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Abstract

In this work we present an analysis of CDO pricing models with a focus on
“correlation skew models”. These models are extensions of the classic sin-
gle factor Gaussian copula and may generate a skew. We consider examples
with fat tailed distributions, stochastic and local correlation which generally
provide a closer fit to market quotes. We present an additional variation of
the stochastic correlation framework using normal inverse Gaussian distri-
butions. The numerical analysis is carried out using a large homogeneous
portfolio approximation.

Keywords and phrases: default risks, CDOs, index tranches, factor
model, copula, correlation skew, stochastic correlation.
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Chapter 1

Introduction

The credit derivatives market has grown quickly during the past ten years,
reaching more than US$ 17 trillion notional value of contracts outstanding
in 2006 (with a 105% growth during the last year) according to International
Swaps and Derivatives Association (ISDA)1. The rapid development has
brought market liquidity and improved the standardisation within the mar-
ket. This market has evolved with collateralised debt obligation (CDOs) and
recently, the synthetic CDOs market has seen the development of tranched
index trades. CDOs have been typically priced under reduced form models,
through the use of copula functions. The model generally regarded as a mar-
ket standard, or the “Black-Scholes formula” for CDOs, is considered to be
the Gaussian copula (as in the famous paper by Li [36]). Along with market
growth, we have seen the evolution of pricing models and techniques used by
practitioners and academics, to price structured credit derivatives. A general
introduction on CDOs and pricing models is given in §2. In §3.1 we describe
and attempt to explain the existence of the so called “correlation skew”. An-
other standard market practice considered here is the base correlation. The
core part of this work concentrates on the analysis of the extensions of the
base model (i.e. single factor Gaussian copula under the large homogeneous
portfolio approximation). These extensions have been proposed during the
last few years and attempt to solve the correlation skew problem and thus
produce a good fit for the market quotes. Amongst these model extensions,
in §4 we use fat-tailed distributions (e.g. normal inverse Gaussian (NIG) and
α-stable distributions), stochastic correlation and local correlation models
to price the DJ iTraxx index. In addition to these approaches, we propose
the “stochastic correlation NIG”, which represents a new variation of the
stochastic correlation model. In particular we use the normal inverse Gaus-

1Source: Risk May 2006, pg. 32.
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sian distributions instead of standard Gaussian distributions to model the
common factor and the idiosyncratic factor. We conclude our analysis in §5
with the numerical results and a comparison of the different models. All the
models produce a better fit than the base model, although different levels of
goodness have been registered. The best performance in term of fit has been
assigned to our proposed model, i.e. the stochastic correlation NIG.
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Chapter 2

CDOs pricing

In this chapter, after a quick introduction to CDOs and the standardised
tranche indices actively traded in the market, we present the most famous
approaches, such as copula functions and factor models, used to price struc-
tured credit derivatives.

2.1 CDO tranches and indices: iTraxx, CDX

CDOs allow, through a securitisation technique, the repackaging of a port-
folio credit risk into tranches with varying seniority. During the life of the
transaction the resulting losses affect first the so called “equity” piece and
then, after the equity tranche as been exhausted, the mezzanine tranches.
Further losses, due to credit events on a large number of reference entities,
are supported by senior and super senior tranches. The difference between
a cash and synthetic CDO relies on the underlying portfolios. While in the
former we securitise a portfolio of bonds, asset-backed securities or loans, in
the latter kind of deals the exposition is obtained synthetically, i.e. through
credit default swaps (CDS) or other credit derivatives. The possibility of
spread arbitrage1, financial institutions’ need to transfer credit risk to free
up regulatory capital (according to Basel II capital requirements), and the
opportunity to invest in portfolio risk tranches have boosted the market. In
particular it has been very appealing for a wide range of investors who, hav-
ing different risk-return profiles2, can invest in a specific part of CDO capital

1An common arbitrage opportunity exists when the total amount of credit protection
premiums received on a portfolio of, e.g., CDS is higher than the premiums required by
the CDO tranches investors.

2From e.g. risk taking hedge funds, typically more interested in equity/mezzanine
tranches to e.g pension funds willing to take exposure on the senior tranches.
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structure. Clearly, CDO investors are exposed to a so called “default correla-
tion risk” or more precisely to the co-dependence of the underlying reference
entities’ defaults3. This exposure varies amongst the different parts of the
capital structure: e.g. while an equity investor would benefit from a higher
correlation, the loss probability on the first loss piece being lower if correla-
tion increases, a senior investor will be penalised if the correlation grows, as
the probability of having extreme co-movements will be higher.

CDO tranches are defined using the definition of attachment KA and de-
tachment points KD as, respectively, the lower and upper bound of a tranche.
They are generally expressed as a percentage of the portfolio and determine
the tranche size. The credit enhancement of each tranche is then given by
the attachment point. For convenience we define the following variables:

• n- the number of reference entities included in the collateral portfolio
(i.e. number of CDS in a synthetic CDO);

• Ai- the nominal amount for the i − th reference entity;

• δi- the recovery rate for the i − th reference entity;

• T - the maturity;

• N - the number of periods or payment dates (typically the number of
quarters);

• B(0, t)- the price of a risk free discount bond maturing at t;

• τi- the default time for the i − th reference entity;

• sBE- the break-even premium in basis point per period (i.e. spread).

The aggregate loss at time t is given by:

L(t) =
n
∑

i=1

Ai(1 − δi)1{τi≤t}, (2.1)

assuming a fixed recovery rate δ, notional equal to 1 and the same exposure
to each reference entity in the portfolio Ai = A = 1

N
, the loss can be written

3The concept of dependence is more extensive than the concept of correlation generally
used by practitioners. As reported by e.g. Mashal and Zeevi [39], the dependence can be
measured by correlation, and the two concepts can converge when we refer to elliptical
distributions (i.e. using Gaussian copula to model the joint defaults distribution), but in
general correlation is not enough to measure co-dependence, e.g. Student t-distribution
requires the specification of the degrees of freedom.
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as follows:

L(t) =
1

N
(1 − δ)

n
∑

i=1

1{τi≤t}, (2.2)

For every tranche, given the total portfolio loss in 2.2, the cumulative
tranche loss is given by:

L[KA,KD](t) = max {min[L(t), KD] − KA, 0}. (2.3)

The so called “protection leg”, which covers the losses affecting the spe-
cific tranche and is paid out to the protection buyer, given the following
payment dates

0 = t0 < t1 < . . . < tN−1 < tN = T

can be calculated taking the expectation with respect to the risk neutral
probability measure:

ProtLeg[KA,KD] = E

[

N
∑

j=1

(

L[KA,KD](tj) − L[KA,KD](tj−1)
)

B(t0, tj)

]

, (2.4)

Similarly, assuming a continuous time payment, the protection leg can be
written as follows:

ProtLeg[KA,KD] = E

[∫ T

t0

B(t0, s)dL[KA,KD](s)

]

. (2.5)

On the other hand, the so called “premium leg” is generally paid quarterly
in arrears4 to the protection seller and can be expressed as follows:

PremLeg[KA,KD] = E

[

N
∑

j=1

sBE × ∆tj (min {max[KD − L(tj), 0], KD − KA}) B(t0, tj)

]

.

(2.6)

The fair sBE can be easily calculated by:

sBE =
E

[

∫ T

t0
B(t0, s)dL[KA,KD](s)

]

E

[

∑N

j=1 ∆tj (min {max[KD − L(tj), 0], KD − KA}) B(t0, tj)
] .

4This is generally not true for junior tranches for which, together with a quarterly
premium, an amount upfront can be paid.
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In order to price a CDO it is then central to calculate the cumulative
portfolio loss distribution necessary to evaluate the protection and premium
legs. In the sequel, the loss distribution will be analysed comparing some
of the most popular approaches proposed by academics and practitioners,
having as a primary goal the fitting of the prices quoted by the market.

Traded indices

As already mentioned, one of the most effective innovations in this market
has been the growth of standardised and now liquid index tranches such as
DJ iTraxx and DJ CDX. These indices allow investors to long/short single
tranches, bet on their view on correlation, hedge correlation risk in a book of
credit risks and infer information from the market, computing the correlation
implied by the quotes.

Tranche Rating† Premium (bp)

Super senior (22-100%) Unrated (Unquoted)
Super senior (junior) (12-22%) AAA 4

Senior (9-12%) AAA 9
Mezzanine (senior) (6-9%) AAA 18
Mezzanine (junior) (3-6%) BBB 63

Equity (0-3%) N.A. 24%‡

Figure 2.1: DJ iTraxx standard capital structure and prices in basis pints
(bp) at 13 April 2006.
Source: CDO-CDS Update: Nomura Fixed Income Research, 4/24/2006.
†These are not official ratings, but only an assessment of the creditworthiness
of iTraxx index tranches provided by Fitch, for further information see
http://www.fitchcdx.com.
‡ For the equity tranche an upfront premium plus 500 bp running spread is
usually quoted.

These indices are build according to the following rules5:

• they are composed of 125 European (US for the DJ CDX IG) equally
weighted investment grade firms;

• transparent trading mechanics and standard maturities;

5A complete list of the rules and criteria can be found at http://www.indexco.com.
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• standardised credit events definitions and ISDA based documentation;

• cross sector index including entities from auto, consumer, energy, in-
dustrial, TMT and financial sectors;

• the most liquid entities with the highest CDS trading volume, as mea-
sured over the previous 6 months, are chosen for the index composition;

• the index composition is periodically revisited, every new series shares
the majority of its names with the previous series.

