(θ0) of θ0. We begin to show that (55) and (56)
follow from a)-f).

Proof of (55) and (56). The convergence (55) is a straightforward con-
sequence of b) and the first part of d). To show (56) we start by using the
second part of d) and the strong consistency, to prove that ℓ̃t,n(θ∗

ij) can be
replaced by ℓt,n(θ∗

ij). Then we make the Taylor expansion

n−1
n
∑

t=1

∂2

∂θi∂θj
ℓt,n(θ∗

ij) = n−1
n
∑

t=1

∂2

∂θi∂θj
ℓt,n(θn)

+(θ∗
ij − θn)′n−1

n
∑

t=1

∂3

∂θ∂θi∂θj
ℓt,n(θ∗∗

ij ),

where θ∗∗
ij is between θ∗

ij and θn. To conclude, we use e), f) and again the
strong consistency.
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Proof of a)-f). Since θn0 belongs to the interior of Θ, a) is a consequence
of the properties established in FZ (2004) (proof of Theorem 2.2). Turning
to b), in view of

n−1/2
n
∑

t=1

∂

∂θ
ℓt,n(θn) = n−1/2

n
∑

t=1

(1 − η2
t )

1

σ2
t,n

∂σ2
t,n

∂θ
:= n−1/2

n
∑

t=1

Xt,n,

we will use the Lindeberg central limit theorem for triangular arrays of mar-
tingale differences. Indeed, recall that σ2

t,n and its derivatives are measurable
with respect to the σ−field Ft−1 generated by the variables ηt−i, i > 0. It
follows that for any n ≥ 1, {Xt,n,Ft−1}t is a strictly stationary martingale
difference. Under the assumptions of the theorem, (Xt,n) is clearly square
integrable for n large enough, because θn belongs to the interior of Θ (see
FZ (2004)). Let λ ∈ R

p+q+1, let xt,n = λ′
Xt,n and let

s2
t,n = E(x2

t,n | Ft−1) = (κη − 1)λ′ 1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′ λ.

Using the Wold-Cramer device it will be sufficient to show that

1

n

n
∑

t=1

s2
t,n

P→ (κη − 1)λ′
Jλ, and (61)

1

n

n
∑

t=1

E(x2
t,n1l|xt,n|≥n1/2ε) → 0, when n → ∞, (62)

for any ε > 0. First consider the derivative of σ2
t,n with respect to βj . In view

of (A.3)-(A.5) in FZ, we have

σ2
t,n =

∞
∑

k=0

B
k
n(1, 1)

(

ωn +

q
∑

i=1

αi,nǫ
2
t−k−i,n

)

,

∂σ2
t,n

∂βj
=

∞
∑

k=1

Bk,j;n(1, 1)

(

ωn +

q
∑

i=1

αi,nǫ
2
t−k−i,n

)

,

where Bn (resp. Bk,j;n) is the matrix obtained from B (resp. Bk,j) by re-
placing the coefficients βi by βi,n. Denote by jσ

2
t,n (resp. jσ2

t,n) the variable
obtained by replacing ǫ2

t−j,n by ǫ2
t−j,n0

(resp. ǫ2
t−j) in the expansion of σ2

t,n.
Denote by jσ

2
t (resp. jσ2

t ) the variable obtained by replacing the variables

14



ǫ2
t−i,n by ǫ2

t−i (resp. by ǫ2
t−i,n0

, and ǫ2
t−j,n0

by ǫ2
t−j) in jσ

2
t,n, and the coeffi-

cients of θn by those of θ0 (resp. θn0). To make it clear, let us consider
the example of a GARCH(1,1): we have σ2

t,n = ωn

1−βn
+ αn

∑

i≥1 βi−1
n ǫ2

t−i,n,

jσ
2
t,n = ωn

1−βn
+ αnβj−1

n ǫ2
t−j,n0

+ αn

∑

i≥1,i6=j βi−1
n ǫ2

t−i,n and jσ2
t,n = ωn

1−βn
+

αnβ
j−1
n ǫ2

t−j + αn

∑

i≥1,i6=j βi−1
n ǫ2

t−i,n, whereas jσ
2
t = ω0

1−β0
+ α0β

j−1
0 ǫ2

t−j,n0
+

α0

∑

i≥1,i6=j βi−1
0 ǫ2

t−i and jσ2
t =

ωn0

1−βn0
+ αn0β

j−1
n0

ǫ2
t−j + αn0

∑

i≥1,i6=j βi−1
n0

ǫ2
t−i,n0

.

Notice that for any constants a > 0 and b > 0, the function x → x/(a + bx)
is increasing over the positive line. Considering σ2

t,n as a function of ǫ2
t−j , for

j > 0, it follows that, using (53),

ǫ2
t−j

jσ2
t,n

≤ ǫ2
t−j,n

σ2
t,n

≤ ǫ2
t−j,n0

jσ
2
t,n

.

We also have, from (A.5) in FZ,

Bk,j;n =
k
∑

m=1

B
m−1
n B

(j)
B

k−m
n ≤

k
∑

m=1

B
m−1
n0

B
(j)

B
k−m
n0

= Bk,j;n0.

