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Abstract

Weitzman (1976) provides a foundation for net national product of a competitive econ-

omy as the annuity equivalent of the present discounted value of maximized consumption.

This paper considers how Weitzman’s rule should be modified if the competitive equilib-

rium is affected by the presence of market distortions. The paper first examines the model

with external effects of capital in which there are spillovers of knowledge. The paper also

studies the model with policy interventions where the policy maker seeks the second best

allocation. The central concern of the paper is to elucidate the factors that generate a

divergence between net national product and the welfare equivalence of maximized con-

sumption. In discussing each model, the paper presents a typical example that has been

widely discussed in the literature.
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1 Introduction

In his seminal contribution, Weitzman (1976) reveals the welfare significance of national income

in a dynamic context. He shows that in a competitive economy, the current level of net national

product (NNP) is a precise measure of the annuity equivalent of the present discounted value

of maximized consumption. This fundamental observation, which we refer to as Weitzman’s

rule, means that the current level of national income contains all information concerning the

welfare of current and future generations. Furthermore, Weitzman’s finding plays a key role in

considering the relevant issues of dynamic welfare economics such as sustainablility of economic

development and intergenerational equity.

Weitzman’s (1976) contribution led to a renewal of interest in the welfare implication of

national income accounting. Since his fundamental proposition holds for the perfectly com-

petitive economy in which agents are endowed with perfect foresight and have a linear utility

function, the subsequent studies have investigated the income-welfare relationship under more

general circumstances than those assumed in Weitzman (1976). For example, Asheim (1997)

and Pembertin and Ulph (2001) re-examine the concept of NNP when the utility function

is concave so that the consumption rate of interest is time dependent, while Arronson and

Löfgren (1995) and Weitzman (1998) introduce uncertainty into the base model. In addition,

Weitzman (1996) and Asheim (1997) explore the effect of exogenous technical progress. De-

spite those relevant extensions, there is still a gap between theory and reality if we intend to

apply Weitzman’s rule to interpret the actual economic data. In reality a market economy

does not necessarily satisfy the ideal conditions for the competitive economy. There are many

causes that generate market failures. Therefore, once we take into consideration the fact that

behavior of a decentralized economy may diverge from that of a command economy, we have

to examine alternative market environments in exploring the relationship between nation’s

wellbeing and the concept of net national product.

The purpose of this paper is to reconsider Weitzman’s rule in the presence of market distor-

tions. Among many possible causes for market failure, we focus on Marshallian externalities

as well as on policy intervention. The first issue we deal with is the modification of Weitz-

man’s rule for the economy with knowledge spillovers. More specifically, we study a dynamic

economy where capital stocks generate knowledge externalities. This kind of external effect of
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capital was introduced by Arrow (1961) and Romer (1986), who provided one of the theoretical

bases for recent development of growth economics. When capital stocks have positive exter-

nalities, it is easy to anticipate that NNP underestimates the annuity equivalent of the present

discounted value of maximized consumption. We derive a modified version of Weitzman’s rule

in a general setting. We then apply the modified rule to a simple model of endogenous growth

and evaluate the difference between the current level of NNP and the current wealth expressed

by a discounted present value of current and future levels of consumption. In the existing liter-

ature, Arronson and Löfgren (1996) also discuss the income-welfare relationship in the context

of Lucas’ (1988) model of growth in which human capital is associated with external effects.

Our formulation is more general than their setting. Additionally, in our specific example we

conduct numerical experiments to evaluate the accuracy of NNP as a welfare measure.

Our second topic is to investigate how the base result would be modified if the government

distorts competitive allocation. In particular, we consider the case where the benevolent

government maximizes the private agents’ welfare by using distortionary policy tools. When

we deal with the optimizing government, we study two alternative strategies of the government:

open-loop policy and feedback policy. In each case, NNP cannot be a precise measure of welfare

equivalence of maximized consumption. Roughly speaking, the divergence comes from the fact

that the marginal value of capital form the private perspective is different from the implicit

value of capital form the government perspective. Weitzman’s rule still holds if the value of

net investment is measured in terms of the implicit prices of capital that support the optimal

conditions for the government’s plan. However, NNP measured by the market prices fails to

evaluate the discounted present value of maximized consumption in a precise manner. After

deriving general results, we explore a simple model of dynamic optimal taxation as a typical

example.

The remainder of the paper is organized as follows. Section 2 reviews Weitzman’s rule.

Section 3 treats models with external effects of capital, while Section 4 studies models with

policy interventions. Section 5 concludes the paper.
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2 The Basic Results

2.1 Weitzman’s Rule

Weitzman’s rule is established under the following assumptions: (i) preferences and production

technology are stationary, (ii) the society’s felicity level is expressed as a discounted sum of

utilities with a constant discount rate, and (iii) the society attains the intertemporally optimum

resources allocation. Given those assumptions, Weitzman’s rule may be expressed as

Y (t) = u (t) + p (t) z (t) = ρ

Z ∞

t
e−ρ(s−t)u (s) ds, (1)

where Y (t) is net national product (NNP) in terms of utility at time t, u (t) is the utility level

of consumption, p (t) is vector of investment price in terms utility, z (t) is vector of investment

and ρ (> 0) is a time discount rate. Pointed out by Kemp and Long (1982) and others, (1) is

an expression of the Hamilton-Jacobi-Bellman equation for the dynamic optimization problem

solved by the command economy that mimics the behavior of the corresponding decentralized

economy. More generally, (1) is one of the conservation laws that can be derived by Noether’s

theorem on invariant transformations in optimizing dynamical systems: see Sato (Chapter

8, 1981) and Sato (1985) for detailed discussions on the income-wealth conservation laws in

optimal growth models.1

In order to discuss Weitzman’s rule in a general setting, we follow the formulation employed

by Dasguputa and Mitra (1999). Consider a planning economy in which there are n capital

goods and m consumption goods. Let us denote the vectors of capital stocks and consumption

goods by k ∈ Rn+ and c ∈ Rm+ , respectively. To avoid the index number problem, we assume
that the instantaneous felicity of the society, u, can be expressed as a cardinal utility function

u = u (c) , u : Rn+ → R+,

which transforms the consumption vector into the level of felicity.2 The technology set is

assumed to be stationary and it is defined as T ⊂ R+ ×Rn × Rn+. The feasibility condition
requires that (u, z, k) ∈ T. The technology set is a closed, convex subset of R+×Rn×Rn+ and

1See also Sato and Ramachandran (Chapter 7, 1998) for expository discussion on the conservation laws..
2Dasgupta and Mitra (1999) call u the aggregate consumption. To avoid confusion, we refer to u as utility.

