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Abstract

The least squares (LS) estimator suffers from significant downward bias in autore-

gressive models that include an intercept. By construction, the LS estimator yields the

best in-sample fit among a class of linear estimators notwithstanding its bias. Then,

why do we need to correct for the bias? To answer this question, we evaluate the

usefulness of the two popular bias correction methods, proposed by Hansen (1999) and

So and Shin (1999), by comparing their out-of-sample forecast performances with that

of the LS estimator. We find that bias-corrected estimators overall outperform the

LS estimator. Especially, Hansen’s grid bootstrap estimator combined with a rolling

window method performs the best.
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1 Introduction

It is a well-known statistical fact that the least squares (LS) estimator for autoregressive

(AR) processes suffers from serious downward bias in the persistence coefficient when the

stochastic process includes a non-zero intercept and/or deterministic time trend. The bias

can be substantial especially when the stochastic process is highly persistent (Andrews,

1993).

Since the seminal work of Kendall (1954), an array of bias-correction methods has been

put forward. To name a few, Andrews (1993) proposed a method to obtain the exactly

median-unbiased estimator for an AR(1) process with Gaussian errors. Andrews and Chen

(1994) extends the work of Andrews (1993) to get approximately median-unbiased estimator

for higher order AR(p) processes. Hansen (1999) developed a nonparametric bias correction

method, the grid bootstrap (GT), which is robust to distributional assumptions. The GT

method has been actively employed by many researchers, among others, Kim and Ogaki

(2009), Steinsson (2008), Karanasos et al. (2006), and Murray and Papell (2002).

An alternative approach has been also proposed by So and Shin (1999) who develop

the recursive mean adjustment (RMA) estimator that belongs to a class of (approximately)

mean-unbiased estimators. The RMA estimator is computationally convenient to implement

yet powerful and used in the work of Choi et al. (2008), Sul et al. (2005), Taylor (2002),

and Cook (2002), for instance.

By construction, the LS estimator provides the best in-sample fit among the class of linear

estimators notwithstanding its bias.1 A natural question then arises: Why do we need to

correct for the bias? We attempt to find an answer by comparing the out-of-sample forecast

performances of the bias-correction methods with that of the LS estimator. We apply the GT

and the RMA approaches along with the LS estimator for quarterly commodity price indices

for the period of 1974.QI to 2008.QIII, obtained from the Commodity Research Bureau

(CRB). We find that both bias correction methods overall outperform the LS estimator.

1Recall that the LS estimator is obtained by minimizing the sum of squared residuals.
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Especially, Hansen’s GT estimator combined with a rolling window method performed the

best.

Organization of the paper is as follows. In Section 2, we explain the source of bias and how

each method corrects for biases. We also briefly explain how we evaluate the relative forecast

performances. Section 3 reports our major empirical findings and Section 4 concludes.

2 Bias-Correction Methods

We start with a brief explanation of the source of the bias in the LS estimator for an

autoregressive process. Consider the following AR(1) process.

yt = c + ρyt−1 + εt, (1)

where |ρ| < 1 and εt is a white noise process. Note that estimating ρ by the LS estimator is

equivalent to estimating the following.

(yt − ȳ) = ρ (yt−1 − ȳ) + εt, (2)

where ȳ = T−1
∑T

j=1
yj. The LS estimator for ρ is unbiased only when E [εt| (yt−1 − ȳ)] = 0.

This exogeneity assumption, however, is clearly violated because εt is correlated with yj,

for j = t, t + 1, · · · , T , thus with ȳ. Therefore, the LS estimator for AR processes with an

intercept creates the mean-bias. The bias has an analytical representation, and as Kendall

(1954) shows, the LS estimator ρ̂LS is biased downward.

