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Abstract

In empirical research, applied economists benefit from instrumental variable methods and use

a simple t-ratio test statistic to infer whether there is a causal relationship among the variables

analyzed. However, the t-test gives unreliable results even when there is only a slight violation

of exogeneity. This paper demonstrates that it is possible to modify the t-ratio in a simple way

so that causal inference can still be drawn under a violation of perfect exogeneity, thus providing

applied researchers with the necessary robustness property for inference.
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1 Introduction

Economists frequently apply instrumental variable methods to draw inferences about whether or

not some variable influences an economic outcome. For example, labor economists employ varied

instruments, including quarter and year of birth (Angrist and Krueger, 1991), tuition and distance

to nearest college (Kane and Rouse, 1995, Card, 1993), attending reform school (Meghir and Pa-

lene, 2005) and birth year interacted with school buildings in region of birth (Dufflo, 2001) to

measure the extent to which a person’s education influences her salary and wages. In a distinct but

related literature that combines macro-economics, political economy and comparative institutions,

economists employ instruments including early settler mortality (Acemoglu, Johnson and Robin-

son, 2001), ethnic capital (Hall and Jones, 1999), ethno-linguistic fractionalization (Mauro, 1995)

and legal families (Djankov et al., 2003, and Acemoglu and Johnson, 2006) to determine whether or

not the quality of institutions influences long term growth and investment. Instrumental variable

methods are used to identify causal relationships by isolating changes in an endogenous variable

(or variables) that are unrelated to potential unobserved factors. To identify a causal relationship,

instruments must be exogenous; that is, they are not related to the outcome variable after con-

trolling for relevant explanatory variables. For example, early settler mortality is exogenous if it is

only related to long term growth through its impact on institutions, after controlling for relevant

variables such as latitude. This requirement is strong because it means that settler mortality can

only influence long term growth indirectly through the quality of contemporary institutions. The

exogeneity of early settler mortality, however, is controversial: for example, as noted by Glaeser

et al. (2004), early settler mortality could also influence long term growth through its impact on

the unobservable human capital of the early settlers. Whether or not the exclusion restriction is

perfectly satisfied is debatable for many (and perhaps most) applications of instrumental variables.

In empirical research, applied economists benefit from instrumental variable methods and use

a simple t-ratio test statistic to infer whether there is causality among the variables analyzed.

However, the t-test gives unreliable results even there is slight violation of exogeneity, as established

recently in a paper by Berkowitz, Caner and Fang (Economics Letters, 2008). That paper only

shows there is a problem. Here we extend this research to show that it is possible to modify the

t-ratio in a simple way so that causal inference can still be drawn under a violation of perfect

exogeneity. In Table 1, we show that using standard t-ratio is not desirable when the instrument is

endogenous. The table shows the actual size of the test when the single instrument is endogenous.
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Table 1: Size (5% level), Standard t test

corr0 = −0.5 −0.3 −0.1 0 0.1 0.3 0.5

n = 1000 100.0 100.0 87.9 5.3 88.8 100.0 100.0

n = 200 100.0 99.0 26.9 5.3 32.9 99.2 100.0

n = 100 100.0 85.2 15.4 5.3 19.9 89.6 99.9

Note: corr0 represents the true correlation between the single instrument and the error (second

stage equation). The first column header is true correlation, all the other column headers are

specific true correlation values.

When we increase the sample size the problem gets worse. For example with true correlation of

0.1, at n = 100 (sample size is n) the size of the test is 19.9%, then if the sample size increases to

n = 1000, the size is 88.8%. This is a massive size distortion. The deatils of the setup is described

in (13)(14).

We propose a new test that modifies the t-test in a very simple way, yet is robust to instrument

validity concerns. The test we propose depends on the idea that we can subtract the drift from the

a version of t test and the drift depends on the value of the true correlation between the structural

error and the instrument. Since the true correlation is between -1 and 1 we can do a grid search.

Also a good property of the test is, it is monotonic and continuous in the value of true correlation.

This gives rise to good inference when the null is true. We can understand the neighborhood of

true correlation in that case and concur that the test fails to reject unlike the regular t. If the

alternative is true our test rejects the false null regardless of correlation values as does the regular

t. In finite samples to have power the modified t test works best when we have strong instruments

and the true correlation is in between -0.5 to 0.5. Since the other correlation values are large, these

are not plausible in a given study as long as the researcher is careful about instrument choice.

Berkowitz, Caner and Fang (2009) analyze the Anderson-Rubin test with a new resampling

scheme when there is violation of exogeneity. The main assumption in that paper is violation of

exogeneity, but this is local to zero. In large samples exogeneity is kept intact. In finite samples,

the block size choice is important in their resampling scheme. Here, in this paper we consider a

modified version of t statistics. The violation of exogeneity is not mild, this is allowed even in

large samples. Our test depends on the correlation between the instrument and the error in the

second stage regression. But the modified t is monotonic and continuous in the correlation, so a

grid search is very helpful in inference.
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The intuition behind this test is that, depending on the relative signs of the correlations and bias,

there are “good” and “bad” directions of non-exogeneity. In the Acemoglu and Johnson example

described above, early settler mortality might fail the strict exogeneity test because mortality

might be related to morbidity, which could influence long term growth by stunting the human

capital accumulation of early settlers (for a discussion see Glaeser et al., 2004). So, outside of

its influence on institutions, log settler mortality decreases GDP through deficient human capital

accumulation.

In linear models the instrumental variables estimate, βIV , is simply the ratio of the reduced

form to the first stage, βIV = βRF

βF S
. Here βRF is the coefficient of early settler mortality on GDP and

βFS is the coefficient of early settler mortality on the institutional parameter (here the constraint

on the executive). Since both coefficients are negative, the IV estimate is positive. If the exclusion

restriction is not met because of the unobserved human capital mechanism, then the coefficient βRF

is “too big” in the sense that the negative effect operates both through deficient institutions and

through deficient human capital accumulation. If log settler mortality were to benefit an unobserved

variable, say through culling or a selection effect (e.g., only the most robust and talented individuals

move where log settler mortality is high), then this reduced form coefficient would be biased toward

zero, and hence the IV result would be biased toward zero. So, in effect, our test suggests that if

the correlation between the instrument and the error term in the structural equation is positive

(or at least not too negative) then we can still draw inference. According to the empirical exercise

described in Section 5, as long as the correlation is not in the range [-1, -0.5] the modified t-ratio

still indicates a rejection of the null hypothesis.

This is a very powerful result because it demonstrates that as long as the violations of exogene-

ity are within a set boundary, we are still able to make inferences. Since a perfectly exogenous

instrument is very difficult (or perhaps impossible) to find, this test allows researchers to estimate

how robust their findings are to modest violations of exogeneity.

In addition to the Acemoglu and Johnson example, we also demonstrate this method using a

well-known example from labor economics. In Card (1995), the author argues that proximity to

college can be used as an instrument for college attendance when calculating the returns to schooling

on wages. One potential violation of exogeneity is that proximity to college is correlated with other

unobserved factors that are positively associated with high earnings, such as having well-educated

parents or having a higher quality public primary and secondary education. Thus the violation

of perfect exogeneity is in the “bad” direction, so that proximity to college leads to higher wages
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both through college attendance and potentially through these other channels. This leads to an

overstatement of results. If instead proximity were negatively correlated with the structural error,

the IV estimate would be biased toward zero. We show that the modified t-ratio still rejects the

null of no effect if the correlation is between [-1,0], but fails to reject with any positive correlation.

This is true even with correlations as small as 0.01. Hence, in this case, the researcher must be

cautious of any positive correlations between the instrument and the error term, even if they are

only slight. The results in Card (1995) are surprising in that they indicate a larger return to college

than standard OLS estimates. Most economists believe that returns to schooling are overstated,

since schooling is correlated with unobserved ability, which in turn leads to higher wages. Our

discussion here indicates that potential violations of the exclusion restriction, even at very small

levels, could lead to incorrect inference without adjusting the t-ratios.