2.2 Pricing Models overview

In credit models two main approaches have been used:

• Structural models, based on option theory, were introduced by Merton
[41] and further developed by e.g. Black and Cox [11], Leland and Toft
[35]. Under this approach a default occurs when the value of the firm’s
assets drops below the face value of the debt (i.e. strike price), thus
considering the stock being a call option on the company’s value.

• Reduced form approach attempts to model the time of the default itself
through the use of an exogenously given intensity process (i.e. jump
process), see e.g. Jarrow and Turnbull [32], Lando[34], Duffie [19],
Hughston and Turnbull [28]. Within the reduced form models, the
incomplete information approach , see Brody et al. [13] focuses on the
modelling of the information available in the market.

In this work we use the intensity based approach. We briefly introduce
the main assumptions on which the following is based. Given a standard fil-
tered probability space (Ω,F , P, {Ft)}, we assume the existence of a pricing
kernel and the absence of arbitrage to guarantee the existence of a unique
risk-neutral probability measure P. Under this framework, non-dividend pay-
ing assets (default-free) are martingales if discounted at the risk-free rate.
The existence of such a risk neutral probability measure allows to price our
bonds or credit derivatives correctly, without the stronger market complete-
ness assumption which would be required in order to hedge the securities.
In addition, in order to simplify the exposition and focus on the credit risk
modelling, we assume a flat interest rate structure, fixed recovery rates and
independence between default probabilities, interest rate curve and recovery
rates.
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In general, pricing a CDO requires us to model both the risk neutral
default probabilities for each name in the portfolio and the joint default dis-
tribution of defaults. The risk neutral default probabilities can be calculated
following the popular practice of bootstrapping from CDS premiums. Here
we summarise the main steps. For a complete exposition we refer to, e.g.,
Bluhm et al.[12], Li [36, 37], Schönbucher[49] or Lando [34]. Given the stan-
dard probability space defined above, we consider the {Ft)-stopping time τi

to model the default of the i − th obligor in a portfolio, the default proba-
bility distribution is given by Fi(t) = P{τi < t} and the probability density
distribution is fi(t). We define the “hazard rate” or “intensity” as follows:

λi(t) =
fi(t)

1 − Fi(t)
. (2.7)

From 2.7 the following O.D.E. can be obtained:

λi(t) = −dln(1 − Fi(t))

dt
, (2.8)

and, solving the O.D.E., an expression for the default probability distribution
follows:

Fi(t) = 1 − e−
❘ t

0 λi(s)ds. (2.9)

We make a further step defining τi as the first jump of an inhomogeneous
Poisson6 process N(t) with parameter Λ(T ) − Λ(t) =

∫ T

t
λi(s)ds, then:

P{NT − Nt = k} =
1

k!

(∫ T

t

λi(s)ds

)k

e−
❘ T

t
λi(s)ds. (2.10)

In fact, using the fact that P{Nt = 0} = e−
❘ T

t
λi(s)ds, the survival probability

for the i − th obligor can be written, similarly to 2.9, as follows:

1 − Fi(t) = e−
❘ T

t
λi(s)ds. (2.11)

Once the hazard rate7 λi(t) has been defined, it is straightforward to boot-
strap the default probabilities, e.g. a standard practice is to use a piecewise
constant hazard rate curve and fit it with the CDS quotes.

In the sequel we assume that risk neutral default probabilities have been
calculated for all names in the underlying reference portfolio.

6In addition an inhomogeneous Poisson process with λi(t) > 0 is characterised by
independent increments and N0 = 0.

7For the general case of a Cox process with stochastic intensity see [34] or [49] pg. 123.
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2.2.1 Copulas

Copulas are a particularly useful class of function, since they provide a flexible
way to study multivariate distributions. Li [36] was certainly amongst the
first to introduce these functions in credit derivatives modelling because of
the copulas’ characteristic of linking the univariate marginal distributions
to a full multivariate distribution. We present here the definition and an
important result regarding copulas. For a full presentation of the argument
please refer to e.g. Cherubini et al. [18].

Definition 1 (Copula) A n-dimensional copula is a joint cdf C : [0, 1]n →
[0, 1] of a vector u of uniform U(0, 1) random variables:

C(u1, u2, . . . , un) = P(U1 < u1, U2 < u2, . . . , Un < un), (2.12)

where ui ∈ [0, 1], i = 1, 2, . . . , n.

Theorem 1 (Sklar theorem) Given H(x1, x2, . . . , xn) the joint distribu-
tion function with marginals FX1(x1), FX2(x2), . . . , FXn

(xn), then there exists
a copula C(u1, u2, . . . , un) such that:

H(x1, x2, . . . , xn) = C(fX1(x1), fX2(x2), . . . , fXn
(xn)). (2.13)

Furthermore the copula C is given by:

C(u1, u2, . . . , un) = H(F−1
1 (u1), F

−1
2 (u2), . . . , F

−1
n (un)). (2.14)

In particular, if the Fi, i = 1, 2, . . . , n, are continuous, then C is unique.

One of the most used copulas in financial applications is certainly the stan-
dard Gaussian copula. We give here the definition and describe how it can
be used to model joint default distributions.

Definition 2 (Standard Gaussian copula) The standard Gaussian cop-
ula function is given by :

CG
Σ (u1, u2, . . . , un) = ΦΣ

n (Φ−1(u1), Φ
−1(u2), . . . , Φ

−1(un)), (2.15)

where ΦΣ
n is a n variate Gaussian joint distribution function, Σ is a correla-

tion matrix and Φ in a standard Gaussian distribution function.
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Using the arguments in §2.2, for the i − th, i = 1, 2, . . . , n name in the
portfolio, a default threshold8 can be found:

P{1 − Fi(t) = e−
❘ T

t
λi(s)ds} < Ui. (2.16)

Ui being a uniform U(0, 1) random variable9.
It is then possible to build a joint default time distribution from the

marginal distributions Fi(t) = P{τi < t} as follows:

P{τ1 ≤ t, τ2 ≤ t, . . . , τn ≤ t} = CG
Σ (F1(t), F2(t), . . . , Fn(t))

= ΦΣ
n

(

Φ−1(F1(t)), Φ
−1(F2(t)), . . . , Φ

−1(Fn(t))
)

. (2.18)

Using the results in 2.16 and 2.18, a Monte Carlo simulation algorithm
can be used to find the joint default time distribution:

• sample a vector z of correlated Gaussian random variables with corre-
lation matrix Σ10;

• generate a vector of uniform random variable u = Φ(z);

• for every i = 1, 2, . . . , n and time t, we have a default if τi = F−1
i (ui) <

t;

• evaluate the joint default distribution;

• repeat these steps for the required number of simulations.

Credit derivatives can now be priced since the cumulative portfolio loss
distribution follows from the joint default distribution calculated according
to the previous algorithm.

8Note that this approach is based on the simple idea of a default event modelled by a
company process falling below a certain barrier as stated in the original Merton structural
model [41]

9Using that F (t) is a distribution function then

P{F (t) < t} = P{F−1(F (t)) < F−1(t)} = P{t < F−1(t)} = F (F−1(t)) = t

(2.17)

it follows that F (t) is a uniform U(0, 1) random variable and so is 1 − F (t).
10Given a vector v of independent Gaussian random variables and using an appropriate

decomposition, e.g. Cholesky, of Σ = CCT , a vector of correlated Gaussian random
variables is given by z = vC.
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A number of alternative copulas such as, e.g. Student t, Archimedean,
Marshall-Olkin copulas have been widely studied and applied to credit deriva-
tives pricing with various results, see e.g. Galiani [24], Schönbucher[47, 49],
Chaplin [17] for a complete description.

We conclude this section recalling that the algorithm described above can
be particularly slow when applied to basket credit derivatives11 pricing, hedg-
ing or calibration. In the following sections we describe another approach to
overcome the main limitations described above.

2.2.2 Factor models

In this section we present a general framework for factor models. The idea
behind factor models is to assume that all the names are influenced by the
same sources of uncertainty. For simplicity we will use a so called single factor
model, i.e. there is only one common variable influencing the dynamics of the
security, the other influences are idiosyncratic. Factor models have widely
been applied by many authors12 to credit derivatives modelling for essentially
two reasons:

• factor models represent an intuitive framework and allow fast calcula-
tion of the loss distribution function without the need to use a Monte
Carlo simulation;

• there is no need to model the full correlation matrix, which represents a
challenging issue, since default correlation is very difficult to estimate,
i.e. joint defaults are particulary uncommon and there is generally a
lack of data for a reliable statistic, and CDS spread correlation or equity
correlation13 can only be assumed as a proxy of default correlation,
these quantities being influenced by other forces, e.g. liquidity.

Factor models can then be used to describe the dependency structure
amongst credits using a so called “credit-vs-common factors” analysis rather
than a pairwise analysis.

An example of factor model is given by the following expression:

Vi =
√

ρY +
√

1 − ρǫi, (2.19)

11Synthetic CDOs or indices have generally more than 100 reference entities and defaults
are “rare events” especially when the portfolio is composed of investment grade obligors.
A large number of simulation is then needed for reliable results.

12See e.g. Laurent and Gregory [?], Andersen et al. [3], Finger [22], Hull and White
[30], Schönbucher [46] or Galiani et al. [25].

