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Abstract

Using an endogenous growth model with physical and human capital, we explore short-

run as well as long-run effects of fiscal policy in the presence of households’ production

activities. We first show that our model has a unique balanced-growth path that satisfies

saddlepoint stability. We then conduct fiscal policy experiments both in and out of

the balanced-growth equilibrium. The main focus of the paper is to study the dynamic

behavior of the model economy and the effects of fiscal actions analytically. In so doing,

we examine how the presence of home production yields the policy implications that

are different from those obtained in the standard setting that does not consider home

production.
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1 Introduction

Production activities within the households are substantial. Time and resources devoted

to home production share considerable portions even in advanced countries. For example,

inspecting the US data, Eisner (1988) concludes that an estimate of home-produced output

relative to measured gross national product is in the range from 20 to 50 percent. Wrase

(2001) reports that a married couple in the United States, on average, devotes 25 percent of

discretionary time to unpaid home work and 33 percent of it to work in the market place for

pay.

The idea that home production may play a relevant role in macroeconomics has generated

a bulk of the recent studies focusing on how households’ production activities affect business

cycles, macroeconomic policy performances and long-term economic growth. Most of this

literature has tried to reveal that introducing a home production sector into the otherwise

standard macroeconomic models improves the models’ ability in explaining observed data.

For example, Benhabib et al. (1991) and Greenwood and Hercowitz (1991) show that the

introduction of home production into the standard real business cycle theory significantly

improves the performances of the calibrated models. The intuition behind such a good fitness

is that the incorporation of a home sector in the standard one-sector real business cycle model

brings about possibility of substitution between market and nonmarket production over time.

Therefore, relative productivity differentials between the two sectors may enhance volatility

in market activity. Furthermore, the substitution between home and market commodities at a

given date, not just at different dates, affects the size of fluctuations induced by productivity

shocks.1 As for explanation of the observed economic development facts, Parente et al.

(2000) illustrate that, by adding a home production sector to the neoclassical growth model,

international income differences can be accounted well under relatively small differences in

policies. This is because, in the presence of household production, fiscal policy affects not

only capital accumulation but also the shares between market and nonmarket activities.

Along the line of recent research on macroeconomic analysis of household production,

this paper explores the effects of fiscal policy in a growing economy with home production.

1The empirical work of McGattan, Rogerson and Wright (1997) claims that the elasticity of substitution

between home and market goods is considerably high.
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We construct a three-sector endogenous growth model with Beckerian home production and

examine the effects of fiscal policy in and out of the balanced-growth equilibrium. More

specifically, we introduce a household production sector into Lucas’ (1988) model of endoge-

nous growth in which continuing economic growth is sustained by accumulations of both

physical and human capital. Since home production activities are tax-free, nonmarket ones,

we can predict that introducing a home production sector into the Lucas model may yield the

fiscal policy effects that are different from those obtained in the standard setting. To see this,

we examine the effects of taxation on labor and capital income as well as subsidy to invest-

ment on human capital. We demonstrate that in the presence of a tax-free home production

sector, fiscal policy affects resource allocation between market and nonmarket sectors, which

generates new policy impacts that are not observed in the original Lucas’ framework. We

compare the derived results with those obtained in the model without home production.

The main contributions of this paper are twofold. First, we present an analytical discus-

sion on fiscal policy effects in a Lucas-type endogenous growth model with home production.

In the context of human-capital-based endogenous growth models without home production,

short-run as well as long-run impacts of capital income taxation have been explored thor-

oughly2. In contrast, the number of existing studies on the role of fiscal policy in endogenously

growing economies with home production is relatively small. In addition, the majority of this

literature such as Einarsson and Marquis (2001) rely entirely on numerical experiments in

considering policy impacts. Milesi-Ferretti and Roubini (1998) present an analytical discus-

sion on the relation between income as well as consumption taxes and long-term economic

growth. Their analysis, however, is restricted to the balanced-growth equilibrium and the

short-run effects of policy changes are out of touch. In this paper, we examine both short-run

and long-run impacts of policy changes analytically. Furthermore, in addition to the growth

effect of fiscal policy, we study policy effects on other key variables such as human capital

allocation to home production, factor intensities in the market and home goods sectors, and

the rates of returns to physical and human capital.

The second contribution of this paper is to show the existence and stability of the

balanced-growth path with home production and tax distortions. Using models without

home production, Mino (1996) and Ortigueira (1998, 2000) confirm the existence of unique

2See, for example, Bond, Wang and Yip (1996), Mino (1996), and Ortigueira (1998).
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stable path that converges to the balanced-growth equilibrium in the presence of fiscal policy

distortions. On the other hand, by use of a Rebelo-type two-sector model, Bond, Wang and

Yip (1996) find that under an alternative tax scheme, the balanced-growth equilibrium may

be locally indeterminate (i.e. there is a continuum of converging paths near the balanced-

growth path).3 Furthermore, Ortigueira and Santos (2002) point out that in the Lucas’

setting the existence of the interior equilibrium may be disturbed in the presence of tax

distortions. These different results remind us of the necessity to conduct stability analy-

sis for the home production model with fiscal policy distortions. The analysis in Section 3

demonstrates that unlike the finding of Bond, Wang and Yip (1996), the balanced-growth

equilibrium satisfies local saddle-path stability even though the government carries out factor

specific income taxation.4

The rest of the paper is arranged as follows. Section 2 constructs the base model. The

existence and stability of the balanced-growth path are reported in Section 3. Section 4

conducts the long-run and short-run fiscal policy experiments. Section 5 concludes.

2 The Model

2.1 Production

There are three production sectors in the economy: market goods sector, home goods sector

and education sector. The market goods sector employs human as well as physical capital to

produce a homogenous output that can be used for consumption and investment. We specify

the production function of the market goods as a Cobb-Douglas one:

Ym = A(sK)
β1(uH)1−β1 , A > 0, 0 < β1 < 1, (1)

where Ym,K and H are output of the market goods, stocks of physical and human capital,

respectively. In addition, s and u respectively denote the ratios of physical and human capital

devoted to the market goods production.

3 In Rebelo (1991), the education sector uses physical as well as human capital under a constant-returns-

to-scale technology.
4Perli (1998) discusses indeterminacy of equilibrium in a real business cycle model with production exter-

nalities and home production.
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The production technology of the home goods sector is specified in the similar manner.

Production activities within the household also need both physical and human capital. The

home sector produces a pure consumption good and its production function is given by

Yn = [(1− s)K]β2(lH)1−β2 , 0 < β2 < 1, (2)

where Yn is output of the home goods and l is the ratio of human capital used for home

production. For notational simplicity, the total factor productivity of home goods sector is

normalized to one. If β2 = 0 in (2), then the home goods are produced by human capital

alone. This case corresponds to the model examined by Ortigueira (2000) who calls such a

specification the ’quality leisure’ model.