Section ?? provides a theoretical basis for the empirical technique. In Section ??, we present

an algorithm that suggests a simple and tractable modification of the standard t-ratio statistic.

Section ?? presents simulation results which justify the practicality and efficiency of our estimates.

Section 5 presents the two examples of the application of this technique in empirical research.

Section 6 provides a discussion and concludes. Note that the Stata code used to implement the

test statistic is included in Appendix 7.

2 The Model and Assumptions

We consider the following linear simultaneous equations model

y = Xβ0 + u, (1)

X = Zπ0 + V, (2)

where (1) is the structural equation, and (2) is the reduced form one. X represents n × k matrix,

where Xi is a k × 1 vector of endogenous variables. Z is n × l matrix, and Zi is l × 1 vector of

instruments, l ≥ k. Also π0 is of full column rank k. The errors ui, Vij , i = 1, · · · , n, j = 1 · · · k are

correlated. Control variables may be added to the system. If this is the case, simply projecting

them out works in the analysis below. So in order not to complicate the analysis we abstract

away from them. The variance matrix EViV
′
i = ΣV V < ∞, and nonsingular. Eu2

i = σ2
u < ∞,

and Eui = EVi = 0. Let β̂ represent the two-stage least squares estimate of β0, and π̂ is the LS

estimate of π0.
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In this part we discuss and present our assumptions.

Assumption 1. (i). (Violation of Exogeneity)

EZiui = C,

where C is l × 1 vector with C = (C1, · · · , Cm, · · · , Cl)
′, and each Cm �= 0 for m = 1, 2, · · · , l and

finite.

(ii). We also have

EZiV
′
i = 0.

Assumption 2. The following limits hold jointly when the sample size n converges to infinity:

(i).
(

n−1

n∑

i=1

u2

i , n
−1

n∑

i=1

Viui, n
−1

n∑

i=1

ViV
′
i

)
p→ (σ2

u,ΣV u,ΣV V ),

where σ2
u,ΣV u,ΣV V are scalar, k × 1, and k × k matrix, respectively. The scalar is positive , the

vector is nonzero and finite, and the matrix is positive definite and finite.

(ii). We have the following law of large numbers

Q̂zz = n−1

n∑

i=1

ZiZ
′
i

p→ Qzz,

where Qzz is a positive definite and finite k × k matrix.

(iii). We have the following central limit theorem
(

n−1/2

n∑

i=1

(Ziui − EZiui), n
−1/2

n∑

i=1

ZiV
′
i

)
d→ (Ψzu,ΨZV ),

⎛
⎜⎝

ΨZu

ΨZV

⎞
⎟⎠ ≡ N [0,Σ ⊗ Qzz],

and

Σ =

⎛
⎜⎝

σ2
u Σ′

V u

ΣV u ΣV V

⎞
⎟⎠ .

Note that Assumption 1i is the main issue of this paper. The perfect exogeneity that is used

instrumental variable analysis is a knife-edge, and unrealistic assumption for applied work. Even

though the researcher is careful in selecting the ”perfectly exogenous” instrument there can still be

unavoidable violations of exogeneity. There will be more discussion about that assumption in the

next section.
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Another possibility is the case of near exogeneity (a local to zero violation). This is analyzed

in Berkowitz, Caner and Fang (2008) and it is shown that t-test is affected and inference becomes

unreliable. But there is no solution that is proposed in that paper. In this paper, with a more

realistic assumption we propose a solution to inference with Assumption 1.

Assumption 2 is basically law of large numbers and a central limit theorem. These hold under

primitive conditions, such as moment conditions on the instruments and the errors, for these see

Davidson (1994). One important fact to remember is the central limit theorem that we have is for

Ziui − EZiui, so that we can get a zero mean.

3 Test Statistics

In this section we discuss and analyze Assumption 1i and based on that introduce three cases of

interest in applied work. First we cover one of the most widely used case of just identified system

with one endogenous regressor and one instrument (k = l = 1). Then in our second case we consider

one endogenous variable with more than one instrument (k = 1, l ≥ k). The last case involves the

general case where we may have more than one endogenous variable, and more than one instrument

(k > 1, l ≥ k).

3.1 The Just Identified Case with One Endogenous Regressor

We start with two issues that are related to standard t statistic. In this section, we propose solutions

to both problems. First, the covariance between the instruments and the structural error is the

issue. We can convert that to a measure involving correlation. The correlation is standardized so

we can try a grid search. In that respect, assume cov(Zi, ui) = C where C is scalar now since

k = l = 1, for all i = 1, · · · n.

See that

corr(Zi, ui) =
cov(Zi, ui)

σu

√
var(Zi)

.

Then

C = σuσzzcorr0, (3)

where corr0 denotes the true unknown correlation, and varZi = σ2
zz for all i = 1 · · · n.

In other words, we can write the covariance in terms of correlation, and since the correlation is

between -1 to 1, we can evaluate t-test at each correlation as long as we can estimate σu, and σzz
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consistently. At true correlation, we show that a modified t-test converges to a standard normal

law, and if we make a mistake and choose the wrong correlation modified t-test diverges to infinity.

So we can differentiate between the true and wrong correlation under the null distribution. This

is the result in Theorem 1. The details about grid, the finite sample issues will be discussed after

Theorem 1. We also consider the power issues in this section as well. There will be extensive

discussions about the this modified test and the limit after Theorem 1.

The second issue is that in regular t-test, the estimator σ̂2
u is inconsistent which is shown in

(22) below. Then we impose the null of H0 : β = β0, and have the following consistent estimate

under the null

σ̃2

u = n−1

n∑

i=1

(yi − Xiβ0)
2 p→ Eu2

i = σ2

u.

We propose the following modified t-test evaluated at true correlation (corr0), the issue of the using

wrong correlation is shown in Theorem below.

modt0 =

√
n(β̂ − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
−

√
nsgn(π̂)f(z)corr0, (4)

where sgn(π̂) is the sign of the least squares estimate π̂ in (2) for the scalar case, and

f(z) =

√
σ̂2

zz

σ̂2
zz + Z̄2

,

where σ̂2
zz =

∑n
i=1

(Zi − Z̄)2/n, Z̄ =
∑n

i=1
Zi/n.

Note that we replace the unknown C by two components. First we use consistent estimators

such as σ̃u, σ̂zz. Then for the true correlation since we cannot estimate it we use a grid search so

that we can observe different values and this may help us in building the test statistic. So if we

know the true correlation (i.e.corr0)

Ĉ = σ̃uσ̂zzcorr0

p→ C = σuσzzcorr0. (5)

Of course if we do not know corr0 this will not be consistent, but still see that if we choose

corr1 = corr0 + d/n1/2, with d a nonzero constant, still we have consistent estimation of C. In the

test statistics, theorems and the discussions below, (5) will be a good guide. The main idea is if

the null is true, when the test statistics is evaluated at true correlation or neighborhood of that in

the grid search, the test will not be able to reject the true null, and if we make a mistake in choice

of correlation values, it will reject the true null. So we can look at all the results from the grid and
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say that the null is not rejected. The power issues related to this approach, and the size discussion

above will be substantiated with Theorems and the implications of them.

The key question is how do we obtain (4)? Why it is built in the way it is? This will be

answered rigorously in the proof of Theorem 1, but here we provide a brief sketch. Lemma A.1i

shows that bias in two-stage least squares estimate by using Assumption 1 is

(π2

0
Qzz)

−1π0C,

when we have k = l = 1. If we know C, we can then subtract the least squares estimate of the bias

from β̂ − β0 and setup the test. So

modt =

√
n[β̂ − β0 − (π̂2Q̂zz)

−1π̂C]

σ̃u[π̂2Q̂zz]−1/2
.