There is no analytical representation of the median-bias. Monte Carlo simulations, how-

ever, can easily demonstrate that the LS estimator produces significant median-bias for ρ

when ρ gets close to unity (see Hansen, 1999).
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When εt is serially correlated, it is convenient to express (1) as follows.

yt = c + ρyt−1 +
k

∑

j=1

βj∆yt−j + ut, (3)

where ut is a white noise process that generates εt.
2

For Hansen’s (1999) GT method, we define the following grid-t statistic.

tN(ρi) =
ρ̂LS − ρi

se(ρ̂LS)
,

where ρ̂LS is the LS point estimate for ρ, se(ρ̂LS) denotes the corresponding LS standard

error, and ρi is one of M fine grid points in the neighborhood of ρ̂LS. Implementing LS

estimations for B bootstrap samples at each of M grid points, we obtain the α% quantile

function estimates, q̂∗N,α(ρi) = q̂∗N,α(ρi, ϕ(ρj)), where ϕ denotes nuisance parameters such as

βs that are functions of ρi. After smoothing quantile function estimates, the (approximately)

median-unbiased estimate is obtained by,

ρ̂G = ρi ∈ R, s.t. tN(ρi) = q̃∗N,50%(ρi),

where q̃∗N,50%
(ρi) is the smoothed 50% quantile function estimates obtained from q̂∗N,α.3 To

correct for median-bias in βj estimates, we treat other βs as well as ρ as nuisance parameters

and follow the procedures described above.

So and Shin’s (1999) RMA estimator utilizes demeaning variables using the partial mean

instead of the global mean ȳ. Rather than implementing the LS for (2), the RMA estimator

is obtained by the LS estimator for the following regression equation.

(yt − ȳt−1) = ρ (yt−1 − ȳt−1) + ηt,

2When the stochastic process is of higher order than AR(1), exact bias-correction is not possible because
the bias becomes random due to the existence of nuisance parameters. For higher order AR(p) models, the
RMA and the GT methods yield approximately mean- and median-unbiased estimators, respectively.

3We used the Epanechinikov kernel K(u) = 3(1 − u2)/4I(|u| ≤ 1), where I(·) is an indicator function.
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where ȳt−1 = (t−1)−1
∑t−1

j=1
yj and ηt = εt−(1−ρ)(t−1)−1

∑t−1

j=1
yj. Note that the error term

ηt is independent of (yt−1 − ȳt−1), which results in bias reduction for the RMA estimator ρ̂R.

For a higher order AR process such as (3), the RMA estimator can be obtained by treating

βs as nuisance parameters as in Hansen’s (1999) GT method.

We use a conventional method proposed by Diebold and Mariano (1995) to evaluate the

out-of-sample forecast accuracy of each bias-correction method relative to that of the LS

estimator. Let y1
t+h|t and y2

t+h|t denote two competing (out-of-sample) h-step forecasts given

information set at time t. The forecast errors from the two models are,

ε1
t+h|t = yt+h − y1

t+h|t, ε2
t+h|t = yt+h − y2

t+h|t

For the Diebold-Mariano test, define the following function.

dt = L(ε1
t+h|t) − L(ε2

t+h|t),

where L(εj

t+h|t), j = 1, 2 is a loss function.4 To test the null of equal predictive accuracy,

H0 : Edt = 0, the Diebold-Mariano statistic (DM) is defined as,

DM =
d̄

√

Âvar(d̄)

where d̄ is the sample mean loss differential,

d̄ =
1

T − T0

T
∑

t=T0+1

dt,

Âvar(d̄) is the asymptotic variance of d̄,

Âvar(d̄) =
1

T − T0

q
∑

j=−q

k(j, q)Γ̂j,

4One may use either the squared error loss function, (εj

t+h|t)
2, or the absolute error loss function, |εj

t+h|t|.
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k(·) denotes a kernel function where k(·) = 0, j > q, and Γ̂j is jth autocovariance function

estimate.5 Under the null, DM has the standard normal distribution asymptotically.

3 Empirical Results

We use quarterly commodity price indices, CRB Spot Index and its six sub-indices, obtained

from the Commodity Research Bureau (CRB) for the period of 1974 to 2008.6 We noticed a

structural break of these series in 1973, the year of the demise of the Bretton Woods system

(see Figure 1). Since our main objective is to evaluate relative forecast performances of

competing estimators, we use observations starting from 1974.Q1 instead of using a dummy

variable for the Bretton Woods era.