It is also to be noted that u can be considered a money metric utility function. Weitzman (Chapter 6, 2002)

presents a detailed exposition on the relationship between nominal national income and NNP in terms of utility.
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it satisfies the standard regularity conditions.3 Now define the projection on T in such a way

that

S = {(z, k) : (u, z, k) ∈ T for some u} .

Then we may define function v : S → R+ as follows:

v (z, k) = max {u : (u, z, k) ∈ T} . (2)

This function describes the maximum level of utility under given levels of investments and

capital stocks. We assume that function v (z, k) is at least twice continuously differentiable

and strictly concave on S.

Under given settings, the dynamic optimization problem for the planner is formulated in

the following manner:

max

Z ∞

0
e−ρtv (z (t) , k (t)) dt

subject to

k̇ (t) = z (t) , (3)

(z (t) , k (t)) ∈ S, (4)

and given initial levels of capital stocks, k0. Letting p (t) be vector of the capital stock prices

(in terms of utility), the maximum principle yields the following conditions for an optimum:

p (t) = −vz (z (t) , k (t)) , (5)

ṗ (t) = ρp (t)− vk (z (t) , k (t)) , (6)

and the transversality condition:

lim
t→∞

e−ρtp (t) k (t) = 0.

The optimal solution satisfies (3) , (4) , (5) , (6) , together with (??) and the initial condition:

k (0) = k0.

Suppose that the above problem has the optimal solution. The value function at time t is

then defined as

W (k (t)) ≡ max
½Z ∞

t
e−(s−t)v (z (s) , k (s)) ds : k̇ (s) = z (s) and (z (s) , k (s)) ∈ S

¾
.

3See Assumption 1 in Dasugupta and Mitra(1999).
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When W (k (t)) is differentiable with respect to k (t) , the Hamilton-Jaobi-Bellman equation is

given by

ρW (k (t)) = max
z(t)

{v (z (t) , k (t)) +Wk (k (t)) z (t)} . (7)

Since it holds that Wk (k (t)) = p (t) , the right hand side of (7) equals the maximized Hamil-

tonian such that

M (k (t) , p (t)) ≡ max
z(t)

{v (z (t) , k (t)) + p (t) z (t)} .

The maximized Hamiltonian shown above is equal to the sum of consumption and net in-

vestment (in terms of utility), so that it represents net national product of a closed economy.

Denote

Y (t) ≡M (k (t) , p (t)) . (8)

Then, noting that v (z (t) , k (t)) expresses the optimum level of utility, (7) establishes Weitz-

man’s rule (1) .4

It is worth emphasizing thatWeitzman’s rule may hold in a wide class of dynamic economies.

Since the elements in k (t) represent not only stocks of physical capital but also other types of

capital that can be devoted to production activities. Therefore, k (t) may include human cap-

ital, knowledge capital and non-renewable natural resources. In a similar vein, the technology

set would describe learning, education, research and development as well as regular produc-

tion activities. This means that Weitzman’s rule is established in many types of endogenous

growth models in which perpetual growth can be sustained in the absence of exogenous tech-

nical progress.

2.2 Exogenous Technical Change

As pointed out above, since k (t) may include a wide variety of capital stocks, endogenous

technical change can be incorporated into Weitzman’s rule, as far as it is fully captured by

4 It is worth noting that our definition of NNP is the maximized level of consumption plus net investment in

terms of (cardinal) utility. As pointed out by Asheim (1997) and Pemberton and Ulph (2001), if there is a single

consumption good and the utility function is linear in consumption, the consumption rare of interest rate is

constant so that the maximized Hamiltonian expresses the conventional national income in a closed, competitive

economy. However, if we assume that the utility function is concave, the consumption rate of interest rate is

time dependent and thus the price index problem arises to define a proper concept of national income. In this

paper we avoid this issue by using conceptual income and wealth evaluated in terms of utility.
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the planner. However, if there is exogenous technical change, the base result (1) should be

modified. When exogenous technical changes is anticipated to occur, the production technology

set is not stationary. As a result, the maximum utility defined by (2) is expressed as u∗ (t) =

v (z (t) , k (t) , t) , where (u (t) , z (t) , k (t)) ∈ T (t) . In this case the maximized Hamiltonian is
written as

M (k (t) , p (t) , t) ≡ max
z(t)

{v (z (t) , k (t) , t) + p (t) z (t)} (9)

and the value function is given by

W (k (t) , t) ≡ max
½Z ∞

t
e−ρ(s−t)v (z (s) , k (s) , s) ds :

k̇ (s) = z (s) and (z (s) , k (s)) ∈ S (t)
o
.

The Hamilton-Jacobi-Bellman equation (7) is now replaced with

ρW (k (t) , t) =M (k (t) , p (t) , t) +Wt (k (t) , t) , (10)

whereWt ≡ ∂W/∂t. This shows a modified Weitzman’s rule with exogenous technical change.5

By (8) the modified rule (10) is written as

Y (t)

W (k (t) , t)
+
Wt (k (t) , t)

W (k (t) , t)
= ρ.

Intuitively, this equation is a non-arbitrage condition under which the net rate of return to the

current level of wealth, Y/W, plus the anticipated ’capital gain’ caused by exogenous technical

progress, Wt/W, equals the discount rate.
6

In order to evaluate Wt (k (t) , t) , notice that from (6) , (8) and (9) the time derivative of

5The original value function can be set as

Ŵ (k (t) , t) ≡ max
∞

t

e−ρsv (z (s) , k (s) , s) ds,

and hence e−ρtW (k (t) , t) = Ŵ (k (t) , t) . The Hamilton-Jacobi-Bellman equation in terms of Ŵ (.) is

−Ŵt (k (t) , t) = max
z(t)

{v (z (t) , k (t) , t) +Wk (k (t) , t) z (t)} .

Using W (.) , this equation is written as (10) .
6Hartwick and Long (1999) present a generalized version of (10) for the system in which the discount rate

is time dependent.
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the net national product (the maximized Hamiltonian) can be written as

Ẏ (t) =Mkk̇ (t) +Mpṗ (t) +Mt

= ρ [Y (t)− u (t)] + vt (k (t) , p (t) , t) . (11)

Provided that limt̄→∞
R t̄
t e
−ρ(s−t)vs (z (s) , k (s) , s) ds exists, (11) yields the following:7

Y (t) = ρ

Z ∞

t
e−ρ(s−t)u (s) ds−

Z ∞

t
e−ρ(s−t)vs (z (s) , k (s) , s) ds. (12)

Therefore, we obtain

Wt (k (t) , t) =

Z ∞

t
e−ρ(s−t)vs (z (s) , k (s) , s) ds,

which shows that Wt (k (t) , t) evaluates the discounted present value of current and future

consumption changes due to the exogenous technical progress. The modified rule (12) indicates

that the maximum level of utility is given by

ρ

Z ∞

t
e−ρ(s−t)u (s) ds = Y (t) +

Z ∞

t
e−ρ(s−t)vs (z (s) , k (s) , s) ds. (13)

In general, technical progress expands the technology set T (t) , and hence the maximized

instantaneous consumption v increases with time, that is, vs (.) > 0 for all t ≥ 0. Therefore,
in the presence of exogenous technical progress, NNP underestimates the annuity equivalent

of sustainable consumption.