Since we do not know C using (3) (5)

modt0 =

√
n(β̂ − β0)

σ̃u|π̂|−1Q̂
−1/2

zz

−
√

nsgn(π̂)f(z)corr0. (6)

We also define another test statistic modt1. In that test statistic, we make a mistake in the

correlation choice (i.e. in (4)) instead of choosing the true correlation (corr0), we use corr1 �= corr0,

and call the test statistic: modt1. In the following Theorem, we consider the case of k = 1 and

l = k which is an empirically relevant case in most of the applied research.

Theorem 1. Under Assumptions 1-2, with (3), and the null of H0 : β = β0, when k = 1, l = k

(i).

modt0
d→ N(0, 1).

(ii).

modt1 → ∞.

Remarks.

1. Theorem 1 shows that the modified t-ratio converges to a standard normal limit if the true

correlation is used (i.e. corr0). Otherwise we diverge to infinity. This theorem can help the applied

researchers in their efforts for inference. It is clear that in large samples by looking at t- test value,

we will be able to differentiate true correlation under the null of H0 : β = β0. We conduct some

simulations to show these also. Basically, in large samples if the null is true, then at the true

correlation level we do not reject the null and all the other values of the correlation we reject the
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null hypotheses. We can have a very fine grid, and this helps us, as it can be seen from Figures 1-2

in simulations.

An important issue in practice is the size distortion of the regular t-test due to the violation

of exogeneity. Our modified t-test remedies this problem. If the null hypothesis is true, in our

grid search, either at true correlation value (corr0) or in a range of correlation values around true

correlation value the modified t test does not reject the true null, and prevent the size distortions.

The size and power issues will be discussed at length in the Remarks below.

2. An important issue is that what if we miss the true correlation in the grid search when the

null hypotheses is true? We know that modt1 → ∞, and only if we know the true correlation corr0

and hence we use modt0 we do not reject the null if it is true. Capturing the true correlation may

be considered a remote possibility. But we argue that given a very fine grid, and strong instruments

this is possible, if not we can at least pinpoint the neighborhood of the true correlation.

To show these, one interesting fact is that the modified t test is monotonic in the value of the

correlation which is clear from (4). In other words, when we start the grid search from -1, and

go toward 1, modt will either decrease or increase depending on −sgn(π̂). This is good news if

we miss the true correlation in our grid search. This prompts us to do a finer grid search. To

illustrate this point assume that modt test is -2 at correlation 0, and 2 at correlation 0.1. So even

though the null is true, we will be inclined to reject based on coarse grid. But since the test is

monotonic and continuous we have to check and see the test values between correlations 0 and 0.1.

Via Intermediate Value Theorem, the modified t statistics evaluated between 0 and 0.1 correlations

are less than 5% critical value, hence the null will not be rejected. The power issue is analyzed in

Remarks 7 and 8 below.

3. We should remember that the regular t-test uses corr0 = 0 (accepts that that is the true

correlation) and then tests the null of H0 : β = β0. Also the regular t-test assumes the two stage

least squares estimator is consistent and builds σ̂2
u on that information. Here we do not assume

that two stage least squares estimate is consistent, and incorporate various values of correlation.

For an extensive comparison between the modified t and the regular t-test we refer the readers to

next subsection.

4. Another important point is the local analysis. What will happen to the test statistic if we are

in n−1/2 neighborhood of corr0: corr1 = corr0 + d/n1/2, where d �= 0. To state the case rigorously,

we build the modified local t-test
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modtl =

√
n(β̂ − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
−
√

nsgn(π̂)f(z)(corr0 + d/n1/2)

= modt0 − sgn(π̂)f(z)d

d→ N(D, 1),

where we use (10), and D = −sgn(π̂)f(z)d.

So instead of N(0, 1) distribution as in modt0 (where modt0 assumes that we know the true

correlation level) the true distribution is again normal with variance 1, but shifted to left or right.

Then the question is: can we conduct inference? We try to answer this question in this remark and

Remark 6 below.

If the null is true, then two things can happen. First since we use wrong critical values (i.e. N

(0,1)) and the truth is N(D, 1), then modtl value may be large (compared with modt0) but still

we do not reject the null hypothesis of H0 : β = β0. So this is recorded as non rejection in our

grid search of correlation values. The second possibility is modtl is much larger than the N(0, 1)

critical values, and leads us to reject the null falsely at that specific correlation level (i.e. at corr1,

where corr1 = corr0 +d/n1/2). Assuming that in our grid search we do not miss the true corr0,(see

Remark 2 above) by using modt0 we do not reject the null. Note that choosing a very fine grid in

an application reduces the probability of the second possibility.

So if the null is true, either we have a point in the grid that tells no rejection, or a neighborhood

of the true correlation (a range) that shows no rejection. In either scenario we can achieve the right

conclusion. This is good news from an applied perspective. The power issue relating to this choice

will be discussed in Remark 7 below.

5. An important issue here is if the difference between the two-stage least squares estimate

and β0 is positive and if the sign of the true correlation is reverse of the sign of the reduced form

estimate, there is no need to be concerned about inference if we reject the null with regular t test,

since the modified t will be much larger (see that standard errors will be close since the bias is

small). The same issue is true if the difference between the two-stage least squares estimate and β0

is negative and the sign of the correlation has the same sign of the reduced form estimate then if

we reject the null with regular t, we will reject with modified t as well. So violation of exogeneity

will not change the results of the inference.

6. If the alternative is true (i.e. β1 is true value and β0 �= β1), then clearly modt0 → ∞. There

is power against the fixed alternatives at true value of the correlation (i.e. corr0). The modt0 is
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consistent.

As an additional fact, when H0 is false, and the true value of β is β1 and if we impose β0,

through Assumptions 1 and 2,

σ̃2

u − σ2

u
p→ a < ∞,

where a �= 0,

a = (β1 − β0)
2(π2

0
Qzz + ΣV V ) − 2(β1 − β0)(π0C + ΣuV ).

Under the alternative the σ̃2
u is not consistent, however this does not affect the consistency of the

modt0, when we have fixed alternatives.

We now conduct a local power analysis. Set the true β as β1 = β0 + c/n1/2, c �= 0, note that

then a → 0, so σ̃2
u

p→ σ2
u.

at the true correlation

√
n(β̂ − β1)

σ̃u|π̂|−1Q̂−1
zz

−
√

nsgn(π̂)f(z)corr0 −
√

n(β1 − β0)

σ̃u|π̂|−1Q̂−1
zz

d→ N(0, 1) − c

σu|π0|−1Q−1
zz

≡ N(c̃, 1),

where c̃ = −c|π0|Qzz/σu.

So we have local power in modt0 test. This also shows through c̃ that with strong instruments,

the power will be larger. Note that with strong instruments c̃ (a shift in the mean compared with

standard normal) will be large and it will be easy to differentiate the alternative from the null.

7. If the alternative is true, and if we make a mistake in selecting true correlation, use corr1 �=
corr0, is it plausible to have this test fail to reject the false null? So we consider modt1, and analyze

whether it is plausible to fail to show that alternative is true. Below we show that this is probable

at implausible large correlation values only when we select strong instruments. The simulations

also confirm this.

To show this issue, analyze the just identified case for simplicity. There if the true value of the

structural parameter is β1 �= β0 (alternative hypotheses is true), and we use corr1 �= corr0

modt1 =

√
n(β̂ − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
−

√
nsgn(π̂)f(z)corr1

=

√
n(β̂ − β1) −

√
n(β1 − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
−

√
nsgn(π̂)f(z)corr1 −

√
nsgn(π̂)f(z)(corr0 − corr1).
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It is possible then that

√
n(β1 − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
∼=

√
nsgn(π̂)f(z)(corr1 − corr0),

where these two terms may be equal to each other and cancel each other in the test statistic.

Then modt1 will not diverge to infinity but converge to a normal distribution. This may result

in fail to reject the false null. Now we show that with strong instruments, this issue may occur

at large correlation values. By analyzing the left hand side of the above, and using Estimator of

Concentration Parameter= CP : nπ̂2Q̂zz/σ̃
2
u we have that

√
CP (β1 − β0) ∼=

√
nsgn(π̂)f(z)(corr1 − corr0).