13Moreover the analysis is complicated by the fact that, given e.g. the index iTraxx
Europe, it is necessary to estimate N(N − 1) 1

2
= 7750 pairwise correlations.
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where Vi is a individual risk process and Y, ǫi, i = 1, 2, . . . , n are i.i.d. Φ(0, 1).
We note that, conditioning on the systemic factor Y , the Vi are pairwise
independent. Moreover, the random variables Y and ǫi being independent,
it follows that Vi is Φ(0, 1). It is then possible to calculate the correlation
between each pair as follows:

Corr [Vi, Vj] = E [Vi, Vj] = E[
√

ρY +
√

(1 − ρ)ǫi,
√

ρY +
√

(1 − ρ)ǫj]

= ρE[Y 2] = ρ.

For each individual obligor we can calculate the probability of a default
happening before maturity t, P{τi ≤ t}, as the probability that the value of
the company Vi falls below a certain threshold ki:

P {Vi ≤ ki} = P

{√
ρY +

√

1 − ρǫi ≤ ki

}

= P

{

ǫi ≤
ki −√

ρY√
1 − ρ

}

= Φ

[

ki −√
ρY√

1 − ρ

]

.

The value of the barrier ki can be easily calculated following the theory
presented in §2.2. Assuming that the time of default τi is the time of the first
jump of an inhomogeneous Poisson process N(t) and using the survival prob-
ability found in the equation 2.11, the probability of default for a single name
is then given by P{τi ≤ t} = 1 − e

❘ t

0 λi(s)ds = Fi(t) = P{Vi ≤ ki} = Φ(ki).
The value of the barrier14 can then be written as follows: ki = Φ−1(Fi(t)).

Using the tower property of conditional expectation we can calculate the
probability of default with the following expression:

P {Vi ≤ ki} = E[1{Vi≤ki}] = E
[

E
[

1{Vi≤ki}|Y = y
]]

= E

[

P

{

ǫi ≤
ki −√

ρy√
1 − ρ

∣

∣

∣
Y = y

}]

= E

[

Φ

[

ki −√
ρy√

1 − ρ

]]

=

∫ ∞

−∞
Φ

[

ki −√
ρy√

1 − ρ

]

dFY (y). (2.20)

14In the sequel, for ease of notation, the time dependence in ki is often omitted.
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Furthermore, using that, conditioning on Y the defaults of the underlyings
are independent, the loss distribution for a sequence of names is given by:

P{τ1 ≤ t, τ2 ≤ t, . . . , τn ≤ t} = E[E[1{τ1≤t,τ2≤t,...,τn≤t}|Y = y]]

= E[E[1{τ1≤t}|Y = y]E[1{τ2≤t}|Y = y] . . . E[1{τn≤t}|Y = y]]

= E

[

n
∏

i=1

pi(t|Y )
]

=

∫ ∞

−∞

n
∏

i=1

pi(t|y)dFY (y). (2.21)

where pi(t|y) = Φ
[

ki−
√

ρy√
1−ρ

]

.

The expression in 2.21, similarly to the definitions presented in §2.2.1
represents the so called “one-factor Gaussian copula”:

CG
ρ =

∫ ∞

−∞

n
∏

i=1

pi(t|y)dFY (y). (2.22)

2.2.3 Homogeneous portfolios and large homogeneous
portfolios

The framework described in the previous sections can be easily used to price
CDOs making further assumptions on the nature of the underlying obligors.
We consider here two main approximations: homogeneous portfolios(HP),
i.e. the portfolio consists of identical obligors, and large homogeneous port-
folios(LHP), under which the number of obligors is very large n→∞. Under
the homogeneous portfolios approximation we use same recovery rate15 δ

and default probability p for every name, the loss given default would also
be identical for all the entities in the portfolio. Using the conditional de-

fault probability pi(t|y) = Φ
[

ki−
√

ρy√
1−ρ

]

and the fact that, conditional upon the

common factor Y the defaults in the portfolio are independent events, it is
possible to write the following formula for P {L = i(1 − δ)}:

P {L = i(1 − δ)} =

∫ ∞

−∞

(

n

i

)

p(t|y)i(1 − p(t|y))n−idFY (y). (2.23)

15Using constant recovery rate is a very strong assumption and implies that the maxi-
mum portfolio loss is 100(1−δ)%. As will be clear in the sequel it has an impact particularly
on the pricing of senior tranches. A way to overcome this problem is to use stochastic
recovery rates, see e.g. [3], [45].
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where the number of defaults (conditioning on Y ) follows a binomial distri-
bution BIN (n, p(t|y)).

The equation 2.23 can be easily solved numerically using e.g. Simpson’s
rule or another numerical integration technique. An expression for the dis-
tribution of the aggregate loss GL is then given by:

GL(i(1 − δ)) = P{L ≤ i(1 − δ) =
i
∑

m=0

P{L = m(1 − δ)} (2.24)

The large homogeneous portfolios approximation allows us to express the
loss distribution function in a closed form, given that for a large portfolio the
latent variable has a strong influence. This result, firstly proved by Vasicek
[52], states that as n −→ ∞, by the law of large numbers, the fraction of
defaulted credits in the portfolio converges to the individual default proba-
bility:

P

{

∣

∣

∣

L

n
− p(t|y)

∣

∣

∣
> ε
∣

∣

∣
Y = y

}

→0, (2.25)

∀ε > 0 and n→∞.
Assuming for simplicity zero recoveries and that L, conditioning on Y ,

follows a Binomial distribution, we can immediately write down the mean
and variance as follows:

E[L|Y = y] = np(t|y),

and

Var[L|Y = y] = np(t|y)(1 − p(t|y)).

It is then possible to calculate:

E
[

L
n
|Y = y

]

= p(t|y),

and

Var
[

L
n
|Y = y

]

= 1
n
p(t|y)(1 − p(t|y)).

Since, as n→∞, Var
[

L
n
|Y = y

]

→0, given Y = y, it follows that

L
n

converges to its mean.
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Using this result, i.e. L
n(1−δ)

−→ p(t|y), given any x ∈ [0, 1], an expression

for the loss distribution function G(x) can be calculated as follows:

G(x) = P {pi(t|Y ) ≤ x}

= P

{

Φ

[

ki −√
ρY√

1 − ρ

]

≤ x

}

= P

{

ki −√
ρY√

1 − ρ
≤ Φ−1(x)

}

= P

{

Y >
ki −

√
1 − ρΦ−1(x)√

ρ

}

= 1 − P

{

Y ≤ ki −
√

1 − ρΦ−1(x)√
ρ

}

= Φ

[√
1 − ρΦ−1(x) − ki√

ρ

]

(2.26)

2.2.4 Algorithms and fast Fourier transform for CDOs
pricing

We conclude this chapter with a quick overview of two amongst the most
popular techniques used to price CDOs when the idealised LHP or HP as-
sumptions don’t hold, i.e. the underlying obligors have different default
probabilities and they are a finite number. For simplicity we will continue
to assume the same weight for each underlying name in the portfolio (which
is generally not a problem for index tranches) and the same recovery rates.
We will focus on the Hull and White stile algorithm, see [30] and on the fast
Fourier transform, see e.g. Laurent and Gregory [27] or Schönbucher [48] to
solve the problem. The first method is based on a recursive approach and
uses that, conditioning on Y = y, the default events are independent. We
present here a popular version of this algorithm.

Denoting with P (n)(i) the probability16 of having i defaults from the n

names, and with pi the default probability of the i − th company, we can
write:

P (1)(i) =

{

1 − p1 for i = 0,
p1 for i = 1.

16Where we are omitting, for ease of the notation, the dependence on time t and Y .
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P (2)(i) =







(1 − p1)(1 − p2) for i = 0,
p1(1 − p2) + p2(1 − p1) for i = 1,
p1p2 for i = 2.

Observing that P (2)(i) can be written recursively:

P (2)(i) = P (1)(i)(1 − p2) + P (1)(i − 1)p2,

and for 2 < j < n,

P (j+1)(i) = P (j)(i)(1 − pj+1) + P (j)(i − 1)pj+1.

Using the recursion it is then possible to find an expression for the con-
ditional portfolio loss P (n)(i|y).

Analogously to the method described with formula 2.23, integrating out
the latent variable Y we can recover the expression for the (unconditional)
portfolio loss:

P {L = i(1 − δ)} =

∫ ∞

−∞
P (n)(i|y)dFY (y). (2.27)

We consider here a second approach to solve this problem with the fast
Fourier transform(FFT). This approach shares with the previous one the
conditional independence assumption, i.e. conditional on the latent variable
Y , the defaults of the obligors are independent random variables. Given
this assumption and the individual loss given default (1 − δi) = li for every
name in the pool, the portfolio loss can be written as a sum of independent
random variable: Z =

∑n

i=1 li. The characteristic function, conditional on
the common factor Y , is then given by:

E
{

eiuZ|Y } = E

{

eiu
Pn

i=1 li|Y
}

= E
{

eiu(li)|Y
}

E
{

eiul2|Y
}

. . . E
{

eiuln|Y
}

. (2.28)

The characteristic function for the i − th obligor can be written as:

E
{

eiuli|Y } = eiulipi(t|y) + (1 − pi(t|y))

= 1 + [eiuli − 1]pi(t|y). (2.29)
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Inserting the characteristic function 2.29 into the 2.28 we can express the
portfolio characteristic function (conditional on Y ) as follows:

E
{

eiuZ|Y } =
n
∏

i=1

(

1 + [eiuli − 1]pi(t|y)
)

, (2.30)

and integrating out the common factor we get the unconditional charac-
teristic function:

ĥ(u) = E
{

eiuZ
}

=

∫ ∞

−∞

n
∏

i=1

(

1 + [eiuli − 1]pi(t|y)
)

dFY (y). (2.31)

The integral in 2.31 can be solved numerically by, e.g., quadrature tech-
nique or Monte Carlo simulation. Once we have found the characteristic
function of the portfolio loss ĥ(u) the density function can be found using
the fast Fourier transform17 which is a computationally efficient.