Weitzman (1997) derives a simple relationship between the average maximized utility de-

fined byū (t)
¡
= ρ

R∞
t e−ρ(s−t)ū (t) ds

¢
and the average NNP at t given by Ȳ (t) = ρ

R∞
t e−ρ(s−t)Y (s) ds.

He finds:

ū (t) =

µ
1 +

λ

ρ− γ

¶
Ȳ (t) , (14)

where γ = d
dt Ȳ (t) /Ȳ (t) and λ = ρ

R∞
t e−(s−t)

¡
vs
v

¢
ds. Since γ and λ respectively denote the

average growth rates of income and technology, the term λ
ρ−γ Ȳ (t) in (14) demonstrates the

growth effect of exogenous technical change on the level of maximum utility at time t.8

7The general solution of (11) is

Y (t) = ρ
t̄

t

e−ρ(s−t)c (s) ds−
t̄

t

e−ρ(s−t)vs (z (s) , k (s) , s) ds+ e
−ρ(t̄−t)Y (t̄) .

Therefore, (12) requires that limt̄→∞ e
−ρ(t̄−t)Y (t̄) = 0.

8Pezzy (2002) modifies (14) by considering environmental issues.
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2.3 The Command Optimum and the Market Economy

So far, the fundamental results, (1) and (12) , have been established for the command economy.

In applying Weitzman’s rule to a market economy, there are at least two issues to be noticed:

one is a technical problem and the other is a practical one. First, even though we focus

on the perfect-foresight competitive economy in which each market is complete, the necessary

conditions for sustaining the competitive equilibrium may diverge from those for the command

optimum. Dasugpta and Mitra (1999) find that a competitive equilibrium satisfies (1) if and

only if the following ’investment value’ transversality condition holds:

lim
t→∞

e−ρtp (t) k̇ (t) = 0, (15)

which does not always coincide with the standard ’capital value’ transversality condition (??) .

Dasugpta and Mitra (1999) provide a simple example in which a regular competitive economy

with concave utility and production functions does not fulfill (15) so that (1) fails to hold.

Second and more importantly, in the real world the decentralized economies may not attain

the command optimum due to the presence of market distortions. There are many causes that

make the market economy diverge from the command economy. Among others, in what follows

we focus on two types of distortions: Mashallian externalities and policy interventions. As the

model with exogenous technical progress suggests, it is easy to anticipate that net national

product would diverge from the sustainable consumption in the presence of market distortions.

Unlike the case of exogenous technical change, however, the difference between NNP and the

annuity equivalent of the discounted present value of maximized consumption depends on the

endogenous factors that generate market failures. By deriving modified versions of Weitzman’s

rule, we consider what factors may yield such a divergence.

3 Externalities

In this section, we treat models of competitive economy in which capital stocks generate

external effects. Since the competitive economy cannot internalize externalities, net national

product evaluated by the market prices does not equal the welfare equivalence of maximized

utility. We focus on the wedge producing the difference between them.
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3.1 Weitzman’s Rule with External Effects

If the production technology of an individual firm is affected by external effects generated

by the aggregate capital in the economy at large, the private technology depends on the

social level of capital denoted by k̄. Thus the technological feasibility condition is expressed as

(u, z, k) ∈ T
¡
k̄
¢
. This implies that the maximum level of utility can be shown by

v = v
¡
z, k, k̄

¢
,

where v is defined on S =
©¡
z, k, k̄

¢
: (u, z, k) ∈ T

¡
k̄
¢
for some u

ª
. Here, we assume that some

elements in k represent knowledge capital that satisfy nonexcludabiltity and nonrivalry. Ac-

cording to Kehoe et al. (1992), the equilibrium conditions for a dynamic competitive economy

with externalities can be characterized by the optimal solution for a pseudo-planning problem

in which the planner is assumed to take the sequence of external effects as given. In our setting,

the competitive economy coincides with the optimal solution for the following problem:

max

Z ∞

0
e−ρtv

¡
z (t) , k (t) , k̄ (t)

¢
dt

subject to

k̇ (t) = z (t) ,

¡
z (t) , k (t) , k̄ (t)

¢
∈ S,

together with the initial level of capital: k (0) = k0. When solving this problem, the planner

takes an anticipated sequence of external effects,
©
k̄ (t)

ª∞
t=0
, as given.

The maximized Hamiltonian for the above problem is given by

M
¡
k (t) , p (t) , k̄ (t)

¢
≡ max

z(t)

©
v
¡
z (t) , k (t) , k̄ (t)

¢
+ p (t) z (t)

ª
.

The optimization conditions under a given sequence of
©
k̄ (t)

ª∞
t=0

are the following:

p (t) = −vz
¡
z (t) , k (t) , k̄ (t)

¢
, (16)

ṗ (t) = ρp (t)− vk
¡
z (t) , k (t) , k̄ (t)

¢
, (17)

and the transversality condition: limt→∞ e−ρtp (t) k (t) = 0. Since the sequence of
©
k̄ (s)

ª∞
s=t

is external to the private agents, the value function at time t can be written as a function of

k (t) and t:

W (k (t) , t) ≡ max
Z ∞

t
e−ρ(s−t)v

¡
z (s) , k (s) , k̄ (s)

¢
ds.
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As well as in the case of exogenous technical change, the Hamilton-Jacobi-Bellman equation

is:

ρW (k (t) , t) =M
¡
k (t) , p (t) , k̄ (t)

¢
+Wt (k (t) , t) . (18)

For analytical simplicity, let us assume that the number of agents is normalized to one. This

assumption means that the consistency condition requires that

k̄ (t) = k (t) for all t ≥ 0. (19)

It is now easy to show the following:

Proposition 1 If consistency condition (19) holds, in the presence of external effects of cap-

ital, Weitzman’s rule (1) is modified as

Y (t) = ρ

Z ∞

t
e−ρ(s−t)u (s) ds−

Z ∞

t
e−ρ(s−t)vk̄ (z (s) , k (s) , k (s)) z (s) ds. (20)

Proof. Net national product equals the maximized Hamiltonian for the pseudo-planning

problem, and therefore from (17) we have

Ẏ (t) =Mkk̇ (t) +Mpṗ (t) +Mt

= ρ [Y (t)− u (t)] + vk̄ (z (t) , k (t) , k (t)) z (t) .