So if the concentration parameter is large, then the possible non rejection of the false null occurs

at correlation values near -1 or +1. These are nearly implausible values in any given application

(given that instruments are selected carefully, not randomly). So the problem can be avoided with

large n, or using strong instruments.

8. Related to Remark 7 above and Remark 2 above, we may have non-rejection (of the null

H0) region at certain correlation values if corr1 = corr0 + d/
√

n, and if the alternative hypotheses

is true. This will not be a practical issue as we show. This is related to formula above

√
CP (β1 − β0) ∼= sgn(π̂)f(z)d. (7)

But this may be avoided with large n or strong instruments, where the left hand and right hand

sides will be far apart in (7). 9. In practice we work with finite samples and plausible correlation

values are in the range of [-0.3, 0.3]. So we may do a grid search and choose the modified t test with

the smallest absolute value and then compare that to standard normal distribution and conduct

inference.

From an applied perspective, if we combine Remark 8 with Remark 2 above, if the null is true,

the possibilities are a point of non rejection or a range of correlation values that do not reject the

true null. If the alternative is right, then we may avoid non-rejection with large samples or strong

instruments or both.

3.2 The Comparison Between The Regular t and the Modified t

In both test statistics, we consider H0 : β = β0, and also the analysis applies to overidentified case,

but to make the comparison better we prefer to use the just identified case. The standard t test is
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given (k = l = 1)

t =

√
n(β̂ − β0)

σ̂u|π̂|−1Q̂
−1/2

zz

,

where σ̂2
u = n−1

∑n
i=1

(yi − xiβ̂)2. The modified t is

modt =

√
n(β̂ − β0)

σ̃u|π̂|−1Q̂
−1/2

zz

=
√

nsgn(π̂)corr,

where corr can be the true correlation (corr0), then the test is modt0, if it is the wrong correlation

(corr1 �= corr0), then the test is called modt1 to differentiate the results. The differences between

the two are clear from the equations above. First, as discussed also before, σ̂u �= σ̃u, and they

are asymptotically equivalent only in the case of β̂
p→ β0. The second difference is the subtraction

of the drift in modt. The regular t specifically assumes that corr0 = 0, the modified t does not

assume that. It tries to find the neighborhood of the true correlation if the null is true, and if the

alternative is true, the finding of the true correlation is not important, since modt is consistent at

all correlation levels.

Clearly, since the regular t test assumes corr0 = 0, if this is not true, and the truth is some

other correlation, then under the null t → ∞. This is also well illustrated in the simulation in Table

1. So the size distortions with regular t test is huge, and we can almost always reject the true null.

The situation gets worse with increasing the sample size. In the modified t test if we know the true

correlation and this is not equal to zero, then modt converges to standard normal distribution, and

has excellent size (see Tables 2-4).

Then the next question is under the true null, what if there is a mistake in the true correlation

choice in the modified t test? In large samples, there are two possibilities, with a large mistake

corr1 �= corr0, the modified t test (modt1 in that case) diverges to infinity as shown in Theorem

1ii. If we have a fine grid search we can catch the treu correlation since mod t values with wrong

correlation will be very high, and with true correlation modt will be between the critical values in

standard normal. This point is also discussed in Remark 2 after Theorem 1. If the correlation is

local to corr0, then the distribution is a normal distribution with drift, so we may reject the true

null or not depending on the magnitude of the drift. In the regular t ratio, if the true correlation is

not 0, but local to some other number, then again the regular t diverges to infinity in this case, only

if the true correlation is 0 and we put corr1 = 0 + d/n1/2, then we have the same distribution as

modt. This is the distribution in Remark 4 after Theorem 1, and Theorem 1 in Berkowitz, Caner,

and Fang (2008).
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Next, if the null is true, what can we say about the performance of regular t and the modified t

in finite samples? Here we compare them in a simulation. In Table 1, for n = 100, at 5% nominal

size regular t rejects the true null 20% at corr0 = 0.1, and 90% at corr0 = 0.3. In Table 4, at true

corr0 = 0.1, modt0 rejects at 5%, and at corr0 = 0.3 modt0 rejects at 3%. There is still a very large

difference between two. Even if we make a mistake in the choice of true correlation, still modified t

does better. For example, if we choose a correlation of 0 or 0.2, when the truth is 0.1 the modified

t rejects the true null at 16-17% compared with 20% rejection of the regular t. At true correlation

of 0.3, if we make a mistake and use correlation of 0.2 or 0.4 in our modified t test, the size is

14-15%, where as the regulat t has 90% size.

Another issue is that if the regular t fails to reject the true null, is that true for the modified t

as well? In large samples, regular t test chooses the correct null only when corr0 = 0, this is true

for modt0 test as well as it is clear from Theorem 1i. In small samples, with n = 100 and corr0 = 0,

the size of modt0 is 4.9% at the nominal 5% level (not shown in Tables). For standard t test, this

is 5.3% as seen in Table 1. What if we make a mistake in corr0 = 0 in the modified t? It is shown

in Remark 2 after Theorem 1, that through Intermediate Value Theorem, we can have a fine grid

and get a very close neighborhood of corr0, where the modified t does not reject the true null.

When the alternative is right, both standard t and the modified t is consistent. Modified t can

have some power losses in finite samples but the discussion in Remarks 7-8 after Theorem 1 shows

that this can be prevented through a choice of strong instruments.

3.3 The Overidentified Case of One Endogenous Regressor

In this case, since k = 1, l ≥ k, we assume that

corr(Zim, ui) =
cov(Zim, ui)

σu

√
var(Zim)

, (8)

for all m = 1, · · · , l. Using Assumption 1 we can rewrite (8) as, for all i = 1, · · · n,

Cm = σu

√
var(Zim)corr0. (9)

So with (9) we assume two things in addition to the first case analyzed in section 3.1. First, the

instruments are such that cov(Zim, Zip) = 0 for all m �= p, m = 1, · · · , l, p = 1, · · · l, i = 1, 2, · · · n.

The instruments are not correlated with each other. In finite samples we can handle this through

simple projections as discussed in Remark 2, after Theorem 2. The second assumption in (9) is

for all instruments true correlation between the structural error and the instrument is the same
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(corr0). This is similar to regular instrumental variable estimation, there the claim is this correlation

between ui and Zim is the same and 0 for all instruments. So we extend to nonzero correlations.

Our results will go through with different correlations but we need multiple grid searches. For

many instruments case, this is not practical.

Now we setup the test statistic. Note that this also covers the former case as well (k = l = 1).

The reason that we have a separate section for the simple just identified case is the simplicity of the

test in that case as a subcase of the following test. The following test can be built using Lemma

A.1i. If we know true C in Assumption 1

modt =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̂′C)

σ̃u(π̂′Q̂zzπ̂)−1/2
. (10)

We can replace the infeasible test in (10) with the following by Assumption 1, (9), and extending

(5) to a vector

modt0 =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̂′[σ̃u

√
̂var(Z1), · · · , σ̃u

√
̂var(Zl)]

′corr0)

σ̃u(π̂′Q̂zzπ̂)−1/2
,

where σ̃u is the square root of the estimator σ̃2
u, and ̂var(Zm) = 1

n

∑n
i=1

(Zim − Z̄m)2 where Z̄m =

n−1
∑n

i=1
Zim for m = 1, · · · l. We can further simplify the test above as

modt0 =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̄corr0)

σ̃u(π̂′Q̂zzπ̂)−1/2
, (11)

where π̄ = π̂′[σ̃u

√
̂var(Z1), · · · , σ̃u

√
̂var(Zl)]

′ which is scalar.

Note that (10) simplifies to (4) as can be seen from (6).

In the same way as in the just identified case, define another test statistic modt1. In that test

statistic, we make a mistake in the correlation choice (i.e. in (11)) instead of choosing the true

correlation (corr0), we use corr1 �= corr0, and call the test statistic: modt1.