As for education activities, we follow Lucas’ (1988) formulation: new human capital is

produced by a linear technology that employes human capital alone. The production function

of the education sector is

Ye = B(1− u− l)H, B > 0 (3)

where Ye denotes education services. Since human capital is also used for market and home

production activities, the rate of human capital employed by the education sector is 1−u− l.
In this paper we assume that the education services are produced by an education industry,

so that households purchase Ye in the education service market.
5

The market goods and education sectors are competitive. Letting r and w be the before-

tax rates of return to physical and human capital, profit maximization of the firms in the

final good sector yields:

r =
∂Ym
∂ (sK)

= Aβ1k
β1−1
m , w =

∂Ym
∂ (uH)

= A(1− β1)k
β1
m . (4)

Similarly, in the education sector it holds that

w = p
∂Ye

∂ (1− u− l)H = pB, (5)

where p is the price of education services in units of the final good. Note that the rate of

return to human capital, w, can be considered the real wage rate in terms of the market good.

5 In the absence of market distortions, whether or not education services are market goods does not affect

resource allocation. If there are policy distortions, the equilibrium conditions may differ from those established

in the model where education is a home activity so that it is free from taxation.

4



2.2 Households

There is a continuum of households whose number is normalized to one. The representative

household’s objective is to maximize a discounted sum of utilities over an infinite time horizon.

The objective functional of the household is

U =

Z ∞

0

C1−σ

1− σ
e−ρtdt, σ > 0, σ 6= 1, ρ > 0.

In the above, C denotes a composite of consumption goods defined by

C = Cγ
mCn

1−γ, 0 < γ < 1,

where Cm and Cn are consumption levels of market goods and home-made goods, respectively.

The households purchase the market goods and education services, while they produce

goods and services by using physical as well as human capitals. The flow budget constraint

the representative household faces is

K̇ = (1− τk) rsK + (1− τh)w (1− l)H − Cm − (1− τ e) ph+ T − δK, (6)

where h is spending for education, and τk and τh respectively denote the rates of income

tax on physical and human capital. In addition, τ e is the rate of education subsidy (an

investment tax credit for human capital)6, T is a lump-sum transfer (a lump-sum tax if it

has a negative value) from the government, and δ denotes the depreciation rate of physical

capital. Income of the household consists of the after-tax revenue from physical capital

holding which is used for market production, (1− τk) rsK, the after-tax revenue created by

human capital that participates market activities, (1− τh)w (1− l)H, and the transfer from
the government, T. Notice that since we have assumed that there is an education service

market, the human capital employed for market activities is (1− l)H. Expenditures of the
household are: gross investment for physical capital, K̇ + δK, gross investment for human

capital, ph, and consumption expenditure for market goods, Cm. In addition to the budget

constraint, the optimizing household takes the following human capital accumulation process

into account:

Ḣ = h− ηH, (7)

6An alternative implication is that τe expresses the rate of public education and 1− τe denote the ratio of

private education.
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where η denotes the depreciation rate of human capital.

The representative household maximizes U subject to (6), (7) and the home production

technology (2) , together with the initial holdings of K and H. Since all of the home goods

are consumed within the household, it holds that Cn = Yn. Therefore, we may set up the

current value Hamiltonian in such a way that

H =
1

1− σ

n
Cm

γ(1−σ)[(1− s)β2Kβ
2(lH)1−β2 ](1−γ)(1−σ) − 1

o
+ pk

h
(1− τk)r(sK)

+(1− τh)w (1− l)H − Cm(t)− (1− τ e) ph− δK(t) + T
i
+ ph(h− ηH),

where pk and ph respectively express the shadow values of physical and human capital in

terms of utility. The household’s control variables in this problem are Cm, s, l and h, where

s, l, h ∈ [0, 1] and l + h ∈ [0, 1] .
In what follows, we denote the factor intensities in the market goods and home production

sectors by the following:

km ≡
sK

uH
, kn ≡

(1− s)K
lH

.

We find that the first-order conditions for an interior optimum are given by:

∂H

∂Cm
= γCγ(1−σ)−1

m C(1−γ)(1−σ)n − pk = 0, (8)

∂H

∂s
= (1− γ)β2C

γ(1−σ)
m C(1−γ)(1−σ)−1n k

β2−1
n K − pk(1− τk)rK = 0, (9)

∂H

∂l
= (1− γ)(1− β2)C

γ(1−σ)
m C(1−γ)(1−σ)−1n k

β
2

n H − pk (1− τh)wH = 0, (10)

∂H

∂h
= − (1− τ e) pkp+ ph = 0 (11)

Condition (11) gives
ph
pk
= (1− τ e) p = (1− τ e)

w

B
, (12)

which shows the relation between the relative implicit price, ph/pk, the market price of

education services, p and the real wage rate, w.

By use of (9) , we see that the shadow value of physical capital follows

ṗk = pk[ρ+ δ − (1− τk)r]. (13)

Similarly, in view of (10) , the shadow value of human capital changes according to

ṗh = ph (ρ+ η)− pk (1− τh)w. (14)
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Additionally, these shadow values should satisfy the transversility conditions:

lim
t→∞

e−ρtpkK = 0, lim
t→∞

e−ρtphH = 0. (15)

2.3 The Government

As assumed above, the government imposes flat-rate income taxes on physical and human

capital that are used for market production activities, while it subsidies to investment for

human capital. Thus the flow budget constraint for the government is

τkr(sK) + τhw (1− l)H = τ eph+ T. (16)

We assume that in each moment the government balances its budget by adjusting the lump-

sum transfer, T, under fixed levels of τk, τh and τ e.

2.4 Market Equilibrium Conditions

The equilibrium conditions for the market and home goods are respectively given by

Ym = Cm + K̇ + δK, (17)

Ye = h. (18)

In view of (3) , (7) and (18), we obtain the equilibrium condition for the education service

sector:

Ḣ = B(1− u− l)H − ηH. (19)

3 Balanced-Growth and Equilibrium Dynamics

3.1 Dynamic System

In this subsection, we will summarize the model constructed in the previous section as a

three-dimensional dynamic system. First, from (4) and (12) , we see that (13) and (14) are

respectively written as

ṗk = pk

h
ρ+ δ − (1− τk)Aβ1k

β1−1
m

i
, (20)

ṗh = ph

µ
ρ+ η −B 1− τh

1− τ e

¶
. (21)
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Therefore, keeping (12) in mind, from (20) and (21) we obtain the dynamic equation of the

price of new human capital as follows:

ṗ

p
= (1− τk)Aβ1k

β1−1
m −B 1− τh

1− τ e
+ η − δ. (22)

Since (5) and (12) mean that w = Bp = A(1− β1)k
β1
m , it holds that k̇m/km = (1/β1) ṗ/p. As

a result, combining (22) with the above, we obtain the dynamic equation of factor intensity

in the market goods sector:

k̇m = km

n
(1− τk)Ak

β
1
−1

m − 1

β1

h
B
1− τh
1− τ e

− η + δ
io
. (23)

Next, observe that (8) and (9) give

Cm
H

= A
³β1
β2

´³ γ

1− γ

´
(1− τk)lknk

β1−1
m , (24)

By definition, s and u satisfy

s = 1− l

k
kn, u =

k

km
− kn
km
l, (25)

where k ≡ K/H is the physical-human capital ratio of the economy at large. Hence, substi-

tution of (24) and (25) into (17) and (19) presents:

k̇ = k
n
Ak

β1−1
m

h
1− l

k
kn −

l

k
kn

³γ(1− τk)

1− γ

´β1
β2

i
+ (η − δ)−B

hkm − k
km

+
kn − km
km

l
io
, (26)

It is to be noted that (9), (10) and (4) yield

kn = φ
1− τh
1− τk

km, (27)

where

φ =

µ
β2

1− β2

¶µ
1− β1
β1

¶

Namely, the relative factor intensity depends not only on the technological parameters but

also on the tax rates on physical and human capital. Substituting (27) into (26) , we find

that the dynamic behavior of k depends on k, km and l.