17We recall that given the Fourier transform ĥ(u), the density function h(t) is given by
1

2π

∫∞

−∞
ĥ(u)e−iutdu, see [48] for a detailed description of the inversion via FFT.
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Chapter 3

Correlation skew

In this chapter we briefly present some of the main concepts used to imply
correlation data from the market quotes. We describe implied correlation
and different tranches’ sensitivity to correlation, the correlation smile ob-
tained from market data, and we present a standard market practice used by
practitioners in correlation modelling: base correlation.

3.1 What is the correlation skew?

Although the single factor copula model, particularly in its Gaussian version
presented in §2, is in general not able to match the market quotes directly,
it has become a market standard for index tranches pricing. Amongst the
limitations1 of this model that can explain its partial failure, there is cer-
tainly the fact that Gaussian copula has light tails and this has an important
impact on the model’s ability to fit market quotes, defaults being rare events.
To overcome this restriction it is enough to modify the correlation parameter
into the single factor model: other things being equal, increasing the cor-
relation parameter leads to an increase of the probability in the tails, thus
leading to either very few or a very large number of defaults. The new loss
distributions, generated by varying the correlation parameter, are able to
fit the market quotes obtaining the so called “implied correlation” or “com-
pound correlation”. Implied correlations obtained with this practice can be
interpreted as a measure of the markets view on default correlation.

Implied correlation has been widely used to communicate “tranche corre-
lation” between traders and investors using the Gaussian copula as a common

1Another consideration is due to the fact that intensity based models generally take
into account only idiosyncratic jumps, but also global jumps can be considered, see e.g.
Baxter [8].
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framework2. The possibility to observe market correlation represents a very
useful resource for dealers who can check the validity of the assumptions
used to price bespoken CDOs, non standardised tranches or other exotic
structured credit products, with the market quotes for the relevant stan-
dardised index. This practice reveals the existence of a “correlation smile”
or “correlation skew” which generally takes, as shown in the figure 3.1, the
following shape: the mezzanine tranches typically show a lower compound
correlation than equity or senior tranches, and for senior and super senior a
higher correlation is necessary than for equity tranche.

0%

10%

20%

30%

40%

50%

60%

0 3 6 9 12 15 18 21 24

Strike

Implied correlation
Base correlation

Figure 3.1: Implied correlation and base correlation for DJ iTraxx on 13 April
2006. On the X axis we report the detachment point (or strike) for each
tranche and on the Y axis the correlation level for both implied correlation
or base correlation.

2The probability distribution of portfolio losses obtained with a Gaussian copula is very
different from the one obtained with a e.g. student t-copula or a normal inverse gaussian
copula, as we analyse in §4.1. It is therefore very important to use the same model with
implied correlations.
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3.2 Analogy with the options market and ex-

planation of the skew

The existence of a correlation skew is far from being obvious: since the corre-
lation parameter associated with the model does not depend on the specific
tranche priced, we would expect an almost flat correlation. The correlation
smile can be described through an analogy with the more celebrated volatility
smile (or skew): i.e. implied volatility in the Black-Scholes model changes
for different strikes of the option. The existence of volatility skew can be
explained by two main lines of argument: the first approach is to look at the
difference between the asset’s return distribution assumed in the model and
the one implicit in the market quotes3, while the second is to consider the
general market supply and demand conditions, e.g. in a market that goes
down traders hedge their positions by buying puts.

The correlation smile can be considered in a similar way: we can find
explanations based either on the difference between the distribution assumed
by the market and the specific model, or based on general market supply and
demand factors. Within this analysis, we report three4 explanations for the
correlation smile which, we believe, can explain the phenomena.

• Although the liquidity in the market has grown consistently over the
past few years, demand and supply circumstances strongly influence
prices. Implied correlations reflect the strong interest by “yield search-
ing” investors in selling protection on some tranches. As reported by
Bank of England [10]:“the strong demand for mezzanine and senior
tranches from continental European and Asian financial institutions
may have compressed spreads relative to those of equity tranches to
levels unrepresentative of the underlying risks”. To confirm this argu-
ment we can add that banks need to sell unrated equity pieces in order
to free up regulatory capital under the new Basel II capital requirement
rules.

• segmentation among investors across tranches as reported by Amato
and Gyntelberg [2]:“different investor groups hold different views about
correlations. For instance, the views of sellers of protection on equity
tranches (e.g. hedge funds) may differ from sellers of protection on mez-
zanine tranches (e.g. banks and securities firms). However, there is no

3The Black-Scholes model assumes that equity returns are lognormally distributed
while the implicit distribution, see e.g Hull [29], has fatter lower tail and lighter upper
tail.

4See e.g. [2], [7], [40] and [51] for further details.
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compelling reason why different investor groups would systematically
hold different views about correlations.”

• the standard single-factor gaussian copula is a faulty model for the
full capital structure of CDOs index tranches. The reasons may be
found in the main assumptions of the model: i.e. the implicit default
distribution has fatter tails than the Gaussian copula, recovery rates
and default are not independent5, and recovery rates are not fixed but
could be stochastic.

3.3 Limitations of implied correlation and base

correlation

Implied correlation has been a very useful parameter to evince information
from the market: e.g. if there is a widening of the underlying index spread
and the implied correlation on the equity piece has dropped, the fair spread
of an equity tranche would most likely rise. This would be a consequence of
the fact that the market is implying an increased idiosyncratic risk on few
names which would affect the junior pieces. This would probably not affect
the rest of the capital structure.

The compound correlation is a useful tool, although it has a few problems
that limit its utility: as shown in figure 3.2, mezzanine tranches, not being
monotonic in correlation, may not have an implied correlation or they may
have multiple implied correlation6 (typically two); there are difficulties in
pricing bespoken tranches consistently with standard ones because of the
smile; and there is an instability issue with implied correlation, i.e. a small
change in the spread for mezzanine tranches would result in a big movement
of the implied correlation, as we can see in figure 3.2.

Because of these limitations, market participants have developed the so
called “base correlation”. The concept was introduced by McGinty et al.
[40] and can be defined as the correlation implied by the market on (virtual)
equity pieces 0−KD%. In its original formulation it was extracted using the
large homogeneous pool assumption. A popular7 recursion technique can be
applied to DJ iTraxx as follows:

• the first base correlation 0-3% coincides with the first equity implied
correlation;

5As reported by Altman et al. [1]:“recovery rates tend to go down just when the number
of defaults goes up in economic downturns”.

6Multiple implied correlation are problematic for hedging.)
7See e.g. [9].
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Figure 3.2: Correlation sensitivity for DJ iTraxx on 13 April 2006. On the
X axis we report the correlation parameter and on the Y axis the fair spread
value (expressed in basis points) for each tranche. For the equity tranche a
different scale for the fair spread is used, which is reported on the right hand
side. From the chart we can see that mezzanine tranches are not monotonic
in correlation.

• price the 0-6% tranche combining the 0-3% and the 3-6% tranches with
premium equal to the 3-6% tranche’s fair spread and correlation equal
to the 0-3% base correlation;

• The 0-6% price is simply the price of the 0-3% tranche with the 3-6%
premium, being a 3-6% tranche with the 3-6% premium equal to zero,
and can be used to imply the base correlation for the 0-6% tranche,
using the standard pricing model;

• using the 0-6% tranche base correlation recursively, we can then find
the price of the 0-6% tranche with the 6-9% fair spread;

• the base correlation of the 0-9% tranche can be implied from the pre-
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vious price;

• the procedure has to be iterated for all the tranches.

Base correlation represents a valid solution to the shortcomings of im-
plied correlations obtained using the Gaussian copula: especially the prob-
lem relating to existence is generally solved (excluding unquoted super senior
tranche) and the hedging obtained using base correlation offers better per-
formance than the one obtained using implied correlations8. However, this
technique is not solving all the problems related to the correlation skew.
Amongst the main limitations of base correlation we recall that the valua-
tion of off-market index tranches is not straightforward and depends on the
specific interpolative technique of the base correlation.

8See [9] for a detailed description of the issue.
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Chapter 4

Gaussian copula extensions:
correlation skew models

The insufficiency of the single factor Gaussian model to match market quotes
has already been emphasised by many practitioners and academics and can
be summarised as follows:

• relatively low prices for equity and senior tranches;

• high prices for mezzanine tranches.

For a good understanding of the problem it is central to look at the
cumulative loss distribution resulting from the Gaussian copula and the one
implied by the market, as in figure 4.1: a consistently higher probability
is allocated by the market to high default scenarios than the probability
mass associated with a Gaussian copula model (which has no particularly
fat upper tail). Furthermore, the market assigns a low probability of zero
(or few) defaults, while in the Gaussian copula it is certainly higher. In
this chapter we look at some of the proposed extensions to the base model
and, mixing two of these different approaches, we propose a new variation of
correlation skew model.

