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Testing the nullity of GARCH coefficients :
correction of the standard tests and relative

efficiency comparisons

CHRISTIAN FRANCQ*AND JEAN-MICHEL ZAKOIANT

Abstract: This article is concerned by testing the nullity of coefficients in GARCH models.
The problem is non standard because the quasi-maximum likelihood estimator is subject
to positivity constraints. The paper establishes the asymptotic null and local alternative
distributions of Wald, score, and quasi-likelihood ratio tests. Efficiency comparisons under
fixed alternatives are also considered. Two cases of special interest are: (i) tests of the
null hypothesis of one coefficient equal to zero and (ii) tests of the null hypothesis of no
conditional heteroscedasticity. Finally, the proposed approach is used in the analysis of
a set of financial data and leads to reconsider the preeminence of GARCH(1,1) among

GARCH models.

The quasi-maximum likelihood estimator (QMLE), which is the most widely-used
estimator for GARCH models, possesses a non standard asymptotic distribution when
the true parameter has zero coeflicients. It follows that tests currently implemented in

softwares, such as the t-ratio test, the Wald test or the Likelihood Ratio (LR) test, are
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not valid for testing that some GARCH coeflicients are equal to zero. For any sequence
of local parameters tending to the boundary of the parameter space at the rate n'/2, the
asymptotic distribution of the QMLE is established. This allows to correct the asymptotic
critical values of the above-mentioned tests and to compare their local asymptotic powers.
We give conditions under which the modified versions of the Wald and LR tests are locally
asymptotically optimal for testing the nullity of one coefficient, and we show that these
tests dominate the usual two-sided score test. For testing that the ARCH coefficients are
all equal to zero, we show that a one-sided version of the score test enjoys the property of
being locally asymptotically most stringent somewhere most powerful. We also compute
and compare the Bahadur slopes of several conditional homoscedasticity tests, showing
that the asymptotic performance of a given test strongly depends on the efficiency concept

(e.g. Bahadur or Pitman) chosen.

Keywords : Asymptotic efficiency of tests, Boundary, Chi-bar distribution,

GARCH model, Quasi Maximum Likelihood Estimation, Local alternatives.

1 Introduction

Despite the development of stochastic volatility models, the class of generalized
autoregressive conditionally heteroscedastic (GARCH) models introduced by Engle
(1982) and generalized by Bollerslev (1986) remains very popular in finance. This
is testified by the body of work using this class for financial applications such as
Value At Risk, Option Pricing, and portfolio analysis. Contrary to a common
opinion, a GARCH model is not a simple structure and before proceeding to its
estimation, it is sensible to make sure that such a sophisticated model is justified.
When a GARCH effect is present in the data, it is of interest to test if the orders of

the fitted models can be reduced, by testing the nullity of the higher-lag ARCH or



GARCH coefficient. In practice, testing the nullity of parameters in the GARCH
framework is achieved by applying standard tests, such as the Wald test, the Rao-
score (or Lagrange Multiplier) test and the Likelihood Ratio test. These standard
tests are provided by most standard time series packages currently available for
GARCH estimation (e.g. GAUSS, RATS, SAS, SPSS).

Unfortunately, as we will see, this common practice may be based on an invalid
asymptotic theory. Tests in GARCH models have received much less attention
than the theory of estimation. Despite its apparent simplicity, the problem of
testing that some coefficients are equal to zero in a GARCH model is non trivial.
The reason is that the Quasi Maximum-Likelihood Estimator (QMLE) is positively
constrained. It follows that the standard distributions for some widely used tests
are not asymptotically valid.

The primary objective of this paper is to derive asymptotically valid critical
values for the Wald, Rao-score and Quasi-Likelihood Ratio (QLR) statistics. Given
the variety of possible tests we decided to limit ourselves to the most widely used
procedures. Our second goal is to compare the efficiencies of those tests under fixed
and local alternatives. We will use the approximate Bahadur slope criterion and
the Pitman analysis for power comparisons.

The most important cases for applications are: (i) tests of the null hypothesis
of one coefficient equal to zero and (ii) tests of the null hypothesis of no conditional
heteroscedasticity. In these two special cases, detailed asymptotic efficiency (local
and non local) comparisons can be done. For the nullity of one coefficient, the
widely used Student’s test will be also considered. A special attention will be
given to testing conditional homoscedasticity. In this case we will also compare the
three general tests with the Lee and King (1993) test, which exploits the one-sided
nature of the alternatives and enjoys optimality properties.

There exists a large amount of literature dealing with testing problems in



which, under the null hypothesis, the parameter is at the boundary of the main-
tained assumption. Such problems have been considered e.g. by Chernoff (1954),
Bartholomew (1959), Perlman (1969), Gouriéroux, Holly and Monfort (1982). Sev-
eral papers consider one-sided alternatives. These include Wolak (1989), Rogers
(1986), Silvapulle and Silvapulle (1995), King and Wu (1997); see the latter pa-
per for further references. Other papers on tests focus on ARCH or GARCH
models. Andrews (2001) considered testing conditional homoscedasticity against
a GARCH(1,1) model. This testing problem, involving a nuisance parameter un-
der the null, is not considered in the present paper. The one-sided nature of the
ARCH models entails positive autocorrelations of the squares at all lags, resulting
in a spectral mode at frequency zero. Hong (1997) and Hong and Lee (2001) pro-
posed tests for ARCH effects using spectral density estimators at frequency zero
of a squared regression residual series. Dufour et al. (2004) used Monte-Carlo
tests techniques which do not rely on asymptotic results. Tests of ARCH(1)-type
effects in autoregressive processes, possibly with unit root, have been considered by
Kliippelberg, Maller, van de Vyver and Wee (2002). Lee and King (1993), which
will be directly used in the present paper, and Demos and Sentana (1998), who
considered similar testing problems, will be commented later on.

By comparison, the present paper has three characteristics: (i) it deals with
general GARCH(p, ¢) models, (ii) it considers testing the nullity of an arbitrary sub-
set of coeflicients, with the restriction that identifiability is required under the null,
(iii) it relies on mild technical assumptions, taking into account recent improve-
ments in the estimation of GARCH models. In particular, we rely on Francq and
Zakoian (2007) (hereinafter FZ) in which the asymptotic properties of the QMLE
of GARCH models with some coefficients being zero have been investigated. The
present paper goes one step further by considering testing problems, which have

not been studied in FZ. Moreover, investigation of the asymptotic local powers



requires an extension of FZ estimation results to the case of local alternatives to a
parameter at the boundary.

The article is organized as follows. Section 2 presents the estimation results,
in particular when the true parameter value is on the boundary, and the main
test statistics. Section 3 determines their asymptotic null distributions. Section
4 establishes the asymptotic distribution of the QMLE under sequences of local
alternatives to the null parameter value. Section 5 uses these results to compare
the local powers of the tests. Efficiency comparisons in the sense of Bahadur are
also considered. Sections 6 and 7 apply these results to the two main examples:
testing the nullity of one coefficient and testing the absence of ARCH effect. Section
8 is devoted to an application to financial time series in which the preeminence of
the GARCH(1,1) model is reconsidered. Section 9 concludes. Proofs are relegated
to an appendix.

If a matrix A is semi-positive definite, a semi-norm of a vector x of appropriate

1/2. The notation a = b will stand for

dimension is defined by ||x[]a = (x'Ax)
a = b+ c. For a vector x, inequalities such as x > 0 or x > 0 have to be
understood componentwise. Let dy denote the Dirac mass at 0 and X% the chi-
square distribution with k degrees of freedom. The mixture of g with probability

p and x3 with probability 1 — p will be denoted by pdy + (1 — p)x3.

2 Model and test statistics

Assume that the observed time series €1, ..., €, is generated by the GARCH(p, q)

model
€& = \/h_mt

(1)
hy = wo + Zgzl aOiE?_i + Z?:l ﬁojht_j, Yt e Z



where 0y := (wo, 01, .., a0q, Bo1,---,00p) is a parameter vector and the noise

sequence (7)) is iid with mean 0 and variance 1. Under the positivity constraints

wo > 0, 040,-20(i:1,...,q), ﬂojEO(jZL...,p),

Bougerol and Picard (1992) showed that a unique nonanticipative strictly stationary
solution (€;) exists if and only if v(Ag) < 0 where, for any norm || - || on the space

of the (p 4+ ¢) x (p + ¢) matrices, v(Ag) = limy_oo +log|[AgAg—1...Ag1] as.

and
a(]l:q—l"?t2 a0q77t2 501;;;—177% ﬁOpT]g
I_ 0 0 0
Ap = B
Qpl:g—1  Qog Bop—1 Bop
0 I 0

with a1.4-1 = (@01 .. a0g-1), Bor.p—1 = (Bo1--- Pop—1) and Iy being the k x k
identity matrix. A nonanticipative solution (e;) of Model (1) is such that ¢ is a
measurable function of the 7,7 > 0. Note that Nelson and Cao (1992) derived
necessary and sufficient conditions for the positivity of the volatility process o?.
However these conditions are not very explicit and thus seem difficult to use for
statistical purposes.

The primary objective of this article is to develop a methodology for testing
the nullity of a sub-vector of 8y. More precisely, and without loss of generality we
consider testing the nullity of the last ds coefficients of 8, split into two components
as g = (0(()1), 9(()2))’, where Oéi) € R%, dy+dy =p+q+1=d. The null hypothesis

is thus
Hy i 0F =041 e KO = Ogper with K= ( 04yq,, L, )
and let

H: 6)>0 e Ko >0with K=( 1y, 04 )
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denote our maintained assumption. To proceed, we define the vector of param-
eters as @ = (01,...,0p4q+1)", with 61 = w, and the parameter space © as any
compact subset of [0,00)PT4*! that bounds the first component away from zero.
For technical reasons we also assume that © contains some hypercube of the form
[w, @] x [0,e]P*9, for some &€ > 0 and @ > w > 0.

To define the QMLE, the initial values are, for simplicity, taken equal to zero,
ie. €g=...=¢_,=03=... =01, =0, and the variables 57(6) are recursively

defined, for ¢t > 1, by
q P
51(6) = w + Z aiep; + Z Bioi_;-
i=1 j=1

A QMLE of 6 is defined as any measurable solution ,, of 6,, = arg mingee 1,(6),
where 1,(0) = n=* 320 4;, and 0, = 0,(0) = (,(0;¢p,...,€1) = % + log 2.
An ergodic and stationary approximation (02(6)) of the sequence (57(8)) is ob-
tained as follows. Under the strict stationarity condition 7(Agp) < 0 and if

1;:1 Bj < 1, denote by (af) = {03(0)} the strictly stationary, ergodic and nonan-
ticipative solution of 07 = w + >0 el ; + Z?:1 ﬂjaf_j, for all t. Note that
07(60) = hi. Let Ag(z) = 30| a;z' and Bg(z) = 1 — Z?:l ;7. By convention,
Ag(z) =0if ¢ =0 and By(z) =1 if p = 0. Under the conditions

Al: 0y € (2) where (2) denotes the interior of ©,
A2: y(Ag) <Oand 3F_,08;<1, VO€O,
A3: n? has a non-degenerate distribution with En? = 1 and k,, = En} < oo,

Ay4: ifp >0, Ag,(2) and Bg,(z) have no common root, Ag, (1) # 0, and ap,+
60p 7é 07

it can be shown (see Francq and Zakoian, 2004) that the information matrix J =



FEo, <021 (100) 802(300) aagé?0)> is well-defined and the QMLE is asymptotically normal:

V6, —00) SN {0, (1, — DI, kK, = Enl. (2)

Al is a standard assumption for the asymptotic normality, but in the GARCH
framework it constrains the coefficients to be positive. It is important to note
that A2-A/ are sufficient for the strong consistency. In A2, the strict stationarity
condition is imposed only at the value 6y. For all other parameter values, it is
sufficient to make the given assumption on the [3; coefficients. Assumptions A3
and A/ are made for identifiability reasons.

The usual forms of the Wald, Rao-score and QLR statistics follow, and are

given by

W, = n 1@(2)' {Kj;lK,}_l é(Z)

n n
Hn—

o, (6,)  0l, (6,
o = ’%mzn—l 59’2>J512 ge IQ)’

= ofi(0) 101

where énp denotes the restricted (by Hp) estimator of 8, &y, iy denote consis-

tent estimators of ry, and J;,,J,o denote consistent estimators of the information
matrix J. In general, J,, and &, are derived using the unconstrained estimator 6,
whereas J |5 and #,o are computed using 6,,. For instance, one can take

n

joolsn L 0000560 5 1§ 1 05H(6u) 056y
n < 40,) 00 00" TP T ni=5i0,,) 00 00
and
; I~ € . 1< et
Kp = — - b2 = I ;
[t Uf(on) n ; U?(9n|2)
because
= € 1< €




Note that the latter equalities imply that

One rejects the null hypothesis for large values of W,,, R;,, L. In the next section,

we give the asymptotic distributions of these statistics under the null hypothesis.

3 Non standard asymptotic null distributions

FZ underlined that, among the assumptions required for the asymptotic normality
(2), A1 is quite restrictive since it implies 8y > 0 componentwise. Indeed if, say,
fo; = 0, the variable \/ﬁ(ém — bOpi) = \/ﬁém is nonnegative and thus cannot be
asymptotically normal. Note that this problem cannot be solved by blowing up
the parameter space © outside the positive quadrant, since the variable 57 (8) must
be positive for the loglikelihood to be well-defined.