Theorem 2. Under Assumptions 1-2, with (9), and the null of H0 : β = β0, when k = 1, l ≥ k

(i).

modt0
d→ N(0, 1).

(ii).

modt1 → ∞.

Remarks. 1. Theorem 2 also shows that modt0 still works when k = 1, l ≥ k. In large samples

at true correlation level test statistic does not reject the null if H0 is true. At other values of
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correlation the test rejects the null. In the finite samples, this case is exactly the same as the

just identified case. Choosing a fine grid with strong instruments ensures good size and power. If

we choose the wrong correlation, and still do not reject H0 (when H0 is false) then as in the just

identified case, choosing strong instruments solves the problem. If we choose the wrong correlation

and this time if the null is true, and our test rejects the true null this is easily fixed. Since the

test is monotonic in the correlation, choosing a fine grid and conducting the tests in these new

correlation values, we should be able to not reject the true null.

2. Note that in finite samples, instruments may be correlated. So we can use the following.

Assume that we have two instruments: Zi1, Zi2, for i = 1, · · · n. We regress (least squares) Zi1 on

Zi2 and define the residual as Zi1⊥. Then we use Zi1⊥ and Zi2 in the test statistic.

3. The local analysis in Remark 4 for the simple just identified case carries over if the null is

true. So if corr1 = corr0 + d/n1/2, we can get no rejection of the null since the modified t will

converge in distribution to a normal law with a constant non zero mean (variance 1). So if the null

is true, still test may not reject H0, if it rejects the true null, then we know that at true corr0 we

do not reject due to Theorem 2i. So in any case, we do not reject the true null at a point or in a

range of possible correlation values. Missing the true correlation in the grid issue is handled in the

same way through a monotonicity argument as in Remark 2 after Theorem 1.

4. The overall advice to applied researcher is to try plausible correlation values [-0.3, 0.3] in a

very fine grid and record no rejection of the null at certain correlation value/s. If there are such

values we do not reject the null, if all the values of a fine grid rejects the null then the alternative

is true, and we reject the false null.

5. Note that at corr0 = 0, modt0 and standard t is not the same due to the usage of σ̃ versus σ̂

respectively in their denominators which is explained in section 3.1. Asymptotically they converge

to the same limit under the null if corr0 = 0.

3.4 The General Case

For testing individual coefficients when k > 1 (multiple endogenous variables), the modified t-ratio

test does not work, since to get a consistent estimate for σu (i.e.σ̂u) we need to impose for all

β = β0. This is only plausible when k = 1, and we are using modified t-ratio test for the only

structural coefficient, or if we have a joint modified Wald test for H0 : Rβ = Rβ0, where R is a

j × k matrix. This test will include all parameters corresponding to endogenous regressors in the

structural equation.
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So we now introduce the modified Wald test evaluated at corr0 (true correlation). This is

constructed in the same way as modified t-test, and the proof is the same, and hence is skipped.

Still we impose (9) with Assumption 1

Cm = σu

√
varZimcorr0, (12)

for all m = 1, · · · l, i = 1, · · · n.

We want to test H0 : Rβ = Rβ0. Define modW0 as follows, by extending (5) to a vector

modW0 = n[Rβ̂ − Rβ0 − R(π̂′Q̂zzπ̂)−1π̂′[σ̃u

√
̂var(Z1), · · · , σ̃u

√
̂var(Zl)]

′corr0]
′

× (Rσ̃2

u(π̂′Q̂zzπ̂)−1R′)−1

× [Rβ̂ − Rβ0 − R(π̂′Q̂zzπ̂)−1π̂′[σ̃u

√
̂var(Z1), · · · , σ̃u

√
̂var(Zl)]

′corr0].

Let modW1 be the modified Wald, when we make a mistake in correlation choice, and use corr1

instead of true correlation corr0.

Theorem 3. Under Assumptions 1-2, with (12), and under the joint null of Rβ = Rβ0, we

have

(i).

modW0

d→ χ2

j .

(ii).

modW1 → ∞.

Remarks.

1.When we use corr1 (make a mistake in selection of true correlation) then modW1 → ∞. as

in Theorem 1 for modified t-test, where modW1 represents the modified Wald where corr1 is used

instead of corr0 in the modified Wald test above.

2. If we make a minor mistake in our correlation choice can we still have ”no rejection” of

the true null? If we set corr1 = corr0 + d/n1/2, and denote the modified Wald as modWl, then

following the analysis in Remark 4, we get a non central χ2 distribution. So it is possible to reject

the true null,(at least in certain correlation values in the neighborhood of corr0) and hence make

a mistake. But if we have a very fine grid, we can definitely evaluate the test statistic at certain

values of correlation near the true correlation, and do not reject the true null in some of them, and

make a correct inference.
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3. The test is consistent with a fixed true alternative. This can be shown easily. With a local

alternative, also there is still power if we are at true correlation. When we use correlation values

different than the true correlation corr1 �= corr0, then it is possible to fail to reject the false null.

However, as shown in Remarks 7-8 in the just identified case, using strong instruments solves the

problem.

4 Simulation

In this part of the paper we conduct simulations. We try to answer the following questions. First,

can we verify the results of Theorem 1? Namely, can we see that modt0
d→ N(0, 1), and modt1 → ∞

in large samples?. The second issue is the finite sample behavior of the test statistic modt0. The

issue is whether in the finite samples given a grid search (it may be a very fine grid search, with

very small steps in a given empirical application) is the smallest rejection level still corresponds to

modt0? (Since modt1 → ∞, wrong choice of correlation can result in large rejection rates). The

third question is related to power of the test. Is there a power loss at certain grid points as discussed

after Theorem 1? If there is can we also see that they are near extreme correlation values for a

given application. If this power loss occurs away from [-0.3, 0.3] range of correlations that power

loss may not be important. We generate the data with one instrument (l = 1), one endogenous

regressor (k = 1) and no control variables.

yi = Xiβ0 + ui, (13)

Xi = Ziπ + Vi, (14)

where β0 = 0 (for the size exercise), and π = 2. The structural error ui, the reduced form error

Vi, and the instrument are iid. These are generated from the same joint normal distribution with

N(0,Λ), where

Λ =

⎡
⎢⎢⎢⎢⎣

1 cov(Zi, ui) 0

cov(Zi, ui) 1 cov(Vi, ui)

0 cov(ui, Vi) 1

⎤
⎥⎥⎥⎥⎦

,

since varZi = 1, varui = 1, cov(Zi, ui) is also the correlation between Zi, ui. This is denoted as

corr0 in the other sections. The covariance between Vi, ui is set at 0.5. Since the variances are set

at 1, the true correlation between the structural error and the instrument varies among -0.5, -0.3,

-0.1, 0.1, 0.3, 0.5. The grid step is 0.1 for the Tables. For the graphs the true correlation is set at
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-0.1, 0.25, 0.52 and the grid step is 0.01. The sample sizes are n = 100, 200, 1000. The iteration

number is 10000. For the size exercise, we report the percentage of rejections at 5% critical values

from the standard normal distribution (-1.96, +1.96).