Thus, assuming that limt̄→∞
R t̄
t e
−ρ(s−t)vk

¡
z (s) , k (s) , k̄ (t)

¢
z (s) ds exists, the solution of the

above differential equation is (20)

Comparing (18) with (20) , we find:

Wt (k (t) , t) =

Z ∞

t
e−ρ(s−t)vk̄ (z (s) , k (s) , k (s)) z (s) ds.

In other words, the ’capital gain’ due to the presence of externalities equals the discounted

present value of net investment evaluated by the marginal external effect. Finally, (20) means

that

ρ

Z ∞

t
e−ρ(s−t)u (s) ds = Y (t) +

Z ∞

t
e−ρ(s−t)vk̄ (z (s) , k (s) , k (s)) z (s) ds. (21)

Since NNP of the market economy is defined as Y (t) ≡ u (t) + p (t) z (t) , the right hand side
of (21) expresses NNP from the social perspective.
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3.2 An Example: Growth with External Increasing Returns

As a typical example of the model with capital externalities, we consider Romer’s (1986)

model of growth with external increasing returns. For notational simplicity, in this subsection

we drop t from the variables unless it is useful to show it explicitly. Suppose that each firm

produces a homogenous good by use of a single capital stock, k. The production function of

an individual firm is specified as

y = f
¡
k, k̄

¢
, fk > 0, fkk < 0, fk̄ > 0,

where y is output of the firm and k̄ denotes the capital stock in the economy at large. The

presence of k̄ in the production function of each firm represents the spillover effect of knowledge

capital. In the following, we normalize the number of firms to one. Thus each variable also

expresses the aggregate one and the consistency condition requires that k = k̄ holds in every

moment.

The market equilibrium condition for the final good is given by

y = c+ φ
³z
k

´
k + δk, (22)

where δ ∈ (0, 1) is the depreciation rate of capital. Function φ (z/k) is assumed to be

monotonically increasing and convex in z/k, which shows the presence of investment adjust-

ment costs.9 The instantaneous utility function of the representative consumer is specified as

u (c) = c1−σ/(1 − σ) (σ ∈ (0, 1)) .10 We normalize the number of households to one as well.
Hence, the pseudo-planning problem is to maximize

Z ∞

0
e−ρt

1

1− σ

h
f
¡
k, k̄

¢
− δk − φ

³z
k

´
k
i1−σ

dt

subject to k̇ = z, a given sequence of external effects,
©
k̄ (t)

ª∞
t
, and the initial level of capital,

k0.

9Following Romer’s (1986) formulation, capital accumulation is determined by

z = k̇ = g
i

k
k,

where i is net investment spending. Function g (i/k) is assumed to be strictly concave and monotonically

increasing in i/k, which represents the presence of adjustment costs of investment. Since i is expressed as

i = g−1 (z/k) k, from the equilibrium condition for the good market we have ĉ + g−1 (z/k) k = f k, k̄ .

Denoting g−1 (z/k) ≡ φ (z/k) , we obtain (22) .
10Since we have assumed cardinal utility, σ is assumed to be less than 1 to keep u (ĉ) positive.
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The maximized Hamiltonian for this pseudo-planning problem is

M
¡
k, k̄, p

¢
≡ max

z(t)

½
1

1− σ

h
f
¡
k, k̄

¢
− δk − φ

³z
k

´
k
i1−σ

+ pz

¾
.

The first-order condition for optimal investment decision is

h
f
¡
k, k̄

¢
− δk − φ

³z
k

´
k
i−σ

φ0
³z
k

´
= p. (23)

By use of (23) , we obtain

Mk̄ (k, k) =
pfk̄ (k, k)

φ0 (z/k)
.

Considering the equilibrium condition, k̄ = k for all t ≥ 0, the modified Weitzman’s rule (20)
is thus given by the following:

Y (t) = ρ

Z ∞

t
e−ρ(s−t)c (s) ds−

Z ∞

t
e−ρ(s−t)

p (s) fk̄ (k (s) , k (s)) z (s)

φ0 (z (s) /k (s))
ds. (24)

Since p (s) > 0, fk̄ (k, k) > 0 and φ
0 (z/k) > 0, the external effect evaluated by the second term

in the right hand side of (24) has a positive value. Therefore, NNP is smaller than the welfare

equivalence of maximized consumption.

Now consider a special case where f
¡
k, k̄

¢
is homogeneous of degree one in k and k̄, so

that the production function becomes y = f (1, 1) k when k = k̄. In this case the production

technology has an Ak property. Denoting z/k = γ, from the optimization condition, p follows

ṗ = ρp− vk (z, k, k)

= p

∙
ρ− fk (1, 1)− δ + φ (γ)− φ0 (γ) γ

φ0 (γ)

¸
. (25)

Note that (23) is rewritten as [f (1, 1)− δ − φ (γ)] = pk1−θ. In the balanced-growth equilibrium

z/k = k̇/k stays constant, so that pk1−θ is constant over time as well. This means that

−σk̇/k = ṗ/p and thus from (25) we obtain

γ =
1

σ

∙
fk (1, 1)− δ + φ (γ)− φ0 (γ) γ

φ0 (γ)
− ρ

¸
. (26)

This determines the balanced-growth rate. The right-hand side of the above monotonically

decreases with γ, implying that there exists a unique rate of balanced growth. As is well

known, the model with an Ak technology with homothetic utility function does not involve

transition dynamics and the economy always stays on the balanced-growth path. Noting that

12



z (s) = γk (s) and k (s) = k (t) eγ(s−t), we find that the aggregate external effect over an infinite

time horizon can be expressed as

Wt (k (t) , t) =

Z ∞

t
e−ρ(s−t)fk̄ (1, 1) [f (1, 1)− δ − φ (γ)]−σ γk (s)1−σ ds

=
[f (1, 1)− δ − φ (γ)]−σ fk̄ (1, 1) γ

ρ− (1− σ)γ
k (t)1−σ .

The above show that the external effect on welfare is zero either if there is no externality

(fk̄ = 0) or if there is no growth (γ = 0) . On the other hand, using (23) , the current level of

NNP is given by

Y (t) = v (z (t) , k (t) , k (t)) + p (t) z (t)

=
1

1− σ
[f (1, 1)− δ − φ (γ)]1−σk (t)1−σ + [f (1, 1)− δ − φ (γ)]−σ φ0 (γ) γk (t)1−σ .

Therefore, the ratio of the average utility and the external effect, Wt (k (t) , t) /c̄ (t) is

Wt (k (t) , t)

ū (t)
=

Wt (k (t) , t)

Y (t) +Wt (k (t) , t)

=
fk̄ (1, 1) γ

(1− σ)−1
£
f (1, 1)− δ − φ (γ) + φ0 (γ) γ

¤
[ρ− (1− σ)γ] + fk̄ (1, 1) γ

.

