MPRA

Munich Personal RePEc Archive

Software for the Computation of
Markov-Perfect Equilibria in a Dynamic
Game of Store Location by Multi-Store
Firms

Aguirregabiria, Victor and Vicentini, Gustavo

University of Toronto, Analysis Group

May 2007

Online at https://mpra.ub.uni-muenchen.de/17035/
MPRA Paper No. 17035, posted 01 Sep 2009 17:16 UTC

Software for the Computation of Markov-Perfect Equilibria in a
Dynamic Game of Store Location by Multi-Store Firms

Victor Aguirregabiria* Gustavo Vicentini
University of Toronto Analysis Group - Boston
May 2007
Abstract

This document is a supplement of the paper “Dynamic Spatial Competition Between Multi-
Store Firms” by Aguirregabiria and Vicentini (2007). It describes in detail the library of pro-
grams and procedures, in GAUSS language, that is used in that paper. The program computes
an equilibrium of a dynamic game of store location and spatial competition by multi-store
firms. The equilibrium of the game is a space-time stochastic process for the network of stores
of each firm as well as for prices, markups, profits and consumer welfare at every location in the
geographic market. We illustrate the use of the program with an example.

TABLE OF CONTENTS

1. Overview
2. Main Program (spatial _main.prg)
2.1. Section 1 (Specification of Primitives)
2.2. Section 2 (Packing all Primitives Together)
2.3. Section 3 (Creating the State Space)
2.4. Section 4 (Computing the Price Equilibrium)
2.5. Section 5 (Computing the MPE of Store Location)
3. Price Equilibrium Procedure (spatial bertrand.src)
4. MPE Procedure (spatial _mpe.src)
5. Example (spatial_example.e)

Appendix: Gauss code

*Contact Address: Victor Aguirregabiria. Department of Economics, University of Toronto. E-mail: wvic-
tor.aguirregabiria@Qutoronto.ca. Comments are welcome.

1 Overview

This manual describes a library of programs and procedures that implement an algorithm to com-
pute a Markov Perfect Equilibrium (MPE) of the dynamic game presented in the paper “Dynamic
Spatial Competition Between Multi-Store Firms” by Aguirregabiria and Vicentini (2007). The

programs are written in GAUSS language. The list of programs (.prg) and procedures (.src) is:

Program / Procedure

Description

spatial _main.prg
spatial_bertrand.src
spatial _mpe.src
spatial _pack.src
sigma__ algebra.sre
spatial_ grid.src
pdf bn.src
spatial_ld.src
1.87C

dist_p.src
spatial_dp.src
spatial_ ccvalue.src

spatial_tranp.src

Main program

Compute Nash-Bertrand equilibrium of pricing game
Computes MPE of dynamic game

Packs primitives of the model into a GAUSS structure
Creates a matrix with all states of the game
Discretizes the space of consumer locations.
Computes a bivariate Normal density

Computes array of local demands

Integrates local demands over space

Computes distances between consumers and stores
Solves Bellman equation

Calculates choice-specific expected next period values

Calculates matrix of transition probabilities

The user should create a GAUSS library name spatial, where all procedures should be put into
and called from. There is one main program, spatial _main.prg, where all the primitives of the game
are specified and most procedures are called from. Once the primitives are specified, there are two
major procedures that are called from this program. One is to compute the Nash-Bertrand equilib-

rium and variable profits for each possible value of state variables (spatial bertrand.src), and the

other to compute the MPE of the dynamic game of entry-exit and location choice (spatial_mpe.src).
There are eight other auxiliary procedures that are called upon throughout the algorithm. The
algorithm that we provide is intended to serve as a basic framework, and therefore we normalize
some parameters that appear in the paper in order to simplify the understanding and exposition
of the program. Including these parameters back in the program should be straightforward. More

specifically, we impose restrictions on the following parameters:

Normalization Description
n=1 Firms are allowed to have at most one store per location each
FC; =0 Fixed costs are normalized to zero

2 Main Program (spatial main.prg)

The main program where all the primitives are specified and the two major procedures are called

from is spatial _main.prg. This program is divided into five sections.
SECTION 1 (Specification of Primitives):

Subsection 1.1: Specification of parameters for the boundaries of the Market C. The user

specifies its z- and y-axis boundaries and in how many cells should the market be divided into (for

integration):
Paper Program Dimension Description
razis o Cwais X2 the i or .
posisof€ guais 2x1 fmlewe gl il
ridtr el ixz Nl el

For instance, if the user specifies the boundaries as waxis = (0,1) and yaxis = (1,0)’, such that C

is the unit square, and chooses ncell = (8, 6), then:

(0,1) (1,1)

(0,0) (1,0)

Subsection 1.2: Specification of the number of feasible business locations (i.e. the submarkets)

and their geographic coordinates:

Paper Program Dimension Description

L Lnum scalar Number of feasible locations.

Geographic coordinates of feasible business

z zmat L x2 locations. The 15¢ row is the (x,y) coordinates

2nd

for location 1, the row is for location 2, etc.