4.1 Factor models using alternative distribu-

tions

A factor model can be set up using different distributions for the common
and specific factors. There is a very rich literature1 on copulas that can be

1We refer to Burtschell et al. [14] for a recent comparison of different copula models.
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Figure 4.1: In this chart we compare the cumulative portfolio loss using a
Gaussian copula and the loss implied by the market. The Y axis reports
the cumulative probability, while the X axis reports the cumulative portfolio
loss.

used, amongst the most famous we recall the Student t, Archimedean and
Marshall-Olkin copulas.
In the sequel two distributions are analysed:

• normal inverse Gaussian;

• α-stable.

The choice of these two distributions is due to their particular versatility and
ability to cope with heavy-tailed processes: appropriately chosen values for
their parameters can provide an extensive range of shapes of the distribution.

In figure 4.2 these distributions are compared with the Gaussian pdf: the
upper and lower tails are higher for both α-stable and NIG, showing that
a higher probability is associated with “rare events” such as senior tranche
and/or super senior tranche losses2. In particular, a fatter lower tail (i.e.
associated with low values for the common factor Y ) is very important for
a correct pricing of senior tranches, thus overcoming the main limitation

2An easy calculation shows that, considering the iTraxx index and the standard as-
sumption for constant recovery rate at 40%, for a senior tranche to start losing 19 names
defaulting is enough, while for a first super senior tranche 26 names are required, and for
a second super senior tranche more than 45 distressed names are needed.
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Figure 4.2: The charts compare the pdf for the α-stable, NIG and Gaussian
distribution. In the lower charts we focus on the tail dependence analysing
upper and lower tails.

associated with Gaussian copula. In the sequel the main characteristics of
these statistical distributions are summarised and it is also described how, if
appropriately calibrated, they can provide a good fit for CDO tranche quotes.

4.1.1 Normal inverse Gaussian distributions (NIG)

The NIG is a flexible distribution recently introduced in financial applications
by Barndorff-Nielsen [6]. A random variable X follows a NIG distribution
with parameters α, β, µ and δ if3 given that Y ∼ IG(δη, η2) with η :=
√

(α2 − β2), then X|Y = y ∼ Φ(µ + βy, y) with 0 ≤ |β| < α and δ > 0. Its

3For the inverse Gaussian (IG) density function see e.g. [16].
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moment generating function is given by:

M(t) = E
[

ext
]

= eµt eδ
√

α2−β2

eδ
√

α2−(β+t)2
(4.1)

and it has two important properties: scaling property and stability under
convolution 4.

The NIG can be profitably applied to credit derivatives pricing thanks to
its properties, as in Kalemanova et al. [33]. The simple model consists of
replacing the Gaussian processes of the factor model with two NIG:

Vi =
√

ρY +
√

1 − ρǫi ≤ ki (4.2)

where Vi is a individual risk process and Y, ǫi, i = 1, ..., n follow independent
NIG distributions:

Y ∼ NIG
(

α, β, −βη2

α2 , η3

α2

)

,

and

ǫi ∼ NIG
(√

1−ρ√
ρ

α,
√

1−ρ√
ρ

β,
√

1−ρ√
ρ

−βη2

α2 ,
√

1−ρ√
ρ

η3

α2

)

,

where η =
√

(α2 − β2).

Note that conditioning on the systemic factor Y , the Vi are independent
and, using the properties of the NIG distribution, each process Vi follows a

standard 5 NIG with parameters Vi ∼ NIG
(

α√
ρ
, β√

ρ
,− 1√

ρ

βη2

α2 , 1√
ρ

η3

α2

)

. This

notation can be simplified and we can write Vi ∼ NIG
(

1√
ρ

)

.

Under this model, following the general approach described in the previ-
ous sections, we can calculate the default barrier ki, the individual probability
of default p(t|y) and, using the LHP approximation, the F∞(x) = P{X ≤ x}.

Given the i-th marginal default probability for the time horizon t, Fi(t) =
P{Vi ≤ ki}, the default barrier Ki follows:

Ki = F−1
NIG( 1

√
ρ
)
(Fi(t)). (4.3)

4see e.g. [5],[33].
5It can be easily verified that, given Z ∼ NIG

(

α, β, µ, σ
)

and using that E[Z] = µ+σ β
η

and V ar[X] = σ α2

η3 , Vi has zero mean and unit variance.
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Using the scaling property of the NIG, the individual probability of de-
fault is:

p(t|y) = F
NIG

✏√

1−ρ
√

ρ

✑
(

k −√
ρY√

1 − ρ

)

. (4.4)

Using 4.4 and the large homogeneous portfolio approximation, given any
x ∈ [0, 1], the loss distribution as n → ∞ can be written as:

G(x) = P{X ≤ x}

= P

{

F
NIG

✏√

1−ρ
√

ρ

✑
(

k −√
ρY√

1 − ρ

)

≤ x

}

= 1 − FNIG(1)







k −√
1 − ρF−1

NIG
✏√

1−ρ
√

ρ

✑(x)

√
ρ






, (4.5)

which cannot be simplified any further, the NIG distribution not always being
symmetric6.

Figure 4.3: In the chart the cumulative loss probability distributions obtained
with the NIG and Gaussian copula have been compared in the lower tail.

6The NIG is symmetric only in the special case when β = 0.
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4.1.2 α-stable distributions

The α-stable is a flexible family of distributions described by Paul Lévi in
the 1920’s and deeply studied by, e.g., Nolan [42, 43]. This distribution
can be used efficiently for problems where heavy tails are involved and, as
introduced by Prange and Scherer in [44], can be profitably used to price
CDOs. Following Nolan7 we can define this family of distributions as follows:

Definition 3 A random variable X is stable if and only if X := aZ + b,
where 0 < α ≤ 2, −1 < β ≤ 1, a > 0, b ∈ R and Z is a random variable
with characteristic function:

E
[

eiuZ
]

=

{

e−|u|α[1−iβ tan(πα
2

)(u)], if α 6= 1

e−|u|[1+iβtan( 2
π

)(u) ln |u|], if α = 1
(4.6)

Definition 4 A random variable X is α-stable Sα(α, β, γ, δ, 1) if:

X :=

{

γZ + δ, if α 6= 1
γZ + (δ + β 2

π
γ ln γ), if α = 1

(4.7)

where Z comes from the former definition.

The parameters γ and δ represent the scale and the location. In the sequel the
simplified notation for a standard distribution Sα(α, β, 1, 0, 1) := Sα(α, β, 1)
will be used to define the random variables. The family of stable distribu-
tions8 includes widely used distributions, such as Gaussian, Cauchy or Lévi
distributions (i.e. a Sα(2, 0, 1) ∼ Φ(0, 2) as shown in figure 4.4).

From figure 4.4 it is possible to observe how decreasing the value for
α away from 2 moves probability to the tails and a negative β skews the
distribution to the right, producing another distribution with a particularly
fat lower tail.

We can apply this distribution to the simple factor model, where the com-
mon and the specific risk factors Y and ǫi follow two independent α-stable

7We would like to thank John Nolan for the α-stable distribution code provided. For
further details visit http://www.RobustAnalysis.com.

8Another definition of stable distribution can be the following:

Definition 5 A random variable X is stable if for two independent copies X1, X2 and

two positive constants a and b:

aX1 + bX2 ∼ cX + d (4.8)

for some positive constant c and some d ∈ R,

see e.g. [43].
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distributions:

Y ∼ Sα(α, β, 1),

and

ǫi ∼ Sα(α, β, 1),

this implies, using the properties of the stable distribution, that the firm risk
factor follows the same distribution, i.e. Vi ∼ Sα(α, β, 1).

Given the i-th marginal default probability Fi(t), the default barrier Ki

is obtained inverting the relation P{Vi ≤ ki}:

Ki = F−1
α (Fi(t)). (4.9)

The individual probability of default is:

p(t|y) = Fα

(

k −√
ρY√

1 − ρ

)

. (4.10)

Using 4.10 and the large pool approximation, given any x ∈ [0, 1], the
loss distribution as n → ∞ can be written as:

G(x) = P{X ≤ x} = 1 − Fα

(

k −
√

1 − ρF−1
α (x)√

ρ

)

. (4.11)
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.

4.2 Stochastic correlation

The general model can be expressed as:

Vi =
√

ρ̃iY +
√

1 − ρ̃iǫi ≤ ki, (4.12)

where Vi is a individual risk process Y, ǫi, i = 1, ..., n are independent Φ(0, 1)
and ρ̃i is a random variable that takes values in [0, 1] and it is independent
from Y, ǫi. The latter independence assumption is particularly important as
conditioning upon ρ̃i the processes Vi, i = 1, ..., n remain independent Φ(0, 1)
and it is possible to calculate:

Ft(t) = P{Vi ≤ ki}
= P{

√

ρ̃iY +
√

1 − ρ̃iǫi ≤ ki}
= E[P{√ρY +

√

1 − ρǫi ≤ ki|ρ̃i = ρ}]

=

∫ 1

0

P{√ρY +
√

1 − ρǫi ≤ ki|ρ̃i = ρ}dFρ̃i
(ρ).

(4.14)

We can then write Fi(t) = Φ(ki) and easily find the default threshold.
Under this model the individual probability of default can be calculated

for ρ̃i ∈ [0, 1] :

pi(t|Y ) = P{Vi ≤ ki|Y }
= P{τi ≤ t|Y }

=

∫ 1

0

Φ

[

ki −√
ρY√

1 − ρ

]

dFρ̃i
(ρ).