In order to present numerical examples, suppose that the production and adjustment costs

functions are respectively specified as

y = Akαk̄1−α (0 < α < 1) , φ (γ) = γβ (β > 1) .

Then we obtain:

f (1, 1) = A, fk = αA, fk̄ = (1− α)A, φ (γ)− γφ0 (γ) = (1− β) γβ.

Given those specifications, (26) becomes

γ =
1

σ

∙
αA− δ + (1− β) γβ

βγβ−1
− ρ

¸
.

Additionally, Wk̄/ū (t) is written as

Wk̄ (k (t) , t)

ū (t)
=

(1− α)Aγ

(1− σ)−1 [A− δ + (β − 1) γβ] [ρ− (1− σ) γ] + (1− α)Aγ
. (27)

When there is no adjustment cost for investment, we may set β = 1. If this is the case,

γ = 1
σ (αA− δ − ρ) so that (??) is reduced to

Wk̄ (k (t) , k (t))

ū (t)
=

(1− α)Aγ

(1− σ)−1 (A− δ)[ρ− (1− σ) γ] + (1− α)Aγ
. (28)

13



Let us examine some numerical examples for the case where there are no adjustment cost

(β = 1) .11 First, consider the following set of parameter values:

α = 0.4, δ = 0.05, ρ = 0.05, A = 0.3, σ = 0.8

Here the income share of capital, α, is 0.4. The magnitudes of the depreciation rate δ = 0.05

and the discount rate ρ = 0.05 are frequently used in the calibrated real business cycle models.

The value of σ is assumed to be less than one to make the utility positive, but it is not so

small that the elasticity of intertemporal substitution in consumption (1/σ) is close to one.

The value of A is set to obtain realistic levels of the balanced-growth rate γ. Given those

parameter values, the balanced-growth rate is γ = 0.025 and Wt/ū (t) = 0.074. This means

that the current level of NNP expresses almost 93% of the sustainable consumption, so that

Y (t) is still a good indicator of welfare measure even in the presence of market failure. However,

the result is sensitive to the parameter values, in particular, the long-term growth rate. Now

set α = 0.4 and A = 0.35. Other things being equal, the balanced-growth rate is γ = 0.0625,

so that the economy attains relatively high growth. In this case, Wt/ū (t) = 0.1489, and hence

the external effect shares 15% of the sustainable consumption. If α = 0.4 and A = 0.4, then

the balanced-growth rate is γ = 0.075 and Wt/ū (t) = 0.227.

In the above examples, we set α = 0.4. Although this is a plausible magnitude for the

income share of capital, the external effect, which equals 1 − α = 0.6, is too high from the

view point of the existing studies on estimation of scale economies: see, for example, Basu and

Fernald (1997). Note that if capital k involves human capital, α may take a larger value. To

examine the case where k is a composite of physical and human capital, let us assume that

α = 0.8 and A = 0.15. In this case γ = 0.025 and we have Wt/ū (t) = 0.032. Thus accuracy

of NNP as a welfare measure increases with α. If α = 0.8 and A = 0.25, then γ = 0.075 and

Wt/ū (t) = 0.0967. Consequently, when the income share of capital is high, the welfare effect

of capital externality is relatively small even if the economy grows at a rapid rate of 7.25% per

year.

Based on his formula (14) ,Weitzman (1997) claims that the presence of exogenous technical

progress may significantly elevate the sustainable consumption so that NNP is much smaller

11Unless β has an unusually large value, we obtain the similar results as those shown below even though there

are investment adjustment costs.
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than the welfare equivalence of maximized consumption. For example, if the rate of technical

progress is λ = 0.01, the growth rate is γ = 0.025 and ρ = 0.05, then λ/ (ρ− γ) = 0.4.

Therefore, even if the average growth rate is only 2.5% per year, Wt/Ȳ (t) = 0.4 in the case

of exogenous technical progress. In our notation this means that Wt/ū (t) = 0.4/1.4 = 0.285.

This relatively large value comes from the fact that Weitzman (1997) assumes that the utility

function is linear and capital does not depreciate. In fact, if σ = 0 and δ = 0 in our model,

(28) becomes
Wk̄ (k (t) , k (t))

ū (t)
=

(1− α) γ

ρ− γ + (1− α) γ

When α = 0.4, γ = 0.025 and ρ = 0.05, we have Wk̄/ū = 0.285. This example demonstrates

that preference and capital depreciation would play relevant roles in evaluating the welfare

effect of external increasing returns.

4 Policy Intervention

We now turn our attention to the economy where the government distorts the market equi-

librium. Since in a decentralized economy private agents take the government’s actions as

given, the government’s intervention plays the similar role as that of external effects discussed

above. However, unlike the case of externalities, we should specify government’s policy making

process in order to evaluate the distorting effects. In what follows, we consider optimization

as well as non-optimizing policy makers.

4.1 Weitzman’s Rule with Policy Intervention

Suppose that the government’s policies affect consumption and production decisions of the

private agents. In general, such a situation may be described by assuming that the level of

maximum consumption depends on the government’s behavior. Let us denote the vector of

policy variables by g (t) ∈ Γ ⊂ Rr, where Γ expresses a set of constraints on the policy-making
decisions. Hence, the maximum utility under policy intervention is shown by

v (t) = v (z (t) , k (t) , g (t)) . (29)
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The private agents take the sequence of policy variables, {g (t)}∞t=0 , as given. As a consequence,

the pseudo-planning problem that may characterize the competitive equilibrium is as follows:

max

Z ∞

0
e−ρ(s−t)v (z (s) , k (s) , g (s)) ds

subject to

k̇ (t) = z (t) ,

(z (t) , k (t) , g (t)) ∈ S,

plus an anticipated sequence of policies, {g (t)}∞t=0 , and the initial value of k (0) . The point

is that, as well as in models with external effects of capital, the private agents select their

optimal plan by taking the government’s actions as external effects.

The necessary conditions for an optimum includes

p (t) = −vz (z (t) , k (t) , g (t)) , (30)

ṗ (t) = ρp (t)− vk (z (t) , k (t) , g (t)) . (31)

From (30) the optimum investment at time t can be written as

z (t) = z (k (t) , p (t) , g (t)) . (32)

Obviously, if the policy variables are kept constant over time (g (t) = g for all t ≥ 0), the

fundamental formula (1) still holds, so that NNP can fully capture the present value of current

and future consumption. Similarly, if the government selects the sequence of {g (t)}∞t=0 without

considering the private sector’s behavior and if private agents perfectly anticipate {g (t)}∞t=0,

the policy intervention plays essentially the same role as that of exogenous technical change

so that we obtain (12). On the other hand, if the policy maker adopts a feedback rule that

relates g (t) to the current levels of z (t) and k (t) in such a way that

g (t) = θ (z (t) , k (t)) ; θ : Rn ×Rn+ → Rr,

then the effects of policy distortion are similar to the distortion generated by external effects

of capital. In particular, if the policy variables depend on the level of capital stocks alone, i.e.

g (t) = θ (k (t)) , the role of policy distortion is exactly the same as that of capital externalities.