Subsection 1.3: Specification of the Utility function primitives {7, u, outs}:

Paper Program Dimension Description

T tau scalar Transportation cost parameter

. Dispersion parameter of
I miu scalar ; .
consumers’ unobserved heterogeneity
outside
) outs scalar Utility from choosing outside alternative
alternative

Subsection 1.4: Specification of the aggregate population distribution and evolution (i.e. ¢,).
We define ¢, to be a bivariate normal distribution, and that it evolves according to an exogenous

Markov process specified by the nump x nump transition matrix ¢tr _phi, where nump is the number

of possible different values for ¢,.

Paper Program

Dimension

Description

oN phi

Transition
Matriz tr _phi

fOI" ¢t

nump X 6

nump X nump

Parametrization of all possible ¢, distributions.
1%t 15¢ possible realization of ¢,
2Tld

row parametrizes the

gnd possibility, and so on.

row parametrizes the
The first 2 columns of each row give the coordinates
of the population mean for that realization;

The 3™ and 4" columns give the variance of

the population along the z- and y-axis, respectively;
The 5t column gives the variance-covariance of the
population along C, and the last column gives

the size of the population for that realization of ¢;.

15t_order Transition Matrix for the

possible realizations of ¢;.

Subsection 1.5: Specification of the primitives of firms {I, B, w;, i, 0FC, GEV}:
Paper Program Dimension Description
I Inum scalar Number of firms that are potentially operative.
I} beta scalar Discount Factor of Firms.
Vector with quality level of each firm;
First row is quality level of first firm, w
wj omeg Ix1 Auanty D
second row is for the second firm, wo,
and so on. (common across stores/locations).
Vector with marginal cost of each firm;
C c Ix1 First row is marginal cost of first firm, ¢y,
and so on. (common across stores/locations).
Matrix with Entry Costs of each Firm at each Location;
oFc ec I xL First row is Entry Costs of firm 1, {911’510’ QEC, - HlELC ,
second row is for firm 2, {92Elc, 912920, e QJQELC}, and so on.
Matrix with Ezit Values of each Firm at each Location;
oEV ev I xL First row is Exit Values of firm 1, {Hﬁv, 9]152‘/, ey 9{32/ ,
second row is for firm 2, {9]251‘/, 49]252‘/, s GQELV}, and so on.

SECTION 2 (Packing all Primitives Together):

were specified in Section 1 and “packs” them into a GAUSS structure called theta. It does so by

This section takes all the parameters that

calling the procedure spatial pack.src. The user does not need to specify any parameters in this

section, just call the procedure. So:

theta = 0 = {:ca:m's, yazis,neell, L, z, T, u, outs, phi, tr _phi, I, beta, omeg, c, 6FC HEV}

The structure theta will then be passed on to procedures, where the parameters are then “unpacked”

as needed.

SECTION 3 (Creating the State Space): This section calls the procedure sigma_ algebra.sre
to create the nums x (1 + I L) matrix state. This matrix lists the entire state space of the economy.
The first column lists the inder of which of the possible nump realizations of ¢, the state is at.
The 2 through the (1 + IL)™" columns list which spatial market structure n; the state is at. Note
that the size of the state space is nums = nump * 2'%. The user does not need to specify any

parameters in this section, just call the procedure.

Ezxample: Let nump = 2, I = 2, and L = 3. (2 possible values for ¢,, 2 firms, and 3 feasible

business locations). Then:

Firm 1 Firm 2
o} Location 1 Loc. 2 Loc. 3 Loc. 1 Loc. 2 Loc. 3
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 1 0 0 0
state — 1 0 1 1 0 0 0
1 1 1 1 0 0 0
1 0 0 0 1 0 0
1 1 0 0 1 0 0
1 1 1 1 1 1
2 0 0
2 1 0 0 0 0 0
2 1 1 1 1 1 1

and nums =128. N

SECTION 4 (Computing the Price Equilibrium(a)): This section calls the procedure spa-
tial_bertrand.src to compute the price equilibrium(a) at each possible realization of the state space.
The user does not need to specify any parameters in this section, just call the procedure. The pro-
cedure will call other auxiliary procedures throughout the computation of equilibrium prices. The
default initial prices are set equal to marginal costs for each firm (p° = ¢), although this specifi-
cation can be easily changed inside the procedure. Besides computing the nums x IL matrix of
equilibrium prices p at each store, the procedure returns other features of the equilibrium, such as
the nums x I L matrices of aggregate demands (Ad) and variable profits (vp) at each active store,
the nums x 1 vectors of consumer surplus (cs) and total transportation costs (tc) at each state,

and the nums X IL x IL array of elasticities of demand with respect to price across active stores

(Edp). More details on spatial_bertrand.src are given below.