Finally, in order to derive the dynamic equation of l, substitute Cn = [(1− s)K]β2 (lH)1−β2

into (8), (9) and (10). Then we obtain

J

⎛
⎜⎜⎜⎝

log(lH)

logCm

log(1− s)K

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

log pk + const.1

log pk + (β1 − 1) log km + const.2
log ph + const.3

⎞
⎟⎟⎟⎠ ,
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where

J =

⎛
⎜⎜⎜⎝

(1− β2)(1− γ)(1− σ) γ(1− σ)− 1 β2(1− γ)(1− σ)

(1− β2)(1− γ)(1− σ) γ(1− σ) β2(1− γ)(1− σ)− 1
(1− β2)(1− γ)(1− σ)− 1 γ(1− σ) β2(1− γ)(1− σ)

⎞
⎟⎟⎟⎠ .

Solving this with respect to log lH presents

log lH =
³1− σ

σ

´n
(1− γ)β2(1− β1) log km − [γ + β2(1− γ)] log pk

−
³ 1

1− σ
− [γ + β2(1− γ)]

´
log ph

o
+ a constant,

which yields:
l̇

l
=
³1− σ

σ

´h
γ +

β2
β1
(1− γ)

i ṗ
p
− 1

σ

ṗh
ph
− Ḣ
H
.

Using (19), (21), (22) and (25), we obtain

l̇ = l
n³1− σ

σ

´h
γ +

β2
β1
(1− γ)

ih
(1− τk)Aβ1k

β1−1
m −B 1− τh

1− τ e
+ η − δ

i

−
³ 1
σ

´
[ρ+ η −B 1− τh

1− τ e
] + η −B

hkm − k
km

+
kn − km
km

l
io
, (28)

where from (27) kn is proportional to km.

Consequently, a complete dynamic system can be expressed by (23) , (26) and (28) , which

describe the motions of km (= sK/uH) , k (= K/H) and l.

3.2 The Balanced-Growth Equilibrium

On the balanced-growth path, the state variables in the dynamic system derived above stay

constant over time. First, k̇ = 0 means that both physical and human capitals grow at a

common, constant rate. Second, l̇ = 0 shows that the human capital allocation rate to the

home goods sector does not change on the balanced-growth path, implying that other ratio

variables, u and s are also constant over time. Hence, km (= sK/uH) and kn (= (1− s)K/lH)
stay constant as well. In addition, since production technology of each sector satisfies constant

returns to scale, Ym, Cm and Cn (= Yn) also grow at the same rate as K and H.

Denote the balanced-growth rate of income, capital and consumption by g. From (8), (12)

and (21), we obtain

g =

µ
− 1
σ

¶
ṗk
pk
=

µ
− 1
σ

¶
ṗh
ph
=
1

σ

∙
B
1− τh
1− τ e

− (ρ+ η)

¸
. (29)
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In order to hold a positive growth rate, we assume that

B
1− τh
1− τ e

> ρ+ η. (30)

Moreover, in the balanced-growth equilibrium the transversality conditions in (15) require

that (1− σ) g < ρ, so that

1− σ

σ

∙
B
1− τh
1− τ e

− (ρ+ η)

¸
< ρ. (31)

We assume that conditions (30) and (31) are fulfilled in the following analysis.

The steady-state value of km (denoted by k∗m) is uniquely given by k̇m = 0 condition

in (23):

(1− τk)β1Ak
∗β

1
−1

m − δ = B
1− τh
1− τ e

− η. (32)

This is the steady-state expression of non-arbitrage condition between holding physical and

human capital. It is easy to see that from (30) equation (32) uniquely determines a positive

value of k∗m. Denote

R =
1

β1 (1− τk)

∙
B
1− τh
1− τ e

− (η − δ)

¸
. (33)

then the balanced-growth value of the pre-tax rental rate is β1R,

Next, l̇ = 0 condition in (28) presents

B
h
1− k

k∗m
+
³k∗n − k∗m

k∗m

´
l
i
− η = g,

which yields
k

k∗m
= 1− η + g

B
+
³k∗n − k∗m

k∗m

´
l. (34)

Using conditions l̇ = 0 and k̇ = 0 in (28) and (26) , we obtain

k

k∗m

h
1− g + δ

Ak
∗β1−1
m

i
= l

k∗n
k∗m

h
1 + (1− τk)

³ γ

1− γ

´β1
β2

i
.

Substituting (34) into the above equation, we obtain the following:

l∗ =
[R− (g + δ)]

¡
1− η+g

B

¢

φ
³
1−τh
1−τk

´h
1 + (1− τk)

³
γ
1−γ

´
β1
β2

i
R−

h
φ
³
1−τh
1−τk

´
− 1
ih
R− (g + δ)

i

=
1

B

∆1∆2
∆3

, (35)

10



and hence

k∗

k∗m
=

h
1− η + g

B

i
+
h
φ
³1− τh
1− τk

´
− 1
i
l∗

=
1

B

∆2∆4
∆3

. (36)

In the above, each ∆i (i = 1, 2, 3, 4) is defined as

∆1 ≡ R− (g + δ),

∆2 ≡ (B − η)− g,

∆3 ≡ φ
³1− τh
1− τk

´h
1 + (1− τk)

³ γ

1− γ

´β1
β2

i
R−

h
φ
³1− τh
1− τk

´
− 1
ih
R− (g + δ)

i
,

∆4 ≡ Rφ(1− τh)
h 1

1− τk
+

β1
β2

³ γ

1− γ

´i
> 0.

It is to be noted that the following holds:

∆3 = Rφψ(1− τh) + (g + δ)φ
³1− τh
1− τk

´
+∆1 = ∆4 −

∙
φ

µ
1− τh
1− τk

¶
− 1
¸
∆1.

The parameter values displayed above satisfy the following conditions:

Lemma 1 It holds that ∆i > 0 (i = 1, 2, 3), ∆1 > ∆2, and ∆1∆2 −B∆3 < 0.

Proof. The balanced-growth condition means that

Ym
K
= sAk

∗β1−1
m = sR < R.

Therefore, from (17) on the balanced-growth path we obtain:

Cm
K

=
Ym
K
− δ − K̇

K
= sR− δ − g < R− δ − g = ∆1,

which shows that ∆1 > 0. Since the maximum growth rate of H is B − η, so that ∆2 =

B − η − g > 0. In addition, it is easy to see that ∆3 > 0, because ∆1 > 0. Furthermore, we
find the following relations:

∆2 −∆1 = B − η − (R− δ) = (B − η + δ)−R <
∙
B
1− τh
1− τ e

− η + δ

¸
−R < 0,

∆1∆2 −B∆3 = ∆1(∆2 −B)−B
h
Rφ

β1
β2

³ γ

1− γ

´
(1− τh) + (g + δ)φ

³1− τh
1− τk

´i
< 0.