In view of the last inequalities, and (53), we have for j = 1, . . . , p,

1

σ2
t,n

∂σ2
t,n

∂βj

≤
∞
∑

k=1

Bk,j;n(1, 1)

(

ωn +

q
∑

i=1

αi,n

ǫ2
t−k−i,n0

k+iσ2
t,n

)

≤
∞
∑

k=1

Bk,j;n0(1, 1)

(

ωn0 +

q
∑

i=1

αi,n0

ǫ2
t−k−i,n0

k+iσ2
t

)

. (63)

The last inequality uses the fact that the components of θn are decreasing
functions of n, and that all the quantities involved, in particular Bk,j;n(1, 1),
are nonnegative. Similarly we have,

1

σ2
t,n

∂σ2
t,n

∂βj
≥

∞
∑

k=1

Bk,j(1, 1)

(

ω0 +

q
∑

i=1

α0i

ǫ2
t−k−i

k+iσ2
t

)

.

Similar lower and upper bounds hold for σ−2
t,n

∂σ2
t,n

∂αi
, i = 1, . . . , q and σ−2

t,n
∂σ2

t,n

∂ω
.

It follows that

Y
(1)
t (n0) ≤

1

σ2
t,n

∂σ2
t,n

∂θ
≤ Y

(2)
t (n0) (64)
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for some (R+)p+q+1-valued, strictly stationary, processes (Y
(1)
t (n0)) and

(Y
(2)
t (n0)). Because the vectors involved in the last inequality have posi-

tive components, it follows that

Y
(1)
t (n0)Y

(1)
t (n0)

′ ≤ 1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′ ≤ Y
(2)
t (n0)Y

(2)
t (n0)

′, (65)

componentwise. Note that the lower and upper bounds obtained for the
matrix inside the inequalities are independent of n, whenever n ≥ n0. The
ergodic theorem applies to n−1

∑n
t=1 Y

(i)
t (n0)Y

(i)
t (n0)

′ (i = 1, 2) provided

the expectation of Y
(2)
t (n0)Y

(2)
t (n0)

′ is finite. This can be shown by exactly
the same techniques as those employed to establish Lemma 8 in FZ. More
precisely, if A6 holds true, proceeding as in the calculations leading to (A.16)
in FZ, we obtain an upper bound for the right-hand side of (63) as

Y
(2)
q+1+j,t(n0) ≤ ωn0

∞
∑

k=j

kBk−j
n0

(1, 1) +

∞
∑

k=j+1

k−j
∑

ℓ=1

αn0ℓkB
k−ℓ−j
n0

(1, 1)
ǫ2
t−k,n0

kσ2
t

≤ Cn0 +
∞
∑

k=j+1

k−j
∑

ℓ=1

αn0ℓk
B

k−ℓ−j
n0

(1, 1)ǫ2s
t−k,n0

ωs
0α

1−s{Bk−ik
0 (1, 1)}1−s

,

where Y
(2)
t (n0) = (Y

(2)
it (n0))1≤i≤p+q+1, for some positive constant α and

for any s ∈ (0, 1). It turns out that Y
(2)
q+1+j,t(n0) admit moments at any

order. The same conclusion holds for the other components of Y
(2)
t (n0).

It follows that n−1
∑n

t=1 Y
(2)
t (n0)Y

(2)
t (n0)

′ P→ EY
(2)
t (n0)Y

(2)
t (n0)

′. By the
Lebesgue theorem, this expectation converges to J when n0 → ∞. Similarly

n−1
∑n

t=1 Y
(1)
t (n0)Y

(1)
t (n0)

′ P→ J when n and n0 tend to infinity. In view of
(65) we can conclude that

n−1

n
∑

t=1

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′ → J in probability when n tends to infinity,

from which (61) straightforwardly follows. To prove (62) we first remark
that the expectations in the right-hand side are independent of t, by strict
stationarity of (xt,n). In addition, the previous arguments show that xt,n

admits moments at any order, which are bounded when n increases. By
the Schwarz and Markov inequalities the convergence in (62) follows and the
proof of b) is complete.
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Now we prove c). The second derivative of ℓt,n(θ) is given by

∂2ℓt,n

∂θ∂θ′ =

{

1 − ǫ2
t,n

σ2
t,n

}

1

σ2
t,n

∂2σ2
t,n

∂θ∂θ′ +

{

2
ǫ2
t,n

σ2
t,n

− 1

}

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′ . (66)

First we will show that a formula similar to (64) holds in some neighborhood
V(θ0) of θ0. Let n0 be large enough so that θn0 ∈ V(θ0). Let jσ

2
t be obtained

by replacing in jσ
2
t , componentwise, θ0 by the infimum of θ over V(θ0) ∩ Θ.

Then, in view of (63)

sup
θ∈V(θ0)∩Θ

1

σ2
t,n

∂σ2
t,n

∂βj
(θ) ≤

∞
∑

k=1

sup
θ∈V(θ0)∩Θ

Bk,j(1, 1)

(

ω +

q
∑

i=1

αi

ǫ2
t−k−i,n0

k+iσ2
t

)

.