Thus, to obtain the asymptotic distribution of \/n(8, — 6y) under Hy, Al is
replaced by the following assumption. Let 8y(¢) be the vector obtained by replacing

all zero coefficients of 8y by a number ¢.
Al’: Oo(e) € (2) for some € > 0, where é denotes the interior of ©.

Assumption A1’ though compatible with Hy, is intended to prevent @y from reach-
ing the upper bound of ©. In some cases, no moment assumption on the observed
process (€) will be required. In other cases a moment condition is necessary. The

following two assumptions will be made alternately.

Ab: EgOE? < 00,

Jo
A6: {j| Bo; >0t #2 and [Jeo >0 for jo=min{j]| B, > 0}.
=1



Note that A6 does not cover the ARCH case, where all the (3y; coefficients are equal
to zero. Let A = R4 x [0, 00)%. The following result displays the asymptotic distri-
bution of the QMLE and of the score vector dl,,(0¢)/06 where 1,(8) = n=1 3"} | 4,
and ¢y = £;(0) = €2 /o? +log o?.
Theorem 1 (Francq and Zakoian, 2007) If Hy, A1’, A2-A4 and either A5 or
A6 hold,
Vi@, — 0 L A= arg inf (A= ZYT(A-2Z}, Z~N{0,(r, — DI},
€
1,.(0
i

where in the definition of J, derivatives with respect to the last do components are

N{Ov ("{77 - 1)J} >

replaced by right derivatives.

The asymptotic distribution of the QMLE is thus non standard when the true
parameter has coefficients equal to zero, but it can be easily simulated. Note
that A can be interpreted as the projection of Z, for the metric defined by J,
onto the convex set A = {A € R? | KA > 0}. The faces of A are sections of
the subspaces {A € R | K;A = 0}, where the K; are obtained by cancelling
0, 1 or several rows of K. Projecting Z onto those subspaces yields the vectors
Ak, = P;Z, where P; = I, - J 'K/ (KiJ_lK;)_l K;. The solution is thus

obtained as
2d2 1
A =Z15(Z) + 1gae(Z) x argminyee||A — Zlly = Z1A(2) + Y PiZ1p,(Z), (4)

i=1
where C = {Ak, :i = 1,...,2% — 1 and KAk, > 0} is the set of admissible pro-
jections (those with nonnegative last dy components) and the D; form a partition
of R?%. For instance, when all the coefficients ag; are equal to zero in an ARCH(q)
model (dy = 1,ds = ¢,d = ¢+ 1), it can be seen that (4) reduces to

d /
AA=<Zl+wZZ;,Z;,---,Z;> . (5)

1=2
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We are now in position to derive the asymptotic distributions of the three test
statistics introduced in Section 2. Let @ = K’ {(x, — 1)KJ_1K’}_1 K. Note
that for any z = (z(1,2?)) € R? we have 2/Qz = HZ(Q)H{Var(z(?))}ﬂ where Z =
(zW,Z®?)Y is as in Theorem 1.

Theorem 2 Under Hy and the assumptions of Theorem 1 we have

W, 4 W=avaat, (6)
d
R, — X?[zy (7)
1 1 .
n % L= 5\ =23 - 2) + 52K {KI 'K} 'Kz
_ 1 : 2 : 2
= 5 {dat, Iz - 3 -t 1z Al (5)

An interesting point is that, contrary to the standard situation, the asymptotic
distributions of those statistics are not the same. Only the score statistic has
the standard X?lz distribution, which is a consequence of the gaussian asymptotic
distribution of the score vector under Hy. This implies that the standard Rao score
test remains valid whatever the position of 8, in the interior or on the boundary
of ©. On the contrary, valid tests based on the Wald and LR statistics require
correction of the usual critical values. This problem is well known in situations
where the parameter is constrained both under the null and the alternatives (see
Chernoff (1954) and the references in the introduction).

By Theorem 2, tests of asymptotic level « are defined by the critical regions

{Wn > wl—a}a {Rn > X?lg,l—a}? {Ln > ll—a}

where wy_q, ng and lj_, are the (1 — «a)-quantiles of the distributions of

-«
W, X§2 , L respectively. In the sequel the first test is referred to as the modified Wald
test. The standard Wald test is defined by {W,, > X?lz |_o) and its asymptotic

level is not equal to . Similar remarks apply to the QLR test.

11



4 Non regularity of the QMLE under local al-

ternatives

For local power comparisons, the asymptotic distribution of the QMLE under
sequences of local alternatives to the null parameter value 6y is required. Let
0, = 0y + 7/\/n, where T = (10,...,Tptq) € (0,+00)PT9 is such that 6,, € O,
at least for sufficiently large n.

We need to precisely define the data generating process. Write Ag = A(6y)
and assume that A2 holds. For n large enough, v{A(0y + 7/v/n)} < 0 and we

can define the nonanticipative and strictly stationary solution (ey) vz, Of

€t,n = htm ui
hin = wo + J& + 220 (ao,- + %) € in T2 (ﬂoj + T‘%) ht—jn, Vt € Z

where (1) is iid (0,1). Given the observations €j ,, ..., €,n, the QMLE satisfies

0, = arg min ~ ;€t7n(0), n(0) =0(Os€nm,. .. €10) = ?2’77; + log O'zn, 9)

where 61, = G¢,(0) is obtained by replacing €, by €,,, 1 < u < t, in &; but,
for simplicity, with initial values independent of n. Similarly agn(G) is defined by

replacing €, by €, ,, u <, in 02(0). Denote by P, + the distribution of (e ).

Theorem 3 Let 8y € © and let 7 € (0,+00)PT9H1. Let (0,) be a sequence of
QMLE satisfying (9). Then, if A2-A4 hold, 6, — 6y, P,.—a.s. as n — oo.
Moreover, if the assumptions of Theorem 1 hold then \/ﬁ(én—Gn) s asymptotically

distributed under P, ; as X (T) — T where
A7) = arg)i\ng{/\ ~Z-1YI{XN-Z—7}, with Z~NJ{0,(k,—1)I'}.
€

Given the limiting distribution of a statistic under Py = P, 9, a usual method

for establishing its limiting distribution under P, r is to use Le Cam’s third

12



lemma (see e.g. van der Vaart p 90, 1998). Because the sequence {y/n(6, —
00) ,log L,,(6y + 7/y/n) — log L,(0p)} is not asymptotically Gaussian, denot-
ing by L, the likelihood function, Le Cam’s third lemma seems difficult to ap-
ply. The same problem was encountered by Ling (2007). However the pre-
vious theorem can be established directly. For brevity the proof of Theo-
rem 3 and of several other results are not given here, but are available at
http://www.amstat.org/publications/jasa/supplemental _materials..

When the true value 6 is not on the boundary, i.e. when Hy does not hold,
)\A(T) — 7 = Z is independent of 7. However, it is seen that under Hy, the QMLE
does not converge to its asymptotic distribution locally uniformly since AN (r)—7
generally depends on 7. Thus, the QMLE is regular in the interior of ® but not

on the whole parameter space (see e.g. van der Vaart p 115, 1998).

5 Power comparisons

In this section, we consider two popular efficiency measures, in order to compare the
asymptotic power functions of the tests. We start by Bahadur’s (1960) approach in
which the efficiency of a test is measured by the rate of convergence of its p-value

under a fixed alternative Hj : 0(()2) > 0.

5.1 Bahadur slopes

Let

- 1 902(0) do2(8) - 1 00?(6) o (60)
30 = o, (g 55 aw) PO =0 | e (e )]

Let Sw(t) = P(W > t), Sr(t) = P(R > ) where R ~ X?lz’ and Si(t) = P(L > t),
be the asymptotic survival functions of the Wald, score and QLR statistics under

the null hypothesis Hy.

13



Proposition 1 Under the alternative Hy : 0(()2) > 0 and under A1’, A2-A4, the

approzimate Bahadur slope of the Wald test is

lim —glogSW(W) - ! 1952)’ (KI'K) 6, as.  (10)

n—oo Hn —

Moreover, under A5 and the conditions (43), (44) and (46) discussed in the ap-

pendiz, the approrimate Bahadur slope of QLR test is

n—oo

lim ——logSL( n) = FEg, (l 2(( ))> (11)

where Oy is the a.s. limit of énp, If in addition D(0y2) # 0,

1 _
lim ——logSR(R ) = 1D,(90\2)K~]0 yK'D(6qp), (12)

noo ipl2 — |

where Joip = J(0g|2) and K,y is the kurtosis coefficient of agl(eo‘g)et under Hjy.
It follows that the Wald, score and QLR tests are consistent, in the sense that the

probability of rejecting Hy tends to one under Hy.

The term "approximate" Bahadur slopes serves to distinguish the limits in (10)
and (12) from other quantities, called "exact" Bahadur slopes, which are defined
by substituting the non-asymptotic survival functions for the asymptotic ones (e.g.
P(X, > t) for Sw(t), where X, is distributed as W,, under 0(()2) = 0) in the
above definitions. We are unable to pursue the exact versions because we do not
have large-deviation results for the statistics W,,, R,, and L,,. For a discussion of
approximate and exact slopes, see Bahadur (1967). In the Bahadur sense, a test is
considered more efficient than another one when its slope is greater. This approach
is sometimes criticized (see e.g. van der Vaart (1998)) and is not easy to use in our
framework because the information matrices J and Jgo are not known in closed

form. Numerical comparisons can be done however as will be seen later.

14



5.2 Pitman analysis

Whereas Bahadur’s approach considers non-local alternatives and compares the
rates at which the P-values of two tests converge to zero, the Pitman approach
considers sequences of local alternatives, and compares the local asymptotic pow-
ers of the tests. We denote by x2(c) the noncentral chi-square distribution with
noncentrality parameter ¢ and k degrees of freedom. The asymptotic distribu-
tions of the 3 test statistics under the local alternatives are given in the following

theorem.

Theorem 4 Under the assumptions of Theorem 3, we have

W, 4 W(r) =AM (1), (13)
R, % 3 {rar}, (14)
1 -1
L, % Lr)= —s{A -z I -z P (Z ) QUZ 4 7

_ 1) N a2
= g {udat, 12 T A~ it 12+ 7 XI5 (15)

It is seen that the asymptotic distribution of the Rao statistic is very different
from that of the two other statistics. The following proposition establishes that
the asymptotic distributions of the Wald and the rescaled Quasi-Likelihood Ratio
statistics are actually the same under the null or under the local alternatives.

p(1) 9

Proposition 2 With the assumptions of Theorems 1 or 3, W, ¢

Note that under non-local alternatives the Wald and rescaled Quasi-Likelihood

Ratio tests might have different powers.

6 Testing the nullity of one coefficient

In this section, we are interested in testing assumptions of the form

H() Qg = 0 (OI‘ H() : ﬁoj = 0) (16)

15



for some given ¢ € {1,...,q} (or j € {1,...,p}). This is for instance the case when
a GARCH(p — 1,q) (or a GARCH(p,q — 1)) is tested against a GARCH(p, ¢). In
practice, the most widely used test for a simple hypothesis is the so-called t-ratio

defined, in the case of (16), by

5nj

o
ﬁnj

Qg

ty = (or

)

with standard notations. The maintained assumption is that all other coefficients
are positive, so that do = 1. Let ®(-) denote the N(0,1) cumulative distribution

function, 7" = 74/04 and 0'3 = VarZ,;. The critical regions of asymptotic level «

and the local asymptotic powers are as follows.

Proposition 3 (a) Under (16) and the assumptions of Theorem 1, tests of asymp-
totic level av (for o < 1/2) are defined by the critical regions

_ 2
{tn >®7'(1-20)}, {W, > X%,1—2a}7 {Rn > X%,l—a}v {an > X%,1—2a}'
n

(b) Under the assumptions of Theorem /, the local asymptotic power of the t-ratio,
Wald and QLR tests is

lim P, {t, > ® (1 —2a)} = lim P, {W, > x}1_ 0}
n—oo n—oo )

) 2L N
= lim P {——"= > {1 0a} =1—®(c1 — %), (17)
n—oo /{n — 1
and that of the score test is

nh—>Hc?>lo P”v"'{Rn > Xil—a} =1- (I)(C2 - 7—*) + CD(_CQ - T*)v (18)

where ¢; = @Y1 — ) and c2 = @71 (1 — a/2). (c¢) Moreover, for any T > 0,

lim ]P)n,‘r {Wn > X%,1—2a} > lim ]P)n,‘r {Rn > X%,l—a} .
n—o0 n—oo
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Proposition 3(c) shows that, for testing the nullity of one GARCH coefficient, the
modified Wald test is locally asymptotically more powerful than the standard score
test.

Now we will see that the modified Wald test enjoys optimality properties. As-
sume that 7; has a density f such that .p = [{1 +uf W)/ fW)Y fy)dy < oo.
Note that ¢y is o? times the Fisher information on the scale parameter o > 0 in
the density family o~'f(-/o). From Drost and Klaassen (1997), Drost, Klaassen
and Werker (1997) and Ling and McAleer (2003) it is known that, under mild
regularity conditions, GARCH processes are locally asymptotically normal (LAN)

with information matrix

Ly 1 do? Oo? Ly
I = 4" 5106 a0" %) =5 (19)

In this framework the so-called local experiments {L,(0¢ + 7/v/n), T € A} con-
verge to the limiting gaussian experiment {N (T, I;l) ,T € A} (see van der Vaart
(1998) for details about LAN properties and the notion of experiments). Testing
K6y = 0 corresponds to testing K7 = 0 in the limiting experiment. Suppose that
Xis N (T, I;1> distributed. From the Neyman-Pearson lemma, the test rejecting
for large values of KX is uniformly most powerful against the alternatives K+ > 0.