Table 1 reports our estimates for the persistence parameter in (3). We find that both the

RMA and the GT methods yield significant bias-corrections. For example, the ρ estimate

for the Spot Index increases from 0.950 (LS) to 0.969 (RMA) and 0.975 (GT). This is far

from being negligible because corresponding half-life estimates are 3.378, 5.503, and 6.844

years, respectively. Note also that median-unbiased estimates by the GT are not restricted

to be less than one, because the GT is based on the local-to-unity framework and allows

even mildly explosive processes.7

We evaluate the out-of-sample forecasting ability of the three estimators, the LS, the

RMA, and the GT, with two alternative forecasting methods. First, we utilize first 69 out

of 139 observations to obtain h-step ahead forecasts. Then, we keep forecasting recursively

by adding one observation in each iteration until we forecast the last observation. Second,

we obtain h-step ahead forecasts using first 69 observations, then keep forecasting with a

5Following Andrews and Monahan (1992), we use the quadratic spectral kernel with automatic bandwidth
selection for our analysis.

6In order to reduce noise in the data, we converted monthly frequency raw data to quarterly data by
taking end-of-period values. Alternatively, one may use quarterly averages. Averaging time series data,
however, creates time aggregation bias as pointed by Taylor (2001).

7When the true data generating process is I(1), one may use AR models with differenced variables, then
correct for biases. Median/Mean bias for such models, however, tends to be small, because differenced
variables often exhibit much weaker persistence. Since we are interested in evaluating the usefulness of
bias-corrected estimators, we do not consider such models.
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rolling window by adding and dropping one observation in each iteration, maintaining 69

observations, until we reach the end of full sample. We report our results in Tables 2 and 3.

Overall, we find that both bias-correction methods outperform the LS estimator with an

exception of the Textile Sub-Index. No matter what methods are employed, the ratios of root

mean squared prediction errors (RMSPE), LS/RMA and LS/GT, are mostly greater than

one, which implies higher prediction precision of these methods relative to the LS estimator.

For example, 4-period (1 year) ahead out-of-sample forecasts for the Spot index by the LS,

RMA, and GT with the recursive method yield 0.104, 0.099, and 0.102 RMSPEs, respectively

(see Table 2). Because the ratio LS/RMA (1.050) is greater than LS/GT (1.018) and both

ratios are greater than 1, the RMA performs the best and the LS is the worst for this case.

The corresponding Diebold-Mariano statistic shows that the RMA outperforms the LS at

the 5% significance level. The evidence of superior performance of the GT is weaker than the

RMA because corresponding p-value is 0.185, that is, significant only at the 20% significance

level. When we use the rolling window method for 4-period ahead Spot Index forecasts, the

grid bootstrap works the best and the LS performs the worst. The GT is superior to the LS

at the 1% significance level, while the RMA outperforms the LS at the 5% level.

Another interesting finding is that a long memory is not necessarily good because forecast

performance seems better with the rolling window method. It is easy to see the RMSPEs for

each estimator are much smaller when we employ the rolling window strategy rather than

the recursive method.8 Especially, Hansen’s GT estimator combined with the rolling window

method performs the best because the associated RMSPEs are the smallest in majority cases.

4 Concluding Remarks

This paper evaluates relative forecast performances of two bias-correction methods, the RMA

and the GT, to the LS estimator without bias-correction. When an intercept or an intercept

8We implemented same analysis for the sample period of 1974.Q1 to 2005.Q4 to see whether recent
persistent movements of commodity indices significantly affected our results. We found very similar results.
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and linear time trend are included in AR models, the LS estimator for the slope coefficient is

downward-biased. Despite the bias, the LS estimator provides the best in-sample fit among a

class of linear estimators. We attempt to find some justification of using these bias-correction

methods by comparing the out-of-sample forecast accuracy of the methods with that of the

LS estimator. Using the CRB Spot Index and its six sub-indices, we find that both methods

overall outperform the LS estimator. Especially, Hansen’s GT performs the best when it is

combined with the rolling window strategy.
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Table 1. Persistence Parameter Estimation Results