Note that, under A6, for V(θ0) sufficiently small, ǫ2
t−k−i,n0

appears in the
expansion of k+iσ

2
t , by continuity arguments. Note also that the derivatives

are nonnegative. Therefore, exactly the same arguments as those used to
show b) apply, to establish that,

0 ≤ sup
n≥n0

sup
θ∈V(θ0)∩Θ

1

σ2
t,n

∂σ2
t,n

∂θ
(θ) ≤ Y

(3)
t (n0), (67)

for some vector Y
(3)
t (n0) admitting moments at any order. Similar arguments

show that for i, j = 1, . . . , p,

0 ≤ sup
n≥n0

sup
θ∈V(θ0)∩Θ

1

σ2
t,n

∂2σ2
t,n

∂θi∂θj

(θ) ≤ Y
(4)
i,j,t(n0), (68)

for some variables Y
(4)
i,j,t(n0) admitting moments at any order.

To handle terms of (66) involving

ǫ2
t,n

σ2
t,n(θ)

= η2
t

σ2
t,n(θn)

σ2
t,n(θ)

,

we will use the expansion σ2
t,n(θ) = c +

∑∞
j=1 bjǫ

2
t−j,n where bj =

∑j
ℓ=1 αjB

j−ℓ(1, 1). Note that bj > 0 over V(θ0) ∩ Θ. Let δ > 0. Using again
the elementary inequality ax/(b + cx) ≤ axs/(bsc1−s) for all a, b, c, x ≥ 0 and
any s ∈ (0, 1), we obtain, for V(θ0) sufficiently small

σ2
t,n(θn)

σ2
t,n(θ)

≤ C + C

∞
∑

j=1

bj,n0

bj
bs
jǫ

s
t−j,n0

≤ C + C

∞
∑

j=1

(1 + δ)jρjsǫs
t−j,n0

, (69)
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uniformly in θ ∈ V(θ0)∩Θ, for some ρ < 1. The last inequality uses the fact
that for n0 sufficiently large, there exists a neighborhood V(θ0) of θ0 such
that Bn0 ≤ (1 + δ)B for all θ ∈ V(θ0)∩Θ. Choosing s such that Eǫ2s

t,n0
< ∞

and, for instance, δ = (1 − ρs)/(2ρs) we obtain

E sup
n≥n0

sup
θ∈V(θ0)∩Θ

ǫ2
t,n

σ2
t,n(θ)

= E sup
n≥n0

sup
θ∈V(θ0)∩Θ

σ2
t,n(θn)

σ2
t,n(θ)

< ∞.

For the same choice of δ, with s such that Eǫ4s
t < ∞, and using (69), we find

∥

∥

∥

∥

∥

sup
n≥n0

sup
θ∈V(θ0)∩Θ

ǫ2
t,n

σ2
t,n(θ)

∥

∥

∥

∥

∥

2

= κ1/2
η

∥

∥

∥

∥

∥

sup
n≥n0

sup
θ∈V(θ0)∩Θ

σ2
t,n(θn)

σ2
t,n(θ)

∥

∥

∥

∥

∥

2

≤ C + C
∞
∑

j=1

(1 + δ)jρjs
∥

∥ǫ2s
t,n

∥

∥

2
< ∞.

Using (66), (67), (68), (70) and the Schwarz inequality, it is straightforward
to conclude that c) holds.

To prove d) first note that, analogue to (54), we have almost surely

sup
θ∈Θ

∥

∥

∥

∥

∂σ2
t,n

∂θ
− ∂σ̃2

t,n

∂θ

∥

∥

∥

∥

≤ Cρt, sup
θ∈Θ

∥

∥

∥

∥

∂2σ2
t,n

∂θ∂θ′ −
∂2σ̃2

t,n

∂θ∂θ′

∥

∥

∥

∥

≤ Cρt, ∀t

where C does not depend on n. It follows that
∣

∣

∣

∣

∣

n−1/2

n
∑

t=1

{

∂ℓt,n(θn)

∂θi
− ∂ℓ̃t,n(θn)

∂θi

}∣

∣

∣

∣

∣

≤ C∗n−1/2

n
∑

t=1

ρt(1 + η2
t )

{

1 +
1

σ2
t,n

∂σ2
t,n

∂θi

}

,

≤ C∗n−1/2
n
∑

t=1

ρt(1 + η2
t )
{

1 + Y
(2)
it (n0)

}

,

where Y
(2)
it (n0) is the i-th component of Y

(2)
t (n0) introduced in (64). The

Markov inequality and the independence between ηt and Y
(2)
t (n0) allow to

show the first convergence in d). By similarity with the proof of Theorem 1,
we find that the supremum in d) is bounded by Cn−1

∑n
t=1 ρtΥt,n, where

Υt,n = max
i,j

sup
θ∈V(θ0)∩Θ

{

1 +
ǫ2
t,n

σ2
t,n

}{

1 +
1

σ2
t,n

∂2σ2
t,n

∂θi∂θj
+

1

σ2
t,n

∂σ2
t,n

∂θi

1

σ2
t,n

∂σ2
t,n

∂θj

}

.
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We have

sup
θ∈V(θ0)∩Θ

{

1 +
ǫ2
t,n

σ2
t,n

}

≤ C(1 + ǫ2
t,n) ≤ C(1 + ǫ2

t,n0
),

where the right-hand side admits a moment of order 3s. In view of the results
established in the proof of c), it follows that EΥs

t,n < C. The rest of the proof
is identical to that of d) in the proof of Theorem 1.