(4.16)

Following closely Burtschell et al. [14, 15], within this framework two dif-
ferent specifications for ρ̃i are considered. In one case the correlation ran-
dom variable follows a binary distribution: ρ̃i = (1 − Bi)

√
ρ + Bi

√
γ, where

Bi, i = 1, ..., n are independent Bernoulli random variables and ρ, γ ∈ [0, 1]
are two constants. The general model in 4.12 can be written as:
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Vi =
√

((1 − Bi)
√

ρ + Bi

√
γ)Y +

√

1 − ((1 − Bi)
√

ρ + Bi

√
γ)ǫi

= Bi

(√
γY +

√

1 − γǫi

)

+ (1 − Bi)
(√

ρY +
√

1 − ρǫi

)

. (4.17)

In this simple case the correlation ρ̃i can be either equal to ρ or γ condi-
tioning on the value of the random variable Bi. The Bernoulli’s parameters
are denoted by pγ = P{Bi = 1}, pρ = P{Bi = 0}.

The expression for the individual default probability, conditioning on Y

and Bi and using tower property to integrate out Bi, leads to:

pi(t|Y ) = P{τi ≤ t|Y } =
1
∑

j=0

P{τi ≤ t|Y, Bi = j}P{Bi = j}

= pρΦ

[

ki −√
ρY√

1 − ρ

]

+ pγΦ

[

ki −√
γY√

1 − γ

]

(4.18)

From 4.18 we can price CDO tranches calculating the loss distribution as
in 2.26 for a homogeneous large portfolio:9

G(x) = P {pi(t|Y,Bi) ≤ x}

= P

{

Φ

[

k(t) −√
ρ̃iY√

1 − ρ̃i

]

≤ x

}

= E

[

P

{

Φ

[

k(t) −√
ρ̃iY√

1 − ρ̃i

]

≤ x

∣

∣

∣

∣

Y, Bi

}]

= pρΦ

[√
1 − ρΦ−1(x) − k(t)√

ρ

]

+ pγΦ

[√
1 − γΦ−1(x) − k(t)√

γ

]

.

(4.19)

This simple model can be very useful to replicate market prices through
the use of two or three possible specifications for the correlation random
variable. The ability to fit the market quotes much better comes from the
fact that the joint default distribution is not a Gaussian copula anymore as
described in section 2.2.1, but it is now a factor copula (see [15]). Particularly

9A general case can be considered computing the distribution function pi(t|Y ) for each
name in the portfolio, then, combining it with fast Fourier transform (see Schönbucher [48]
or other algorithms (see e.g. Hull and White [30]), it is possible to price CDOs without
using further assumptions.
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under the LHP assumption it is quite effective to set up the correlation as
follows:

ρ̃ =







ρ with, pρ

γ = 0 with, pγ

ξ = 1 with, pξ.

(4.20)

In this way we can combine an independence state when γ = 0, that allows
us to highlight the effect of the individual risk, with a perfect correlation
state ξ = 1 for the latent risk. The idiosyncratic risk can be studied more
effectively under independence assumption, since a default occurring does
not result in any contagious effects. Therefore this kind of models can have
a better performance during crisis periods when compared to a standard
model10. The common risk can be controlled by increasing the probability
of ξ = 1 and decreasing the probability associated with the other possible
states of the random variable ρ̃, thus moving probability mass on the right
tail of the loss distribution and then rising the price for the senior tranches,
which are more sensible to rare events.

A second approach to model stochastic correlation, proposed by Burtschell
et al.[15] admits a more sophisticated way to take into account the systemic
risk. Instead of having a high correlation parameter ξ like the previous model,
we can set: ρ̃i = (1−Bs)(1−Bi)ρ+Bs, where Bs, Bi, i = 1, ..., n are indepen-
dent Bernoulli random variables and ρ ∈ [0, 1] is a constant. The Bernoulli’s
parameters are denoted by p = P{Bi = 1}, ps = P{Bs = 1}. This model has
a so called comonotonic state, or perfect correlation state occurring when
Bs = 1. The general model in 4.12 can be written as:

Vi = ((1 − Bs)(1 − Bi)ρ + Bs)Y + (1 − Bs)(
√

1 − ρ2(1 − Bi) + Bi)ǫi

= ρ̃iY +

√

1 − ρ̃i
2ǫi. (4.21)

Under this specification of the model11, in analogy with the idea under-
lying model 4.20, the distribution of the correlation random variable ρ̃i

2, has

10As reported by Burtschell et al.[15], following the downgrades of Ford and GMAC
in May 2005, the higher idiosyncratic risk perceived by the market can be measured
incorporating the idiosyncratic risk on each name and in particular on the more risky
ones, i.e. the names with wide spreads.

11Given ρ̃i = ρ we can easily verify that Corr[Vi, Vj ] = E[Vi, Vj ] = E[ρY +
√

(1 − ρ2)ǫi, ρY +
√

1 − ρ2ǫj ] = ρ2
E[Y 2] = ρ2.
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the following distribution: ρ̃i
2 = 0 with probability p(1 − ps), ρ̃i

2 = ρ with
probability (1−p)(1−ps) and ρ̃i

2 = 1 with probability ps, which corresponds
to the comonotonic state.

The individual default probability can be found conditioning on Y, Bi and
Bs:

pi(t|Y ) =
1
∑

l,m=0

P{τi ≤ t|Y,Bi = m, Bs = l}P{Bi = m}P{Bs = l}

= p(1 − ps)Φ[ki(t)] + (1 − p)(1 − ps)Φ

[

ki(t) − ρY
√

1 − ρ2

]

+ ps1{ki(t)≥Y }

= p(1 − ps)Φ[Φ−1[Fi(t)]] + (1 − p)(1 − ps)Φ

[

ki(t) − ρY
√

1 − ρ2

]

+ ps1{ki(t)≥Y }

= (1 − ps)

(

pFi(t) + (1 − p)Φ

[

ki(t) − ρY
√

1 − ρ2

])

+ ps1{ki(t)≥Y }. (4.22)

This result can be used to find a semianalytical solution for the price of
any CDO tranches (see [15]), or alternatively, conditioning on Y and BS,
can be used to approximate the loss distribution under the usual LHP as-
sumption12. For the purpose of this work the analysis will be focused on the
second approach. Given x ∈ [0, 1], the loss distribution is then expressed by:

G(x) = (1 − ps)

(

Φ

[

1

ρ

(

√

1 − ρ2Φ−1

[

x − pF (t)

1 − p

]

− k(t)

)]

1{x∈A} + 1{x∈B}

)

+ psΦ [−k(t)] , (4.23)

where the notation has been simplified defining:

A = {x ∈ [0, 1]|pF (t) < x < (1 − p) + pF (t)},

and

B = {x ∈ [0, 1]|x > (1 − p) + pF (t)}.

Proof :

12Under the LHP approximation, the name dependence in the superscripts can be re-
moved, the default probability law being homogeneous for every single name in the port-
folio.
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Using the tower property we have:

G(x) = P {p(t|Y,Bs) ≤ x}

= E

[

P

{

(1 − Bs)

(

pF (t) + (1 − p)Φ

[

k(t) − ρY
√

1 − ρ2

])

+ Bs1{k(t)≥Y } ≤ x

∣

∣

∣

∣

Y,Bs

}]

.

(4.24)

Summing over the possible outcomes for Bs we have:

G(x) = (1 − ps)E

[

P

{

pF (t) + (1 − p)Φ

[

k(t) − ρY
√

1 − ρ2

]

≤ x

∣

∣

∣

∣

Y

}]

+ psE

[

P

{

1{k(t)≥Y } ≤ x

∣

∣

∣

∣

Y

}]

= (1 − ps)E

[

P

{

k(t) − ρY
√

1 − ρ2
≤ Φ−1

[

x − pF (t)

1 − p

] ∣

∣

∣

∣

Y

}]

+ psP {Y > k(t)}

= (1 − ps)

(

Φ

[

1

ρ

(

√

1 − ρ2Φ−1

[

x − pF (t)

1 − p

]

− k(t)

)]

1{x∈A} + 1{x∈B}

)

+ psΦ [−k(t)] . (4.25)

In the formula above we recall that:

A = {x ∈ [0, 1]|pF (t) < x < (1 − p) + pF (t)},

and

B = {x ∈ [0, 1]|x > (1 − p) + pF (t)}.

In step three we have used the fact that for 0 ≤ x < 1, 1{k(t)≥Y } if and
only if Y > k(t) and in step four that, assuming p < 1 and ρ > 0,

pF (t) + (1 − p)Φ

[

k(t)−ρY√
1−ρ2

]

can take values between

pF (t) and (1 − p) + pF (t).

It is therefore possible to write:
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(a) if F (t) < x < (1−p)+pF (t), then −Y ≤ 1
ρ

(

√

1 − ρ2Φ−1
[

x−pF (t)
1−p

]

− k(t)

⇒P

{

pF (t) + (1 − p)Φ

[

k(t)−ρY√
1−ρ2

]

≤ x

∣

∣

∣

∣

Y

}

= 1;

(b) x ≤ F (t),

⇒P

{

pF (t) + (1 − p)Φ

[

k(t)−ρY√
1−ρ2

]

≤ x

∣

∣

∣

∣

Y

}

= 0;

and

(c) x ≥ (1 − p) + pF (t),

⇒P

{

pF (t) + (1 − p)Φ

[

k(t)−ρY√
1−ρ2

]

≤ x

∣

∣

∣

∣

Y

}

= 1.