SECTION 5 (Computing the MPE in Location): This section calls the procedure spa-
tial _mpe.src to compute the Markov Perfect Equilibrium (MPE) in the location game. The user
does not need to specify any parameters in this section, just call the procedure. The procedure will
call other auxiliary procedures throughout the computation of the MPE. The procedure returns the
I xnums x I L array of equilibrium conditional choice probabilities (Palpha = P*) with the decision
rule in probability space, the nums X nums matrix of equilibrium transition matrix (tr _state) for
the state, and the nums x 1 vector of probabilistic steady-state of the industry (psteady). More

details on spatial mpe.src are given below.
3 Price Equilibrium Procedure (spatial bertrand.src)

This procedure has the following format:
{p, ad,vp,cs,tc,edp} = spatial _bertrand(theta, state)

Therefore its inputs are the structure of primitives theta and the state space state, and the outputs

are equilibrium prices, aggregate demands, variable profits, total consumer surplus, total trans-

portation costs, and elasticities of demand with respect to price across active stores. Although
the user does not need to specify any parameter inside the procedure, the parameters used at the

procedure are related to the paper as follows:

Paper Program Dimension Description
p° p0 nums X IL Matrix of initial prices for fixed-point
o(z,n¢, pt) Ld array Array of Local Demands at a state
s(ng, pt) Ad nums X IL Matrix of Aggregate Demands at a state
%’ m_up LxL Used at A (p) to compute price mark-up
p* D nums X 1L Matrix of equilibrium prices
R; (n, ¢) vp nums X 1L Matrix of equilibrium Variable Profits
CS(ny, pe, ¢y) cs nums x 1 Vector of Consumer Surplus at each state
TC(n¢, pe, @) te nums X 1 Vector of Transport Costs at each state
O?Zgj::zij p Edp nums X IL x IL Array of Elast. of Subst. among stores

After “unpacking” the necessary parameters, the procedure is divided into 3 sections.

SECTION 1 (Nodes and Weights Used at Integration over C): This section calls the
procedure spatial grid.src which returns the node points and the weights from the specification
of market C to be used at integration. More specifically, it returns the 1 x ncell[l,1] vector of
the x-coordinates for the node points (znod), the ncell[l,2] x 1 vector of the y-coordinates for
the node points (ynod), and the ncell[l,2] x ncell[l, 1] matrix of weights for each node point from
crossing xnod with ynod. In the process this procedure also calls another procedure, pdf bn.sre,
which computes the bivariate normal density at the specified node points (which are in turn used

to compute the weights).

SECTION 2 (Computation of p*): Given an initial nums x I L matrix of prices for the state

space (p?), this section computes the price equilibrium using a Gauss-Seidel method. The default

value for initial prices is marginal costs (p® = ¢). The user may change this initial condition, as well

as the convergence criterion (convc). This section calls two auxiliary procedures: (i) spatial Ld.src
for computing an array of local demands (o(z,n¢, p¢)) given a market structure and price vector;
and (ii) v.sre for integrating over the Market C. Finally, the procedure spatial Ld.src calls a third
procedure, dist p.src, used to compute linear distances between a store and each representative

consumer across the market C.

SECTION 3 (Computation of Equilibrium Features): Given the equilibrium price vector
p*, this section computes the nums x I L matrices of aggregate demands (Ad) and variable profits
(vp) for each active store, the nums x 1 vectors of total consumer surplus (cs) and total transporta-
tion costs (tc) at each state, and the nums x IL x IL array of elasticities of demand with respect

to price across active stores (Edp) at each state.
4 MPE Procedure (spatial mpe.src)
This procedure has the following format:
{Palpha, ccvalue, tr _state, psteady} = spatial _mpe(theta, state, vp)

Therefore its inputs are the structure of primitives theta, the state space state, and the equilibrium
variable profits vp. The outputs are the I x nums x IL array of equilibrium conditional choice
probabilities (Palpha = PO‘*) as the decision rule in probability space, the nums x nums matrix of
equilibrium transition matrix (¢r state) for the state, and the probabilistic nums x 1 equilibrium

vector for the steady-state of the industry (psteady). Although the user does not need to specify

any parameter inside the procedure, the parameters used therein are related to the paper as follows:

Paper Program Dimension Description
mlemids) @ Dxmmsx (20 Gt
A A Lx(1+2L) Choice set for firms
R R scalar Number of simulations
T T scalar Number of time periods for simulation
o phie nump x (1+7T) x R R simulated processes of length 7" for ¢,
el eps IxRxTx(14+2L) R simulated processes of length 7" for £;;
v v I x nums x (1+2L) Equilibrium Value functions
P Palpha I x nums x (1+ 2L) Equil. decision rule in probability space
Transition e o .
for state tr _state nums X nums Equilibrium transition matrix for state
Z;(;b;;_iizt:ec psteady nums X 1 Probabilistic steady-state for the industry

After “unpacking” the necessary parameters, the procedure is divided into 8 sections.

SECTION 1 (Some Constants): This section specifies the constants kcons (to prohibit infea-

sible entry or exit choices), nump (# of possible values of ¢,), and nums (size of state space).

SECTION 2 (Contemporaneous Profit Function): This section specifies the common-
knowledge part of the contemporaneous profit function, m; (ai, ny, ¢y, .). It creates an I X nums X
(1 + 2L) array called cp (“Contemporaneous Profit”). The first “face” of the array gives the
i (@i, g, @y, .) payoff for player 1, the second “face” for the second player, etc. The first column of
the first “face” is the profit for firm 1 if she chooses to do nothing (a1; = 0) at each state. The next
L columns of the first “face” is the profit for firm 1 if she chooses to enter a new store at either
location 1, 2, ..., or L (a1y = £4). The final L columns of the first “face” is the profit for firm 1 if
she chooses to ezit an existing store at either location 1, 2, ..., or L (a3y = ¢_). The second “face”

of the array are the payoffs for firm 2 under the same order, and so on for the remainder firms.