In this case, (20) becomes

Y (t) =

Z ∞

t
e−ρ(s−t)c (s) ds−

Z ∞

t
e−ρ(s−t)vg (k(s), z (s) , g (s)) θk (k (s)) z (s) ds. (33)
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The second therm in the right-hand-side of (33) shows the total welfare effect of policy inter-

vention evaluated by consumption.12

The above argument has assumed that the policy maker’s behavior is exogenously specified.

Now suppose that the benevolent government chooses its policy variables in order to maximize

the welfare of the private sector. If this is the case, the private agents select their investment

and consumption plans under a given sequence of policies determined by the policy maker. On

the other hand, policy maker decides its optimal policies subject to the optimizing behavior of

the private agents as well as to its own constraints such as the budget and resource constraints.

Formally speaking, this kind of problem can be formulated as a Stackelberg differential game

in which the policy maker plays a leader’s role and the private agents are followers. In general,

the optimal strategy of the policy maker may be presented either as open-loop policies or as

the feedback policies. We will examine those alternative strategies in turn.

First assume that the government adopts an open-loop policy under which each policy vari-

able depends on time alone. By taking (31) and (32) into account, the government maximizes
Z ∞

0
e−ρtv (z (k (t) , p (t) , g (t)) , k (t) , g (t)) dt

subject to

k̇ (t) = z (k (t) , p (t) , g (t)) , (34)

ṗ (t) = ρp (t)− vk (z (k (t) , p (t) , g (t)) , k (t) , g (t)) (35)

Namely, the policy maker determines the optimal sequence of g (t) ∈ Γ in order to maximize a
discounted sum of indirect utilities of the representative agent under the constraints of dynamic

behaviors of capital stocks and the market prices.13 The current value Hamiltonian for this

problem is given by

H = v (z (k (t) , p (t) , g (t)) , k (t) , g (t)) + q (t) z (k (t) , p (t) , g (t))

+ ψ (t) [ρp (t)− vk (z (k (t) , p (t) , g (t)) , k (t) , g (t))] ,

where q (t) and ψ (t) respectively denote the costate variables for k (t) and p (t) . The open-loop

solution for an optimum should satisfy the following conditions:

Hg = vzzg + vg + q (t) zg − ψ (t) (vkgzg + vkg) = 0, (36)

12Note that θ (k (t)) is a vector in Rr so that θk (k (t)) denotes an r × n matrix. Hence, vgθkz is a scalor.
13The government’s optimization is also subject to the transversality condition for the households’ plan.
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q̇ (t) = ρq (t)− vk − vzzk − q (t) zk + ψ (t) (vkzzk + vkk) , (37)

ψ̇ (t) = ψ (t) vkzzp − q (t) zp − vzzp, (38)

ψ (0) = 0, (39)

lim
t→∞

e−ρtq (t) k (t) = 0, (40)

plus (34) and (35) .14 Since the initial value of p (t) is not predetermined, the corresponding

costate variable, ψ (t) , should satisfy the transversality condition at the outset of the plan-

ning. Condition (39) presents the transversality condition on ψ (t) at t = 0.15 Examining the

conditions displayed above, we find:

Proposition 2 Suppose that the optimizing government adopts an open-loop policy. Then at

the initial period (t = 0) Weitzman’s rule (1) is modified as

Y (0) = ρ

Z ∞

0
e−ρtc (t) dt+ [p (0)− q (0)] z (0) , (41)

where p (0) and q (0) respectively denote the private and social prices of capital that satisfy

vg (z (0) , k (0) , g (0)) + [q (0)− p (0)] zg (0) = 0. (42)

Proof. Since the government’s problem is a standard optimal control problem in which p (t)

and k (t) are state variables, the Hamilton-Bellman-Jacobi equation is given by

ρW (k (t) , p (t)) = max
g(t)∈Γ

{v (z (k (t) , p (t) , g (t)) , k (t) , g (t))

+Wk (k (t) , p (t)) z (k (t) , p (t) , g (t))

+Wp (k (t) , p (t)) [ρp (t)− vk (z (k (t) , p (t) , g (t)) , k (t) , g (t))]} ,

where W (.) is the value function which satisfies Wk (.) = q (t) and Wp (.) = ψ (t) . Thus (39)

means that at t = 0 we have

ρW (k (0) , p (0)) = max
g(0)∈Γ

{v (z (k (0) , p (0) , g (0)) , k (0) , g (0))

+Wk (k (0) , p (0)) z (k (0) , p (0) , g (0)) .

14 In the necessary conditions for an optimum, zg, vgk and vzz are r×n, n×r and n×n matrices, respectively.
15See, for example, Bryson and Ho (1975, pp.56-57).
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This yields Z ∞

0
e−ρtc (t) dt = c (0) + q (0) z (0) .

Thus Y (0) ≡ c (0) + p (0) z (0) and the above equation present (41) . Additionally, by use of
(30) , (36) and (39) we obtain (42) .

In general, ψ (t) 6= 0 for t > 0, so that the behavior of p (t) affects the private agents

decision. Thus the gap between NNP and the welfare equivalence of maximized consumption

equals [q (t)− p (t)] z (t)+ψ (t) ṗ (t) for t > 0. The first term in this expression, [q (t)−p (t)]z (t) ,
is the social value of investment that is not captured by the market evaluation. The second

term, ψ (t) ṗ (t) , shows the capital gain from the social perspective. Unless the economy is in

the steady state where z (t) = ṗ (t) = 0, NNP generally diverges from the welfare equivalent

wealth by reflecting those two terms.

As is well known, the open-loop policy is generally time inconsistent. This is because if the

government reoptimizes at period t̂ (> 0) , the transeversality condition requires that ψ
¡
t̂
¢
= 0.

However, the value of ψ (t) determined by the original program at t = 0 does not necessarily

satisfy ψ
¡
t̂
¢
= 0. Thus the original plan determined at t = 0 is suboptimal if it is re-evaluated

at t = t̂ > 0. This indicates that time consistency requires that the government takes a

Markov feedback rule rather than an open-loop strategy. Suppose that optimal investment

level selected by the private agents is given by

z (t) = z (k (t) , g (t)) . (43)

In words, z (t) does not depends on the market price p (t) . If this is the case, the government’s

optimization behavior is to maximize
Z ∞

0
e−ρtv (z (k (t) , g (t)) , k (t) , g (t)) dt

subject to

k̇ = z (k (t) , g (t)) .