This lemma shows that k∗/k∗m > 0 (so that k
∗ > 0) and 0 < l∗ < 1. That is, the dynamic

system has a feasible and unique stationary point. In sum, we have shown:
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Proposition 1 Suppose that (30) and (31) are satisfied. Then, there is a unique, feasible

balanced-growth equilibrium with a positive growth rate.

3.3 Local Stability

As for dynamic behavior of the system, first note that (23) is a complete system of km. Since

0 < β1 < 1, this system is globally stable. Due to the recursive nature of the system, local

behavior of k and l around the balanced-growth equilibrium can be examined by the following

two-dimensional, approximated system:

⎡
⎣ k̇
l̇

⎤
⎦ =

⎡
⎣

∂k̇
∂k

∂k̇
∂l

∂ l̇
∂k

∂ l̇
∂l

⎤
⎦
⎡
⎣ k − k

∗

l − l∗

⎤
⎦ , (37)

where elements in the coefficient matrix evaluated at the steady state are:

∂k̇

∂k
=
kn
km

k∗m
k∗
l∗R[1 + (1− τk)ψ] +B

k∗

k∗m
= ∆4

k∗m
k∗
l∗ +B

k∗

k∗m
> 0, (38)

∂k̇

∂l
= k∗

h
−∆4

k∗m
k∗
−Bkn − km

km

i
< 0, (39)

∂ l̇

∂k
= B

l∗

k∗m
> 0, (40)

∂ l̇

∂l
= l∗

h
−B

³kn − km
km

´i
. (41)

For the detail of derivation of (39) , see Appendix 1 of the paper.

Equations (35) and (36) give∆4
k∗m
k∗ l

∗ = ∆1. Thus the determinant of the coefficient matrix

in (37) is:

∂k̇

∂k

∂ l̇

∂l
− ∂k̇

∂l

∂ l̇

∂k

=
h
∆1 +B

k∗

k∗m

i
l∗
h
−B

³kn − km
km

´i
−B k

∗

k∗m
l∗
h
−∆4

k∗m
k∗
−B

³kn − km
km

´i

= B∆1
k∗

k∗m

h
1−

³
φ
1− τh
1− τk

− 1
´k∗m
k∗
l∗
i
= B∆1

k∗

k∗m
∆3/∆4 > 0. (42)

In view of (34) , the trace of the matrix is written as

∂k̇

∂k
+

∂ l̇

∂l
= ∆1 +B

k∗

k∗m
−B

h
φ
³1− τh
1− τk

´
− 1
i
l∗

= ∆1 +B
h
1− η + g

B

i
= ∆1 +∆2 > 0. (43)
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Inequalities (42) and (43) show that the coefficient matrix of the sub-dynamic system (37) has

positive determinant and trace. This means that the subsystem (37) has two unstable roots.

As mentioned above, (23) is stable, and therefore the original dynamic system of (km, k, l)

contains one stable and two unstable roots. Since only k (= K/H) is a non-jumpable variable

in our system (so that the initial values of km and l should be endogenously specified), the

presence of one stable root demonstrates that there locally exists a unique trajectory that

converges to the balanced-growth equilibrium.7 The following proposition summarizes our

finding:

Proposition 2 Under a given initial level of k, there locally exists a unique equilibrium path

that converges to the balanced-growth equilibrium.

4 Policy Implications

We are now ready to examine the long-run and transitional effects of fiscal policy. We start

with the analysis of long-term impacts of policy changes, which will be the basis for the

analysis of their transitional impacts.

4.1 Long-run Effects of Fiscal Policy

(i) Balanced-growth rate

As shown by (29) , the long-term growth rate of capital and income is

g =
1

σ

∙
B
1− τh
1− τ e

− (ρ+ η)

¸
.

Since the home sector produces a pure consumption good, its technology has no effect on

the determination of the balanced-growth rate. A rise in the rate of education subsidy, τ e,

7By use of an endogenous growth model with physical and human capital, Bond, Wang and Yip (1996)

demonstrate that asymmetric tax treatment of physical and human capital may yield indeterminacy of equi-

librium. The key assumption in their analysis is that the education sector uses physical as well as human

capital. The indeterminacy result, thus, comes from the fact that the relative factor ranking between the final

goods and education sectors from the social perspective may differ from that in view of the private perspective.

Since the Lucas model employed in our paper assumes that the education sector uses human capital alone, the

education sector is always more human capital intensive than other sectors both from the social and private

perspectives. Therefore, the source of multiple converging paths in the model of Bond, Wang and Yip (1996)

cannot hold in our setting.
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enhances long-term growth, while a higher rate of income tax on human capital, τh, depresses

growth. Since the education sector does not employ physical capital and since the key to

determine the balance growth rate in the Lucas’ modelling is accumulation of human capital,

the rate of income tax on physical capital fails to affect the long-term growth performance of

the economy. It is to be noted that, unlike the original Lucas model, income tax on human

capital, τh, has a long-run growth effect. This is because we have assumed that education

services are supplied in the market. This means that, all else being equal, an increase in τ e

or a decrease in τh encourages households to spend more income for purchasing education

services. As a consequence, human capital formation is accelerated, and hence the economy

realizes a higher growth rate in the long-run. Note that the balanced-growth rate given above

is independent of β2. Therefore, even if the home goods production uses human capital alone

(β2 = 0), the growth effect of fiscal policy in the long-run equilibrium is the same as that

obtained under the general home production technology.

In the standard Lucas model where education services are provided within the household,

taxation on human capital is applied only to the wage income earned by the human capital

employed in the final goods sector. Thus, in the absence of home production and educational

subsidy, the flow-budget constraint for the household is K̇ = (1− τk) rsK + (1− τh)wuH −
Cm + T − δK and human capital formation follows ḣ = B (1− u)h. Given these conditions,
the optimal choice of the allocation rate, u, gives pk (1− τh)w = phB. Since the behavior of

ph is given by (14) , we obtain

ṗh
ph
= ρ+ η − pk

ph
(1− τh)w = ρ+ η −B = −σg.

Therefore, as is well known, taxation on human capital fails to affect the balanced-growth

rate in the standard Lucas’ setting.

To sum up, we have shown:

Proposition 3 The balanced-growth rate increases with the rate of education subsidy, while

it decreases with the rate of income tax on human capital.

(ii) Rates of return and price of education

From (32) the steady-state value of the before-tax rate of return to physical capital,

14



r = β1R, is given by

r =
1

1− τk

µ
B
1− τh
1− τ e

+ δ − η

¶
.

The rate of return to physical capital in the steady state is thus independent of the production

technology of home goods sector. A rise in τk or τ e increases r, while a rise in τh lowers r.