Now we show e). First consider the second group of terms in the second
derivative of ℓt,n, displayed in (66), at the value θn. In view of (65), we have

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′

≤ n−1
n
∑

t=1

(2η2
t − 1)1l2η2

t ≥1Y
(2)
t (n0)Y

(2)
t (n0)

′ (70)

+n−1

n
∑

t=1

(2η2
t − 1)1l2η2

t <1Y
(1)
t (n0)Y

(1)
t (n0)

′.

The ergodic theorem applies to the sums of the right hand side and yields,
a.s.

lim sup
n→∞

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′

≤ E{(2η2
t − 1)1l2η2

t ≥1}E{Y(2)
t (n0)Y

(2)
t (n0)

′} (71)

+E{(2η2
t − 1)1l2η2

t <1}E{Y(1)
t (n0)Y

(1)
t (n0)

′}

from the independence between ηt and the variables Y
(i)
t (n0). We have al-

ready seen that E{Y(i)
t (n0)Y

(i)
t (n0)

′} → J, for i = 1, 2, as n0 → ∞. It follows
that

lim sup
n→∞

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′ ≤ E{(2η2
t − 1)(1l2η2

t ≥1 + 1l2η2
t <1)}J

= J.
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Similarly we have

lim inf
n→∞

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′

≥ E{(2η2
t − 1)1l2η2

t ≥1}E{Y(1)
t (n0)Y

(1)
t (n0)

′}
+E{(2η2

t − 1)1l2η2
t <1}E{Y(2)

t (n0)Y
(2)
t (n0)

′},

which converges to J as n0 → ∞. Thus we have proved that, a.s.

lim
n→∞

n−1
n
∑

t=1

(2η2
t − 1)

1

σ4
t,n

∂σ2
t,n

∂θ

∂σ2
t,n

∂θ′ = J.

The first group of terms in the right-hand side of (66) can be treated analo-

gously, using lower and upper bounds for σ−2
t,n

∂2σ2
t,n

∂θ∂θ
′ . Therefore we have a.s.

lim
n→∞

n−1
n
∑

t=1

(1 − η2
t )

1

σ2
t,n

∂σ2
t,n

∂θ∂θ′ = 0.

The convergence in e) follows.
Finally, f) is proved in the same manner as c). Indeed, it can be seen

from FZ that the third derivative of ℓt,n involves products of terms already
encountered, plus a term involving the third derivative of σ2

t,n divided by σ2
t,n.

This term can be bounded independently of n, as in (67) and (68), which
allows to conclude.

K.3 Asymptotic distribution of θ̂n.

We start by introducing some notations. Let, for n sufficiently large

Jn,τ =
∂2ln(θn)

∂θ∂θ′ , Zn,τ = −J
−1
n,τ

√
n

∂ln(θn)

∂θ
,

where the non singularity of Jn,τ follows from (56), and let

θJn,τ (Zn,τ) = arg inf
θ∈Θ

‖Zn,τ −√
n(θ − θn)‖Jn,τ ,

λΛ
n,τ = arg inf

λ∈Λ
‖Zn,τ + τ − λ‖Jn,τ .
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Similarly to (A.33) in FZ, we have the following quadratic expansion of the
quasi-likelihood function around θn

l̃n(θ) = l̃n(θn) +
1

2n
‖Zn,τ −√

n(θ − θn)‖2
Jn,τ

− 1

2n
Z

′
n,τJn,τZn,τ + Rn(θ), (72)

where Rn(θ) is a remainder term. We will prove

(i)
√

n(θJn,τ (Zn,τ) − θn) = OP (1),

(ii)
√

n(θ̂n − θn) = OP (1),

(iii) for any sequence (θ∗
n) such that

√
n(θ∗

n − θ0) = OP (1),

Rn(θ∗
n) = oP (n−1),

(iv) ‖Zn,τ −√
n(θ̂n − θn)‖2

Jn,τ

oP (1)
= ‖Zn,τ + τ − λΛ

n,τ‖2
Jn,τ

,

(v)
√

n(θ̂n − θ0)
oP (1)
= λΛ

n,τ ,

(vi) λΛ
n,τ

d→ λΛ(τ ).

It suffices to adapt the arguments given in the proof of Theorem 1. We will
only mention the points that need to be adapted.

In the proof of (i) the same arguments apply, noting that ‖Zn,τ‖Jn,τ =

OP (1) because Jn,τ
P→ J by (60), and

√
n∂ln(θn)

∂θ
= OP (1) by (57).