Index ρL CI ρR CI ρG CI
Spot 0.950 [0.856,0.972] 0.969 [0.872,0.985] 0.975 [0.910,1.022]
Livestock 0.933 [0.770,0.966] 0.972 [0.795,0.986] 0.990 [0.875,1.044]
Fats&Oil 0.933 [0.776,0.965] 0.951 [0.800,0.985] 0.997 [0.864,1.049]
Foodstuff 0.952 [0.813,0.976] 0.977 [0.836,0.993] 1.008 [0.890,1.049]
Raw Industrials 0.940 [0.847,0.966] 0.969 [0.863,0.979] 0.955 [0.907,1.009]
Textiles 0.917 [0.807,0.951] 0.947 [0.824,0.967] 0.932 [0.874,1.003]
Metals 0.963 [0.870,0.981] 0.974 [0.887,0.993] 0.996 [0.929,1.024]

Index HLL CI HLR CI HLG CI
Spot 3.378 [1.114,6.102] 5.503 [1.265,11.47] 6.844 [1.837, ∞ ]
Livestock 2.499 [0.663,5.010] 6.102 [0.755,12.29] 17.24 [1.298, ∞ ]
Fats&Oil 2.499 [0.683,4.864] 3.449 [0.777,11.47] 57.68 [1.185, ∞ ]
Foodstuff 3.523 [0.837,7.133] 7.447 [0.967,24.70] ∞ [1.487, ∞ ]
Raw Industrials 2.801 [1.044,5.010] 5.503 [1.176,8.165] 3.764 [1.775, ∞ ]
Textiles 2.000 [0.808,3.449] 3.182 [0.895,5.164] 2.461 [1.287, ∞ ]
Metals 4.596 [1.244,9.033] 6.578 [1.445,24.70] 43.24 [2.353, ∞ ]

Note: i) The number of lags (k) was chosen by the general-to-specific rule as recommended by Ng and
Perron (2001). ii) ρL, ρR, and ρG denote the least squares (LS), recursive mean adjustment (RMA, So
and Shin 1999), and grid bootstrap (GT, Hansen 1999) estimates for persistence parameter, respectively.
iii) 95% confidence intervals (CI) were constructed by 10,000 nonparametric bootstrap simulations for
the LS and RMA estimators, and by 10,000 nonparametric bootstrap simulations on 30 grid points
over the neighborhood of the LS estimate for the GT estimator. iv) HLL, HLR, and HLG denote the
corresponding half-lives in years, calculated by (ln(0.5)/ln(ρ))/4.
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Table 2. Recursive Out-of-Sample Forecast Results

Index h RMSPEL RMSPER RMSPEG LS/RMA LS/GT DMR DMG

Spot 1 0.045 0.044 0.045 1.031 1.004 1.183 (0.237) 0.180 (0.857)

2 0.066 0.063 0.064 1.059 1.033 1.808 (0.071) 1.310 (0.190)

3 0.084 0.078 0.081 1.065 1.029 2.555 (0.011) 1.544 (0.122)

4 0.104 0.099 0.102 1.050 1.018 2.421 (0.015) 1.324 (0.185)

6 0.141 0.138 0.139 1.026 1.012 1.456 (0.145) 0.917 (0.359)

Livestock 1 0.082 0.079 0.081 1.035 1.012 1.561 (0.119) 1.182 (0.237)

2 0.118 0.110 0.115 1.066 1.025 2.598 (0.009) 2.585 (0.010)

3 0.128 0.124 0.127 1.035 1.012 2.064 (0.039) 1.450 (0.147)

4 0.144 0.138 0.142 1.039 1.011 2.683 (0.007) 1.839 (0.066)

6 0.178 0.172 0.174 1.034 1.021 1.810 (0.070) 2.027 (0.043)

Fats&Oil 1 0.110 0.109 0.110 1.003 0.995 0.397 (0.692) -0.360 (0.719)

2 0.159 0.157 0.156 1.013 1.018 1.712 (0.087) 1.780 (0.075)

3 0.174 0.173 0.172 1.008 1.011 1.294 (0.196) 1.543 (0.123)

4 0.193 0.192 0.192 1.001 1.003 0.230 (0.818) 0.458 (0.647)