For example, a higher rate of income taxation on human capital promotes physical capital

accumulation, which raises the physical and human capital ratio, km, in the market goods

sector. Since the rate of return to physical capital satisfies r = Aβ1k
β1−1
m , a higher km

depresses the rate of return to capital. On the other hand, increases in τk and τ e have the

opposite effects.

Due to the Cobb-Douglas specification, the relation between pre-tax rates of returns to

physical and human capital satisfies w = (1− β1) rkm/β1. Thus in the steady state it holds

that

w =
1− β1
β1

∙
1

β1A (1− τk)

µ
B
1− τh
1− τ e

+ δ − η

¶¸ β1
β1−1

.

Again, the rate of return to human capital (the real wage rate) does not depend on β2 that

characterizes the home goods production technology. The effects of changes in τk, τh and τ e

on w are opposite to those effects on r: a rise either in τk or in τ e depresses w, while a higher

τh increases w. The price of education service, p, is proportional to w (see (5)) , so that the

effects of fiscal policy are the same as those on w. To sum up, we have found:

Proposition 4 On the balanced-growth path, the pre-tax rate of return to physical capital

increases with the rate of income tax on physical capital and the education subsidy rate, while

it decreases with the rate of tax on human capital. Both the pre-tax rate of return to human

capital and price of education (in terns of the market good) decrease with the rate of income

tax on physical capital and with the education subsidy rate, while it increases with the tax rate

on human capital.

(iii) Human capital allocation to home production

To see the policy effects on factor allocation between the market and home sectors, we

focus on the human capital allocation rate to the home goods sector, l. The stationary level

of l is given by (35) . Although this expression is rather complex, we can show the following

results:
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Proposition 5 An increase in the rate of tax on physical or human capital raises working

time in home, while an increase in education subsidy rate lowers it:

∂l∗

∂τk
> 0,

∂l∗

∂τh
> 0,

∂l∗

∂τ e
< 0. (44)

Proof. See Appendix 2.

Intuitive implications of the above proposition are as follows. A higher taxation either on

physical or human capital discourages the market production activities, because the after-tax

rates of return to capital realized both in the market goods and education sector are lowered.

Hence, production factors shift from the market goods sector to the tax-free home production

sector to meet a higher distortion in the market production and education sector. In contrast,

a higher investment tax credit (i.e. a rise in τ e) accelerates human capital accumulation and

enhances the education sector’s activity. This reallocates human capital from the home goods

sector to the market sectors.

(iv) Factor intensities

From (32) , the steady-state level of factor intensity in the market goods sector is given

by

k∗m =
∙

1

β1A (1− τk)

µ
B
1− τh
1− τ e

+ δ − η

¶¸ 1

β1−1
.

Thus we find:
∂k∗m
∂τk

< 0,
∂k∗m
∂τh

> 0,
∂k∗m
∂τ e

< 0. (45)

Economic intuition of those results are obvious. For example, a rise in τ e promotes human

capital formation and the resulting technologies used both by the market and home goods

sectors become more human-capital intensive, and thus km and kn decrease in the long-run

equilibrium.

Remembering that km and kn satisfies (27) , in the steady state we obtain the following:

k∗n = φ
1− τh
1− τk

∙
1

β1A (1− τk)

µ
B
1− τh
1− τ e

+ δ − η

¶¸ 1

β1−1
,

where φ = β2 (1− β1) /β1 (1− β2) > 0. Thus we see that

∂k∗n
∂τk

< 0
∂k∗n
∂τh

> 0 (if δ ∼= η) ,
∂k∗n
∂τ e

< 0. (46)
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To understand (46), we should note that (27) gives:

∂k∗n
∂τ i

= φk∗m
∂

∂τ i

µ
1− τh
1− τk

¶
+ φ

1− τh
1− τk

∂k∗m
∂τ i

, i = k, h, e.

The first term in the right hand side of the above expresses the asymmetric taxation effect

on physical and human capital. If capital income taxation is also applied to the physical

and human capital used by the home goods sector, then this asymmetric taxation effect

disappears.8 The second term represents the factor substitution effect of a change in τ i.

Given the Cobb-Douglas technology specification, the effect of fiscal policy on the factor

intensity in the market goods sector is directly linked to the factor intensity employed by the

home goods sector. As for changes in τk and τ e, the factor substitution effect dominates the

asymmetric taxation effect, and therefore, both km and kn move toward the same direction.

The effect of a change in τh on k
∗
n is ambiguous. However, if we assume that physical and

human capital depreciate at the same rate, then we see that ∂k∗n/∂τh > 0. If this is the case,

a rise in τh depresses human capital formation, which make the home sector choose a less

human capital-intensive technology.

Finally, let us consider the policy effects on the steady-state level of aggregate factor

intensity, k∗. From (36) we obtain

∂k∗

∂τ i
=
k∗

k∗m

∂k∗m
∂τ i

+
k∗m
B

µ
− ∂g

∂τ i

¶
+ k∗m

∂

∂τ i

∙
φ

µ
1− τh
1− τk

¶
− 1
¸
l∗, i = h, k, e. (47)

The above shows that the effect of a change in τ i on k
∗ can be separated into three parts.

The first term in the right-hand side of (47) represents the allocation effect on the market

goods sector, the second term is the growth effect, and the third one shows the allocation

effect on the home goods sector. It is the third effect that distinguishes the present model

from the original Lucas model. In the following, we will take a change in τ e as an example

for seeing the details of this fact.

Using φ
³
1−τh
1−τk

´
− 1 = kn−km

km
and (44) , we find that (47) can be rewritten as

∂k∗

∂τ e
=
k∗

k∗m

∂k∗m
∂τ e

+
k∗m
B

µ
− ∂g

∂τ e

¶
+ (k∗n − k∗m)

∂l∗

∂τ e
. (48)

8From (27) we have

∂ (k∗n/k
∗
m)

∂τ i
= φ

∂ 1−τh
1−τk
∂τ i

, i = k, h.

This expression shows the direct effects of capital income taxation on the relative factor intensity between the

market and home goods secotrs.
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As mentioned above, the steady-state effect of policy change on the aggregate factor intensity

consists of three components. First, note that from (45) ∂k∗m
∂τe

< 0. Proposition 3 states that

an increase in τ e raises the balanced-growth rate of human capital, which lowers k (= K/H)

in the steady state. At the same time, Proposition 5 means that a higher τ e decreases the

human capital allocation to the home goods sector. Hence, if the household production uses

a less human-capital intensive technology than the market goods sector (kn > km), then

a decreases in l shifts physical capital from the market to home production sector. This

depresses physical capital accumulation, implying that the steady-state level of k declines.

Consequently, if kn > km, we obtain
∂k∗

∂τ e
< 0. (49)

To see whether it holds that ∂k∗
∂τe

> 0 when kn < km, we consider the possibility that the

allocation effect on the home goods sector dominates the sum of the growth effect and the

allocation effect on the market goods sector. Such a domination is most likely to happen

when γ is close to one so that kn is extremely small. In this case, simple calculation reveals

that
∂k∗

∂τ e
=
k∗

k∗m

∂k∗m
∂τ e

< 0.