The remainder term in (72) satisfies

Rn(θ) =

{

n1/2

(

∂ l̃n(θn)

∂θ
− ∂ln(θn)

∂θ

)}

n−1/2(θ − θn) +

+
1

2
(θ − θn)′

{

∂2 l̃n(θn)

∂θ∂θ′ − Jn,τ +

[

∂2̃ln(θ∗
ij)

∂θ∂θ′

]

− ∂2 l̃n(θn)

∂θ∂θ′

}

(θ − θn),

for some θ∗
ij between θ and θn. By (56) and the second part of (58), the last

two terms into accolades tends to zero in probability as n tends to infinity.
The first term into accolades converges to zero in probability by the first part
of (58). To establish (ii), it is then straightforward to adjust the arguments
given in the proof of Theorem 1. The same remark applies to the proof of
(iii), and, noting that

√
n(θJn,τ (Zn,τ)−θn) = λΛ

n,τ for n sufficiently large, to
that of (iv).
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The vector λΛ
n,τ being the projection of Zn,τ + τ on the convex set Λ for

the scalar product < x, y >Jn,τ , we have
〈

Zn,τ + τ − λΛ
n,τ , λΛ

n,τ − λ
〉

Jn,τ
≥ 0,

∀λ ∈ Λ. Thus, since
√

n(θ̂n − θ0) ∈ Λ,

∥

∥

∥

√
n(θ̂n − θn) − Zn,τ

∥

∥

∥

2

Jn,τ

=
∥

∥

∥

√
n(θ̂n − θ0) − (Zn,τ + τ )

∥

∥

∥

2

Jn,τ

≥
∥

∥

∥

√
n(θ̂n − θ0) − λΛ

n

∥

∥

∥

2

Jn

+
∥

∥λΛ
n − (Zn,τ + τ )

∥

∥

2

Jn,τ
.

Hence, (v) follows from (iv) and

∥

∥

∥

√
n(θ̂n − θ0) − λΛ

n

∥

∥

∥

2

Jn,τ

≤ ‖Zn,τ −√
n(θ̂n − θn)‖2

Jn,τ
− ‖Zn,τ + τ − λΛ

n‖2
Jn,τ

= oP (1).

Finally, (vi) is proved by arguments already given.

L Proof of (48)

The proof is similar to that of (3). Note that θ0|2 minimizes

Eθ0

(

ǫ2
t

σ2
t (θ)

+ log σ2
t (θ)

)

= Eθ0

(

σ2
t (θ0)

σ2
t (θ)

+ log σ2
t (θ)

)

under the constraint θ(2) = 0. For any c > 0, there exists θ∗
0|2 such that

σ2
t (θ

∗
0|2) = cσ2

t (θ0|2) for all t ≥ 0. Note that θ∗
0|2 6= θ0|2 iff c 6= 1. Let

f(c) = Eθ0

(

σ2
t (θ0)

cσ2
t (θ0|2)

+ log cσ2
t (θ0|2)

)

.

The minimum of f is obtained at a unique point, given by

c = Eθ0

(

σ2
t (θ0)

σ2
t (θ0|2)

)

.

Thus, for this value c, we have θ∗
0|2 = θ0|2. Hence c = 1, which is the

announced result.
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M Proof that ρǫ2(h) > 0 (used in the proof of

Proposition 6)

It suffices to show that we have a MA(∞) of the form

ǫ2
t = c + νt +

∞
∑

ℓ=1

φℓνt−ℓ, with φℓ ≥ 0 ∀ℓ.

Indeed, νt := ǫ2
t − σ2

t = (η2
t − 1)σ2

t being a white noise, we have

γǫ2(h) = Eν2
1

∞
∑

ℓ=0

φℓφℓ+|h|, with the notation φ0 = 1.

Denoting by B the backshift operator, and introducing the notation α(z) =
∑q

i=1 αiz
i, β(z) =

∑p
j=1 βjz

j and φ(z) =
∑∞

ℓ=1 φℓz
ℓ, we obtain

ǫ2
t = {1 − (α + β)(1)}−1ω + {1 − (α + β)(B)}−1(1 − β(B))νt = c + φ(B)νt.

Since 1−β(B) = 1− (α+β)(B)+α(B), we obtain φℓ as the coefficient of zℓ

in the division of α(z) by 1 − (α + β)(z) according to the increasing powers
of z. By recurrence on ℓ, it is easy to see that these coefficients are positive
because the polynomials α(z) and (α + β)(z) have positive coefficients.

N Consistency of the tests of Proposition 6

Proposition 8 Let (ǫt) be a strictly stationary and ergodic process. The
tests based on R∗

n, and Rn, are consistent against alternatives of the form

Ha1 : Eǫ4
t < ∞ and

∑q
i=1 ρ2

ǫ2(i) > 0.

The test based on LKn, is consistent against alternatives of the form

Ha2 : Eǫ4
t < ∞ and

∑q
i=1 ρǫ2(i) 6= 0.