This optimal test has the power

Kr

,/KI;lK/

A test whose level and power jointly converge to a and to the bound in (20),

m(r)=1—® | co — Ca =071 —a). (20)

respectively, will be called asymptotically optimal.

Proposition 4 Assume that n; has a density f such that vy ewists. For testing
that one GARCH coefficient is equal to zero, the modified t-ratio, Wald and QLR

tests are asymptotically optimal if and only if

f(y)z%exp(—af)lylza‘l, >0, T(a)= /Owta—lexm—t)dt. (21)
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Table 1: Asymptotic levels in percentages of the standard Wald and QLR tests of

nominal level 5%, for testing the nullity of one coefficient.

Ky 2 3 4 5 6 7 8 9 10
Standard Wald 2.5 2.5 25 25 25 25 25 25 25
Standard QLR 0.3 2.5 5.5 83 10.8 129 147 164 17.8

The score test is never asymptotically optimal.

To conclude this section, it is important to note that the standard Wald test {W,, >
Xil_a}, and also the standard t-ratio test {t, > ® !(1 — a)}, have asymptotic
level /2. These two tests are therefore too conservative and may lead to select
too simple ARCH models. The standard QLR test {L, > X%,l—a} has the same
asymptotic level a/2 when x = 3. However, when the distribution of 7 is highly
leptokurtic, which seems to be the case for many financial time series, Table 1

reveals that the standard QLR test can lead to overrejection of the null hypothesis.

7 Testing conditional homoscedaticity

In this section, we consider the case d; = 1 with #) = w, p = 0 and dy = g¢.
This case corresponds to the problem of testing the null hypothesis of no condi-
tional heteroscedasticity versus an ARCH(q) alternative. We therefore consider the
hypothesis

Hy:app=-=ayp=0 (22)
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in the ARCH(q) model

€t = Ot Mt iid (0, 1) (23)

2 _ q 2
of =wo+ Y i i€, w>0, ag >0.

7.1 Some simple test statistics

In his paper introducing ARCH, Engle (1982) noted that the score test is very

simple to compute. Indeed, R,, = nR?, where R? is the determination coefficient of

the regression of €7 on a constant and e%_l, e ,e%_q. An asymptotically equivalent
version is
Ry=— i{li(l— eg)eg‘iF— Eq:Az(‘) (24)
n (:‘%n\z _ 1)2 P n a &62 &? =N 2 Pe2(),
where 62 = n' Y01 €2, Ryp = (n6d) Tt )L €f and pe2(i) is a standard estimator

of the i-th autocorrelation of (¢?). The score statistic thus has the interpretation
of a portmanteau statistic for checking that (e7) is a white noise.

Another very simple test is obtained as follows. As remarked by Demos and
Sentana (1998), at the point Oy = (wo,0,...,0), the information matrix J = J(8)
takes a simple form and we have

(kp+q—1wg  —wy - —wp

(ky — 1)1 = e . (25)

Because (k, — 1)KJ 'K’ = I,;, a simple version of the Wald statistic is

q
* A2
Wn—ng Qg .
i=1

Note that W is not the usual Wald statistic defined in (3), which uses the estimator

J,, based on the unconstrained estimator én However, the asymptotic null and
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local alternative distributions of Wald statistics are not affected by the choice of a
consistent estimator of J.

Lee and King (1993) proposed a test which exploits the one-sided nature of the
ARCH alternative. Their test rejects conditional homoscedasticity for large values

of

' (@ 2
e, = Y (02) 007 1 i
n - 6_ - \/_/\ ~9 ~9 )
LK NoLK “— = Oe O¢
where c}%K is an estimator of the variance of the numerator and 1, = (1,...,1)" €

RY. In view of (33), (35), (36), (37) and (25) one can take
. . A e N N pp—
i = (o — D1 {KI, K — (KI,,K) (K, K) ™ (KI,pK) |1,
. -1
= (g~ D1 {KIAK'} 1= aliy — 17,

with K = (04x1,1,;) and K = (1,014,). It follows that
1 &
LK, = — S Vipe(i).
Ak

This form is not exactly the expression given in Lee and King (hereafter LK), but
is asymptotically equivalent to it under the null (and under local alternatives). We

will see that the LK-test enjoys some optimality properties.

7.2 Asymptotic null distributions

Using the results of Theorem 1, we now state the asymptotic distributions of the
previous statistics under the null of independent observations. It was noted that
in the ARCH case, A6 could not be used and had to be replaced by the moment
assumption A5. In the case of conditional homoscedasticity we do not need this

assumption.
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Proposition 5 Under (22) and A3 we have

q

. a4 1 g\ 1 « d d

Wi S bty | | ged RiSaG LK. SN(01), (26)
i=1 ?

where the sum denotes a mizture of independent distributions.

Demos and Sentana (1998) obtained the same result for W by means of heuristic
arguments and results established by Wolak (1989) in the iid case. They wrote on
page 107 that their "analysis is based on the presumption that standard results
one inequality testing can be extended" to the GARCH case. Our results allow to
validate this presumption.

Simulation experiments (see Table 5 of the supplemental document at the JASA
supplemental materials website) of the tests based on an ARCH(2) model, show
that for reasonable sample lengths (e.g. n = 100), the sizes are never very far from

the theoretical ones.

7.3 Power comparisons under fixed alternatives

The next result allows to compare the efficiencies in the Bahadur sense of the "sim-
ple" tests for no conditional heteroscedasticity. Let p.2 denote the autocorrelation
function of the process (€7), and let k. = Eg,(¢})/{Fe,(e?)}?. The following gives
the asymptotic relative efficiencies (ARE) of the simple conditional homoscedas-

ticity tests in the presence of ARCH.

Proposition 6 Let (¢;) be a strictly stationary and nonanticipative solution of the
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ARCH(q) model (23) with E(e}) < oo and Y%, ag; > 0. Then,

2 2
ARE(R'/LK) = lim —=log Sp(R;){ lim —=log{l — ®(LK,)}}"!

n—oo

4> P (i)
(S8 pe i)}~

)

2 2
ARE(R™/W") = lim ——log Sr(R}){ lim —ElogSW(W:)}_l
q 2 (s
= Z:ql p622(l) Z 1’
i=1 X0
2 2
ARE(R/W") = lim —=log Sp(Rn){ lim —ElogSw(W:)}_l
Ke — Kp

— >1
K (ke — 1) g:l O‘(Q)i ’

with equalities when q = 1.

Because a test is consistent whenever its slope is positive, these conditional ho-
moscedasticity tests are consistent under much more general assumptions than the
ARCH(q) alternative.

Versions of tests which are asymptotically equivalent under the null and lo-
cal alternatives may have different slopes. The asymptotic efficiencies derived in
Proposition 1 do not coincide with those just derived for the "simple" test statistics.

However, they can be evaluated by simulation. It can be seen that

00s— | D) 3= Baor ). Tgn — (Fa ()2 Ea, (220,
0gx1
with Z; = (1,€? 4,... ,e%_q)’. The results displayed in Table 2 concern the
ARCH(1), for a; ranging from 0 to 0.4, with gaussian conditional distributions.
Note that when ¢ = 1 the AREs computed in Proposition 6 are equal to 1. More-
over, the slope of the Rao statistic given by (12) coincides with those of the other

versions of the score, and is equal to a?. It is seen from Table 2 that
W <L<R~R"~W*~ LK
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Table 2: Asymptotic efficiencies of the score and QLR tests relative to the Wald
test for testing conditional homoscedasticity in an ARCH(1). The number of repli-
cations of the ratio is N = 10, the expectations are evaluated by empirical means

of size 10,000,000.

a 01 02 03 04 05
ARER*/W) 17 23 29 34 40
ARE(L/W) 14 1.8 22 27 33

where S < T means that a test S is less efficient than T, and S ~ T means that the
two tests have the same slope. Table 3 reports efficiency results for an ARCH(2)
and shows, in particular, that the equivalence observed in the case ¢ = 1 does not
hold in general. Colors, from blue to red, indicate the rankings of those tests. To

summarize, the tests can be ranked as follows
W<L<W"<R<R"

The LK cannot be ranked in general: it can have the lowest or the highest asymp-

totic efficiency depending on the parameter values.

7.4 Power comparisons under local alternatives

Under mild regularity conditions, in the limiting experiment our testing problem
corresponds to testing KT = 0 with one observation X = (Xj,..., X 41) ~
N(r, I;l). Let 7 be a point of A whose last ¢ components are equal to some ¢ > 0,
and let 7=7 —I;lK’(KI?K/)_lK 7, so that K 7= 0. By the Neyman-Pearson

lemma, the most powerful test for testing T =7 against T =7 rejects for large
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Table 3: Asymptotic efficiencies of conditional homoscedasticity tests relative to the Wald

test, for an ARCH(2) alternative. The number of replications of the slopes is N = 10,

the expectations are evaluated by empirical means of size 10,000,000. Missing values

correspond to the non existence of the 4th-order moment or to cgy = a2 = 0.

AREL/W) oo

Qo1 0 0.1 02 03 04 05

0 - 1.4 1.8 2.2 2.7 3.3

01 14 15 1.8 2.1 2.6 3.2

02 1.8 1.8 2.0 24 29 -

0.3 2.2 23 2.5 2.9 - -

04 2.7 2.8 3.1 - - -

0.5 3.3 3.5 - - - -
ARER*/W) a0 ARER/W) a2
Qo1 0 0.1 02 03 04 05 amn 0 0.1 02 03 04 05
0 - 1.7 2.3 29 34 40 0 - 1.7 2.3 29 34 4.0
01 1.7 19 24 29 34 40 01 1.7 1.7 2.1 2.6 3.1 3.6
02 24 2.7 3.1 3.6 4.2 - 02 23 23 2.5 2.8 33 -
03 3.2 3.6 4.1 4.7 - - 0.3 29 29 3.0 3.3 - -
04 4.0 4.7 5.3 - - - 04 3.4 3.5 3.6 - - -
0.5 5.0 5.9 - - - - 0.5 4.0 4.1 - - - -
ARE(W* /W) Q02 ARE(LK/W) o2
ap1 0 01 02 03 04 05 an 0 01 02 03 04 05
0 - 1.7 2.3 29 34 40 0 - 0.8 1.1 14 1.7 2.0
01 1.7 1.6 20 24 29 34 01 1.0 1.9 22 25 29 3.3
02 23 1.9 2.0 2.2 2.6 - 02 1.7 26 3.1 3.6 4.1 -
03 29 24 2.2 2.3 - - 03 24 34 4.1 4.7 - -
04 3.4 2.9 2.6 - - - 04 3.4 4.5 5.3 - - -
0.5 4.0 34 - - - - 0.5 4.5 5.7 - - - -
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values of
(X— 1)Ip(X—7) — (X— 1) I;(X— 7) =2 7 K'(KI;'K')""KX + constant.
Since by (19) and (25),
KI'K =4 (ky — 1) 7', (27)

it is easy to see that this test rejects for large values of 23221 X;. This test is
therefore uniformly most powerful to test 7y = --- =7, =0 versus 7y = --- = 74 >
0. Similarly it can be shown that the tests which are somewhere most powerful
(SMP) in A\ (0,00) x {0}9 reject for large values of d’X with d € [0,00)?*! and
Kd # 0. Such a test is uniformly most powerful for testing 71 = --- = 7, = 0
versus 7 = cd, ¢ > 0. Of course, an optimal test in the "direction" d may have a
very low power in other directions. The test rejecting for large values of 3221 X, is
however most stringent somewhere most powerful (MSSMP) (the reader is referred
to Shi (1987), Shi and Kudo (1987)! and the references therein for the concept of
MSSMP and SMP test). In view of (27), this MSSMP test has the power

m(r)=1-3 [ co— DT L ca=0"Y(1—a).  (28)
\/4qLJI1(/{77 — 1)1

The following corollary gives the local asymptotic powers of the conditional ho-

moscedasticity tests considered in this section, and shows that the LK test is
locally asymptotically MSSMP (Lee and King (1993) exhibit another optimality
property for their test). The concept of locally asymptotically MSSMP test has
been proposed by Akharif and Hallin (2003) in order to cope with one-sidedness in
hypothesis testing.

IThe authors greatly thank Professor Shi for sending them these two papers.
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Proposition 7 Under the local alternatives H,(7), T > 0, and the assumptions
of Theorem 3 with p =0, dy =1 and do = q, we have

d

AN (r) = <(Zl +71) + wZ(Zi +7) 7 (Za+ )T, (Za+ Td)+> o (29)
=2

where Z ~ N {0, (k, — 1)I71} and (k, — 1)I~* is given in (25). Thus, the local

asymptotic power of the modified Wald, score and LK tests are given by

q
lim P{Wn > Wl—a} = P {Z(UZ + Ti)2]l{Ui+Ti>0} > Wl—a}

1=
q
. 2 o 2 2 2
Tim PRy > 21} = P {Xq (2 ) > X}
1=

1—®<ca—%>, (30)

lim P{LK, > c¢,}

where U = (Uy,...,Uy) ~N(0,1,).

Under the assumptions of Proposition 4, the LK test is asymptotically MSSMP
(in the sense that the right-hand side of (30) is equal to the upper bound 7(T)
defined by (28)) if and only if the density f of n, belongs to the class defined by

(21).

It is well known that there exists no satisfactory notion of optimality for testing
hypothesis on multidimensional parameters. The LK test is asymptotically optimal
in the direction ay = --- = ay, but there is no objective reason to favour this
direction. As shown in Figure 1, the local asymptotic power of LK test may be

lower than that of the Wald test, and even lower than that of the score test.