This implies that, if the utility share of home goods is sufficiently small, regardless of the

relative factor intensities, (49) always holds.

It should be noted that, as well as in the Lucas model, an increase in τ e affects human

capital allocation as well as the long-term growth rate. Yet unlike the Lucas model, our

model has an additional allocation effect on the home goods sector that affects the steady-

state value of k. When kn > km, comparing with the standard model, a rise in τ e has a larger

negative effect on k∗. This is the magnification effect of the home production model. When

kn < km, on the other hand, a higher τ e generated a smaller negative effect on k∗ than in

the case of the standard model. This is the reduction effect of the present model. Similarly,

we find:

1

k∗m

∂k∗

∂τk
= φ

1− τh
(1− τk)2

l∗ − ∆2
B(1− τk)(1− β1)

− k
∗
n − k∗m
k∗m

∙
l∗

(1− τk)(1− β1)
− ∂l∗

∂τk

¸
, (50)

1

k∗m

∂k∗

∂τh
=
k∗

k∗m

B

β1(1− β1)(1− τk)(1− τ e)R
− 1

B

∂g

∂τh
− φ

1− τk
l∗ +

k∗n − k∗m
k∗m

∂l∗

∂τh
. (51)
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These expressions show that even if we specify the relative factor ranking condition, the effects

of changes in capital income taxes on k∗ are ambiguous without imposing further restrictions

on the parameter values involved in the model. In the original Lucas model where there is

neither home production nor labor-leisure choice, we may set l∗ = 0, km = 0 and β2 = 0 (so

that φ = 0) in (50) and (51) . Therefore, we always see that ∂k∗/∂τk < 0 and ∂k∗/∂τh > 0. In

the model with quality leisure in which the home production sector does not employ physical

capital β2 = 0 and kn = 0), (50) and (51) respectively become:

1

k∗m

∂k∗

∂τk
= − ∆2

B(1− τk)(1− β1)
+

l∗

(1− τk)(1− β1)
− ∂l∗

∂τk
.

1

k∗m

∂k∗

∂τh
=
k∗

k∗m

B

β1(1− β1)(1− τk)(1− τ e)R
− 1

B

∂g

∂τh
− ∂l∗

∂τh
.

Remembering that ∂l∗/∂τk > 0, ∂l∗/∂τh > 0 and ∂g/∂τh < 0, the above expressions demon-

strate that the presence of the human capital allocation effect, ∂l∗/∂τ i (i = k or h) , is still

the source of ambiguity of the sings of ∂k∗/∂τ i (i = k, h) . However, compared with the model

with the general home production technology, in the case of β2 = 0, the possibilities that

∂k∗/∂τk < 0 and ∂k∗/∂τh > 0 seem to be relatively high.

To sum up, we have shown:

Proposition 6 On the balanced-growth path, a rise in physical capital taxation lowers both

km and kn, while a rise in human capital taxation depress both km and kn. An increase

in education subsidy lowers km and kn. In addition, a higher education subsidy lowers the

aggregate factor intensity, k, regardless of the relative factor intensity ranking between the

market and home goods sectors.

(v) The share of home sector

In our setting, the magnitude of 1− γ in the utility function represents the consumption

share of the home-made goods and services. To investigate the economic implications of the

presence of home production, suppose that γ decreases. It is easy to see that a fall in γ has

no effects on the steady-state levels of rate of return to capital, the real wage rate, the factor

intensities, km and kn, and the balanced-growth rate unaffected. In addition, from (35) , a

lower γ increases the home work time, l, in the steady state. As for the effect of a change in

γ on the steady-state value of the aggregate factor intensity, k, we should recall (36) :

k∗

k∗m
=
h
1− η + g

B

i
+
h
φ
³1− τh
1− τk

´
− 1
i
l∗.

19



This equation means that if km < kn

³
so that φ

³
1−τh
1−τk

´
− 1 < 0

´
, a decrease in γ, which

yields a higher l∗, lowers k∗. In contrast, if km > kn
³
so that φ

³
1−τh
1−τk

´
− 1 > 0

´
, a lower γ

raises k∗. Therefore, a larger utility share of home goods (i.e. a lower value of γ) produces

less distorting effects of capital income taxation on resource allocation. In other words, the

existence of a nonmarket sector absorbs a part of effects caused by distorting taxation.

4.2 Transitional Effects of Fiscal Policy

Based on the long-run impacts of fiscal policy derived above, we can examine the effects of

fiscal policy on the dynamic behaviors of key variables in the transitional process towards the

new balanced-growth path.

(i) Dynamics of km

Inspecting (23), we obtain the phase diagram of km in Figure 1. As the figure shows,

under our specification, km is globally stable. Since an increase either in τk or τh yields a

lower steady-state value of km, it must cause a leftward shift of the converging path of km

(to the the broken curve in the figure). Suppose that the economy initially stays on the

balanced-growth path. We find that

∂k̇m
∂τk

¯̄
¯
(k∗m,k∗,l∗)

= −Ak∗mβ1 < 0,
∂k̇m
∂τ e

¯̄
¯
(k∗m,k∗,l∗)

< 0

Therefore, an unanticipated rise either in τk or τ e makes k̇m jump down. As a result, km

starts decreasing and finally reaches the new steady state value, k∗∗m .(< k
∗
m) . In contrast, an

unanticipated, permanent rise in τh increases k
∗
m and

∂k̇m
∂τh

¯̄
¯
(k∗m,k∗,l∗)

> 0.

This means that, as depicted by the figure, k̇m first jumps up and km starts moving towards

a higher new steady-state value of km.

(ii) Transitional dynamics on the k-l plane

In order to examine the dynamic behaviors of k and l graphically, we project the stable

saddlepath onto the k-l plane. In so doing, the following result is useful.9

9Caballe and Santos (1993) and Ladron-de-Guevara et al. (1997) employ the following value function

approach to discuss the global stability of the Lucas model.
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Lemma 2 On the converging equilibrium path, km can be expressed as a monotonically in-

creasing function of k.

Proof. Define the value function for the household’s optimization problem in such a way

that

V (Kt,Ht) ≡ max
Z ∞

t

C1−σv

1− σ
e−ρ(v−t)dv.

Then it is easy to confirm that V (K,H) is homogenous of degree 1− σ in K and H. Differ-

entiability of the value function ensures that

pk =
∂V (K,H)

∂K
, ph =

∂V (K,H)

∂H
for all t ≥ 0.

Thus the relative implicit price satisfies

ph
pk
=
VK (k, 1) k

1−σ

VH (k, 1)
≡ ψ (k) , (52)

where Vj (k, 1) = ∂V (K,H)/∂j (j = K,H) . Noting that (5) and (12) give Bp (= Bph/pk) =

A(1 − β1)k
β1
m , we see that km monotonically increases with ph/pk. Thus on the stable path

km can be expressed as km = km(k) with k
0
m (k) > 0. Since all production technologies

satisfy constant-return-to-scale and the momentary utility function exhibits strict concavity,

V (K,H) is also concave in K and H. Homogeneity and concavity of V (K,H) ensure that

ψ (k) in (52) is monotonically increasing in k, and thus km also monotonically increases with

k.