SECTION 3 (Computation of MPE): This section contains the Gauss-Seidel iterative method
that computes the equilibrium choice probabilities. At each Gauss-Seidel iteration two procedures
are called: spatial_dp.src that solves the dynamic programming problem of a single firm; and spa-
tial_bestp.src that obtains the best response probabilities of a single firm based on the solution of

its dynamic decision problem.

SECTION 4 (Compute tr st and psteady): This section computes the nums x nums matrix
of equilibrium transition matrix (¢tr s) of the state variables and, based in this transition, the

steady-state probability distribution of the state variables.
5 Example (spatial example.e)

The program spatial example.e provides an example.

10

Appendix: Gauss code

/*
%%
*%
*%
*%
*%
K%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
%%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*ok
*%
*%
*%
*%
*%
*%
*%
*%
K%
%%
*%
*%
*%
*%
%%
*ok
*%
*%
*%
%%

A.1. Program spatial main.prg

spatial main.prg

This is the MAIN program of the paper by Aguirregabiria & Vicentini (2006):
"Dynamic Spatial Competition Between Multi-Store Firms."

The user first specifies all the parameters of the City-Economy.

The algorithm then computes the Bertrand equilibrium prices and

current profits for spatially differentiated products (’stores’).

It then computes the entry/exit/location Markov Perfect Equilibrium (MPE)
of a Store Location dynamic game by firms in a 2-dimensional

market with continuously distributed consumers and logit preferences.

by Victor Aguirregabiria and Gustavo Vicentini
University of Toronto and Analysis-Group, respectively

First version: August 2004
This revision: May 2007

The researcher specifies five types of Primitives:

- parameters of Market 'C’

- parameters of Feasible Business Locations

- parameters of individual Consumers

- parameters of the aggregate Population process
- parameters of individual Firms

These parameters are then Packed into the parameter vector
structure called 'theta’, which is then passed on to
the respective procedures.

The program works backwards: starts from the consumer preference maximization, then
constructs firms’ current equilibrium variable profit functions by computing equilibrium
prices, and then computes the MPE for store location choice of firms.

The procedure ’spatial _bertrand.src’ is called to compute the static price equilibrium

for all possible state spaces. Given these static payoffs, the procedure

‘spatial _mpe.src’ is called to compute the MPE for the dynamic entry/exit/location game.
Other Auxiliary procedures are also called throughout the algorithm.

Remark 1 : please see the 'spatial bertrand.src¢’ and ’spatial mpe.src’ procedures
for details on consumer preferences, profit functions, set-up of state space, etc.

Remark 2 : This main library where all the procedures should be placed is ’spatial.lib’
Remark 3 : For further details on this algorithm, see the Manual:
"Software for the Computation of Markov-Perfect Equilibria in

a Dynamic Game of Store Location by Multi-Store Firms,"
by Victor Aguirregabiria and Gustavo Vicentini, available at the Authors’ websites.

11

*/

new; closeall;

library pgraph spatial ;

struct PVobj { matrix m; array a; matrix fpoff; };
struct PV { scalar np; matrix type; struct PVobj obj;
matrix table; string array names; };

wdir = "¢:\\MYPAPERS\\SPATIAL\\PROGAU\\spatprog";
buff = changedir(wdir) ;

fileout = "spatial output.out" ;

output file = ~fileout reset ;

format /mbl /ros 12,4 ;

xaxis = 071 ; // Left and Right boundaries of x-axis of Market *C’, respectively

yaxis = 1|0 ; // Upper and Lower boundaries of y-axis of Market 'C’, respectively
ncell = 40740 ; // # of grid cells at x-axis and y-axis of Market 'C’, respectively

// (used at integration)

(C ettt Q@
@ 1.2. Feasible Business Locations @
(© Rt @]

Lnum = 2 ; // number of Feasible Business Locations (= 'L’)
zmat = (.2 7.5) |
(.87.5);//xand y Coordinates (’z’) of all Business Locations, stacked

@ T T TS T T T e e e e @
@ 1.3. Individual Consumer Parameters Q
(© @

tau = 1 ; // Coefficient on consumer Transporation Costs
miu = .25 ; // Dispersion Parameter of Consumer heterogeneity
outs = 0 ; // Utility of purchasing from Outside alternative

@ 1.4. Aggregate Population Distribution ("Phi’), @
@ and its transition matrix ("tr_p’) @

// We assume that "Phi’ is a Bivariate Normal Distribution
// Each row specifies parameters for one possible "Phi’:

// Columns 1 and 2: (x,y) coordinates of population mean
// Columns 3 and 4: Variance of popu. along x-axis and y-axis, respectively
// Column 5: Covariance of population along x- and y-axis
// Column 6: Size of Population.

phi= (0.570.570.9 70.9 70 74)|
(0.570.571.871.87075)]