The conclusion drawn from the comparison of the local asymptotic powers remains
valid for our simulation experiments, which are not reported here to save space.

The Rao test is clearly dominated by the three other ones, whatever the sample
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Figure 1: Local asymptotic power of the Wald, score and LK tests for testing
conditional homoscedasticity with an ARCH(2) model where oy = ag = 7/4/n
(left figure) and a; = 7/y/n, ag =0 or a; =0, g = 7/4/n (right figure).

size. The asymptotic superiority of the one-sided LK test, when the alternative is
symmetric in the ARCH coefficients, is reflected in finite samples. However, when
the alternative is not symmetric, the LK test can be much less powerful than its
competitors, both asymptotically and in finite samples. For this reason it cannot

be recommended to practitioners.

8 Application: should GARCH(1,1) be univer-

sally used ?

Despite the large number of studies on the probabilistic and statistical properties of
general GARCH(p, ¢) models, with p and ¢ greater than 1, the GARCH(1,1) model
remains the most widely used by practitioners, and also by academic researchers.
The selection of the GARCH orders rarely relies on statistical tests, but is motivated
by a common belief that the GARCH(1,1) is sufficient to capture the properties
of financial series and that higher-order models may be unnecessarily complicated.
In this section, we aim to show, through a sufficiently large and representative set

of financial series, that this practice can be questionable.
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The data of this section consist of daily and weekly returns of a set of 10
indexes, namely the CAC, DAX, DJA, DJI, DJT, DJU, FTSE, Nasdaq, Nikkei,
and SP500, and of 5 exchange rates. The samples extend from January 2, 1990,
to March 25, 2008, for the daily stock market returns, from January 2, 1980, to
March 24, 2008, for the weekly stock market returns (except for the indices for
which such historical data do not exist) and from January 2, 1999, to March 31,
2008, for the exchange rates. Descriptive statistics not reported here, show that
the autocorrelations for the squares are highly significant but that the return series
do not display significant autocorrelations. The GARCH(1,1) model is chosen as
the benchmark model and is tested, successively, against the GARCH(1,2), the
GARCH(1,3), the GARCH(1,4) and the GARCH(2,1). In each case, the three
tests of this paper are applied. The empirical p-values of the Wald, score and LR
tests are displayed in Table 4. This table indicates that: 1) the results of the tests
highly depend on the alternative, 2) the p-values of the three tests can be quite
different, 3) for most of the series, the evidence is strong against the benchmark
GARCH(1,1) model. Points 1) and 2) are not surprising if one admits that the
data generating process (DGP) is probably neither the GARCH model of the null,
nor one of the alternatives. Due to the positivity constraints, it is possible (see for
instance the DJU returns) that the fitted GARCH(1,2) model satisfies &g = 0 with
Eﬁn(én‘g) /Oas >> 0. In such a situation, where the estimate is at the boundary
and the score is strongly positive, the Wald and LR test do not reject whereas the
score rejects the GARCH(1,1). In other situations, the Wald or the LR test allow
to reject the GARCH(1,1) and the score fails to reject (see e.g. the daily returns of
the DAX for the GARCH(1,4) alternative). Of course, the validity of these results
require that the assumptions of Theorem 2 hold true. For the estimated models,
the coefficients are far from violating the strict stationarity constraints. Moreover,

the estimates of ay and 3 are sufficiently far from zero, which makes Assumption
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A6 quite plausible. An assumption which we cannot verify is the existence of
Ent. An extension of the paper by Hall and Yao (2003) to the case where some
coefficients are equal to zero would allow to handle the situation where En} = oo,
but this is left for future research.

This study leads us to suggest the use of several tests and several alternative
models. Adopting the conservative Bonferroni procedure (rejecting if the minimal
p-value multiplied by the number of tests is less than a given level ), one rejects the
GARCH(1,1) null hypothesis for 16 series among the 24 series considered in Table 4.
Procedures which are less conservative than Bonferroni’s approach could be applied
(see e.g. Wright, 1992), but without changing the overall conclusion: the notion
that the GARCH(1,1) model is sufficient for financial data can be misleading.

The R code wused to produce Table 4, as well as comple-
mentary illustrations and detailed proofs of technical results, can
be downloaded from the JASA supplemental materials website at

http://www.amstat.org/publications/jasa/supplemental _materials.

9 Concluding remarks

The usual methodology for testing the nullity of coefficients in GARCH models
is based on the standard Wald, score and QLR statistics. This article has shown
that caution is needed in the use of such statistics, because the null hypothesis
puts the parameter at the boundary of the parameter space. From the derivation
of the asymptotic null and local alternative distributions of those statistics, four
main conclusions can be drawn: i) the asymptotic sizes of the standard Wald and
QLR tests can be very different from the nominal levels based on (invalid) x?
distributions; ii) the modified tests of this paper tackle the boundary problem;

moreover, iii) the modified Wald and QLR tests remain equivalent under the null
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Table 4: p-values for tests of the null hypothesis of a GARCH(1,1) model for

stock market and change rate returns.

Index alternative
GARCH(1,2) GARCH(1,3) GARCH(1,4)

Wan Rn Ln Wn Rn Ln Wan Rn Ln
daily stock returns
CAC 0.018 0.069 0.028 0.006 0.000 0.003 0.049 0.269 0.075
DAX 0.004 0.002 0.005 0.002 0.000 0.001 0.004 0.257 0.028
DJA 0.318 0.653 0.323 0.471 0.379 0.475 0.156 0.255 0.118
DJI 0.089 0.203 0.098 0.168 0.094 0.179 0.191 0.181 0.203
DJT 0.500 0.743 0.500 0.649 0.004 0.649 0.725 0.064 0.724
DJU 0.500 0.000 0.500 0.648 0.000 0.648 0.707 0.000 0.707
FTSE 0.131 0.210 0.119 0.158 0.357 0.143 0.314 0.481 0.303
Nasdaq 0.053 0.263 0.092 0.067 0.002 0.123 0.014 0.023 0.040
Nikkei 0.010 0.003 0.008  0.090 0.479 0.143 0.120 0.693 0.187
SP 500 0.116 0.190 0.107 0.075 0.029 0.055 0.223 0.086 0.210
weekly stock returns
CAC 0.030 0.133 0.049 0.036 0.245 0.064 0.105 0.327 0.163
DAX 0.007 0.000 0.000 0.324 0.756 0.337 0.482 0.984 0.495
DJA 0.500 0.229 0.500 0.666 0.319 0.666 0.782 0.595 0.782
DJI 0.500 0.784 0.500 0.656 0.747 0.656 0.793 0.912 0.793
DJT 0.500 0.012 0.500 0.658 0.005 0.658 0.740 0.008 0.740
DJU 0.500 0.000 0.500 0.651 0.000 0.651 0.753 0.000 0.753
FTSE 0.500 0.673 0.500 0.663 0.728 0.663 0.001 0.000 0.001
Nasdaq 0.439 0.900 0.445 0.683 0.644 0.683 0.802 0.907 0.802
Nikkei 0.221 0.528 0.245 0.140 0.455 0.158 0.159 0.378 0.173
SP 500 0.498 0.992 0.497 0.632 0.166 0.632 0.743 0.447 0.743
daily exchange rate returns
$/€ 0.106 0.082 0.052 0.022 0.017 0.005 0.066 0.000 0.001
¥/€ 0.030 0.000 0.001  0.625 0.117 0.628 0.270 0.000 0.198
£/€ 0.353 0.747 0.365 0.338 0.781 0.349 0.588 0.900 0.597
CHF /€ 0.162 0.000 0.032 0.642 0.236 0.642 0.613 0.255 0.628
C$/€ 0.500 0.516 0.500 0.627 0.710 0.627 0.024 0.000 0.002

GARCH(2,1)

Wp

0.500
0.335
0.500
0.500
0.364
0.004

Rn

0.457
0.022
0.407
0.024
0.229
0.000

Ln

0.500
0.119
0.500
0.500
0.251
0.002

0.414
0.500
0.201
0.500

0.500
0.094
0.108
0.000

0.678
0.222
0.000
0.178

0.857
0.000
0.264
0.525

0.380
0.500
0.015
0.500

0.500
0.000
0.145
0.036

0.128
0.000

0.009
0.000

0.050
0.000

0.168
0.218
0.500
0.000

0.002
0.378
0.747

0.001

0.046
0.190
0.500

0.001

0.500
0.130
0.234
0.011
0.048

0.000
0.000

0.527
0.000
0.032

0.500
0.000
0.244
0.000
0.020
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and local alternatives; iv) the usual Rao test remains valid for testing a value on
the boundary, but looses its local optimality properties;

For the two special cases considered in this paper, the approaches of Bahadur
and Pitman allow efficiency comparisons, and shed light on the relative merits of the
different tests. For the nullity of one coefficient, the modified Wald and QLR tests
are locally asymptotically optimal, when the conditional density belongs to a class
which is not restricted to the standard Gaussian. For the absence of conditional
heteroscedasticity, several simple tests can be used, which have different powers
under fixed alternatives. Efficiency comparisons for the ARCH(1) and ARCH(2)
models suggest that the different versions of the score test are preferable to the
other competitors in the Bahadur ARE sense. However, inverse conclusions are
drawn when the local approach is adopted. Indeed, the score test appears to be
locally dominated by the equivalent Wald and QLR tests. The one-sided version
of the score test proposed by Lee and King enjoys optimality properties, but only
for alternatives in certain directions. A simple version of the Wald test, rejecting
the null when the sum of the squared coefficients is large, can be recommended for
testing for ARCH. From both local and non local points of view, our theoretical
study and numerical experiments suggest that the behavior of this test is always
close to the optimum.

Our analysis of a representative set of financial assets suggests that the
GARCH(1,1) is certainly over-represented in financial studies. Lack of applica-
tion of appropriate tests may cause under-identification of the GARCH orders.
The results presented in this study, which are simple to apply, although they are

based on a non standard asymptotic theory, may help remedying this situation.
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A ppendix: Two technical proofs

A.1 Proof of Theorem 2

The convergence in distribution (6) is a direct application of the continuous map-
ping theorem, since \/ﬁéfy = K/n(6,, — 6)) £ KA under H by Theorem
1.

We now turn to the proof of (7). Since 9S|)2 is a consistent estimator of 081) > 0,
we have 02‘)2 > 0 for n large enough. Therefore 81, ( n|2) /08; =0fori=1,...,d,
or equivalently

al, (én|2) ) K/ain (énp) o
00 002
A Taylor expansion yields

ain(én\Z) op(1)

Vi e

AL, (8,

o )+Jf( n|2—90>. (32)

The last do components of this vector relation give

an(énp) op(1) aln(OO) ~
Vi Vi +KIVi (8,02~ 09) . (33)
and the first d; components give
op(1)  —~0ln(6o) (1)
0o 2 \/ﬁaa() +KJK\/_< wp — 6 ) (34)
using
(1)
b~ 00 =K (65— 6)"). (35)

In view of (34), we have

01, (6o)
00

Vi (05 —0) Y (K3,.K) " v (36)
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Using (31), (33), (35) and (36) we obtain

R _ n 81n(én|2) a1 ,aln(énp) 013:(1) n aln(énp)
,%17'2 —1 5@’ n|2 90 foy — 1 90 D
2
op() M H Oln (00) | 411 (921\)2 B 0(()1))‘
- 1 80(2) KJ-1K/
o L 2
p:(I) n H al, (90) _ KJK/ <KJK/) 81n(90) ‘
ky— 1| 00> 000 || ky-1k/

Now recall that under Hy

Wi _ n 8(19”0((?;)) 4 nvdo g Ju Jig (37)
W g — 1 81;9((2?) Jor Ja2

Using KJ7'K' = (J22 — J21J1_11J12)_1 it follows that the asymptotic distribu-
tion of Ry, is that of (Wy — Jo1J7W1)' (Jog — T 3311 31) 1 (W — I, 37 W)
under Hy, which follows the be distribution since Wy — Jo1J 1_11W1 ~
N(0,J90 — I J 7' T12) .

Turning to the proof of (8) and using (35) and (36), several Taylor expansions

give

’I’LLL <én‘2> Opz(l) ’I’Lln (90) + naln (00) (én|2 — 00) + ﬁ (én|2 — 0(])/.] (én\2 — 90)

06" 2
op(1 O, (00) (oo~} 1 (0
2, (60) - 3 09E1>(’)) (RIK') $7 (38)
o, (8y) (;

nl, (6,) 20 ol (80) + o (6, —60) + g (6. - 00>/J (62— 60) - (39)

By subtraction,

op(1) n {laln (00) <KJK/>_1 8ln(00)

L, 2 3 ol

N algé?o) <én B 00) n % <@n _ 00>/J (én — 00) } ) (40)
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01n.(60) _JZ
. 00
Under Hy, by showing /n

N

6, — 0o AL
asymptotic distribution of L, is the law of

it can be seen that the

1 — — 1 A
L= —§z/J’K’J;11KJz +ZIA - AN I
Now, because

0 0

JKIZKI=J— (k,— 1)Q with (s, —1)Q = )
0 Jog —JoJy Ji2

the conclusion easily follows from

1 1 1 A
L = —3Z9Z+ 57 (k) —1)QZ + Z'J A\ — 5>\A IAA
1 —1
= (M -z It —z)+ Tz, (41)

A.2 Proof of Proposition 1.