Table 1 provides the size of modt0,modt1 tests at n = 1000. In Table 1, corr0 represents the

true correlation between the structural error (ui) and the instrument (Zi). The first column is the

grid values of the correlation ”Grid”. When the grid value is equal to corr0 then the size of the

test(modt0) should be 5% at that level ideally. Otherwise if the grid value of the correlation is not

equivalent to corr0 then the size of the test (now the test becomes modt1) should be near 100%

according to Theorem 1. We see that the results in Table 1 confirm Theorem 1. Namely, the size

of the modt0 test is at 1-5% level. (i.e. at corr0 = −0.5,modt0 is the one that corresponds to

Grid = −0.5. Otherwise when Grid = corr1 �= corr0 the test is named modt1. When we look at

modt1 test the rejection rate is 88-100% at 5% nominal level. So if we have a grid search of the

correlation, then only at true value we get the 5% rejection at nominal level, otherwise we almost

always reject the null. In that sense, we can differentiate the true correlation by looking at the

absolute value of the modified t statistic. We can choose the one with the smallest absolute value

and compare it with standard normal distribution. To see how reliable is this in finite samples, we

conduct the same exercise with n = 100, n = 200 observations. For n = 200, n = 100 in Tables 2-3

we see that modt0 test achieve 1-5% size at 5% nominal level. This is very good, and confirms that

even in the finite samples the asymptotic approximation is very good. For modt1 tests (i.e. when

corr1 �= corr0) the situation is different than the one in Table 1. Table 2 shows the size of the

tests at n = 200. For example, at true correlation of corr0 = −0.1, the modt0 has the size of 4.5%,

and modt1 (corr1 = −0.2) the size is 29.6% rather than near 100%. But still there is substantial

difference between modt1 and modt0 test sizes. So picking up and using the smallest modified t test

in inference (in absolute terms) in a correlation search makes sense. At n = 100 in Table 3, still

modt0 has the smallest level. Tables 2-3 support our claim in Remarks 2 and 4 (in just identified

case) of the possibility of region of no rejection of the true null when we select correlation values

near the true correlation but miss the true correlation. This region is around the true correlation

value. We also report size results with a much finer grid of 0.01, these are shown in Figures ?.

Tables 4-7, report the percentage of the rejections of the false null hypothesis for modt0 and

modt1 tests. We have the same number of iterations as the size exercise, and the same critical

values are used. The true values of β = −2,−1, 1, 2, and we test H0 : β = 0, and n = 100, 1000.

The results confirm the remarks after Theorem 1. Namely, the power of modt0 is very good
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almost all the relevant correlation levels for applications (-0.5, +0.5). Even with a mistake (using

corr1 = Grid �= corr0, and the test is modt1), the power is still very good at the range of the

correlation values of [-0.5, 0.5]. There are certain power losses around high implausible correlation

levels, but as can be seen with large sample size this problem is less important. We also experiment

with increasing the concentration parameter estimate by putting π = 5, and this gives much better

power results. We also experiment with β = −0.5,−0.3, 0.3, 0.5, the results are very similar even

in this close neighborhood of 0. These are not reported.

Overall, we think that the applied researcher may use this method for a very fine grid between

[-0.3, 0.3] for the modified t-ratio test that is described. If s/he gets a region of no rejection of the

null this is a good check that the null hypothesis is not rejected. If that region shows only rejection

for all values of the correlation grid for the null, then the alternative is true.

5 Empirical Examples

Since the modified t test can choose the wrong correlation, this may cause problems. However, if

the null is true, we can learn the neighborhood of the true correlation as described in Remarks 2

and 4 after Theorem 1. In that neighborhood, we do not reject the true null. If the alternative is

true, whether we use the true correlation or not the modified t will reject H0.

We apply this technique to two empirical examples. First, we replicate the results from Ace-

moglu and Johnson (2005), hereafter AJ. As discussed in the introduction, the main results in AJ

utilize log settler mortality to instrument for institutions when measuring the effect of institutions

on economic growth as measured by GDP per capita. For our study, we have obtained the data

used by AJ on 64 countries. In this discussion we focus on Table 2 of AJ which provides estimates

for the just identified case of one instrument and one endogenous variable. In Table 2, Panel C,

Column (3) of AJ, the two-stage least squares estimate of the effect of the constraint on executive

power on GDP per capita is 0.76 with a standard error of 0.15. This coefficient is interpreted as

highly statistically significant under standard inference. However, as shown in Berkowitz et al.

(2008), this estimate is inconsistent and the standard t-test is biased.

To resolve this, we implemented our modified t-test procedure, as shown in Table 4 Column

(1). As long as the correlation is not in the range [-1, -0.5] then the modified t-ratio still indicates

a rejection of the null hypothesis. In other words, our test indicates that as long as the correlation

(or non-exogeneity) is not too extreme, the estimate is robust and we can be assured that the true
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Table 1: Size (5% level), modt0,modt1 n = 1000

Grid corr0 = −0.5 corr0 = −0.3 corr0 = −0.1 corr0 = 0.1 corr0 = 0.3 corr0 = 0.5

-1 100.0 100.0 100.0 100.0 100.0 100.0

-0.9 100.0 100.0 100.0 100.0 100.0 100.0

-0.8 100.0 100.0 100.0 100.0 100.0 100.0

-0.7 100.0 100.0 100.0 100.0 100.0 100.0

-0.6 94.7 100.0 100.0 100.0 100.0 100.0

-0.5 0.8 100.0 100.0 100.0 100.0 100.0

-0.4 94.1 90.8 100.0 100.0 100.0 100.0

-0.3 100.0 3.7 100.0 100.0 100.0 100.0

-0.2 100.0 90.0 88.7 100.0 100.0 100.0

-0.1 100.0 100.0 4.8 100.0 100.0 100.0

0.0 100.0 100.0 88.7 88.1 100.0 100.0

0.1 100.0 100.0 100.0 4.9 100.0 100.0

0.2 100.0 100.0 100.0 88.2 90.4 100.0

0.3 100.0 100.0 100.0 100.0 3.1 100.0

0.4 100.0 100.0 100.0 100.0 91.4 94.4

0.5 100.0 100.0 100.0 100.0 100.0 0.9

0.6 100.0 100.0 100.0 100.0 100.0 95.1

0.7 100.0 100.0 100.0 100.0 100.0 100.0

0.8 100.0 100.0 100.0 100.0 100.0 100.0

0.9 100.0 100.0 100.0 100.0 100.0 100.0

1.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Grid represents the grid correlation values that we put into the modified t-tests. When

Grid = corr0, the we have modt0 test, otherwise the tests are modt1. The critical values are -1.96,

+1.96. We set π = 2. For example, in column 2, corr0 = −0.5, when Grid = −0.5, the test is

called modt0, otherwise the tests are called modt1.
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Table 2: Size (5% level), modt0,modt1 n = 200

Grid corr0 = −0.5 corr0 = −0.3 corr0 = −0.1 corr0 = 0.1 corr0 = 0.3 corr0 = 0.5

-1 100.0 100.0 100.0 100.0 100.0 100.0

-0.9 100.0 100.0 100.0 100.0 100.0 100.0

-0.8 100.0 100.0 100.0 100.0 100.0 100.0

-0.7 88.8 100.0 100.0 100.0 100.0 100.0

-0.6 24.0 100.0 100.0 100.0 100.0 100.0

-0.5 1.1 83.4 100.0 100.0 100.0 100.0

-0.4 22.7 27.0 99.0 100.0 100.0 100.0

-0.3 86.5 3.1 80.9 100.0 100.0 100.0

-0.2 100.0 26.4 28.9 98.9 100.0 100.0

-0.1 100.0 82.8 4.9 80.7 100.0 100.0

0.0 100.0 100.0 29.5 28.0 100.0 100.0

0.1 100.0 100.0 80.8 4.5 82.1 100.0

0.2 100.0 100.0 98.8 29.1 27.5 100.0

0.3 100.0 100.0 100.0 81.4 3.0 86.2

0.4 100.0 100.0 100.0 100.0 27.8 22.4

0.5 100.0 100.0 100.0 100.0 83.4 1.0

0.6 100.0 100.0 100.0 100.0 100.0 24.3

0.7 100.0 100.0 100.0 100.0 100.0 89.2

0.8 100.0 100.0 100.0 100.0 100.0 100.0

0.9 100.0 100.0 100.0 100.0 100.0 100.0

1.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Grid represents the grid correlation values that we put into the modified t-tests. When

Grid = corr0, the we have modt0 test, otherwise the tests are modt1. The critical values are -1.96,

+1.96. We set π = 2. For example, in column 2, corr0 = −0.5, when Grid = −0.5, the test is

called modt0, otherwise the tests are called modt1.
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Table 3: Size (5% level), modt0,modt1 n = 100