(0.570.572.072.07076);

tr_p = (0.60 70.30 70.10) |

(0.20 70.60 ~0.20) |

(0.10 70.30 70.60) ;

(C Rt Q@
@ 1.5 Parameters of Firms @
@ T TT T T e Q@

Inum = 2 ; // Number of Potential Firms (= 'T’)
beta = 1/(1+.05) ; // intertemporal discount factor of firms (= 'Beta’)

12

omeg = 1|1 ; // firms’ observable qualities (= ’omega’), common across locations
¢ = 1|1; // firms’ marginal costs, common across locations

ec=(171)|// First Firm Entry Cost at each location

(171);// Second Firm Entry Cost at each location

ev = (.57.5)|// First Firm Exit Value at each location

(.57.5);// Second Firm Exit Value at each location

@ 2. Pack all parameters of the Spatial Economy @
@ specified above into a PV structure @
@ called ’theta’ @

struct PV theta ;

theta = pvCreate ;

{theta} = spatial pack(theta,
xaxis,yaxis,ncell,

Lnum,zmat,

tau,miu,outs,

phi,tr_p,

Inum,beta,omeg,c,ec,ev) ;

(Ch @
@ 3. Observable State Space ’'state.” @

L @

In 7

state = sigma_ algebra(seqa(0,1,2),Inum*Lnum) ; // State Space of Spatial Market Structure ('n’)
state = seqa(1,1,rows(phi)).*.ones(2~ (Inum*Lnum),1)
“ones(rows(phi),1).*.state ; // Entire Observable State Space ('phi’ ~'n’)

@ 4. Compute Second-Stage Spatial Bertrand price equil. 'p’, @
@ total Demands ’'ad’, equil. variable profits 'vp’, @

@ consumer surplus ’cs’, transportation costs ’tc’, and @

@ elasticity of Demand with respect to price 'Edp’. @

@ 5 Computes the MPE in Probability Space ("Palpha’) for the @
@ dynamic entry/exit/location game, the transition matrix @

@ for the state tr_s’ = Pr(state[t+1] | state[t]), and @

@ the probabilistic steady-state equilibrium 'psteady’. @

{pia,v,Palpha,tr s,psteady} = spatial mpe(theta,state,vp);

output off;
end;

13

/*
*%
*%
%%
*%
*%
*%
*%
%%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
%%
*%
*%
*%
*%
K%
%%
*%
*%
*%
*%
K%
*ok
*%
*%
*%
%%
*%
*%
*%
*%
%%
*%
*%
*%
*%
*%
%%
*k
*%
*%
*%
K%

A.2. Procedure spatial bertrand.src

spatial bertrand.src

Procedure that computes the Price equilibrium ’p’ in a static

Bertrand game with spatially differentiated products and

random-field type of demand. It also computes the integrated Aggregate
Demand D’ and Variable Profits 'R’ of each firm, as well as the

total Consumer Welfare 'cs’ and Transportation Costs 'tc’ at

each state space, and the cross Elasticities of Demand

w.r.t. Price ’Edp’ for each store.

A Gauss-Siedel Fixed-Point search method is used to find the optimal
prices 'p’ given an initial price matrix 'p0’.

by Victor Aguirregabiria and Gustavo Vicentini
University of Toronto and Boston University, respectively

First version: August 2004
This revision: November 2006

MODEL

i = Firm index;
n = current network of stores of a firm

Assumption: All Players are "Global" in the city C
Assumption: Firms may open, close or relocate at most one store per period
Assumption: Consumers are truncated Normally at City C

PREFERENCES of a Consumer j with coordinates zj purchasing
from a firm i with coordinates zi at location 1 (i.e. A, B, C, or D):

U(zj,21): omeg][i] - p[i,]] - tau * d(zj,zi) + e[j,i,]]
U(zj,outs): outs + e[j,outs] => Utility from outside alternative

where:

omegli] = firm i’s observable quality (’omega’)

p[i,]] = Firm i’s price at location 1

tau = consumer’s Transportation Costs parameter

d(zj,zi) = distance between consumer and the firm

e[j,i,]] = unobservable taste of consumer j for firm i at location 1

Remark: this utility specification entails a 'random field’
type of demand

14

** VARIABLE PROFITS of Firm i with network n:

ok

** Not active: Profit(0) = 0

*k

** Active: Profit(i,n) = SUM(I locations) { (p[i,]]-c[i,]]) * D(i,1) }
** = R(i,n)

Kok

** where:

*k

p[i,]] = firm i’s prices at Location 1

** ¢[i,]] = firm i’s marginal cost at Location 1

** D(i,]) = total demand for firm i at Location 1

** R(i,n) = Total Variable Profits for firm i, as in the paper.

k%

** Remark: in this second-state multi-store oligopoly game, firms are

** allowed to charge different prices at different locations

*%
K%

*ok

** FORMAT:

** { p,D,R,cs,tc,Edp } = spatial _bertrand(theta,state) ;
*ok

* INPUTS:

*%

** theta - this is a PV structure with all the parameter vectors of the

** City economy packed into it. Its member vectors are:

*%

** * Parameters for Market 'C’:

** xaxis = (1 x 2) left and right boundaries of x-axis of Market ’C’, respectively

** yaxis = (2 x 1) upper and lower boundaries of y-axis of Market 'C’, respectively

** neell = (1 x 2) # of grid cells at x-axis and y-axis of the market, respectively (used at integration)

** ok Aggregated Population Primitives:

** phi = (nump x 6) Matrix with parametrization of different possible

** realizations of Population process 'phi’.

** (nump = [phi).
** (Please see the manual for further details).

** tr _p = (nump x nump) transition matrix for Population process 'phi’.

** * Individual Consumers parameters:

** tau = scalar, consumers’ Transportation Costs parameter

** miu = St. dev. of consumers unobserved heterogeneity

** outs = Utility of purchasing from Outside alternative

** * Geographic Locations parameters:

** Tnum = scalar - Number of Feasible Business Locations

** zmat = (Lnum x 2) - x and y coordinates of each location

** * Firms parameters:

** Inum = number of potential firms in the market

** beta = Time discount factor

** omeg = (Inum x 1) vector with firms’ observable quality

** ¢ = (Inum x 1) vector with firms’ variable costs

** ec = (Inum x Lnum) matrix of firms’ Entry Costs at each location

** ev = (Inum x Lnum) matrix of firms’ Exit Values at each location

kk
** gtate - (nums x 14+Inum*Lnum) matrix listing the entire state space
** (nums = [state| = size of state space).

** (Please see the manual for further details).

15

*%
*%
** QUTPUTS:
*%

** p - (nums x Inum*Lnum) Matrix with bertrand equilibrium prices for each

** firm and store at each state space.
** Example with 2 firms (Inum=2), 3 locations (Lnum=3), and nump=2 ;
ok

** Location: ABCABC

**Firm: 111222

** Phi: Phi

Kok

**Row 1: 1000000

** Row 2: 1 p[1,A]00000

** Row 3: 10 p[1,B]0000

** Row 4: 1 p[1,A] p[1,B] 0000

Row 5: 100 p[1,C] 00 0

** Row 6: 1 p[1,A] 0 p[1,C] 000

** Row 7: 1 0 p[1,B] p[1,C] 000

** Row 8: 1 p[1,A] p[1,B] p[1,C] 000
* Row 9: 1000 p[2,A] 00

** Row 10: 1 p[1,A] 0 0 p[2,A] 0 0

** Row 11: 1 0 p[1,B] 0 p[2,A] 00

** Row 12: 1 p[1,A] p[1,B] 0 p[2,A] 0 0

*%
*%
*%

** Row : 200 0 p[2,A] p[2,B] p[2,C]

** Row : 2 p[1,A] 0 0 p[2,A] p[2,B] p[2,C]

** Row : 2 0 p[1,B] 0 p[2,A] p[2,B] p[2,C]

** Row : 2 p[1,A] p[1,B] 0 p[2,A] p[2,B] p[2,C]

** Row : 2 0 0 p[1,C] p[2,A] p[2,B] p[2,C]

Row : 2 p[1LA] 0 p[1,C] p[2,A] p[2.B] p[2,C]

** Row : 2 0 p[1,B] p[1,C] p[2,A] p[2,B] p[2,C]

** Row nums: 2 p[1,A] p[1,B] p[1,C] p[2,A] p[2,B] p[2,C]

*%
*%

¥ D - (nums x Inum*Lnum) Matrix of equilibrium Total Demand faced

** by each firm and store at the equilibrium prices and state space.
*ok

** R - (nums x Inum*Lnum) Matrix of equilibrium Variable Profits

** of each firm and store at the equilibrium prices and state space.
*k

** ¢s - (nums x 1) Matrix with total Consumer Surplus for each
** state space, computed using the logit assumption.

*ok

*ok

tc - (nums x 1) Matrix with Average Transport Costs at each state space
ok

** Edp - (nums x Inum*Lnum x Inum*Lnum) Array of own and cross Elasticities of

** Demand w.r.t. Price for each firm at each state space.
*ok

*%

** Remark: For further details on the algorithm, see the Manual:

** "Software for the Computation of Markov-Perfect Equilibria in a Dynamic Model of Spatial Competition,"

16

** by Victor Aguirregabiria and Gustavo Vicentini, available at the Authors’ websites.
ok

*/

#include pv.sdf ;

proc (6) = spatial bertrand(struct PV theta,state) ;
local ncell,zmat,Lnum,tau,miu,outs,phi,Inum,c,
xnod,ynod,weig,

pO,p,convc,crit,iter,

Ld,D,m_up,t,

R,cs,tc,Edp ;

// Market *C’:

ncell = pvunpack(theta,"ncell");
// Locations:

zmat = pvunpack(theta,"zmat");
Lnum = pvunpack(theta,"Lnum");
// Individual Consumers:

tau = pvunpack(theta,"tau");
miu = pvunpack(theta,"miu");
outs = pvunpack(theta,"outs");
// Population:

phi = pvunpack(theta,"phi");

// Firms:

Inum = pvunpack(theta,"Inum");
¢ = pvunpack(theta,"c");