6 0.245 0.246 0.247 0.994 0.992 -1.082 (0.279) -1.608 (0.108)

Foodstuff 1 0.063 0.062 0.062 1.027 1.029 1.521 (0.128) 1.113 (0.266)

2 0.090 0.088 0.087 1.032 1.040 2.172 (0.030) 3.458 (0.001)

3 0.105 0.103 0.103 1.017 1.022 1.532 (0.125) 2.116 (0.034)

4 0.124 0.122 0.121 1.015 1.020 1.326 (0.185) 1.864 (0.062)

6 0.157 0.156 0.156 1.003 1.004 0.299 (0.765) 0.559 (0.576)

Raw 1 0.049 0.047 0.048 1.028 1.009 1.053 (0.292) 0.721 (0.471)

Industrials 2 0.076 0.072 0.074 1.057 1.021 1.800 (0.072) 1.444 (0.149)

3 0.097 0.092 0.095 1.056 1.023 2.639 (0.008) 1.642 (0.101)

4 0.122 0.118 0.121 1.036 1.010 2.235 (0.025) 0.963 (0.335)

6 0.162 0.157 0.159 1.030 1.015 1.980 (0.048) 1.339 (0.181)

Textiles 1 0.037 0.037 0.037 0.993 0.989 -0.450 (0.653) -0.935 (0.350)

2 0.056 0.056 0.056 0.997 0.999 -0.115 (0.908) -0.072 (0.943)

3 0.074 0.075 0.074 0.990 0.994 -0.532 (0.595) -0.448 (0.654)

4 0.089 0.091 0.090 0.978 0.985 -1.776 (0.076) -1.962 (0.050)

6 0.109 0.113 0.112 0.964 0.973 -2.240 (0.025) -2.417 (0.016)

Metals 1 0.087 0.085 0.086 1.020 1.014 1.878 (0.060) 0.612 (0.540)

2 0.139 0.135 0.134 1.031 1.034 2.296 (0.022) 1.283 (0.199)

3 0.187 0.181 0.178 1.033 1.046 3.540 (0.000) 3.078 (0.002)

4 0.226 0.223 0.221 1.016 1.024 2.565 (0.010) 2.102 (0.036)

6 0.309 0.303 0.301 1.019 1.025 2.546 (0.011) 2.458 (0.014)

Note: i) Out-of-sample forecasting was recursively implemented by sequentially adding one additional

observation from 69 initial observations toward 139 total observations. ii) The number of lags (k) was

chosen by the general-to-specific rule recommended by Ng and Perron (2001). iii) h denotes the forecast

horizon (quarters). iv) RMSPEL, RMSPER, and RMSPEG denote the root mean squared prediction er-

rors (RMSPE) for the Least Squares (LS), Recursive Mean Adjustment (RMA), and grid bootstrap (GT)

estimators, respectively. v) LS/RMA and LS/GT are RMSPEL/RMSPERand RMSPEL/RMSPEG, re-

spectively. vi) DMR and DMG denote Diebold-Mariano (1995) asymptotic test statistics for the pairs

of estimators, LS-RMA and LS-GT. Null hypothesis is equal prediction accuracy. p-values from an

asymptotic standard normal distribution are in parenthesis.
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Table 3. Rolling Window Out-of-Sample Forecast Results

Index h RMSPEL RMSPER RMSPEG LS/RMA LS/GT DMR DMG

Spot 1 0.045 0.044 0.044 1.006 1.010 0.328 (0.743) 0.473 (0.636)

2 0.065 0.062 0.062 1.039 1.054 1.833 (0.067) 1.778 (0.075)

3 0.079 0.076 0.074 1.046 1.066 2.296 (0.022) 3.348 (0.001)

4 0.097 0.094 0.093 1.034 1.046 2.116 (0.034) 3.267 (0.001)

6 0.134 0.130 0.129 1.032 1.043 1.633 (0.102) 2.648 (0.008)

Livestock 1 0.083 0.082 0.083 1.014 1.008 1.162 (0.245) 0.303 (0.762)

2 0.119 0.115 0.112 1.030 1.058 2.046 (0.041) 2.145 (0.032)