Grid corr0 = −0.5 corr0 = −0.3 corr0 = −0.1 corr0 = 0.1 corr0 = 0.3 corr0 = 0.5

-1 100.0 100.0 100.0 100.0 100.0 100.0

-0.9 100.0 100.0 100.0 100.0 100.0 100.0

-0.8 93.5 100.0 100.0 100.0 100.0 100.0

-0.7 52.8 100.0 100.0 100.0 100.0 100.0

-0.6 11.2 88.5 100.0 100.0 100.0 100.0

-0.5 1.0 51.5 98.3 100.0 100.0 100.0

-0.4 8.1 15.8 85.7 100.0 100.0 100.0

-0.3 51.7 2.7 51.9 97.9 100.0 100.0

-0.2 90.3 13.6 16.6 85.1 100.0 100.0

-0.1 100.0 52.1 4.5 51.6 98.5 100.0

0.0 100.0 87.0 16.5 16.2 86.6 100.0

0.1 100.0 98.5 51.3 4.6 52.4 100.0

0.2 100.0 100.0 85.4 16.8 13.8 90.1

0.3 100.0 100.0 97.9 51.2 2.9 51.7

0.4 100.0 100.0 100.0 85.7 14.9 8.1

0.5 100.0 100.0 100.0 98.4 52.2 1.2

0.6 100.0 100.0 100.0 100.0 88.4 11.7

0.7 100.0 100.0 100.0 100.0 100.0 52.5

0.8 100.0 100.0 100.0 100.0 100.0 93.7

0.9 100.0 100.0 100.0 100.0 100.0 100.0

1.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Grid represents the grid correlation values that we put into the modified t-tests. When

Grid = corr0, the we have modt0 test, otherwise the tests are modt1. The critical values are -1.96,

+1.96. We set π = 2. For example, in column 2, corr0 = −0.5, when Grid = −0.5, the test is

called modt0, otherwise the tests are called modt1.
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Table 4: Rejection percentage of H0 : β = 0, modt0,modt1, corr0 = 0.1

n = 1000 n = 100

Grid β = −2 β = −1 β = 1 β = 2 β = −2 β = −1 β = 1 β = 2

-1 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0

-0.9 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0

-0.8 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0

-0.7 79.2 100.0 100.0 100.0 79.2 24.9 100.0 100.0

-0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.5 100.0 100.0 100.0 100.0 100.0 100.0 94.7 100.0

0.6 100.0 100.0 100.0 100.0 100.0 100.0 25.1 90.1

0.7 100.0 100.0 76.6 100.0 100.0 100.0 0.0 0.7

0.8 100.0 100.0 0.8 0.5 100.0 100.0 0.1 0.0

0.9 100.0 100.0 100.0 41.1 100.0 100.0 7.2 0.1

1.0 100.0 100.0 100.0 100.0 100.0 100.0 81.3 14.4

Note: Grid represents the grid correlation values that we put into the modified t-tests. When

corr0 = Grid, then we have modt0 test, otherwise the tests are modt1. The critical values are -1.96,

+1.96. We set π = 2. Here modt0 is when corr0 = Grid = 0.1.
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Table 5: Rejection percentage of H0 : β = 0, modt0,modt1 corr0 = −0.1

n = 1000 n = 100

Grid β = −2 β = −1 β = 1 β = 2 β = −2 β = −1 β = 1 β = 2

-1 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0

-0.9 0.0 0.0 100.0 100.0 0.0 74.3 100.0 100.0

-0.8 0.0 100.0 100.0 100.0 0.0 13.3 100.0 100.0

-0.7 89.5 100.0 100.0 100.0 90.3 0.5 100.0 100.0

-0.6 100.0 100.0 100.0 100.0 100.0 0.3 100.0 100.0

-0.5 100.0 100.0 100.0 100.0 100.0 31.2 100.0 100.0

-0.4 100.0 100.0 100.0 100.0 100.0 89.5 100.0 100.0

-0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.5 100.0 100.0 100.0 100.0 100.0 100.0 80.7 100.0

0.6 100.0 100.0 100.0 100.0 100.0 100.0 7.7 80.2

0.7 100.0 100.0 5.4 100.0 100.0 100.0 0.0 0.2

0.8 100.0 100.0 45.9 0.0 100.0 100.0 0.6 0.0

0.9 100.0 100.0 100.0 86.0 100.0 100.0 24.3 0.1

1.0 100.0 100.0 100.0 100.0 100.0 100.0 95.3 26.8

Note: Grid represents the grid correlation values that we put into the modified t-tests. When

corr0 = Grid, then we have modt0 test, otherwise the tests are modt1. The critical values are -1.96,

+1.96. We set π = 2. Here modt0 is when corr0 = Grid = −0.1.
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Table 6: Rejection percentage of H0 : β = 0, modt0,modt1 corr0 = 0.3

n = 1000 n = 100

Grid β = −2 β = −1 β = 1 β = 2 β = −2 β = −1 β = 1 β = 2

-1 100.0 100.0 100.0 100.0 0.0 1.3 100.0 100.0

-0.9 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0

-0.8 100.0 90.1 100.0 100.0 0.0 0.0 100.0 100.0

-0.7 100.0 100.0 100.0 100.0 6.7 9.9 100.0 100.0

-0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.6 100.0 100.0 100.0 100.0 100.0 100.0 55.1 95.7

0.7 100.0 100.0 100.0 100.0 100.0 100.0 0.0 2.5

0.8 100.0 100.0 0.0 3.1 100.0 100.0 0.0 0.0

0.9 100.0 100.0 100.0 41.8 100.0 100.0 1.0 0.0

1.0 100.0 100.0 100.0 100.0 100.0 100.0 53.4 6.8

Note: Grid represents the grid correlation values that we put into the modified t-tests. When

corr0 = Grid, then we have modt0 test, otherwise the tests are modt1. The critical values are -1.96,

+1.96. We set π = 2. Here modt0 is when corr0 = Grid = 0.3.
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Table 7: Rejection percentage of H0 : β = 0 , modt0,modt1 corr0 = −0.3

n = 1000 n = 100

Grid β = −2 β = −1 β = 1 β = 2 β = −2 β = −1 β = 1 β = 2

-1 98.6 100.0 100.0 100.0 0.0 0.0 100.0 100.0

-0.9 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0

-0.8 100.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0

-0.7 100.0 100.0 100.0 100.0 96.5 91.8 100.0 100.0

-0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

-0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

0.4 100.0 100.0 100.0 100.0 100.0 100.0 97.2 100.0

0.5 100.0 100.0 100.0 100.0 100.0 100.0 56.4 100.0

0.6 100.0 100.0 100.0 100.0 100.0 100.0 1.5 67.3

0.7 100.0 100.0 0.0 100.0 100.0 100.0 0.1 0.0

0.8 100.0 100.0 98.3 0.0 100.0 100.0 3.7 0.0

0.9 100.0 100.0 100.0 98.9 100.0 100.0 50.1 0.4

1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 40.7

Note: corr1 represents the grid correlation values that we put into the modified t-tests. When

corr1 = corr0, then we have modt0 test, otherwise the tests are modt1. The critical values are

-1.96, +1.96. π = 2. Here modt0 is when corr1 = corr0 = −0.3.
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Table 8: Modified T-Scores for Empirical Examples

Correlation Acemoglu and Card Card

Johnson No Covars Full

-1 -2.50 70.19 62.42

-0.9 -1.65 64.18 56.41

-0.8 -0.81 58.17 50.40

-0.7 0.04 52.16 44.39

-0.6 0.89 46.15 38.38

-0.5 1.74 40.13 32.37

-0.4 2.59 34.12 26.36

-0.3 3.44 28.11 20.35

-0.2 4.29 22.10 14.34

-0.1 5.13 16.09 8.33

0.0 5.98 10.08 2.32

0.1 6.83 4.07 -3.69

0.2 7.68 -1.94 -9.71

0.3 8.53 -7.95 -15.72

0.4 9.38 -13.96 -21.73

0.5 10.23 -19.97 -27.74

0.6 11.07 -25.98 -33.75

0.7 11.92 -32.00 -39.76

0.8 12.77 -38.01 -45.77

0.9 13.62 -44.02 -51.78

1 14.47 -50.03 -57.79
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effect is statistically different from zero. This is a very powerful result because it demonstrates

that as long as the violations of exogeneity are within a set boundary, we are still able to make

inferences.