@ 1. Compute 'weights’ (= area*density) of Truncated @
@ Bivariate Normal densities at a grid of 'nodes’, @

@ to be used to calculate local Demands ('Ld’) @

@ and at integration (’iv.src’) @

@ 2. Compute Equilibrium Prices (='p’) @
@ It uses a Fixed-Point Gauss-Siedel method @
@ based on the FOC. @

p0 = statel.,2:cols(state)].*(¢’.*.ones(1,Lnum)) ; // initial guess for prices (= 'mc’)
conve = (1le-6) ; // Convergence criteria for price

non.
)

kK K oK oK oK oK KKK KKK KRR KKk Sk Sk sk sk sk sk sk kR kR 11
b

okok ok Kok R KKk ok KRR KRR KRR KKk KRR KKK 11
9,

BEGIN Bertrand Price Computation: ";
okt ok kKRR KRR SRR R KRR K 11
?

"; " Price Optimization (Fixed-Point by Gauss-Siedel): "; " ";
p =p0;

for s(1,rows(state),1) ; // loop on state space

crit = 30 ; // Initial criteria for price convergence

iter = 1; // iteration on Prices

do while crit>convc ;

for j(1,Inum,1) ; // loop on firms

17

Ld = spatial Ld(theta,pls,.],state]s,.],xnod,ynod) ; // Local Demands given p

Ld = Ld[,,(j-1)*Lnum+1:j*Lnum,.,.] ; // Local Demands for firm ’j’

D = iv(Ld,weig[state[s,1],.,.]) ; // Aggregate Demands for firm ’j’

m_up = -(1/miu)*iv(Ld.*(Ld-1),weig[state[s,1],.,.]) ; // to be used at new mark-up (SAME-STORE price effect)
m_up = diagrv(zeros(Lnum,Lnum),m _up) ;

for k(1,Lnum,1) ; // loop on stores of firm ’j’

t = k%Lnum+1 ;

do while t/=k ;

m_uplk,t] = - (1/miu)*iv(Ld][.)k,.,.]. *Ld[.,t,.,.],weig[state[s,1],.,.]) ; // OTHER-STORES price effect

t = t%Lnum+1 ;

endo;

endfor;

p[s,(j-1)*Lnum+1:j*Lnum] = c[j]*(D.>0) + D*invswp(m_up)’ ; // new prices for firm ’j’ ("Delta’ mapping)
endfor; // end loop on firms

crit = maxc(maxc(abs(pl[s,.]-p0]s,.])));

p0[s,.] = p[s,] ;

iter = iter+1 ;

endo ;

" state= ";; s;; " Converged in ";; iter-1;; "iterations";

endfor; // end loop on state

(CE Q@
@ 3. Compute Per-Capita 'D’, 'R’, ’cs’, 'tc’, 'Edp’. @
@ TS T T T T T T T T T T T T T e e e e e e @

Ld = spatial Ld(theta,p,state,xnod,ynod) ; // Equilibrium (per capita) Local Demands
D = iv(Ld,weig) ; // Equilibrium Aggregate Demands
R = (p-¢’.*.ones(1,Lnum)).*D ; // Equilibrium Variable Profits

cs = reshape(state[.,2:1+Inum*Lnum]|,prodc(ncell’) ,rows(state) *Inum*Lnum)’ ; // Consumer Surplus

cs = areshape(cs,rows(state)|Inum*Lnum |ncell[2]|ncell[1]) ;

cs = (1-asum(cs.*Ld,3))./exp(outs/miu);

cs = iv(miu*In(1./cs),weig) ;

tc = 0*R ; // Transportation Costs

for s(1,rows(state),1); // loop on state space

for j(1,Inum*Lnum,1); // loop on firms and stores

Edp = tau * dist_p(zmat[((j-1)%Lnum)+1,1],zmat[((j-1)%Lnum)+1,2],
xnod,ynod) ;

Edp = areshape(Edp,1|1|ncell[2]|ncell[1]) ;

tels,j] = iv(Ld]s,j,-,.]. *Edp,weig[state[s,1],.,.]) ;

endfor;

endfor;

tc = sumc(tc’) ; // Equilibrium Transportation Costs

Edp = arrayinit(Inum*Lnum|Inum*Lnum|rows(state)|1,0); // Elast. Demand w.r.t. Price
for s(1,Inum*Lnum,1);

Edp[s,s,.,.] = -(1/miu)*pl[.,s].*(1./D[.,s])
Jiv((1-Ld[.,s,.,.]).*Ld[.,s,.,.],weig) ;

t=s% (Inum*Lnum)+1;

do while t/=s ;

Edp[st,.,.] = (1/miu).*p[.,t].*(1./D[.,s])

Fiv(Ld[. t,.,.]. *Ld[.,s,.,.] ,weig) ;

t=t%(Inum*Lnum)+1;

endo;

endfor;

Edp = missrv(Edp,0) ;

Edp = atranspose(Edp,3|4/1|2);

Edp = areshape(Edp,rows(state)|Inum*Lnum|Inum*Lnum); // Equilibrium Elasticity Demand w.r.t. Price

18

D = D.*phifstate].,1],6] ; // Equilibrium Aggregate Demands
R = R.*phi[state[.,1],6] ; // Equilibrium Variable Profits

cs = cs.*phi[state[.,1],6] ; // Equilibrium Consumer Surplus

tc = tc.*phi[state[.,1],6] ; // Equilibrium Transportation Costs

"non.
b
1 skl koo ko sk sk ok skt ok sk kR sk sk ok KRR K11
b
" END of Bertrand Price Computation. ";
1ok ko sk ko sk kK ok KSRk K SRR R R K 11,
b
I sk ko ok ko Sk kK ok K SRR KRR R R K 11,
b

non.