This model can be used to adjust the probability in the upper part of
the cumulative loss distribution, i.e. increasing ps raises the probability of
having credit events for all the names in the portfolio affecting the prices
of senior tranches. Analogously increasing the idiosyncratic probability q

pushes probability towards the left part of the loss distribution, resulting in
an increased risk for the junior holder and a lower risk for the senior investors.
In the case of the mezzanine tranches the dependence is not always constant,
generally not being monotone in correlation ρ.

4.3 Local correlation

The term “local correlation” refers to the idea underlying a model where the
correlation factor ρ can be made a function of the common factor Y . This
family of models belongs to the stochastic correlation class because, being
Y a random variable, the correlation factor ρ(Y ) is itself stochastic. This
approach was introduced by Andersen and Sidenius [4] with the “random
factor loadings” (RFL) model and by Turc et al. [51]. The base assumption
of these models is very interesting since it attempts to explain correlation
through the intuitive relation with the economic cycle: equity correlation
tends to be higher during a slump than during a growing economy period.

4.3.1 Random factor loadings

Following closely the line of argument represented by Andersen and Sidenius
[4], the general model can be expressed as follows:
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Vi = ai(Y )Y + vǫi + m ≤ ki, (4.26)

where Vi is a individual risk process Y, ǫi, i = 1, ..., n are independent N(0, 1),v
and m are two factors fixed to have zero mean and variance equal to 1 for
the variable Vi.

The factor ai(Y ) is a R → R function to which, following the original
model [4], can be given a simple two point specification like the following:

ai(Y ) =

{

α if, Y ≤ θ

β if, Y > θ.

One can already observe the ability of this model to produce a correlation
skew depending on the coefficient α and β: if α > β the factor a(Y ) falls as
Y increases (i.e. good economic cycle) lowering the correlation amongst the
names, while the opposite is true when Y falls below θ (i.e. bad economic
cycle). In the special case α = β the model coincides with the Gaussian
copula, but in general both the individual risk process Vi Gaussian and the
joint default times do not follow a Gaussian copula.

The coefficients v and m can be easily found solving for

E[Vi] = E[ai(Y )Y ] + m = 0,⇔ E[ai(Y )Y ] = −m

Var[Vi] = Var[ai(Y )Y ] + v2 = 1),⇔ Var[ai(Y )Y ] = 1 − v2

then we can calculate the values for m and v:

E[ai(Y )Y ] = E[αY 1{Y ≤θ} + βY 1{Y >θ}Y ]

= ϕ(θ)(−α + β), (4.27)

and

E[ai(Y )2
Y 2] = E[α2Y 21{Y ≤θ} + β2Y 21{Y >θ}Y ]

= α2(φ(θ) − θϕ(θ)) + β2(θϕ(θ) + 1 − φ(θ)), (4.28)

from which13 the solutions are:

13In the equations 4.27 and 4.28 was used that E[1{a<x≤b}x] = 1{a≤b}(ϕ(a) − ϕ(b))
E[1{a<x≤b}x

2] = 1{α≤b}(Φ(b) − Φ(a)) + 1{a≤b}(aϕ(a) − bϕ(b)), see [4] Lemma 5 for a
proof.
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m = ϕ(θ)(α − β),

and

v =
√

1 − Var[ai(Y )Y ].

As already recalled, Vi are in general not Gaussian in this model, thus the
calculation to find the individual default probability and the default threshold
changes. The conditional default probability can be calculated as follows:

pi(t|Y ) = P{Vi ≤ ki|Y } = P{τi ≤ t|Y }
= P

{

αY 1{Y ≤θ} + βY 1{Y >θ}Y + ǫiv + m ≤ ki|Y
}

= P

{

ǫi ≤
ki −

(

αY 1{Y ≤θ} + βY 1{Y >θ}Y
)

− m

v

∣

∣

∣
Y

}

. (4.29)

Integrating out Y , and using that ǫi is a standard Gaussian under this
simple specification of the model, the unconditional default probability for
the i-th obligor is:

pi(t) = E

[

P

{

ǫi ≤
ki −

(

αY 1{Y ≤θ} + βY 1{Y >θ}Y
)

− m

v

∣

∣

∣Y

}]

=

∫ θ

−∞
Φ

[

ki − αY − m

v

]

dFY (Y )

+

∫ ∞

θ

Φ

[

ki − βY − m

v

]

dFY (Y ).

(4.30)

From this integral it is straightforward to calculate the default threshold
ki numerically.

Alternatively, using that Y follows a Gaussian distribution, and using
some Gaussian integrals14 a solution of the 4.30 can be found using a bivariate

14For a proof of the following Gaussian integrals see [4] lemma 1:
∫ ∞

−∞

Φ [ax + b]ϕ(x)dx = Φ

[

b√
1 + a2

]

∫ c

−∞

Φ [ax + b]ϕ(x)dx = Φ2

[

b√
1 + a2

, c;
−a√
1 + a2

]
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Gaussian cdf15:

pi(t) = P{Vi ≤ ki}

= Φ2

[

θ − m√
v2 + α2

, θ;
α√

v2 + α2

]

+ Φ

[

θ − m
√

v2 + β2

]

− Φ2

[

θ − m
√

v2 + β2
, θ;

β
√

v2 + β2

]

.

(4.32)

Assuming a large and homogeneous portfolio, given any x ∈ [0, 1] it is
possible to find a common distribution function G(x) for pi(t|Y ) as n → ∞
using, as before, the result stated in Vasicek [52]:

G(x) = 1 − P(X > x)

= 1 − P
{

a(Y )Y ≤ ki − vΦ−1[x] − m
}

= 1 − (P {αY ≤ Ω(x), Y ≤ θ} + P {βY ≤ Ω(x), Y > θ})

= 1 −
(

Φ

[

min

(

Ω(x)

α
, θ

)]

+ 1{θ<
Ω(x)

β }
(

Φ

[

Ω(x)

α

]

− Φ [θ]

))

(4.33)

where Ω(x) := ki − vΦ−1[x] − m.

4.4 Stochastic correlation using normal in-

verse Gaussian

This model represents an attempt to shape the correlation skew and then
the market prices combining two of the solutions presented in the previous
subsections. The stochastic correlation model, as presented in 4.12, can be
efficiently used with NIG distributions for the systemic and the idiosyncratic
risks factors Y, ǫi, i = 1, ..., n,16 instead of normal random variables. This

15Depending on the quadrature technique used 4.30 can be solved directly more effi-
ciently than 4.31, which involves a bivariate Gaussian.

16A similar approach was used by Prange and Scherer [44], using α-stable distribution
and Lüscher [38], where local correlation (i.e., random factor loading model) was combined
with a double NIG.
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model, as described in chapter 5, can produce very good results thanks to its
ability to model the upper tail of the distribution more accurately with the
conjunct use of a fat-tails distribution like NIG and a stochastic correlation
model with a comonotonic state.

The model used is the one corresponding to the formula 4.21, and each
risk process follows an independent NIG with the following characteristics:

Y ∼ NIG
(

α, β, −βη2

α2 , η3

α2

)

,

and

ǫi ∼ NIG

(√
1−ρ̃i

2

ρ̃i
α,

√
1−ρ̃i

2

ρ̃i
β,

√
1−ρ̃i

2

ρ̃i

−βη2

α2 ,

√
1−ρ̃i

2

ρ̃i

η3

α2

)

.

Using the independence between the random variables and conditioning
on the systemic factor Y and ρ̃i, the Vi remains independent NIG with pa-

rameters Vi ∼ NIG
(

1
ρ̃i

)

, using the simplified notation as in section 4.1.1.

The individual default probability can then be written as follows:

Fi(t) = P{Vi ≤ ki}
= P{ρ̃iY +

√

1 − ρ̃i
2ǫi ≤ ki}

= E[P{ρY +
√

1 − ρ2ǫi ≤ ki|ρ̃i = ρ}]

=
3
∑

l=1

FNIG( 1
ρ̃i

)(ki(t))P{ρ̃i = ρl}, (4.34)

from 4.34 the default threshold ki(t) can be calculated numerically17.
Once we have found the default threshold, we can proceed similarly to

the original model to determine the conditional default probability:

pi(t|Y,Bs) = (1 − Bs)

(

pFNIG(1)(ki(t)) + (1 − p)F
NIG

✒√
1−ρ2

ρ

✓
[

ki(t) − ρY
√

1 − ρ2

])

+ Bs1{ki(t)≥Y }. (4.35)

The loss distribution under the usual LHP approximation is then given
by:

17Note that it is no longer possible to calculate ki(t) through direct inversion as it has
been done before in the original model, where F (t) = Φ(k(t)).
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G(x) = (1 − ps)

(

FNIG1

[

1

ρ

(

√

1 − ρ2F−1
NIG2

[

x − pFNIG1(k(t))

1 − p

]

− k(t)

)]

1{x∈A} + 1{x∈B}

)

+ ps (1 − FNIG1 [k(t)]) , (4.36)

where the notation has been simplified by defining:

A = {x ∈ [0, 1]|pFNIG1(k(t)) < x < (1 − p) + pFNIG1(k(t))},

B = {x ∈ [0, 1]|x > (1 − p) + pFNIG1(k(t))},

FNIG2 = F
NIG

✒√
1−ρ2

ρ

✓,

and

FNIG1 = FNIG(1).

Proof :
Using the tower property we have:

G(x) = P {p(t|Y,Bs) ≤ x}

= E

[

P

{

(1 − Bs)

(

pFNIG1(k(t)) + (1 − p)FNIG2

[

k(t) − ρY
√

1 − ρ2

])

+Bs1{k(t)≥Y } ≤ x

∣

∣

∣

∣

Y,Bs

}]

.