Next we consider David Card’s 1995 paper using proximity to a college as an instrument for

educational attainment. This paper finds much larger returns to education relative to previous work.

As in AJ, the instrumental variable in Card (1995) may not be completely exogenous, leading to

somewhat biased results. We have obtained the original data set used in this analysis and have

replicated the main results in Table 3, Column (5). We present two sets of modified t-ratios for

the Card (1995) results. The first, in Table 4, Column (2) is a specification with no covariates,

while Column (3) includes covariates as in the original Card paper. With the no covariates case,

we reject the null if the correlation is in the range [-1,0.13], while with covariates we reject only

for non-positive correlations. This is a more extreme result than for AJ, where small correlations

did not affect inference. In the Card example, even small amounts of correlation between the

instrument and the structural error lead to non-rejection.

6 Discussion and Conclusion
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Appendix

Before the proof of main Theorem, we need the following result that will help us in understanding
the main result. This holds for both the simple case just identified case, k = l = 1, and the
overidentified case k = 1, l > k.

Lemma A.1.Under Assumptions 1-2, and under the null hypotheses of H0 : β = β0,

(i).

β̂ − β0

p→ [π′
0Qzzπ0]

−1[π′
0C] �= 0.

(ii).

σ̂2

u
p→ σ2

u − 2Cπ(π′
0C + ΣV u) + C2

π(π′
0Qzzπ0 + ΣV V ).

(iii).

t2sls → ∞,

where t2sls represents the regular two stage least squares based t-test.

Proof of Lemma A.1. We analyze a system with k = 1, and multiple instruments (l ≥ k). First we
show that β̂ is inconsistent given Assumption 1.

β̂ − β0 =

[(
X ′Z

n

) (
Z ′Z

n

)−1 (
Z ′X

n

)]−1
[(

X ′Z

n

) (
Z ′Z

n

)−1 (
Z ′u

n

)]
. (15)

See that by reduced form equation and Assumption 2

Z ′X

n
=

Z ′Z

n
π0 +

Z ′V

n
p→ Qzzπ0. (16)

n−1

n∑

i=1

Ziui
p→ EZiui = C < ∞. (17)

Use (16)(17) in (15) to have

β̂ − β0

p→ [π′
0
Qzzπ0]

−1[π′
0
C] �= 0, (18)

as long as C �= 0. Next we show that σ̂2
u is not a consistent estimator for σ2

u. First

n−1

n∑

i=1

(yi − x′
iβ̂)2 = n−1

n∑

i=1

(ui − (xi(β̂ − β0))
2

= n−1

n∑

i=1

u2

i − 2(β̂ − β0)n
−1

n∑

i=1

xiui

+ (β̂ − β0)
2n−1

n∑

i=1

x2

i . (19)

See that from (18), set Cπ = [π′
0
Qzzπ0]

−1[π′
0
C], by Assumption 2i, Assumption 1, and using reduced

form equation

X ′u

n
=

π′
0
Z ′u

n
+

V ′u

n
p→ π′

0
C + ΣV u, (20)
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X ′X

n
=

π′
0
Z ′Zπ0

n
+

2π′
0
Z ′V

n
+

V ′V

n
p→ π′

0Qzzπ0 + ΣV V . (21)

Use (18)(20)(21) in (19)

σ̂2

u
p→ σ2

u − 2Cπ(π′
0
C + ΣV u) + C2

π(π′
0
Qzzπ0 + ΣV V ) < ∞. (22)

So the last two terms are nonzero (unless they cancel each other in special empirical cases). We
cannot use σ̂2

u as a consistent estimator. Next we show that under Assumption 1, the t-test for
H0 : β = β0

t2sls =

√
n(β̂ − β0)

σ̂u(X ′PZX)−1/2
→ ∞,

by (15)(18)(22). Q.E.D.

Proof of Theorem 1. The proof is a subcase of the proof of Theorem 2, since that proof is for
k = 1, l ≥ k.

Proof of Theorem 2. This proof is for k = 1, l ≥ k, and hence covers the cases of k = l = 1, and
k = 1, l > k. Now we show that a modified t-test converges in distribution to standard normal
distribution. In that respect, we first try to understand the numerator of the new test statistic.
See that

n1/2(β̂ − β0) =

[(
X ′Z

n

) (
Z ′Z

n

)−1 (
Z ′X

n

)]−1

×
(

X ′Z

n

) (
Z ′Z

n

)−1
(

1

n1/2

n∑

i=1

(Ziui − EZiui) + n1/2EZiui

)

= {
[(

X ′Z

n

) (
Z ′Z

n

)−1 (
Z ′X

n

)]−1 (
X ′Z

n

) (
Z ′Z

n

)−1
(

1

n1/2

n∑

i=1

(Ziui − EZiui)

)
}

+ {
[(

X ′Z

n

) (
Z ′Z

n

)−1 (
Z ′X

n

)]−1 (
X ′Z

n

) (
Z ′Z

n

)−1 √
nC}

= A1 + A2, (23)

where A1, A2 represent the first and the second terms with curly bracket expressions. By using
Assumption 2, (16)

A1

d→ N(0, σ2

u(π′
0Qzzπ0)

−1). (24)

Then by (16) and Assumptions 1, 2ii

A2 → ∞.

So we definitely have to subtract A2 from
√

n(β̂−β0) term. But the real issue is the handling of C. So
we handle that by the arguments in the main text. Given (16)(23)(24) we have (if we had known
true C)

modt0 =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̂′C)

σ̃u(π̂′Q̂zzπ̂)−1/2

d→ N(0, 1). (25)
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Equivalently via (10)(11), by writing the modified t-test in (25) as

modt0 =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̄corr0)

σ̃u(π̂′Q̂zzπ̂)−1/2
.

So if the true correlation is corr0, then

modt0
d→ N(0, 1),

as shown above.

If we had used corr1 �= corr0 in our grid search

modt1 =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̄corr1)

σ̃u(π̂′Q̂zzπ̂)−1/2

=

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̄corr0)

σ̃u(π̂′Q̂zzπ̂)−1/2

+

√
n(π̂′Q̂zzπ̂)−1π̄(corr1 − corr0)

σ̃u(π̂′Q̂zzπ̂)−1/2

= modt0 +
(π̂′Q̂zzπ̂)−1π̄n1/2(corr1 − corr0)

σ̃u(π̂′Q̂zzπ̂)−1/2

→ ∞. (26)

Note that the second term on the right hand side of the above equation diverges to infinity since√
n(corr1 − corr0) → ∞. Q.E.D.

7 Stata Code

In this code, x is the endogenous variable of interest, y is the dependent variable, and z is the
instrument. For simplicity, let ‘covars’ be a local macro for all exogenous covariates and ‘corr’ be
the correlation value that you are testing.

% ivreg y (x = z) ‘covars’

% scalar b2sls = _b[x]

% scalar N = e(N)

% reg x ‘covars

% predict xresid, resid

% reg y ‘covars

% predict yresid, resid

% reg z ‘covars

% predict zresid, resid

% egen ssyresid = sum(yresid^2)

% scalar sigmatilda = sqrt(1/(N-1) * ssyresid)

% reg xresid yresd
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% scalar phihat = _b[zresid]

% egen ssz = sum(zresid^2)

% scalar modt = N^(1/2)*b2sls/(sigmatilda*(abs(phihat)^(-1)*(ssz/N)&(-1/2)))

% scalar modttest = modt - sqrt(N)*‘corr’*sign(phihat)

Alternatively, you can do a grid search:

% forvalues i = -1(.01)1{

% scalar modttest‘i’ = modt - sqrt(N)*‘i’*sign(phihat)

% }
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