Relying on the above argument, we can show that the projected dynamic system on the

k-l plane that is linealized at the steady state is expressed as

⎛
⎝ k̇

l̇

⎞
⎠ =

⎛
⎝ b11 b12

b21 b22

⎞
⎠
⎛
⎝ k − k∗

l − l∗

⎞
⎠ ,

where

b11 =
∂k̇

∂k
+

∂k̇

∂km
k0m(k), b12 =

∂k̇

∂l
< 0,

b21 =
∂ l̇

∂k
+

∂ l̇

∂km
k0m(k), b22 =

∂ l̇

∂l
,

and sign[b22] = sign[km − kn]. Here, all the derivatives are evaluated at (k∗m, k∗, l∗).

(iii) The effects of education subsidy
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We first consider the effects of a change in the rate of education subsidy, τ e, which yields

unambiguous impacts on the transitional as well as long-run behavior of the economy. As

shown in the previous subsection, the long-run effects of changes in τk and τh on k
∗ are

ambiguous, which prevent us from obtaining clear results about the transitional impacts of

changes in τk and τh. Hence, in what follows we restrict our attention to the transitional

impacts of a change in τ e. We should consider the following two cases:

Case 1 : kn > km

From (44) it holds that ∂l∗/∂τ e < 0 and ∂k∗/∂τ e < 0. Additionally, around the steady

state where (km, k, l) = (k
∗
m, k

∗, l∗), we obtain

∂k̇

∂τ e
= 0,

∂ l̇

∂τ e
> 0. (53)

The saddle-point property requires that b11b22 − b12b21 < 0. Since b12 < 0 and b22 < 0 for

kn > km, the condition for the saddlepoint property is written as −b21/b22 < b11/b12. Observe
that

dl

dk

¯̄
¯
k̇=0

= −b11
b12
,

dl

dk

¯̄
¯
l̇=0

= −b21
b22
.

Thus the slope of k̇ = 0 locus is larger than that of l̇ = 0 locus. Thus the possible patterns

of phase diagram for the case of kn > km can be depicted by Figures 2, 3 and 4, which

respectively correspond to the following conditions:

b21 > 0, b11 > 0, (I-a)

b21 < 0, b11 > 0, (I-b)

b21 < 0, b11 < 0. (I-c)

Since in Figures 2 and 3, k̇ = 0 locus has a positive slope, which means that b11 > 0. In

Figure 4 k̇ = 0 locus has a negative slope so that b11 < 0.

In view of Figures 2, 3 and 4, we find that in all cases the stable saddle path in the

k-l plane has a positive slope. Keeping (44) and (53) in mind, we have found that the

transitional effects of a rise in τ e can be depicted as Figure 5. If the economy is initially on

the balanced-growth path, then an unanticipated rise in τ e first increases l instantaneously.

Along the transitional path towards the new steady state, l and k continue decreasing, and

the resulting new steady state levels of both l and k are lower than those original levels. In the
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phase diagram we also depict a sample path that is obtained when a rise in τ e is anticipated

one. If the policy shift is announced in advance, then the transition process should be on

the path with arrows before arriving to the new saddlepath. On this trajectory, k decreases

continuously; while l still moves up. Once arriving at the new saddlepath, both l and k

will move along this path down to the new balanced-growth equilibrium. How long is the

increasing process of l depends on how large is the first jump in l caused by an increase in

τ e. This depends on the lag between the announcement and the execution of the new policy.

Case II: kn < km

In this case, b22 > 0. Thus the saddlepoint stability means −b21/b22 > −b11.b12, and
hence

dl

dk

¯̄
¯
k̇=0

= −b11
b12

<
dl

dk

¯̄
¯
l̇=0

= −b21
b22
.

As shown above, Figure 6-8 show all the possible patterns of phase diagram or the case of

kn < km, which correspond the following cases:

b21 > 0, b11 < 0, (II-a)

b21 < 0, b11 < 0, (II-b)

b21 < 0, b11 > 0. (II-c)

From these figures, we see that case (II-a) yields a negatively sloped, stable saddle path,

while in cases (II-b) and (II-c) the stable saddle path has a positive slope. However, we can

show that case (II-a) cannot satisfy ∂l∗/∂τ e < 0 and ∂k∗/∂τ e < 0 established in Proposition

3. Therefore, only cases (II-b) and (II-c) are feasible, so that the stable saddle path always

has a positive slope. Consequently, the transitional impacts of a change in τ e under kn < km

are basically the same as those obtained for the case of kn > km.

(iv) Effects of Capital Income Taxation

As a typical example of effects of capital income taxation, we consider the effect of a change

in the rate of tax on the physical capital income, τk. As shown in the previous subsection,

changes in τk yields an ambiguous impact on the steady-state value of k. We thus examine

alternative cases: ∂k∗/∂τk < 0 and ∂k∗/∂τk > 0. We first notice that, using ∆2 = B − η− g
and (k∗n − k∗m) /k∗m = φ1−τk1−τk − 1, equation (50) may be rewritten as

1

k∗m

∂k∗

∂τk
=

1− τh
(1− τk)2

φl∗ +
l∗

(1− τk)(1− β1)

µ
l∗ +

η + g

B
− 1
¶
+

µ
φ
1− τk
1− τk

− 1
¶

∂l∗

∂τk
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Although the second term in the right-hand side of the above has an ambiguous sign, if k∗n is

sufficiently smaller than k∗m (so that φ is sufficiently small), then we tend to have the normal

result, ∂k∗/∂τk < 0 : a higher taxation on physical capital income depresses the physical-

human capital ratio of the entire economy. In this case, the transitional effects of a rise in

τk are similar to those of a rise in τ e discussed above (except that, unlike a change in τ e, a

change in τk has no growth effect). If the economy is initially on the balanced-growth path

and there is a permanent increase in τk, then the steady-state value of k decreases and the

economy starts moving along the new saddle path down to the lower level of k∗∗. During

the transition, k and l continue declining. Since the price of education service, p (= ph/pk)

is positively related to k on the converging saddle path, p, km and kn also monotonically

decrease in the transition. As a result, the rate of return to physical capital will rise, while

the real wage rate will fall. Those are the natural consequences, when a higher taxation on

physical capital income discourage physical capital investment.

In contrast, if the households’ production technology is more physical capital intensive

than the market goods production technology, then it may holds that ∂k∗/∂τk > 0. In this

case, since home production uses a physical-capital intensive technology, a rise in taxation on

physical capital employed for the market activities produces a large shift of physical capital

form the market goods sector to the home goods sector. At the same time, the higher income

tax on physical capital raises l so that human capital shifts from the market to the home

goods sector as well. As a consequence, the relative enhancement of the home goods sector

that employes a physical-capital intensive technology increases the aggregate level of physical-

human capital ratio in the long run. If this is the case, the transition process is exactly the

opposite to the case of ∂k∗/∂τk < 0. After the initial impact of a rise in τk, both k and l

continue rising toward their new, higher steady-state levels. In this process, p, km and kn

also increase, and thus the rate of return to physical capital continues falling and the real

wage rate continues increasing until the economy reaches the new steady state.