The test based on W∗
n, is consistent against alternatives of the form

Ha3 : ǫt =
√

ω0 +
∑q

i=1 α0iǫ2
t−iηt, where ω0 > 0, α0i ≥ 0,

∑q
i=1 α0i > 0,

(ηt) is a sequence of (possibly non-iid) variables verifying A3 and
E(η2

t | ǫt−1, . . . , ǫt−q) = 1, a.s. Moreover E|ǫt|2s < ∞ for some s > 0.
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Under Ha1 (resp. Ha2) (51) (resp. (50)) follows from the ergodic theorem,
which proves that R∗

n (resp. LKn)is consistent.
Similarly, the convergence in (52) holds, where νt = ǫ2

t −EL(ǫ2
t | ǫ2

t−i, i =
1, . . . , q). Under Ha1, Var(νt) < Var(ǫt), which proves that Rn is consistent.

To handle W∗
n, we note that the proof of (i)-(iv) in Francq and Zakoian

(2004), given for the case of an iid noise sequence, remains valid under Ha3

with a slight adaptation concerning the identifiability step. Suppose that
σ2

t (θ0) = σ2
t (θ) with θ 6= θ0. By stationarity, it follows that ǫ2

t is a function
of the ǫ2

t−i, i = 1, . . . , q − 1. Thus

ǫ2
t − E(ǫ2

t | ǫ2
t−i, i = 1, . . . , q) = σ2

t (θ0)(η
2
t − 1) = 0.

It follows that η2
t = 1, a.s. which is in contradiction with Ha3. Thus θ = θ0

and the identifiability step is proved. The consistency of the QMLE follows
and therefore

W∗
n

n
→

q
∑

i=1

α2
0i > 0, a.s.

which establish the consistency of the test.

O R code

The section contains programs written in the R language (see http://cran.r-
project.org/). The main function GARCH11.GARCH1q() computes the QMLE
of a GARCH(1,q) model, the Wald, score and LR statistics for the null
of a GARCH(1,1) model, and the corresponding estimated p-values. This
program, as well as a similar program for testing a GARCH(1,1) against a
GARCH(p,1) has been used for the numerical illustrations given in Section 8.

###########################################################################

# testing a GARCH(1,1) against a GARCH(1,q) # # eps0

contains the series of the returns # # omega0, alpha0[1:q] and

beta0 are initial values for the parameter #

###########################################################################

GARCH11.GARCH1q <- function(omega0,alpha0,beta0,eps0,N=5000){

q<-length(alpha0); n<-length(eps0)

garch1q<-estimgarch1q(omega0,alpha0,beta0,eps0)

theta<-garch1q$theta # estimated GARCH(1,q) parameter

garch11<-estimgarch11(theta[1],theta[2],theta[q+2],eps0,q)

thetagarch11<-garch11$theta # estimated GARCH(1,1) parameter
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LRn<-n*(garch11$ln-garch1q$ln) # standard LR statistic if(LRn<0){

omegainit<-thetagarch11[1]

alphainit<-c(thetagarch11[2],rep(0,q-1)) betainit<-thetagarch11[3]

garch1q<-estimgarch1q(omegainit,alphainit,betainit,eps0)

theta<-garch1q$theta LRn<-n*(garch11$ln-garch1q$ln)

}

theta2<-as.vector(theta[3:(q+1)])

K<-cbind(rep(0,(q-1)),rep(0,(q-1)),diag(rep(1,(q-1))),rep(0,(q-1)))

res<-MatJ(theta[1],theta[2:(q+1)],theta[q+2],eps0)

omegacont<-thetagarch11[1]

alphacont<-c(thetagarch11[2],rep(0,q-1)) betacont<-thetagarch11[3]

cont<-MatJ(omegacont,alphacont,betacont,eps0)

LRn<-2*LRn/(cont$kappa-1) # modified LR statistic

Jcontinv<-try(solve(cont$Jmat),silent=TRUE) if(is.matrix(Jcontinv)){

Rn<-as.numeric(n*t(cont$score)%*%Jcontinv%*%cont$score/(cont$kappa-1))}

# score statistic

Jmatinv<-try(solve(res$Jmat),silent=TRUE)

if(is.matrix(Jmatinv))dum<-K%*%Jmatinv%*%t(K)

duminv<-try(solve(dum),silent=TRUE)

if(is.matrix(duminv))Omega<-t(K)%*%duminv%*%K/(res$kappa-1)

Wn<-0

if(is.matrix(duminv)){

Wn<-as.numeric(n*t(theta2)%*%duminv%*%theta2/(res$kappa-1))}# Wald statistic

if(is.matrix(Jmatinv))pval<-est.pval(Wn,LRn,res$kappa,res$Jmat,Jmatinv,Omega,N)

pvalR<-1-pchisq(Rn,df=q-1) list(theta=theta,Wn=Wn,LRn=LRn,Rn=Rn,

pvalW=pval$pvalW,pvalLR=pval$pvalLR,pvalR=pvalR) }

###########################################################################

# estimation of the information matrix J and of the kurtosis kappa #

of the noise in the GARCH(1,q) case MatJ <-

function(omega,alpha,beta,eps) { q<-length(alpha); n <-

length(eps) sigma2<-as.numeric(n)

dersigma2<-matrix(nrow=(q+2),ncol=n) score<-as.vector(rep(0,(q+2)))