3 0.126 0.123 0.122 1.026 1.039 2.387 (0.017) 1.683 (0.092)

4 0.140 0.138 0.135 1.020 1.036 1.531 (0.126) 2.075 (0.038)

6 0.170 0.168 0.164 1.012 1.036 1.347 (0.178) 3.026 (0.002)

Fats&Oil 1 0.110 0.110 0.108 1.001 1.011 0.094 (0.925) 0.461 (0.645)

2 0.158 0.158 0.153 1.005 1.037 0.433 (0.665) 1.338 (0.181)

3 0.173 0.173 0.167 1.001 1.035 0.132 (0.895) 1.892 (0.058)

4 0.192 0.193 0.188 0.994 1.018 -0.821 (0.411) 1.246 (0.213)

6 0.248 0.253 0.251 0.980 0.989 -2.277 (0.023) -1.354 (0.176)

Foodstuff 1 0.062 0.062 0.061 1.010 1.016 0.945 (0.345) 0.793 (0.428)

2 0.085 0.082 0.080 1.034 1.069 2.068 (0.039) 2.226 (0.026)

3 0.100 0.098 0.095 1.018 1.057 1.483 (0.138) 3.073 (0.002)

4 0.117 0.115 0.111 1.016 1.055 1.373 (0.170) 2.824 (0.005)

6 0.153 0.152 0.148 1.007 1.032 0.656 (0.512) 2.396 (0.017)

Raw 1 0.048 0.048 0.047 1.007 1.021 0.388 (0.698) 0.828 (0.408)

Industrials 2 0.078 0.076 0.074 1.014 1.049 0.516 (0.606) 1.417 (0.156)

3 0.093 0.093 0.090 1.004 1.035 0.201 (0.841) 1.858 (0.063)

4 0.120 0.119 0.116 1.007 1.034 0.522 (0.601) 2.206 (0.027)

6 0.159 0.159 0.156 1.000 1.020 0.016 (0.987) 1.286 (0.198)

Textiles 1 0.037 0.037 0.037 1.017 1.002 0.745 (0.457) 0.213 (0.832)

2 0.058 0.056 0.057 1.029 1.009 1.203 (0.229) 0.563 (0.573)

3 0.074 0.073 0.074 1.010 0.999 0.482 (0.629) -0.066 (0.947)

4 0.087 0.088 0.088 0.990 0.991 -1.004 (0.316) -1.408 (0.159)

6 0.106 0.108 0.108 0.985 0.985 -1.211 (0.226) -1.633 (0.103)

Metals 1 0.083 0.084 0.083 0.998 1.006 -0.127 (0.899) 0.282 (0.778)

2 0.133 0.134 0.132 0.997 1.014 -0.111 (0.912) 0.454 (0.650)

3 0.171 0.170 0.165 1.004 1.035 0.369 (0.712) 2.439 (0.015)

4 0.215 0.215 0.210 1.003 1.028 0.440 (0.660) 2.909 (0.004)

6 0.293 0.292 0.288 1.002 1.019 0.214 (0.831) 1.471 (0.141)

Note: i) Out-of-sample forecasting was implemented by sequentially adding one additional observa-

tion and dropping one observation in each iteration, maintaining 69 observations. ii) The number of

lags (k) was chosen by the general-to-specific rule recommended by Ng and Perron (2001). iii) h de-

notes the forecast horizon (quarters). iv) RMSPEL, RMSPER, and RMSPEG denote the root mean

squared prediction errors (RMSPE) for the Least Squares (LS), Recursive Mean Adjustment (RMA),

and grid bootstrap (GT) estimators, respectively. v) LS/RMA and LS/GT are RMSPEL/RMSPERand

RMSPEL/RMSPEG, respectively. vi) DMR and DMG denote Diebold-Mariano (1995) asymptotic test

statistics for the pairs of estimators, LS-RMA and LS-GT. Null hypothesis is equal prediction accuracy.

p-values from an asymptotic standard normal distribution are in parenthesis.
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Figure 1. CRB Historical Data

1
4


	Introduction
	Bias-Correction Methods
	Empirical Results
	Concluding Remarks