5 Conclusion

This paper has analyzed the short-run as well as long-run impacts of fiscal policy in an

endogenous growth model with home production. We characterize the balanced-growth equi-
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librium and analyze transitional dynamics. We show that even in the presence of policy

distortions, our multisector growth model has well-behaved properties: under weak restric-

tions, the balanced-growth path is uniquely given and it satisfies saddlepoint stability. Based

on this result, we have explored the effects of fiscal policy both in and out of the balanced-

growth equilibrium. The key assumption in our discussion is that the household production

is a nonmarket activity and thus it is free from direct taxation. Because of this asymmetric

tax treatment, capital income taxation and education subsidy generate the effects on the

behaviors of key economic variables that are different from those obtained in the standard

model without household production activities.

Our study can be extended in several ways. Among others, the welfare evaluation of

alternative fiscal policies and the optimal capital income taxation in the presence of home

production would be interesting and relevant topics. Examining open-economy versions of

our model is also an interesting topic that deserves further investigation.

Appendix 1 Proof of ∂k̇/∂l > 0

Equation (39) can be rewritten as

∂k̇

∂l
= k∗

h
−∆4

k∗m
k∗
−B

³kn − km
km

´i

= k∗
h
−∆4

B∆3
∆2∆4

−−B
³kn − km

km

´i

= −Bk
∗

∆2

h
∆4 + (∆2 −∆1)

³kn − km
km

´i
,

where we have used the relation of ∆3 = ∆4 − ∆1
³
kn−km
km

´
in deriving the last equation.

Notice the relation in (27), we have

∆4 + (∆2 −∆1)
³kn − km

km

´

= Rφ
³ 1− τ l
1− τk

´
[1 + (1− τk)ψ] + [B − η −R+ δ]

h
φ
³ 1− τ l
1− τk

´
− 1
i

= Rφψ(1− τ l) + (B − η + δ)φ
³ 1− τ l
1− τk

´
− (∆2 −∆1) > 0,

because B − η > 0 and ∆2 −∆1 < 0. This completes the proof. ¤
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Appendix 2 Proof of Proposition 5

First, note that following equations:

∂∆1
∂τh

= B(1− τ e)
−1
∙
1

σ
− 1

β1(1− τk)

¸
,

∂∆1
∂τk

=
∂R

∂τk
=

R

1− τk
> 0,

∂∆1
∂τ e

=
B(1− τh)

(1− τ e)2

∙
1

β1(1− τk)
− 1

σ

¸
,

∂∆2
∂τh

=
B

σ(1− τ e)
> 0,

∂∆2
∂τk

= 0,
∂∆2
∂τ e

= −B
σ

(1− τh)

(1− τ e)2
< 0,

∂∆3
∂τh

= −(g + δ)

µ
φ

1− τk

¶
− φψR+

µ
B

1− τ e

¶½∙
1

σ
− 1

β1(1− τk)

¸
− φ

1− τh
1− τk

µ
1

σ
+

ψ

β1

¶¾
,

∂∆3
∂τk

= [φψ(1− τ l) + 1]
R

1− τk
+ (g + δ)φ

1− τ l
(1− τk)2

> 0,

∂∆3
∂τ e

=
B(1− τh)

(1− τ e)2

½
φ

µ
1− τh
1− τk

¶µ
1

σ
+

ψ

β1

¶
+

∙
1

β1(1− τk)
− 1

σ

¸¾
,

∂∆4
∂τh

= −φ
µ

1

1− τk
+ ψ

¶ ∙
R+

B(1− τh)

(1− τk)(1− τ e)

¸
< 0,

∂∆4
∂τk

= Rφ
³1− τh
1− τk

´µ 2

1− τk
+ ψ

¶
> 0,

∂∆4
∂τh

= φ

µ
1

1− τk
+ ψ

¶
B(1− τh)

2

β1(1− τk)(1− τ e)2
> 0,

where ∆i (i = 1, 2, 3, 4) are given in Section 3.2.

Using the above, we obtain:

∂l∗

∂τh
=

1

B∆23

h∂(∆1∆2)
∂τh

∆3 −∆1∆2
∂∆3
∂τh

i

=
1

B∆23

∙
∆1∆3

∂∆2
∂τh

+∆2

µ
∆3

∂∆1
∂τh

−∆1
∂∆3
∂τh

¶¸
,

where

∆3
∂∆1
∂τh

−∆1
∂∆3
∂τh

= ∆1(g + δ)

µ
φ

1− τk

¶
+∆1φψR

+

µ
B

1− τ e

¶
φ

µ
1− τh
1− τk

¶
[ψ(1− τk) + 1]

∙
R

σ
− g + δ

β1(1− τk)

¸

R

σ
− g + δ

β1(1− τk)
=

1

β1(1− τk)

µ
ρ+ δ

σ
− δ

¶
> 0 for a small δ.

26



Thus if δ is small, see that ∆3
∂∆1

∂τh
−∆1 ∂∆3

∂τh
> 0, ∂∆2

∂τh
> 0 and ∂l∗

∂τh
> 0. In addition, it holds

that

∂l∗

∂τk
=

1

B∆23

n
∆3

h
∆2

∂∆1
∂τk

+∆1
∂∆2
∂τk

i
−∆1∆2

∂∆3
∂τk

o

=
∆2
B∆23

n
∆3

∂∆1
∂τk

−∆1
∂∆3
∂τk

o

=
∆2
B∆23

n
∆3

∂R

∂τk
−∆1[φψ(1− τ l) + 1]

∂R

∂τk
−∆1(g + δ)φ
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(1− τk)2

o

=
∆2
B∆23

n³ R

1− τk

´h
(g + δ)φ
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1− τk

´
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i
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(1− τ l)

(1− τk)2

o

=
∆2
B∆23

n³ R

1− τk

´
(g + δ)φψ(1− τ l) + (g + δ)2φ

1− τ l
(1− τk)2

o

> 0.

∂l∗

∂τ e
=

1

B∆23

n
∆3

h
∆2

∂∆1
∂τ e

+∆1
∂∆2
∂τ e

i
−∆1∆2

∂∆3
∂τ e

o

=
1

B∆23

∙
∆2

µ
∆3

∂∆1
∂τ e

−∆1
∂∆3
∂τ e

¶
+∆1∆3

∂∆2
∂τ e

¸
,

where

∆3
∂∆1
∂τ e

−∆1
∂∆3
∂τ e

=
B(1− τh)

(1− τ e)2
φ

µ
1− τh
1− τk

¶ ∙
g + δ

β1(1− τk)
− R

σ

¸
[ψ(1− τk) + 1] < 0 for a small δ.

Therefore, we find that ∂l∗
∂τe

< 0. ¤
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Figure 2: τe’s increase: the case of km < kn (I-a)
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Figure 3: τe’s increase: the case of km < kn (I-b)
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Figure 4: τe’s increase: the case of km < kn (I-c)
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Figure 6: τe’s increase: the case of km > kn (II-a)
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Figure 7: τe’s increase: the case of km > kn (II-b)
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Figure 8: τe’s increase: the case of km > kn (II-c)
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