Jmat<-matrix(0,nrow=(q+2),ncol=(q+2)) sigma2[1:q]<-eps[1:q]^2

dersigma2[1:(q+2),1:q]<-0 for (t in (q+1):n){

sigma2[t]<-omega+sum(alpha[1:q]*(eps[(t-1):(t-q)]^2))+beta*sigma2[t-1]

dersigma2[1:(q+2),t]<- {c(1,eps[(t-1):(t-q)]^2,sigma2[t-1])

+beta*dersigma2[1:(q+2),(t-1)]}

score<-score+(1-eps[t]^2/sigma2[t])*dersigma2[1:(q+2),t]/sigma2[t]

Jmat<-Jmat+(dersigma2[1:(q+2),t]/sigma2[t])%*%t(dersigma2[1:(q+2),t]/sigma2[t])

}

score<-score/(n-q)

Jmat<-Jmat/(n-q)

kappa<-mean((eps[(q+1):n]^4)/(sigma2[(q+1):n]^2))

list(score=score,Jmat=Jmat,kappa=kappa) }

###########################################################################
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# estimation of a GARCH(1,q) model

objfgarch1q.qml <- function(x, eps){

q<-length(x)-2; omega <- x[1]; alpha <- x[2:(q+1)]; beta <- x[q+2]

n <- length(eps); sigma2<-as.numeric(n); sigma2[1:q]<-eps[1:q]^2

for (t in (q+1):n) sigma2[t]<-{omega+sum(alpha[1:q]*(eps[(t-1):(t-q)]^2))

+beta*sigma2[t-1]}

qml <- mean(log(sigma2[(q+1):n])+eps[(q+1):n]**2/sigma2[(q+1):n]); qml

}

estimgarch1q<- function(omega0,alpha0,beta0,eps0,petit=1e-8) {

valinit<-c(omega0,alpha0,beta0); q<-length(alpha0)

res<-nlminb(valinit,objfgarch1q.qml,

lower=c(petit,rep(0,q),0),upper=c(rep(Inf,q+1),1),eps=eps0)

list(theta=res$par,ln=res$objective) }

###########################################################################

# Based on N simulations,

est.pval(Wn,LRn,kappa,Jmat,Jmatinv,Omega,N) # approximates the

p-values pWal and pLR of the Wald and LR tests # of the null H_0:

GARCH(1,1) against H_0: GARCH(1,q)

objf.lambda <- function(x, Z, J)t(x-Z)%*%J%*%(x-Z)

lambda<- function(Z,J){

q<-length(Z)-2; valinit<-c(Z[1:2],pmax(Z[3:(q+1)],0),Z[q+2])

res<-nlminb(valinit,objf.lambda,

lower=c(-Inf,-Inf,rep(0,q-1),-Inf),upper=rep(Inf,q+2),Z=Z,J=J)

res$par } simul.W <- function(i,Jmat,mu,Jsim,Omega) {

Z<-mvrnorm(mu=mu,Sigma=Jsim) lamb<-lambda(Z,Jmat)

t(lamb)%*%Omega%*%lamb }

est.pval <- function(Wn,LRn,kappa,Jmat,Jmatinv,Omega,N) {

q<-length(Jmat[1,])-2 mu<-rep(0,(q+2)) Jsim<-(kappa-1)*Jmatinv

vector.W<-sapply(1:N,simul.W,Jmat=Jmat,mu=mu,Jsim=Jsim,Omega=Omega)

pvalW<-length(which(vector.W>Wn))/N

pvalLR<-length(which(vector.W>LRn))/N

list(pvalW=pvalW,pvalLR=pvalLR) }

O.1 Numerical experiments

In this section, we investigate the finite-sample properties of the tests for
conditional homoscedasticity studied in this paper. First we generate N =
5, 000 replications of samples of iid variables of size n = 100, 500 and 5, 000,
for different distributions. The tests are designed for an ARCH(2) alternative.
For n = 5, 000 the relative rejection frequencies, presented in Table 5, are
almost always within the 0.05 significant limits 4.38% and 5.62%. For smaller
sample sizes, and non-gaussian distributions, the type I error is not perfectly
well controlled by the Wald test. Deviations can also be noticed for the Rao
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Table 5: Empirical size (in %) of the Wald, score, QLR and LK tests for conditional

homoscedasticity. The tests are based on an ARCH(2) model. The number of replications

is N = 5000, the critical values are adjusted to obtain 5% relative rejection frequency

when the observations are iid gaussian, the DGP is an independent sequence, distributed

as the N (0, 1) (N ), the Student t with ν = 8 degrees of freedom (St8), the uniform (U)

on (−1/2, 1/2), or the exponential distribution(E) of density f(x) = e−x−11{x>−1} .

n = 100 n = 500 n = 5000
Wn Rn Ln LKn Wn Rn Ln LKn Wn Rn Ln LKn

N 4.38 4.40 4.44 4.96 5.36 4.30 5.22 4.86 4.70 4.86 4.90 4.84
St8 6.46 4.56 5.46 4.76 5.98 4.92 4.76 4.86 5.96 4.76 4.70 4.98
U 4.20 6.84 6.10 4.88 4.22 5.62 5.22 3.94 4.54 5.10 5.20 4.66
E 6.30 4.94 4.98 4.68 6.66 6.22 3.98 5.32 6.74 4.92 4.42 5.48

and QLR tests for the uniform and exponential distributions but, even for
n = 100, the sizes are never very far from the theoretical 5%.