Since in this case motion of the forward-looking variable, p (t) , do not bind the government’s

planning, the optimization problem for the government is a standard control problem. The

Hamilton-Jacobi-Bellman equation for this problem is given by

ρW (k (t)) = max
g(t)∈Γ

{v (z (k (t) , g (t)) , k (t) , g (t)) +Wk (k (t)) z (k (t) , g (t))}. (44)
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The first-order condition is

vz (z (k (t) , g (t)) , k (t) , g (t)) zg (k (t) , g (t)) + vg (z (k (g) , g (t)) , k (t) , g (t))

+Wk (k (t)) zg (k (t) , g (t)) = 0,

which gives the optimal feedback rule in such a way that

g (t) = θ (k (t)) . (45)

Observe that, unlike (33) , the above rule is derived by solving the optimization problem for

the government.

If the policy rule is given by the above, it is easy to see that the modified version of (1) is

as follows:

Proposition 3 If the government adopts a feedback policy rule, the following holds for all

t ≥ 0:
Y (t) = ρ

Z ∞

t
e−ρ(s−t)tu (s) ds+ [q (t)− p (t)]z (t) , (46)

where p (t) and q (t) satisfies

vg (z (t) , k (t) , θ (k (t))) + [q (t)− p (t)] zg (t) = 0. (47)

Proof. Since Wk (k (t)) = q (t) , equation (44) is written as

ρ

Z ∞

t
e−ρ(s−t)u (s) ds = u (t) + q (t) z (t) .

Hence, using Y (t) = c (t)+ p (t) z (t) , we obtain (44) . In addition, (30) , (42) and W 0 (k (t)) =

q (t) gives (47) .

Consequently, if the policy maker can take a Markov feedback strategy, the modified rule

(41) that is satisfied only at t = 0 under the open-loop policy holds for all t ≥ 0. As shown
by (46) , the difference between NNP and the welfare equivalence of maximized consumption

reflects the divergence between the market and social values of capital. Since sign of [q (t) −
p (t)]z (t) cannot be specified without imposing further conditions, accuracy of NNP as an

indicator of welfare measure depends on the policy rule taken by the government. For example,

if both k (t) and g (t) are scalars, (47) becomes

q (t)− p (t) = −vg (z (k (t) , g (t)) , k (t) , g (t))
zg (k (t) , g (t))

.
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Therefore, if policy intervention has opposite impacts on consumption and investment, that is,

either if vg < 0 and zg > 0 or if vg > 0 and zg < 0), then NNP underestimates (overestimates)

the welfare equivalent wealth according to net investment z is positive (negative). Conversely,

if vg and zg have the same sign, we obtain the opposite outcome.

4.2 An Example: Optimal Income Taxation

As a typical example, let us consider a simple model of dynamic optimal taxation. There is a

single good and its production function is given by

y = kα, 0 < α < 1, (48)

where y and k denote per capita output and capital, repetitively. The government levies a

proportional income tax on output to finance its spending. We assume that the government

does not rely on debt finance. Letting g ∈ (0, 1) be the rate of income tax and s be the per
capita government’s spending, the flow budget constraint for the government is

s = gy. (49)

The households’ felicity depends on consumption, c, and the public expenditure, s. The rep-

resentative agent maximizes a discounted sum of utilities

U =

Z ∞

0
e−ρtu (c, s) dt,

where the instantaneous utility function is specified as

u (c, s) =
c1−σ − 1
1− σ

+
s1−ξ − 1
1− ξ

; 0 < σ, ξ < 1. (50)

Here, we assume that the public spending has a positive effect on the households’ welfare. The

flow budget constraint for the household is the following:16

(1− g) y = c+ z + δk. (51)

Therefore, the aggregate consumption is defined as

c =
[(1− g) kα − z − δk]1−σ − 1

1− σ
+
(gkα)1−ξ − 1

1− ξ
≡ v (z, k, g) .

16Observe that in view of (49) , (51) also shows that the market equilibrium condition for the final good.
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The household maximizes
R∞
0 v (z, k, g) e−ρtdt subject to k̇ = z and an anticipated sequence

of {g (t) , s (t)}∞t=0 .

Denoting the market price of capital by p, the optimization conditions for the household

include the following:

c−σ = [(1− g) kα − z − δk]−σ = p, (52)

ṗ = p
£
ρ+ δ − α (1− g) kα−1

¤
, (53)

k̇ = z, (54)

lim
t→∞

p (t) e−ρtk (t) = 0. (55)

First, assume that the government adopts an open-loop strategy. By taking its own budget

constraint (49) into account, the fiscal authority controls the rate of tax g (∈ [0, 1)) to maximize

Z ∞

0
e−ρt

"
p1−

1
σ − 1

1− σ
+
(gkα)1−ξ − 1

1− ξ

#

dt

subject to (53) , (54) , the initial condition k (0) = k0, and the households’ transversality

condition (55) . Set up the Hamiltonian function for the government’s problem:

H =
p1−

1
σ − 1

1− σ
+
(gkα)1−ξ − 1

1− ξ
+ q

h
(1− g) kα − p− 1

σ − δk
i
+ ψ

£
ρ+ δ − α (1− g) kα−1

¤
.

The optimum conditions are (53) , (54) and the following:

(gkα)−ξ = q − αψ

k
, (56)

q̇ = q[ρ+ δ − α (1− g) kα−1]− ψα (1− α) (1− g) kα−2 − αgkα−1 (gkα)−ξ , (57)

ψ̇ = ρψ − 1
σ
p−

1
σ , (58)

together with the transversality conditions: ψ (0) = 0 and limt→∞ e−ρtq (t) k (t) = 0. Combin-

ing (56) with (57) gives

q̇ = q
£
ρ+ δ − αkα−1

¤
− ψα (1− τ − α) kα−2. (59)

On the other hand, (56) yields

g =

∙
q − αψ

k

¸ 1
ξ

k−α. (60)
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Substituting (60) into (53) , (54) , (57) and (58) , we obtain a complete adynamic system with

respect to k, p, q and ψ. In this formulation, the Hamilton-Jacobi-Bellman equation yields

ρW (k (t)) = ū (t) = u (t) + q (t) z (t) + ψ (t) ṗ (t) (61)

Net national product measured by the market prices is defined as Y (t) ≡ c (t) + p (t) z (t) .
Thus (61) is rewritten as

Y (t) = ρ

Z ∞

t
e−ρsu (s) ds− [q (t)− p (t)] z (t)− ψ (t) ṗ (t) .

The difference between NNP and the annuity equivalent of the discounted present value of

consumption is expressed as

[q (t)− p (t)] z (t) + ψ (t) ṗ (t)

= [q (t)− p (t)]
"

k (t)α −
µ
q (t)− αψ (t)

k (t)

¶ 1
ξ

− p (t)− 1
α − δk (t)

#

+ ψ (t)

"

ρ+ δ − αk (t)α−1 +
µ
q (t)− αψ (t)

k (t)

¶ 1
ξ

k (t)

#

.