Summing over the possible outcomes of the variable Bs we have:

G(x) = (1 − ps)E

[

P

{

pFNIG1(k(t)) + (1 − p)FNIG2

[

k(t) − ρY
√

1 − ρ2

]

≤ x

∣

∣

∣

∣

Y

}]

+ (4.37)

+ psE

[

P

{

1{k(t)≥Y } ≤ x

∣

∣

∣

∣

Y

}]

= (1 − ps)E

[

P

{

k(t) − ρY
√

1 − ρ2
≤ F−1

NIG2

[

x − pFNIG1(k(t))

1 − p

] ∣

∣

∣

∣

Y

}]

+ psP {Y > k(t)}

= (1 − ps)

(

FNIG1

[

1

ρ

(

√

1 − ρ2F−1
NIG2

[

x − pFNIG1(k(t))

1 − p

]

− k(t)

)]

1{x∈A} + 1{x∈B}

)

+ ps (1 − FNIG1 [k(t)]) .

(4.38)
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In the formula above we recall that:

A = {x ∈ [0, 1]|pFNIG1(k(t)) < x < (1 − p) + pFNIG1(k(t))},

and

B = {x ∈ [0, 1]|x > (1 − p) + pFNIG1(k(t))}.

In step three was used that for 0 ≤ x < 1, 1{k(t)≥Y } if and only if Y > k(t)
and in step four, assuming p < 1 and ρ > 0, we have that

pFNIG1(k(t)) + (1 − p)FNIG2

[

k(t)−ρY√
1−ρ2

]

can take values between

pFNIG1(k(t)),

and

(1 − p) + pFNIG1(k(t)).

It is therefore possible to write:

(a) if FNIG1(k(t)) < x < (1 − p) + pFNIG1(k(t)),

then −Y ≤ 1
ρ

(

√

1 − ρ2F−1
NIG2

[

x−pFNIG1(k(t))
1−p

]

− k(t)
)

⇒P

{

pFNIG1(k(t)) + (1 − p)Φ

[

k(t)−ρY√
1−ρ2

]

≤ x

∣

∣

∣

∣

Y

}

= 1;

(b) x ≤ FNIG1(k(t)),

⇒P

{

pFNIG1(k(t)) + (1 − p)FNIG2

[

k(t)−ρY√
1−ρ2

]

≤ x

∣

∣

∣

∣

Y

}

= 0;

and

(c) x ≥ (1 − p) + pFNIG1(k(t)),

⇒P

{

pFNIG1(k(t)) + (1 − p)FNIG2

[

k(t)−ρY√
1−ρ2

]

≤ x

∣

∣

∣

∣

Y

}

= 1.
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Chapter 5

Numerical results

In this chapter we review the numerical results for the general Gaussian cop-
ula and the other models presented in chapter 4 under the LHP assumption.
We apply the pricing tools to the Dow Jones iTraxx 5 Years index series 5
with maturity date 20 June 20111 at 13 April 2006. In the sequel the different
models are compared in terms of their ability to fit the market quotes, thus
fitting the correlation skew.

5.1 Pricing iTraxx with different models

In table 5.1 the prices obtained with the six models under the LHP assump-
tion are compared with the market quotes. Further assumptions are a flat
risk free interest rate at 5% and a standard flat recovery rate at 40%. For
completeness, the parameters used for the models are summarised in the
table.

The calibration of the models has been carried out taking into account
two criteria: the least square error (l.s.e.) and the minimum total error in
bp. However the calibration was not developed through a full optimisation
algorithm, hence a closer fit may be possible.

As observed in chapter 3.1 and 4, correlation skew strongly depends on the
loss distribution function associated with the Gaussian copula model, which
in particular affects the ability to fit the market quotes for the most senior and
junior tranches at the same time. It is possible to see this feature in figures 5.1
and 5.2 where, for the models here considered, the relevant loss distribution
functions are drawn. The good and bad results of the models studied in 5.1
can be explained observing the different shapes of the distributions in the
lower and upper tails.

1Data available online at http://www.itraxx.com.
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Tranche Errors (*)
Model 0-3%(†) 3-6% 6-9% 9-12% 12-22% l.s.e. bp

Market(§) 1226 63 18 9 4
Gaussian 1,226.7 117.5 23.4 4.7 0.4 2.87 72.3

NIG 1,236.9 66.3 25.0 13.0 5.4 0.47 26.6
α-stable 1,236.7 82.0 24.7 12.4 6.5 0.76 42.3

Stoc. corr. 1223.1 63.9 23.1 7.7 0.6 0.82 13.6
RFL 1276.2 63.2 17.3 15.5 3.2 0.56 58.4

Stoc. corr. NIG 1234.1 62.1 20.6 9.5 3.4 0.047 12.7

Parameters
ρ α β p ps θ

Gaussian 0.14
NIG 0.125 0.6 0.1

α-stable 0.155 1.91 -0.6
Stoc. corr. 0.407(‡) 0.755 0.035

RFL 0.45 0.32 -2.39
Stoc. corr. NIG 0.1296(‡) 0.83 -0.015 0.10 0.05

Table 5.1: Prices in bp and parameter calibration for the DJ iTraxx at 13
April 2006, the portfolio average spread was equal to 31.5 bp.
Notes:
(∗) The “error l.s.e.” is calculate summing over the relative errors squared
for each traded tranche while the “error bp” is the sum of absolute errors in
basis point.
(†) This running premium corresponds to a market standard 24% upfront
premium plus 500 bp running.
(§) Source: CDO-CDS Update: Nomura Fixed Income Research, 4/24/2006.
(‡) For stochastic correlation models the parameter in the table corresponds
to ρ2 according to the specification of the model.

Some common characteristics can then be summarised in this example
when compared with the Gaussian copula:

• For the equity tranche the default probability is redistributed approxi-
mately from the 0-2% to the 2-3% area, being overall the same proba-
bility given by the different models in this part of the capital structure.

• For mezzanine tranches there is higher risk associated with the Gaus-
sian copula which is reflected in the prices and in the distribution func-
tion; the other models provide in general a good matching on the 3-6%
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tranche but most of them tend to overestimate the 6-9% tranche. How-
ever, the α-stable distribution could not be calibrated sufficiently well
for the first mezzanine part of the capital structure.

• For the senior tranches there is in general a more wide-ranging situa-
tion. While Gaussian copula performs poorly due to its thin tails, thus
underestimating the risk allocated by the market, the other models tend
to fit the market quotes better. In particular fat-tails copulas like NIG
and α-stable overestimate the 9-12% and 12-22% tranches, while RFL
overestimates the senior but performs well for super senior tranches and
stochastic correlation models perform very well especially when used in
conjunction with a NIG. In particular, super senior tranches are very
difficult to price and are closely related to the shape of the distribution
in the upper tail. Both the RFL and stochastic correlation NIG models
are able to fit the market quote, but while the former has a very thin
upper tail in the 30-60% area, the latter displays a fatter tail also for
higher strike values leading to more coherent prices for unquoted super
senior tranches.
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Figure 5.1: In the chart above we compare the loss distribution lower tail for
the six models presented in the table 5.1.
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5.2 Comparison between the different meth-

ods

We believe that it is not trivial to choose a universally accepted indica-
tor/method to compare CDO pricing models, hence in this work we have
chosen to use two different indicators: the l.s.e. error and the error in basis
points. While the former error indicator tends to penalise the faults in the
senior part of the capital structure more, the latter penalises the errors in
the junior and mezzanine tranches. As emphasised in table 5.1, amongst
the models here considered, the most accurate price match can be obtained
using the stochastic correlation NIG model, here presented with the formula
4.36. In particular, this model performs better considering both the error in-
dicators used for the analysis. The good performance of the model in terms
of market fit needs to be analysed along with the computational speed: this
model is just slightly more complicated then the stochastic correlation, but it
is sensibly slower, i.e. a couple of minutes may be required for computation.
The NIG distribution recorded a satisfactory performance overall but shows
some difficulties in the pricing of senior and super senior tranches. The same
consideration applies to α-stable distribution with the addition of a consid-
erable error for the mezzanine 3-6%. The stochastic correlation model has
registered a good performance, with the exclusion of the super senior 12-22%
tranche which is underestimated by the model. The RFL can fit the market
quotes very well but for the senior 9-12% a high bias has been recorded2.

The fact that the best fit is obtained using together a fat tail distribution
and a stochastic specification of the correlation leads as to the conclusion
that neither a distribution or a stochastic correlation are able to explain the
market prices. Is the necessary to mix the two models in order to achieve a
satisfactory fit.

We recall here that the empirical analysis is limited to the LHP assump-
tion, therefore the results above may vary under different assumptions.

2Note that here we have used a simple two point specification of the Andersen and
Sidenius model. The factor ai(Y ) can be modelled using e.g. a three point specification,
thus obtaining better results at the cost of a slightly more complicated model(i.e. two
parameters would be added in this case).
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[46] P.J. Schönbucher (2000) Factor Models for Portfolio Credit Risk, De-
partment of Statistics Bonn University, working paper.

[47] P.J. Schönbucher and E. Rogge. (2003) Modeling dynamic portfolio
credit risk, working paper, online at www.finasto.uni-bonn.de/ schon-
buc/papers/schonbucher rogge dynamiccreditrisk.pdf.

54
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