We now turn to the power of those tests against local deviations from the
null hypothesis. The results are presented in Table 6 and, for ease of reading,
the highest rejection frequencies are written in bold for each experiment. In
the upper part of the table, the DGP is an ARCH(q) with q = 1, 2, 3 and
α1 = · · · = αq > 0. The conclusion drawn from the comparison of the local
asymptotic powers remains valid for these simulation experiments. The Rao
test is clearly dominated by the three other ones, whatever the sample size.
For q = 1, the local asymptotic powers of the Wald, QLR and LK tests
are equal (by Propositions 4 and 7, these tests are locally asymptotically
uniformly most powerful), and are very close for n = 500 and n = 5, 000,
with a slight advantage to the QLR test. This advantage can also be noticed
for q = 3. For q = 2 the asymptotic superiority of the one-sided LK test is
reflected in finite samples. However, when the alternative is not symmetric
in the ARCH coefficients, as it is the case in the lower part of Table 6, the LK
test can be much less powerful than its competitors, both asymptotically and
in finite samples. For this reason it cannot be recommended to practitioners.

P Illustrative example

We now consider an application to the daily returns of the French CAC40 and
the Standard & Poor’s 500 indexes. The presence of GARCH in these series
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Table 6: Empirical power (in %) of the Wald, score, QLR and LK tests for conditional

homoscedasticity. The number of replications is N = 5000, the critical values are adjusted

to obtain 5% relative rejection frequency when the observations are iid gaussian, the DGP

is an ARCH(q) with gaussian innovations.

α1 = · · · = αq = 1.5n−1/2

q n = 500 n = 5000 n = ∞
Wn Rn Ln LKn Wn Rn Ln LKn Wn Rn Ln LKn

1 40.0 30.0 40.4 39.1 42.4 32.2 43.0 42.3 44.2 32.3 44.2 44.2

2 58.6 45.1 59.1 59.5 63.6 46.5 63.7 66.3 61.9 46.0 61.9 68.3

3 73.4 57.0 76.3 74.1 81.1 57.8 81.3 81.1 74.7 57.2 74.7 83.0

α1 = · · · = αq−1 = 0, αq = q1.5n−1/2

q n = 500 n = 5000 n = ∞
Wn Rn Ln LKn Wn Rn Ln LKn Wn Rn Ln LKn

2 79.4 62.7 73.1 55.2 85.9 73.0 81.3 64.8 85.1 77.1 85.1 68.3
3 93.7 85.0 89.5 65.9 97.4 94.4 95.2 78.5 99.0 97.7 99.0 83.0

has been documented by many empirical studies. Our aim in this section is
to compare the abilities of the various tests considered in this paper to detect
the ARCH effect. As the sample size n increases, the p-values of the tests
are expected to decrease. Assuming that the series is indeed a GARCH, the
way those p values decrease to zero is an indication of the performances of
the tests in finite sample.

The CAC data range from January 2, 2004 to December 29, 2006. The
total length of the series is 771 but the sample size used for the tests ranges
from n = 400 to n = 600. In the first experiment, the tests considered are
the score and LK tests for conditional homoscedasticity, the ARCH order
varying from q = 1 to q = 9. For each sample size n, a set of 201 p-values
are computed based on the observations Xj+1, . . . , Xj+n, for j = 0, . . . , 201.
Figure 3 displays the averages of these p-values, for the score (left panel) and
LK tests (right panel). Clearly, the tests based on q = 1 are dominated by the
tests based on higher-order ARCH models. For n = 600 the average p-values
are very small, except in the case q = 1. For the score test, the values of q > 1
lead to similar results, but this is less true for the LK test. Now for a given q,
the LK test has better performances than the score test, in the sense that it
is able to detect the ARCH effect more rapidly as n increases. The S&P500
data range from January 2, 2003 to December 29, 2006. The total length of
the series is 1007. The sample size used for the tests ranges from n = 800 to
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Figure 3: Average p-values of the score (left panel) and LK tests (right panel) for

conditional homoscedasticity, in ARCH(q) models for q = 1, . . . , 9, in function of

the sample size n, for the CAC40 index.

n = 950. Figure 4 plots the averages of the p-values of the Wald, score, QLR
and LK conditional homoscedasticity tests, in the ARCH(2) model, for the
CAC40 (left panel) and S&P500 (right panel). In both cases (i) the results
for the QLR and Wald tests are similar, and (ii) the score test requires larger
sample sizes to detect conditional heteroscedasticity. Looking at the results
for the LK tests, the conclusions are opposite for the two series. For the
CAC, this test does a better job than the three others, but for the S&P500,
it is much less efficient than the Wald-QLR and is similar to the score.
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Figure 4: Average p-values of the Wald, score, QLR and LK conditional ho-

moscedasticity tests for the CAC40 (left panel) and SP500 (right panel) .
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