Since the initial values of k (t) and ψ (t) are given, if there is a two-dimensional stable saddle

path converging to the steady state equilibrium, q (t) and p (t) are written as functions of k (t)

and ψ (t) . Therefore, on the converging saddle path, the residual term shown above can be

evaluated numerically by specifying parameter values involved in the model.

Next, examine the case in which the government can select a feedback rule In order to obtain

a closed-form solution, we assume that the inverse of elasticity of intertemporal substitution

in consumption, σ, is equal to α.17 In this special case, from (51) , (52) and (54) we obtain the

following:
ṗ

p
= ρ+ δ − α (1− g) kα−1, (62)

k̇

k
= (1− g) kα−1 − 1

kp1/α
− δ. (63)

17This is one of the special case where the feedback policy rule can be analytically derived. Another well

known example in which we can treat the feedback rule analytical is to assume that σ = 1 so that u (c, g) =

log c+ gξ−1 − 1 / (1− ξ) : see Xie (1997) and Lansing (1999) . Mino (2001) shows that the similar results can

be obtained in a model with labor-leisure choice.
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Hence, letting x ≡ kp1/α, (62) and (63) yield:
ẋ

x
= ρ+

µ
1

α
− 1
¶
δ − 1

x
.

This differential equation has a unique stationary solution and it is totally unstable. Therefore,

x exhibits a diverging behavior unless x stays on the stationary point at the initial period.

If x diverges from the stationary point, either the transversality condition or the feasibility

condition will be ultimately violated. This implies that x always keeps its steady state level so

that it holds that x = ρ+ (1/α− 1) δ for all t ≥ 0. As a consequence, the following condition
is satisfied:

p = (μk)−α , (64)

where μ ≡ ρ+ (1/α− 1) δ.
Consequently, using (64) , the objective of the policy maker is to maximize

Z ∞

0
e−ρt

"
(μk)1−α − 1
1− α

+
(gkα)1−ξ − 1

1− ξ

#

dt

subject to

k̇ = (1− g) kα − (μ+ δ) k.

The necessary conditions for an optimum involve the following conditions:

(gkα)−ξ = q, (65)

q́ = q[(ρ+ μ+ δ)q − α (1− g) ka−1]− (gkα)−ξ αgkα−1.

From the above equations and μ = ρ+ (1/α− 1) δ, we have

q̇ = q

∙µ
2ρ+

δ

α

¶
− αkα−1

¸
. (66)

Condition (65) yields the optimal tax rate:

g (t) =W 0 (k (t))−
1
ξ k (t)−α ≡ θ (k (t)) . (67)

This gives the feedback control rule for g (t) . Using (67) , the value function satisfies the

following Hamilton-Jacobi-Bellman equation:

ρW (k (t)) =
(μk (t))1−α − 1

1− α
+
(W 0 (k (t)))

ξ−1
ξ − 1

1− ξ

+W 0 (k (t))
h
k (t)α −W 0 (k (t))−

1
ξ − (ρ+ δ) k (t)

i
.
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For the purpose of obtaining a closer look at the relationship between p (t) and q (t) , we

further assume that θ = σ so that ξ = α. Then we have

q̇

q
− ṗ
p
= ρ+

µ
1

α
− 1
¶
δ = μ.

As a result, it holds that q (t) /p (t) = eμt [q (0) /p (0)] , which yields:

q (t)− p (t) = p (t)
∙
eμt
q (0)

p (0)
− 1
¸

This means that if q (0) > p (0) , it holds that q (t) > p (t) for all ≥ 0. If q (0) < p (0) , then

q (t) < p (t) for eμt < p (0) /q (0) and q (t) > p (t) for eμt > p (0) /q (0) . Remembering that

p (0) = [μk0]
−α and q (0) =W 0 (k0) , the sign of q (t)− p (t) follows

sign [q (t)− p (t)] = sign
½
t− 1

μ
log

∙
W 0 (k0)

(μk0)
−α

¸¾
.

Suppose that W 0 (k0) < (μk0)
−α . Further, assume that the initial level of capital k0 is less

than the steady state level of k and thus the economy converges to the steady state with

positive investment Given those conditions, NNP overestimates the annuity equivalent of the

present discounted value of maximized consumption for 0 < t < (1/μ) log
£
W 0 (k0) / (μk0)

−α¤.

After time passes the critical point, NNP becomes smaller than the welfare equivalent wealth.

In contrast, if k0 exceeds the steady-state level of k so that economy converges to the steady

state with negative investment, we obtain the opposite results. It is to be pointed out that

the critical time length,(1/μ) log
£
W 0 (k0) / (μk0)

−α¤ , may be relatively short. For example, if

α = 0.4, ρ = δ = 0.05, then μ = 0.125. Hence, when q (0) /p (0) = W 0 (k0) / (μk0)
−α = 1.2, the

critical time is 1.458. This shows that NNP is over the welfare equivalent wealth for less than

two years if k0 is smaller than the steady state level of k. When q (0) /p (0) = 2.0, the critical

time is 5.545. If capital involves human capital so that α has a higher value such as 0.8, we

have μ = 0.0625. This the switching time point is 11.04 if q (0) /p (0) = 2.0, while it is 2.91 if

q (0) /p (0) = 1.2.

5 Conclusion

This paper has generalized Weitzman’s rule by introducing market distortions into the basic

framework. If a market economy satisfies the ideal conditions so that it mimics the behavior
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of the corresponding command economy, Weitzman’s fundamental result ensures that net na-

tional product serves as an exact welfare measure. However, since market economies generally

fail to attain the command optimum because of the presence of various forms of distortions,

there may exist a gap between net national product and the annuity equivalent of the dis-

counted present value of maximized consumption. In this paper, we have examined models

with market distortions and have explored how the fundamental rule is modified if distortions

contaminate the basic relationship between national income and welfare.

It is to be noted that when the market economy does not attain the command optimum,

the welfare significance of national income depends upon the magnitude of the contamination

effect generated by market distortions. As some of the numerical examples in Section 3.2

show, the divergence between NNP and the discounted present value of current and future

consumption can be sufficiently small. In such a case, NNP is still a good measure of welfare.

If the divergence has a significantly large value, we should be careful in using NNP as a

representation of the welfare equivalence wealth. When evaluating the contamination effect,

we should derive explicit forms of modified Weitzman’s rules that take the distortionary effects

into account. Needless to say, the modified rules presented in this paper are far from general.

We have only touched upon the issue by exploring specific examples. The income-welfare

relationship in alternative market environments deserves further investigation.
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