1

Under H; we have lim,_ o W2 = L 9(()2)' (KJ_IK’)_ 9(()2). Thus, (10) is ob-

n Ky—1

tained by showing that
log Sw(z) ~ log P(X?lz > x) r — 00, (42)

and noting that W,, — oo and lim,_,, log P(X?l2 > x) ~ —x/2 (Bahadur, 1960).
The behaviour of the two other statistics is more intricate because én‘z does

not converges to @y under Hy. Under general conditions, see White (1982),
O = arg  min  Fg {/{;(0)} exists and is unique. (43)
0€0: (2)=0

and the QMLE énp in the misspecified (by Hy) model verifies, almost surely,

én|2 d 00'2. (44)
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For the existence, moments of order 4 are required. For the uniqueness, a necessary
condition is the local identifiability of 65 (see White, 1982). This is achieved in

our model because it can be shown that, for any 6 € ©

B 1 00?(0) 002 (6) . o . .
J(0) = Ep, <af(0) 0 00 is a positive definite matrix. (45)

06000’
ensured when Eef < oo. Note that J*(8g) = J(8g) but J*(8g;2) # J(Og2). It

Let J5, = J*(0g2) where J*(0) = Eg, (ﬂ(0)> The existence of J*(0) is

follows from the a.s. convergence of én‘g to @)z that, similar to (32)-(33),

ain(én@) OP_(l)
90 o

I (0o)2)

_ n (1)
0=1n \/EW KJO\2K\/_< n2 00\2)

and then, assuming that
KJ 8‘2K/ is non-singular, (46)

Ol (0g)2)
< n|2 = 0|2> KJ0\2 ) lﬁw
1

S 1 00}(Bgp) o7 (61)
B (KJOIQK z_: 7(0g2) 060 1—03(90‘2)% '

Note that the summand is centered because 6 minimizes the limit criterion
FEo,{0:(0)}. However it is not a martingale difference. To apply a central limit
theorem, one can rely on the strong mixing properties of GARCH processes. Such
properties require additional assumptions on the density of 7, (see e.g. Carrasco
and Chen (2002), Francq and Zakoian (2006)) and are beyond the scope of this

paper. Applying this central limit theorem we have under Hi,

VI (B — 802 = Op(1). (47)

Therefore

ain(énp) op(1)
i pem - V"

Ny, (9o|2)

Il (0o)2)
902 '

op(y/7)
KJO\Q\/_ < nl2 — 00|2) = \/ﬁ 80(2)
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It follows that, using the convergence of J nj2 10 Joj2, and of Ryjp to Ky,

06

2
Rn  op(1) 1 op() 1 Haln(90|2) 2
n

90

K, —1 K. —1 -1 ’
77‘2 KJ(;\;KI 77|2 KJO\ZKI

from which (12) can be deduced by application of the ergodic theorem and argu-

ments already used to establish (10). Now similar to (38) and (39) we have

nl, (énp) orth nly, (00|2) + nw (énu - 90|2)

80/’
+g (énp - 90|2> Jap (énp - 90|2) )
e (82) L 00) + 0720 (5, 0) 4 2 (6, 00) 3 (0, - 0)).

It follows, using (47), that

L

Lin op(1)
n

=" 1, (6o;2) — 1. (61)

op(1)

= Ego{ft(eo‘g) - Et(el)}y

from which (11) can be deduced, using

Ee, ( 7:(60) ) = 1. (48)

o2 (0g)2)

The consistency of the three tests follows from the positivity of the Bahadur slopes.
From (10) it is seen that, in view of the positive definiteness of J, the Wald test is
consistent. In (12) the positivity of the right-hand side is ensured if D(6g2) is not

equal to zero. The consistency of the QLR test follows from

o (0o) o (0o)
—Eg. |1 ! > —logFg, | —— | =0
"°<0ga$<90|2> =TT\ P00 )

by (48) and Jensen’s inequality, with strict inequality when o7 (8gp2) # o7(60). The

latter is a consequence of the identifiability assumptions A3-A4.
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Testing the nullity of GARCH coefficients:
complementary results

A Proof of Theorem 4

By arguments used in the proof of Theorem 3, it can be shown that with
probability 1 under P, ,

__Z 1 5%( n) 06%,(0,) T asn
N 51 (0,) 06’ >

tlgtn

The convergence in distribution (13) is then obtained by the same arguments
as in the proof of (6), using Theorem 3. With the notation introduced in
(37) a Taylor expansion gives

—( Wi\ o) o lOn)
Kn — 1 ( W ) = \/ﬁ 8?,16((6,)1) + J\/ﬁ<00 - On)
2 26

d

- NA{=Jr, (k,—1)J}.

For the convergence in distribution we use \/ﬁ% LN (0, (K, —1)J),
which is established in the proof of Theorem 3, and we note that /n(6, —
0,) = —7. We then have

e

\/Iin—17

and (14) follows by the arguments used to establish (7). Similarly, (15)
follows from the arguments used to prove (8) and from

a 57 )= (RS

B  Proof of Proposition 2.

(Wy — I J ' Wy) ~ N {— (J22 — J2131_11~]12) Joo — J2131_11~]12} )

We start by introducing some notations. Let

0°1,(6,) o ~0(6,)
0606 Zir = I/ =55

Jn,T -



where, for ease of notation, 1, is as in Section 2, but with variables indexed
by {t,n} instead of ¢. In the proof of Theorem 3 it is proved that

(1) . -
5. = arg inf | Z, . = Al

~ . Op_(l) AL . ~ .
\/ﬁ(en 00) - An,‘r = arg ;\lgf[; ||Zn,‘r A

where Znﬂ. = Z, + + 7. We then have

no.(@2
W, = 0
o — 7t
p® _ 7 1((9n — 600K {KJ'K'} ' K(8, — 6y)
'%77 —

- op(1)
= V(8. = 60)la "= XAl

~ -1
) B 082))/ {KJ—IK/} (022) . 0(()2))

n

Now, similarly to (4), we have

2d2 ]
op(1) 5

AQ,T = Znﬂ']lA(Zn,T) _I_ Z P’iznﬂ':ﬂ'Di(Znﬂ')) (49)
i=1

where P; =1, — J7'M,; and M; = K/ (K,-J_IK;)_1 K. It follows that

2921
op(1) ~ ~ ~ =
W, = Hzn,‘rH?)IlA(anr)“’ Z HPiZn,TH?)]l’Di(Zn,T)'

i=1

Let Z,, = —J;l\/ﬁ%. Turning to L, using (40) we obtain, similarly to
(41)
op(1) Ky — 1

1
L, = —§z;JZn +

Z,QZ, + Z, N} — %AQ’,JAQT
Ky — 1

2

— —%(Aﬁ; —Z.)INo . — Zn) + 7. QZ,.

A Taylor expansion shows that Z, oe(h) Zpr+T = va.r, from which we

deduce

op(1

1 ~ K
Lo "2 —2IIAL, = Zulf + 22

—1 -
—1Z I




By (49) we have

I 5 1° -
§||Zn,7'_}‘2,7—||.2] = 52 [(Ta —Py) n,‘rH.ZJIl’Di(anr)

2d2 1

]lD n 1')

where Q; = (k, — 1)7'(I; — P)'J(Is — P;) = K/ ((k, — l)K,-J_lK;)_1 K.

Moreover

2d2 1
|Z o1& = | Zn,- |14 (Z Z 1 Z. 7|8 1p,(Zin. ).
It follows that
2 n =
op(1 ~ ~ ~ ~
——L, = Wo %N (1Zarl = 1Zasllh, = 1PZorlB) 1,(Znr)
n i=1
2d2 1
- Z ||Zn7T||?2—QZ-—P;QPi]lDz‘(Znﬂ') =0
i=1

because 2 — Q; — P, = 0. This equality is obtained by noting that K; is of
the form K; = B;K for some matrix B; (recall that K; is deduced from K
by cancellation of rows). Hence P,QP,; = P/(Q2 — M;) = P/Q and

I-P)Q = K (KJ'K)'KJ 'K (KJ'K)™

- K (KJ'K) ' BK=Q,

K

C Proof and illustration of Proposition 3.

C.1 Proof
(a) We have A = R4 x [0,00), K =(0,...,0,1) and

A =Z1y,50 + PZ1y,.



with Z = (Zy,..., Zg), P =1, - J "K' (KJ7'K') " K. It follows that
M=7-Zc

where Z; = Zylz,<0, and ¢ = E(Z4Z)/Var(Z,) is the last column of J™*
divided by the (d, d)-element of this matrix. Note that the last component
of A = (AL .. N is AL = Z) = Zyl;,50. Tt is also seen that AN = Z; if
and only if Cov(Z;, Z,) = 0.

In view of Proposition 2, it follows that

1 1
Ty>o ~ 550 + §X%

I R 0.V S
W_Fon—lL_Vaer_U

where U ~ N(0,1). The distribution of W is known as a X? distribution
(see Kudo, A multivariate analogue of the one-sided test. Biometrika 50,
403-418, 1963).

It can be noted that t, = /W, because t, > 0. It follows that the
asymptotic distribution of t,, is the law of Uly>o.

(b) Arguing as in the case 7 = 0, it can be shown that the last com-
ponent of A*(7) is A} (1) = (Zy + 74) 12,4+,50. We deduce that under the
assumptions of Theorem 4

2
2 A} 72\ >
W(r) = Ky — 1L<T> T VarZ, Ut oy II{UJr;—‘;>0}’

where U ~ N (0,1). Equalities (17) and (18) follow.

(c) Note that (17) is the power of the test of critical region {X > ¢} for
testing the null hypothesis Hy : EX = 0 versus the alternative H, : EFX =
7 > 0, when the unique observation X follows a gaussian distribution with
unknown mean EX and variance 1. The power (18) is that of the two-
sided test {|X| > c2}. The two tests {X > ¢;} and {|X| > ¢} have the
same level, but it is well-known that the first test is uniformly most powerful
under one-sided alternatives of the form H;.

C.2 Illustration

Point (c) of the proposition shows that, for testing the nullity of one GARCH
coefficient, the modified Wald test is locally asymptotically more powerful
than the standard score test. This is illustrated in Figure C.2.

4



Figure 2: Local asymptotic power of the Wald test (full line) and of the score test
(dashed line) for testing that one GARCH coefficient is equal to zero.

D  Proof of Proposition 4.

In view of (17) and (20), the Wald test is asymptotically optimal if and only
if (k, —1)KJT'K' = KIJTIK’, which is equivalent to (k, — 1) = 4/t;. We

have

Jwr - (1+§f§)>y) fty = Bt =1+ [ 5 @as— [ sy

= lim [y3f(y)];b—/3y2f(y)dy+1

a,b—o00

= —2.

Thus, the Cauchy-Schwarz inequality yields

v - | <1+j;((s))yYf(y)dy:(Eﬁf—l)bf

with equality iff there exists a # 0 such that 14+n,f'(n;)/f(n:) = —2a (n? — 1)
a.s. The latter equality holds iff f'(y)/f(y) = —2ay + (2a — 1)/y almost
everywhere. The solution of this differential equation, under the constraint
f > 0and [ f(y)dy = 1, is given by (21). Note that when f is defined
by (21), we have k, = [y*f(y)dy = ala + 1)/a® = 3 iff @ = 1/2 which
corresponds to the case n; ~ N(0,1).



E  Proof of Proposition 5.

Under (22), thorough inspection of the proof (given in FZ) shows that Theo-
rem 1 holds without the moment assumption in A5 (and without A6 which

does not make sense in the ARCH case). In particular we have, for some
constant C'

920,(0)
9006’

b )
o} a? 00 o? 06’

1 do? 1 Oo;
oo e fl <
where the first inequality follows from the independence between ¢; and o?
and its derivative under (22), and the second inequality follows from E(e}) =
w?E(n}) < .

In view of (5), the asymptotic distribution of n Y%, 42 is therefore that of

ZLQ (ZZJr )2, where the Z; are iid N'(0,1). The asymptotic null distribution
of Wy follows.

E90 sup
0cV(6p)NO

= FEg, sup
0V (60)NO

< Eg ||CA+€)||E  sup
0V (80)ne

F  Proof of Proposition 6.
By arguments used in the proof of Proposition 1,
log{l — ®(LK,)} ~ —LK?/2.

Moreover

Similarly, in view of (24)

R: .
;—>Zp§2(z), a.s. (51)



The expressions for the asymptotic efficiencies follow. Using

S e <t
i=1 i=1

for any real numbers a;, we then have ARE(R*/LK) > 1, with equality when
q = 1. To show that ARE(R*/W*) > 1 note that, because (¢?) has an AR(q)
representation under Hy, and because p.2(i) >0, fori =1,...,¢,

p2(i) = aipe(i—1)+ 4+ ai1p2(1) +
Faipape(l) + -+ agpe(q — i)
Z Qy,

with equality when ¢ = 1. The conclusion directly follows.
Finally, introducing the linear innovation v = (n? — 1)02(8y) of € under
the alternative, we have
R, Var(v;) Ke — Ky

— —1- = .5. 52
n Var(ef)  fy(ke — 1) @ (52)

The desired inequality ARE(R/W*) > 1 is equivalent to

q q
Fe(riy ! —Za?) >1 —Zaf.
i=1 i=1

On the other hand, straight computation of Eo} yields
2
a a E(e & .
/ﬁe(,%;l_Za?):1— (Za,) +2ZO‘MJW21_ZQ?’
- - i< n -

using again p.z(7) > 0.

G Proof of (3)

We only prove the second equality, the first one being obtained by the same
arguments. Recall that 6,2 minimizes

noo2
1,(0) =n"" Z % + log &7
t=1 't

7



under the constraint 8 = 0. For any ¢ > 0, there exists é;z such that
53(9;2) = ¢52(6,) for all t > 0. Note that 9;2 # 0,2 iff ¢ # 1. For instance,
for the GARCH(1,2) constrained by 0% =3, =0, if 0,2 = (W, a1, 51,0) then
9;2 = (e, cay, f1,0). Let f(c) = In(@;‘z) The minimum of f is obtained at
only one point given by
c=n —_—.
1=t 07(0n)2)

Thus, for this value ¢, we have 92‘2 = én‘g. Hence ¢ = 1 with probability 1,
which is the announced result.

H Proof of (5)

To avoid unnecessary computations, we only prove this formula in the case
q=2. Let 6y = (wy,0,0). We have dy =2, d; =1, A =R x (0,00)?,

K:K1:<8(1]?), K, =(0,1,0), Kj;=(0,0,1)

and
Zl (fin + 1)(4)8 —Wyp —Wo
Z=| Zy | ~NSO,EZ=(k,— 1) "= —wo 1 0
Zs —wp 0 1

Thus, using KXK' =1, and K; XK/ = 1 for i = 2,3, we get

P.Z = (Zl +WO(Z2+Z3)a070)/7
PyZ = (Z1+wZ2,0,75),
PsZ = (Z)+woZs, Z5,0) .

Let also Py = I3. We have

PZ-2Z|5 = (ky—1){ 5 7

This shows that
M= (Zy +woZy +woZy, 23, Z5)



I Proof of (42)

In view of (4),

log Sw(z) = logP(|AMg > )
2d2 ]

= logP(||Z[51(Z ZHPZHQ]ID (Z) > ).

Because ||P;Z||3 < ||Z||3 we have

log Sw(x) < logP(|ZIf3 > )
= 10gP(HZ(2)||%var(z(2>)}71 > 1)
= logP(x3, > ).
Moreover, letting U = var~/2?(Z®)Z® | which follows the N(0,1,,) distri-
bution, we have
log Sw(z) > logP(||Z|[$1r(Z) > =)
= 10gP(HZ(2)||%var(z(2))}71 17050 > )
= logP(||U[]*1yec > z)
log{P(|[U|* > 2)P(U € C)}

for the cone C = {u € R% : var'/?(Z®)u > 0}. Thus (42) follows.

J Proof of (45)

In Francq and Zakoian (2004), it is shown that J(6y) is positive definite. The
same proof can be conducted for 8 # 6.

K Proof of Theorem 3.

Throughout, all expectations are taken with respect to the distribution of
(n¢). Let C' and p be generic constants, whose values will be modified along
the proofs, such that C>0and0<p<1.

Let 4;,(0) = t” 5 + log 07,(8), so that the theoretical and empirical
objective functions can stlll be denoted 1,(8) = n~' 37 £,.,,(8), and 1,(8) =

Y Da(6).




Denote by Ay, the matrix obtained by substituting 8,, for 8, in the
definition of Ag;. The following inequalities, which are straightforward con-
sequences of 7 > 0, will be used throughout. For any n > ng, we have
Aotng > Aotn > Age (componentwise), and thus, under A2, for n > ny and

ng sufficiently large
Gng = a2 6, and o7, (0) > 07,(67) > 07(6) (53)

for any 8 > 0” > 0.

K.1 Consistency of 0,.

Following the scheme of proof of Theorem 2.1 in FZ, we will establish the
following intermediate results.

i) lim sup [1,(0) —1,(0)] =0, a.s.

n—0oo gcO

i1) lim 1,(0,) = El(0y), a.s.
ii) for any @ # 0, there exists a neighborhood V' (8) such that

liminf inf 1,(0%) > E¢,(0y), a.s.

n—oo 6*cV(0)

First we show ).  Similar to (A.2) in FZ we have o¢7,(0) =
S oo BF(1, 1)t g, where ¢y = w + Y0, o€}, and

B Ba 0 By
1 0 - 0
B = .

O --- 1 0

Let ¢, be obtained by replacing ean, ceey E%—q,n by their initial values in ¢;,,.

We have

t—(q+1) t—1
G2, = > BYL 1)t Y. B(1,1)e k. + B(1,1)52.
k=0 k=t—q

10



Thus, almost surely,

sup ‘O-t n &in‘
6co

q
- sy

B *(1,1) (chn — Gum) + B(1,1) (06, — G0)
0cO e

< sup{ Bt "(1,1) (ko + Cuno) + B (1,1) (07, +5§)}
0co

< Cpt, ‘v’t. (54)

Proceeding as in FZ (2004), we obtain, almost surely, for n > ny,

sup [1,(0) —1,+(8)] < Cn~ 1Zpem+0n—12/ﬁ

6co

< Cn~ Zp €ing +CN7!

The a.s. convergence of n™' Y"1 | ple? 'no 10 0 follows by the arguments used in
the aforementioned paper, provided ny is sufficiently large so that v(Ag,,) <
0. Hence i) is established.

Now we will prove ii). We have

= _Z—jtlgam—%z ZlOgUtn

t=1

In the right-hand side of the last equality, the first sample mean converges
to 1, a.s., and the second one is between = 7" logo7 and £ Y"1 | log at o
By the ergodlc theorem, these sample means a.s. converge to Elogo? and
Elog Uzno respectively, when n — oo (the existence of such expectations
was shown in FZ (2004), Proof of Theorem 2.1, under the strict stationarity
condition). The latter expectation decreases to the former one when ng tends
to infinity, which establishes ).

[t remains to show ). For any @ € © and any positive integer k, let
Vi(0) be the open ball with center @ and radius 1/k. Proceeding as in FZ
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(2004), and in view of (53), we find that

n

liminf  inf 1,(0*) > liminfn inf  (,,(0"
minf ol (07) 2 Hninfnt Dy inhfn(@)

n 62
= liminfn™' inf (logo}, +—— ) (0"
Pl ;e*e\}'&e)m(a(OgUt’”jLaf (6%
€2
t

) o)

n
> liminfn~! inf log o2
T n—oo tze *eVi(0)N 87
2
t

= E inf (log o; + ) (67).
Ut

0"V, (0)NO
The last equality follows from the ergodic theorem for stationary and ergodic
processes (X;) such that E(X;) exists in RU{+oc} (see Billingsley (1995)% p

284 and 495). In the last equality, the infimum is larger than infg-cg (log w*)
which ensures the existence of its expectation. By the Beppo-Levi theorem,

when k and ng increase to oo, Einfecy, o)ne (log o7 + 026? ) (0") increases
t,ng
to £41(0). In view of El,(0) > El,(0,), which was shown in FZ (2004), i)

is proved.

K.2 Asymptotic normality of the score at 6,,.

For the sake of brevity we will only establish the asymptotic distribution of
6,, under the assumptions A1, A2-A/ and A6. The proof can be straight-
forwardly adapted when A5, instead of A6, holds. We will show that, when
n tends to infinity

-1/2 8%@“(0“) N0, (1 — 1)), (55)
t=1
and )
- o - r
1

2 Probability and Measure. John Wiley, New York.
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for any €;; between 6,, and 6,.. Let ng be a sufficiently large integer so that
Y(Agp,) <0 and 6, Eé. We will show that

8£t’n0 (enO) agt’”o (0”0> 82£1t,no (en())
CL) E H 80 60/ o0, FE 6080/ < 00,
_1/22 _Etn n) KA N(0, (k, — 1)J), (57)
920,.,(0) '
E R b S < ,
) Bsw s | oeae || <
- ol 0l (60)
1/2 tn n t,n\YUn R
' Z{ 20 } 0 and (58)
Plin(0)  Pla(0) || r
—1 tn t,n
—0 59
oo || Z{ 9000 0000 H : (59)
—1 R L.
Z 89 00 56.09, tn(On) = 3G J) as, (60)
Pl (0)

f) foralli,j,ke{l,....p+q+1}, FEsup sup
n>no OEV(00)NO

06,00,00, | ~

for some neighborhood V(0,) of 65. We begin to show that (55) and (56)
follow from a)-f).

PROOF OF (55) AND (56). The convergence (55) is a straightforward con-
sequence of b) and the first part of d). To show (56) we start by using the
second part of d) and the strong consistency, to prove that Zt,n(e;fj) can be
replaced by £;,(6;;). Then we make the Taylor expansion

89180] gt,”(eij> = 802893 et,n(en)
=1 t=1
/. —1 - 83
+(0ij —6,)n ;:1 0000,00, gt,n(eij ),

where ;7 is between €;; and 6,,. To conclude, we use e), f) and again the
strong consistency.

13



PROOF OF a)-f). Since 6,,, belongs to the interior of ©, a) is a consequence
of the properties established in FZ (2004) (proof of Theorem 2.2). Turning
to b), in view of

n_1/2 3 gﬁtn(er» = n—1/2zn:(1_,r]2)i802n = n_l/zzn:th
’ Yo?, 06 —

t=1 t=1

we will use the Lindeberg central limit theorem for triangular arrays of mar-
tingale differences. Indeed, recall that azn and its derivatives are measurable
with respect to the o—field F;_; generated by the variables n;,_;, ¢ > 0. It
follows that for any n > 1, {X;,, Fi_1}+ is a strictly stationary martingale
difference. Under the assumptions of the theorem, (X;,) is clearly square
integrable for n large enough, because 6,, belongs to the interior of © (see

FZ (2004)). Let XA € RPT4+ et 2y, = X' X, and let

1 Odot, dot,
of, 00 00

Sz%,n = E(SL’?’” ‘ ft—l) = (HW - 1)>‘/

Using the Wold-Cramer device it will be sufficient to show that

1 n

— Z Stn il (ky — DA'IA,  and (61)

[

1 n

- Z E(xinllwm‘an/za) — 0, when n — oo, (62)
t=1

for any € > 0. First consider the derivative of afm with respect to §;. In view

of (A.3)-(A.5) in FZ, we have

0 q
o?, = Z Bf(1,1) (wn + Z ai,nef_k_i’n> ,
k=0 i=1

2
&ftm

[e'e] q
= Z Bijmn(1,1) [ wn + Z ai,nef—k—i,n ,
0B k=1 i=1

where B,, (resp. By j.,) is the matrix obtained from B (resp. By ;) by re-
placing the coefficients 3; by 3;,. Denote by jazn (resp. jat%n) the variable
obtained by replacing €_;, by € _;, (resp. € ;) in the expansion of o7,,.
Denote by jo? (resp. 7o) the variable obtained by replacing the variables

14



€ in by € (vesp. by €, and € ; by e ;) in jo7,, and the coeffi-
cients of 8,, by those of 8y (resp. 6,,). To make it clear, let us consider
the example of a GARCH(l 1): we have o7, = 5+ an i1 B e

2 _ w 7—1 i—1 J~2 _ w

i%n = n + Oénﬂ €t —j,no + ay Zz>1 AF£] ﬂ 6t i,n and Otn = %n +
j—1 i—1 _ j—1 2

a3 e ¥ + a, ZD“#]/@ et_m, whereas ;o7 = ﬁo + o€ T

Qo Zz>1 i 6 16% i and ]Ut -1 ﬁo 6%0 16% 7 + a”o Zz>1 i ;0163—2',710'
Notice that for any constants a > 0 and b > 0, the function z — z/(a + bx)
is increasing over the positive line. Considering afm as a function of e?_j, for
j >0, it follows that, using (53),

2 2

€ty €i—jin o Ct=jno
2 = T2 = 2
]O-t,n Otn i0tn

We also have, from (A.5) in FZ,

Bijm = ZBm IBUBk-™ < ZB’” IBOBE™ =By .

In view of the last inequalities, and (53), we have for j =1,...,p,
1 00,52 t k—
—5 < B, nll Wy, + Qjp——— Z"O
‘7t2,n 03; Z 7 ( Z k+zatn
d € 7,
< ZanO 1,1) (wno+zamo = ka ) (63)
k+iU¢

The last inequality uses the fact that the components of 0,, are decreasing
functions of n, and that all the quantities involved, in particular By ;.,(1,1),
are nonnegative. Similarly we have,

1 dot, > € .
P Y) = ZBkJ(l’l WO+ZO‘0%+Z 2 |
Ut,n ﬂj k—1
Similar lower and upper bounds hold for atfag; = 0=1,...,q and 0., 623"
It follows that 0
1 n
Y (ng) < = < Y (o) (64)
t,n

15



for some (R*)P*4+l_valued, strictly stationary, processes (Y\"(ng)) and

(Yt(z)(no)). Because the vectors involved in the last inequality have posi-
tive components, it follows that

do?, Oo?

V{0 ¥ o) < et < Y0 Yy, (65)
componentwise. Note that the lower and upper bounds obtained for the
matrix inside the inequalities are independent of n, whenever n > ng. The
ergodic theorem applies to n=t> 7" Yél)(no)Yél)(no)’ (1 = 1,2) provided
the expectation of Yt(2)(n0)Yt(2) (ng)" is finite. This can be shown by exactly
the same techniques as those employed to establish Lemma 8 in FZ. More
precisely, if A6 holds true, proceeding as in the calculations leading to (A.16)
in FZ, we obtain an upper bound for the right-hand side of (63) as

NI S RS sy S R

k=j+1 (=1 kat
> B (1, 1€,
< Gyt vy A Y
3
where Yéz)(no) = (Y(2)(n0))1<l<p+q+l, for some positive constant o and
for any s € (0,1). It turns out that YqHﬂt(no) admit moments at any

order. The same conclusion holds for the other components of Yt(z) (no).
It follows that n='>") | Y& ()Y (no) L EYP (no)Y P (no). By the
Lebesgue theorem, this expectation converges to J when ny — co. Similarly
nty Y,gl)(no)Yil)(no)’ L J when n and ng tend to infinity. In view of
(65) we can conclude that

n

1 do}, do},,
ol Z ol g; aaé/ — J in probability when 7 tends to infinity,

from which (61) straightforwardly follows. To prove (62) we first remark
that the expectations in the right-hand side are independent of ¢, by strict
stationarity of (z;,). In addition, the previous arguments show that x,
admits moments at any order, which are bounded when n increases. By
the Schwarz and Markov inequalities the convergence in (62) follows and the
proof of b) is complete.
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Now we prove ¢). The second derivative of ¢;,(0) is given by

0y i) 1 907, 7 1 dat, Dot
R L B U Ut Ut/ . (66)
0000 Oin) Oi, 0000 Tin ot 00 00

First we will show that a formula similar to (64) holds in some neighborhood
V(6y) of By. Let ng be large enough so that 8,,, € V(0o). Let ;o7 be obtained
by replacing in ;o7, componentwise, 8y by the infimum of 8 over V(6,) N O.
Then, in view of (63)

]- aat2n S : Et k—i,n
sup ——(0) < Z sup By ;(1,1) w—l—Za, = .

0cV(60)N @Utn 8/53 1 0€V(60)N© i1 k+z<7t

Note that, under A6, for V(6) sufficiently small, ¢f_,_,  — appears in the
expansion of j,;0?, by continuity arguments. Note also that the derivatives
are nonnegative. Therefore, exactly the same arguments as those used to
show b) apply, to establish that,

1 dot,

0<sup sup 0) < YO ’ o
n>no €V (6p)N @afn 00 ( ) t ( 0) ( )

for some vector Yg?’) (np) admitting moments at any order. Similar arguments
show that for 7,7 =1,...,p,

1 d%;,
0< sup sup

(2] Y() 68
w0 01806 Trn 00:00; (0) < Yiju(no), (683)

for some variables Y;(] +(np) admitting moments at any order.

To handle terms of (66) involving

€§,n . 20152,n(0”>

=M g
07 (8) " 07, (0)
we will use the expansion of,(0) = ¢+ > 22 bje; ;, where b; =
J_, a;B77(1,1). Note that b; > 0 over V(0,) N ©. Let § > 0. Using again

the elementary inequality az/(b+ cx) < az®/(b*c'~*) for all a,b, ¢,z > 0 and
any s € (0, 1), we obtain, for V(6,) sufficiently small

o n( n0 15 € S VLR
Ot't (0) < ¢ CZ & , b] g S CF Cz(l +0) P gy (69)
n j=1
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uniformly in @ € V(0,) N O, for some p < 1. The last inequality uses the fact
that for ng sufficiently large, there exists a neighborhood V(6y) of 8, such
that By, < (14 0)B for all @ € V(6;) N©. Choosing s such that Fe, < oo
and, for instance, § = (1 — p®)/(2p®) we obtain

E% Uzn(en)

E sup sup —— = FEsup sup
n>no €V (0p)NO O-t,n(e) n>no OV (6p)NO O-tz,n(e)

< 00.

For the same choice of §, with s such that Fe}* < oo, and using (69), we find

2 2

Etn 1/2 Ut,n(en)
sup  sup 5 = K,/ |[sup  sup 2
n>no 0V(00)n0 Tin(0) ) n>no 0V(00)n0 Tin(0)

< C+ C’Z(l + 8)7 p7* Hefan2 < 00.
j=1
Using (66), (67), (68), (70) and the Schwarz inequality, it is straightforward

to conclude that ¢) holds.
To prove d) first note that, analogue to (54), we have almost surely

2 ~2 2 2 2~2
80}7” 80}7” 0 Tin 0 O n

B 0000 0000

< t
90 00 Cp, vt

Cp', sup
6cO

sup
6O

where C' does not depend on n. It follows that

e~ [ 00,,(0,)  00,.,(0,)
1/2 i, B ;
" ; { 9, 2,

w —1/2 - ¢ 2 1 ao-t%n
< Oy (U n)) Q1+ gt
t=1 tn E

< oY) {1+ VP (o) }
t=1

where Yif) (ng) is the i-th component of Y (no) introduced in (64). The
Markov inequality and the independence between 7, and Y;(Z) (ng) allow to

show the first convergence in d). By similarity with the proof of Theorem 1,
we find that the supremum in d) is bounded by Cn™' Y"1 | p'T,,,, where

. {Hefn}{H 1 9%}, L] do7, 1 f%fn}
o =mmax  sup — — ’ -5 (-
! i OeV(Bo)nE o2, 02, 00,00; o2, 90; o7, 90;
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We have

2
sup {1 + EtT"} <C(1+ efn) <C(1+ eino),
0cV(00)NO Otn

where the right-hand side admits a moment of order 3s. In view of the results
established in the proof of ¢), it follows that £}, < C. The rest of the proof
is identical to that of d) in the proof of Theorem 1.

Now we show e). First consider the second group of terms in the second
derivative of ¢, ,,, displayed in (66), at the value 8,,. In view of (65), we have

i 1 Oo?, 0o?
-1 2 t,n t,n
" Z(Q"t_l)o—;l 90 00’
t=1 n

< 7Y @20 = Dl Y (o) YD (no) (70)

t=1

_ 1 1
+n Y (@207 = Dy Y1 (n0) Y (no).
t=1

The ergodic theorem applies to the sums of the right hand side and yields,
a.s.

- 1 do?, do?
limsupn ! Z(?nt2 - )= —==
n—oo =1 O’un 80 80

< B{(20F = Do }E{Y? () Y1 (0)'} (71)
+E{(20] = Dlap HEYT (n0) Y1 (0)'}
from the independence between 7, and the variables Y,Si)(no). We have al-

ready seen that E{Yt(i)(no)Yéi)(no)’} — J, fori=1,2, as nyg — oco. It follows
that

lmsupn Y (207 — 1) St < B2 - D (L + L))

= J.
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Similarly we have

n
1 dai, dot,

. -1 2
fim infn ;(27” - 1);“,”6—0 06’

> B{2n} — Dlypoi E{Y " (n0) Y (no)'}
+E{(20} — Dl }E{Y? (n0) Y[ (o)},
which converges to J as ny — co. Thus we have proved that, a.s.
1 9o}, dot,

lim n~! m? —1)— =J
Jm 0D (2n )55 00 o0

t=1

The first group of terms in the right-hand side of (66) can be treated analo-
_92 8203’71

tn 9000 - Lherefore we have a.s.

gously, using lower and upper bounds for o

i 1 Oo?
lim 7" (1= nf) =% = 0.
n—oo =1 Ut,n 8080

The convergence in e) follows.

Finally, f) is proved in the same manner as c¢). Indeed, it can be seen
from FZ that the third derivative of ¢;, involves products of terms already
encountered, plus a term involving the third derivative of o7, divided by o7,,.
This term can be bounded independently of n, as in (67) and (68), which
allows to conclude.

K.3 Asymptotic distribution of 0,,.

We start by introducing some notations. Let, for n sufficiently large

5 (8 a1,(6,)
T 5000 96

-1
Z”v"' = _Jn,‘r n

where the non singularity of J,, » follows from (56), and let

eJn‘r(ZnyT) = a‘rg lnf ||Zn7‘r - \/ﬁ(e - 0”) Jn,rs
’ 6co '
A _ : .
)\n,‘r - a‘rg iIelf/L‘; ||Zn77- _'_ T A||Jn,‘r *
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Similarly to (A.33) in FZ, we have the following quadratic expansion of the
quasi-likelihood function around 8,,

7" JprZnr+ RO, 72
7 e Zonr + Fo(6) (72

where R, (0) is a remainder term. We will prove

(i) \/ﬁ(eJn,r (Zn,T) - en) = OP(l)a

(i) V(8. — 8,) = Op(1),

(iii) for any sequence (6) such that /n(6; —8y) = Op(1),
Ral07) = op(n”),

(V) | Znr = V10 = 0[5, "2 Zor + 7 = XI5,
(v) V(0 — 00) "L AL
(vi) AL S (7).

It suffices to adapt the arguments given in the proof of Theorem 1. We will
only mention the points that need to be adapted.
In the proof of (i) the same arguments apply, noting that |Z, +||s,., =

Op(1) because J,, - L I vy (60), and fal"(e” = Op(1) by (57).
The remainder term in (72) satisfies

1o [(O1n(6,)  01.(6,) 172
Rn(0)={n/( T R )}n 29 -0,)+

1 [ 07,(6,) o4,(05) | 0%,(8,)
50— 6) {W et [ 5006 | ~ aeoe” [0

for some 6;; between 6 and 0,,. By (56) and the second part of (58), the last
two terms 1nto accolades tends to zero in probability as n tends to infinity.
The first term into accolades converges to zero in probability by the first part
of (58). To establish (ii), it is then straightforward to adjust the arguments
given in the proof of Theorem 1. The same remark applies to the proof of
(iii), and, noting that \/n(0y,  (Z, ) —6,) = )\QJ for n sufficiently large, to
that of (iv).
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The vector )\ﬁﬂ_ being the projection of Z,, » + 7 on the convex set A for
the scalar product < x,y >3, ., we have <Zn,7. +7—AA )\ﬁﬂ_ — }\> >0,

n,T’ Jn,‘r
VA € A. Thus, since /n(6,, — 0y) € A,

2 2

|V, ~0.) = Zns

= | va.-60) - Zr +7)

J’!L,‘I‘

n,T

> v, — 60) - X

2 2
3 + H)‘Q_(Z"J'WLT)HJM‘
Hence, (v) follows from (iv) and

< NZur = V(60 = 03, = 1Znr +7 = A3,

= OP(I).

|V, — 60) - X

2
Jn,r
Finally, (vi) is proved by arguments already given.

L Proof of (48)

The proof is similar to that of (3). Note that @y, minimizes

Eo, (o—;(% 5y + o8 af(e)) — Fo, (‘f%) +log af(e))

under the constraint 8 = 0. For any ¢ > 0, there exists 05 such that
07 (6052) = co?(Bgj2) for all t > 0. Note that 05, # gz iff ¢ # 1. Let

a;(6o)
00}2(90‘2)

f(c) = Ea, < + log caf(em)) :

The minimum of f is obtained at a unique point, given by

Thus, for this value ¢, we have 08‘2 = Op2. Hence ¢ = 1, which is the
announced result.
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M  Proof that pa(h) > 0 (used in the proof of
Proposition 6)

It suffices to show that we have a MA(oc0) of the form

ef =c+uy+ Z Qevy_y, with ¢, >0 VL.
(=1

Indeed, v, := € — 0 = (n? — 1)0} being a white noise, we have

ve(h) = Ev Z GePetin)s with the notation ¢y = 1.
=0

Denoting by B the backshift operator, and introducing the notation a(z) =
i, B(z) = Y0 077 and ¢(2) = Y02, ¢ez’, we obtain

& ={l—(a+p) 1)} w+{l—(a+B)(B)} (1 - B(B)r = c+ ¢(B)u.

Since 1 — 3(B) = 1 — (a+ 8)(B) + a(B), we obtain ¢, as the coefficient of 2*
in the division of a(z) by 1 — (a + 3)(2) according to the increasing powers
of z. By recurrence on /, it is easy to see that these coefficients are positive
because the polynomials a(z) and (o + 3)(2) have positive coefficients.

N Consistency of the tests of Proposition 6

Proposition 8 Let (&) be a strictly stationary and ergodic process. The
tests based on R}, and R,,, are consistent against alternatives of the form

H, : Ee} <oo and I p%(i) > 0.
The test based on LK, is consistent against alternatives of the form
Hyp: Eef <oo  and Y1 pe(i) #0.

The test based on W7, is consistent against alternatives of the form

Heas € = \Jwo+ Y1, Qoi€r_ymu,  where wy > 0,00, > 0, D1 ag; > 0,
(m¢) is a sequence of (possibly non-iid) variables verifying A3 and
Em? e 1,...,6q) = 1,a.s. Moreover E|e;|* < oo for some s > 0.
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Under H,y (resp. Hgs) (51) (resp. (50)) follows from the ergodic theorem,
which proves that R} (resp. LK, )is consistent.

Similarly, the convergence in (52) holds, where v; = € — FL(¢? | €/_;,1 =
1,...,q9). Under H,, Var(1) < Var(e), which proves that R,, is consistent.
To handle W, we note that the proof of (i)-(iv) in Francq and Zakoian
(2004), given for the case of an iid noise sequence, remains valid under H,3
with a slight adaptation concerning the identifiability step. Suppose that
02(0y) = 0(0) with @ # 6,y. By stationarity, it follows that ¢? is a function
of the € ;,i=1,...,¢— 1. Thus

€t2 — E(ef | e?_i,i =1,...,q) = <7t2(l90)(77t2 —1)=0.

It follows that n? = 1, a.s. which is in contradiction with H,3. Thus 6 = 6,
and the identifiability step is proved. The consistency of the QMLE follows
and therefore

*

q
~— E ad. >0, a.s.
i=1

n

which establish the consistency of the test.

O R code

The section contains programs written in the R language (see http://cran.r-
project.org/). The main function GARCH11.GARCH1q() computes the QMLE
of a GARCH(1,q) model, the Wald, score and LR statistics for the null
of a GARCH(1,1) model, and the corresponding estimated p-values. This
program, as well as a similar program for testing a GARCH(1,1) against a
GARCH(p,1) has been used for the numerical illustrations given in Section 8.

HEHHA R R R R R
# testing a GARCH(1,1) against a GARCH(1l,q) # # epsO
contains the series of the returns # # omega0O, alphaO[l:q] and

beta0 are initial values for the parameter #

HEHHA A R R R
GARCH11.GARCH1q <- function(omega0,alphal,betal,eps0,N=5000){
g<-length(alpha0); n<-length(eps0)
garchlg<-estimgarchlq(omegaO,alpha0l,betal,eps0)

theta<-garchliq$theta # estimated GARCH(1l,q) parameter
garchll<-estimgarchll(theta[1],theta[2],thetalq+2],eps0,q)
thetagarchll<-garchli$theta # estimated GARCH(1,1) parameter
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LRn<-n*(garch11$ln-garchlq$ln) # standard LR statistic if (LRn<0){
omegainit<-thetagarchi1[1]
alphainit<-c(thetagarch11[2],rep(0,q-1)) betainit<-thetagarchll[3]
garchlg<-estimgarchlq(omegainit,alphainit,betainit,eps0)
theta<-garchiq$theta LRn<-n*(garch11$ln-garchiq$ln)
}
theta2<-as.vector(theta[3:(q+1)])
K<-cbind(rep(0, (q-1)),rep(0, (q-1)) ,diag(rep(1,(q-1))),rep(0,(q-1)))
res<-MatJ(theta[1] ,thetal[2:(q+1)],thetal[q+2],epsO)
omegacont<-thetagarch11[1]
alphacont<-c(thetagarch11[2],rep(0,q-1)) betacont<-thetagarch11[3]
cont<-MatJ(omegacont,alphacont,betacont,eps0)
LRn<-2*LRn/(cont$kappa-1) # modified LR statistic
Jcontinv<-try(solve(cont$Jmat) ,silent=TRUE) if(is.matrix(Jcontinv)){
Rn<-as.numeric (n*t (cont$score) )*%Icontinvy*),cont$score/ (cont$kappa-1) )}
# score statistic
Jmatinv<-try(solve(res$Jmat) ,silent=TRUE)
if (is.matrix(Jmatinv))dum<-K¥%*%JImatinvi*y%t (K)
duminv<-try(solve (dum),silent=TRUE)
if (is.matrix(duminv))Omega<-t (K)%*/duminvy*%K/ (res$kappa-1)
Wn<-0
if (is.matrix(duminv)){
Wn<-as.numeric (n*t (theta?2)%*%duminvy*theta2/ (res$kappa-1))# Wald statistic
if (is.matrix(Jmatinv))pval<-est.pval (Wn,LRn,res$kappa,res$Jmat,Jmatinv,Omega,N)
pvalR<-1-pchisq(Rn,df=q-1) list(theta=theta,Wn=Wn,LRn=LRn,Rn=Rn,
pvalW=pval$pvalW,pvallLR=pval$pvallR,pvalR=pvalR) }
prfss s i i s e e S s s S s S s s s e s e s e s e s T e s
# estimation of the information matrix J and of the kurtosis kappa #
of the noise in the GARCH(1,q) case MatJ <-
function(omega,alpha,beta,eps) { g<-length(alpha); n <-
length(eps) sigma2<-as.numeric(n)
dersigma2<-matrix(nrow=(q+2) ,ncol=n) score<-as.vector(rep(0,(q+2)))
Jmat<-matrix(0,nrow=(q+2) ,ncol=(q+2)) sigma2[1l:ql<-eps[l:q]~2
dersigma2[1:(q+2),1:q]<-0 for (t in (q+1):n){
sigma2[t]<-omega+sum(alphal[l:q]l*(eps[(t-1):(t-q)]1~2))+beta*sigma2[t-1]
dersigma2[1:(q+2),t1<- {c(1l,eps[(t-1):(t-q)]1~2,sigma2[t-1])
+betaxdersigma2[1: (q+2), (t-1)1}
score<-score+(l-eps[t]~2/sigma2[t])*dersigma2[1:(q+2),t]/sigma2[t]
Jmat<-Jmat+(dersigma2[1:(q+2),t]/sigma2[t]) %%t (dersigma2[1: (q+2),t]/sigma2[t])
}
score<-score/(n-q)
Jmat<-Jmat/(n-q)
kappa<-mean((eps[(g+1):n]~4)/(sigma2[(g+1):n]"2))
list(score=score, Jnat=Jmat,kappa=kappa) ¥
frf s s i i s e s S s s s s S s s s e s e s e e e s T e T
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# estimation of a GARCH(1l,q) model

objfgarchlq.qml <- function(x, eps){

g<-length(x)-2; omega <- x[1]; alpha <- x[2:(q+1)]; beta <- x[qg+2]

n <- length(eps); sigma2<-as.numeric(n); sigma2[1:ql<-eps[1:q]~2

for (t in (q+1):n) sigma2[t]<-{omegatsum(alphall:ql*(eps[(t-1):(t-q)]1"2))

+betaxsigma2[t-1]13}

gml <- mean(log(sigma2[(q+1):n])+eps[(g+1) :n]l**2/sigma2[(q+1):n]); qml
}

estimgarchlq<- function(omega0,alphaO,betal,epsO,petit=1e-8) {

valinit<-c(omega0,alphal,betal); g<-length(alphal)

res<-nlminb(valinit,objfgarchlq.qml,

lower=c(petit,rep(0,q),0) ,upper=c(rep(Inf,q+l),1),eps=eps0)

list(theta=res$par,ln=res$objective) }

HHHHHAHAH AR R R R R R R R R

# Based on N simulations,

est.pval (Wn,LRn,kappa,Jmat,Jmatinv,Omega,N) # approximates the

p-values pWal and pLR of the Wald and LR tests # of the null H_O:

GARCH(1,1) against H_O: GARCH(1,q)

objf.lambda <- function(x, Z, J)t(x-Z)%*%JI%*%(x-Z)

lambda<- function(Z,J){

g<-length(Z)-2; valinit<-c(Z[1:2],pmax(Z[3:(q+1)]1,0),Z[g+2])

res<-nlminb(valinit,objf.lambda,

lower=c(-Inf,-Inf,rep(0,q-1),-Inf) ,upper=rep(Inf,q+2),Z=Z,J=J)

res$par } simul.W <- function(i,Jmat,mu,Jsim,Omega) {
Z<-mvrnorm(mu=mu,Sigma=Jsim) lamb<-lambda(Z,Jmat)
t (Lamb) %,*%0megay,*%lamb }

est.pval <- function(Wn,LRn,kappa,Jmat,Jmatinv,Omega,N) {
g<-length(Jmat[1,])-2 mu<-rep(0, (q+2)) Jsim<-(kappa-1)*Jmatinv
vector.W<-sapply(1:N,simul.W,Jmat=Jmat ,mu=mu, Jsim=Jsim,Omega=0Omega)
pvalW<-length(which(vector.W>Wn))/N
pvallLR<-length(which(vector.W>LRn))/N
list(pvalW=pvalW,pvallLR=pvallR) }

O.1 Numerical experiments

In this section, we investigate the finite-sample properties of the tests for
conditional homoscedasticity studied in this paper. First we generate N =
5,000 replications of samples of iid variables of size n = 100, 500 and 5, 000,
for different distributions. The tests are designed for an ARCH(2) alternative.
For n = 5,000 the relative rejection frequencies, presented in Table 5, are
almost always within the 0.05 significant limits 4.38% and 5.62%. For smaller
sample sizes, and non-gaussian distributions, the type I error is not perfectly
well controlled by the Wald test. Deviations can also be noticed for the Rao
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Table 5: Empirical size (in %) of the Wald, score, QLR and LK tests for conditional
homoscedasticity. The tests are based on an ARCH(2) model. The number of replications
is N = 5000, the critical values are adjusted to obtain 5% relative rejection frequency
when the observations are iid gaussian, the DGP is an independent sequence, distributed
as the A(0,1) (N), the Student ¢ with v = 8 degrees of freedom (Sts), the uniform ()
on (—1/2,1/2), or the exponential distribution(&) of density f(z) =e " 1zs_1y .

n = 100 n = 500 n = 5000
W, R, L, LK, W, R, L, LK, W, R, L, LK,
N 438 4.40 4.44 4.96 5.36 4.30 5.22 4.86 4.70 4.86 4.90 4.84
Sts  6.46 4.56 5.46 4.76 5.98 492 4.76 4.86 5.96 4.76 4.70 4.98
U 420 6.84 6.10 4.88 4.22 5.62 5.22 3.94 4.54 5.10 5.20 4.66
& 6.30 4.94 4.98 4.68 6.66 6.22 3.98 5.32 6.74 4.92 4.42 5.48

and QLR tests for the uniform and exponential distributions but, even for
n = 100, the sizes are never very far from the theoretical 5%.

We now turn to the power of those tests against local deviations from the
null hypothesis. The results are presented in Table 6 and, for ease of reading,
the highest rejection frequencies are written in bold for each experiment. In
the upper part of the table, the DGP is an ARCH(q) with ¢ = 1,2,3 and
a; = -+ = oy > 0. The conclusion drawn from the comparison of the local
asymptotic powers remains valid for these simulation experiments. The Rao
test is clearly dominated by the three other ones, whatever the sample size.
For ¢ = 1, the local asymptotic powers of the Wald, QLR and LK tests
are equal (by Propositions 4 and 7, these tests are locally asymptotically
uniformly most powerful), and are very close for n = 500 and n = 5,000,
with a slight advantage to the QLR test. This advantage can also be noticed
for ¢ = 3. For ¢ = 2 the asymptotic superiority of the one-sided LK test is
reflected in finite samples. However, when the alternative is not symmetric
in the ARCH coefficients, as it is the case in the lower part of Table 6, the LK
test can be much less powerful than its competitors, both asymptotically and
in finite samples. For this reason it cannot be recommended to practitioners.

P Illustrative example

We now consider an application to the daily returns of the French CAC40 and
the Standard & Poor’s 500 indexes. The presence of GARCH in these series
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Table 6: Empirical power (in %) of the Wald, score, QLR and LK tests for conditional
homoscedasticity. The number of replications is N = 5000, the critical values are adjusted
to obtain 5% relative rejection frequency when the observations are iid gaussian, the DGP

is an ARCH(q) with gaussian innovations.

Q= =Qq= 1.5n~1/2
q n = 500 n = 5000 n =00
W, R, L, LK, W, R, L, LK, W, R, L, LK,
1 40.0 30.0 40.4 39.1 42.4 32.2 43.0 42.3 44.2 32.3 44.2 44.2
2 586 45.1 59.1 59.5 63.6 46.5 63.7 66.3 61.9 46.0 61.9 68.3

3 734 57.0 76.3 T4.1 81.1 57.8 81.3 81.1 747 572 747 83.0
—1/2

ap=--=0aq-1=0, ag =ql.5n
q n = 500 n = 5000 n = 00
W, R, L, LK, W, R, L, LK, W, R, L, LK,
79.4 62.7 73.1 55.2 85.9 73.0 81.3 64.8 85.1 77.1 85.1 68.3
3 93.7 8.0 &89.5 65.9 97.4 944 952 785 99.0 97.7 99.0 83.0

[\

has been documented by many empirical studies. Our aim in this section is
to compare the abilities of the various tests considered in this paper to detect
the ARCH effect. As the sample size n increases, the p-values of the tests
are expected to decrease. Assuming that the series is indeed a GARCH, the
way those p values decrease to zero is an indication of the performances of
the tests in finite sample.

The CAC data range from January 2, 2004 to December 29, 2006. The
total length of the series is 771 but the sample size used for the tests ranges
from n = 400 to n = 600. In the first experiment, the tests considered are
the score and LK tests for conditional homoscedasticity, the ARCH order
varying from ¢ = 1 to ¢ = 9. For each sample size n, a set of 201 p-values
are computed based on the observations X, q,..., X,4,, for 7 =0,...,201.
Figure 3 displays the averages of these p-values, for the score (left panel) and
LK tests (right panel). Clearly, the tests based on ¢ = 1 are dominated by the
tests based on higher-order ARCH models. For n = 600 the average p-values
are very small, except in the case ¢ = 1. For the score test, the values of ¢ > 1
lead to similar results, but this is less true for the LK test. Now for a given ¢,
the LK test has better performances than the score test, in the sense that it
is able to detect the ARCH effect more rapidly as n increases. The S&P500
data range from January 2, 2003 to December 29, 2006. The total length of
the series is 1007. The sample size used for the tests ranges from n = 800 to
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Figure 3: Average p-values of the score (left panel) and LK tests (right panel) for
conditional homoscedasticity, in ARCH(g) models for ¢ = 1,...,9, in function of
the sample size n, for the CAC40 index.

n = 950. Figure 4 plots the averages of the p-values of the Wald, score, QLR
and LK conditional homoscedasticity tests, in the ARCH(2) model, for the
CAC40 (left panel) and S&P500 (right panel). In both cases (i) the results
for the QLR and Wald tests are similar, and (ii) the score test requires larger
sample sizes to detect conditional heteroscedasticity. Looking at the results
for the LK tests, the conclusions are opposite for the two series. For the
CAC, this test does a better job than the three others, but for the S&P500,
it is much less efficient than the Wald-QLR and is similar to the score.

29



CAC 40 SP 500

& g
e o
8 g
© o
<
3 S |
© =}
g - g -
o I I I I I o I I I I I
460 480 500 520 540 860 880 900 920 940
n n

Figure 4: Average p-values of the Wald, score, QLR and LK conditional ho-
moscedasticity tests for the CAC40 (left panel) and SP500 (right panel) .
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