)
clear weig,p0,Ld ;
retp(p,D,R,cs,tc,Edp) ;
endp ;

19

A.3. Procedure spatial pack.src

/*
** This procedure packs all the parameters from the Spatial
** Economy into a single PV Structure called ’theta’

ok

** Written by: Gustavo Vicentini

** March 2005

K%

** Format: {theta} = spatial pack(theta, all parameters listed) ;
kk

** Input: an empty PV structure called ’theta’ and all the

** parameters from the spatial economy listed.

Kk

** Output: the PV structure 'theta’ with all parameters of

** the spatial economy packed and named.
ok

*ok
*/

#include pv.sdf ;
proc(1l) = spatial pack(struct PV theta,
xaxis,yaxis,ncell,

Lnum,zmat,

tau,miu,outs,

phi,tr_p,

Inum,beta,omeg,c,ec,ev) ;

// Market ’C’ boundaries and cells:
theta = pvpack(theta,xaxis,"xaxis'

1)7
theta = pvpack(theta,yaxis,"yaxis");

theta = pvpack(theta,ncell,"ncell");

// Business Location Parameters:

theta = pvpack(theta,Lnum,"Lnum");

theta = pvpack(theta,zmat,"zmat");

// Individual Consumer Parameters:

theta = pvpack(theta,tau,"tau");

theta = pvpack(theta,miu,"miu");

theta = pvpack(theta,outs,"outs");

// Aggregate Population Parameters:

theta = pvpack(theta,phi,"phi");

theta = pvpack(theta,tr _p,"tr_p");

// Firms Parameters:

theta = pvpack(theta,Inum,"Inum"); theta = pvpack(theta,beta,"beta");
theta = pvpack(theta,omeg,"omeg"); theta = pvpack(theta,c,"c");

theta = pvpack(theta,ec,"ec"); theta = pvpack(theta,ev,"ev");
retp(theta);

endp;

20

A.4. Procedure sigma _algebra.src

/*
** gigma_ algebra.src

** This procedure takes an input (Kx1) vector 'x’ and computes
** a (K~j x j) matrix where each row is all possible

** j-combinations between each element in ’x’ to all its

** other elements ==> its ’sigma algebra’.

*%

** Written by Gustavo Vicentini, August 2005.

** Department of Economics, Boston University.

*ok

** Format: {y} = sigma_ algebra(x,ncol) ;

*k

** Inputs: x = (Kx1) input vector to be expanded into its sigma algebra
** ncol = # of columns (=’j’) for the expansion of vector 'x’

ok

** Qutput: y = ’sigma algebra’ of vector 'x’, expanded 'ncol’ (=’j’) times.
ok

*/

proc(1) = sigma_ algebra(x,ncol);

local nrow, y ;

nrow = rows(x) ;

y={};

for i(1,ncol,1);

y = ones(nrow " (i-1),1).*.x.*.ones(nrow " (ncol-i),1)
e

endfor;

retp(y);
endp;

21

A.5. Procedure spatial grid.src

/¥
K%

** gpatial _grid.src

*%

** Procedure that computes Weights ("weig’) based on the weighted

** AREA and DENSITY of each of the Partitions of the City-Market C

** used in the dynamic network location game from ’Spatial game.prg’.

** Tt also returns the center coordinates (the 'nodes’) of each
** of the partitions, 'xnod’ (x-axis) and ’ynod’ (y-axis).

ok

*k

*ok

by Gustavo Vicentini, Boston University
** First version: August, 2005
*ok
*k

*%

*%

** FORMAT:
** { xnod,ynod,weig } = spatial grid(theta) ;
ok

** INPUTS:

*%

** theta - this is a PV structure with all the parameter vectors of the

** City economy packed into it. Its member vectors are:

** See 'bertrand _spatial.src’ for a list of these parameters.

*%

** QUTPUTS:

*%

** xnod - (numv x ngr[l]) Matrix of rows with X-axis coordinates

** of the center of each partition, for each type of Var-Cov.

** ynod - (ngr[2] x numv) Matrix of colums with Y-axis coordinates

** of the center of each partition, for each type of Var-Cov.

** weig - (numv x ngr[2] x ngr[1]) Array with 'weights’ (= area*density)
** of the Partitions of the City-Market C.

K%

*x

*/

#include pv.sdf ;

proc (3) = spatial grid(struct PV theta) ;

local xaxis,yaxis,ncell,phi,

xgr,ygr,area,xnod,ynod,

weig,den ;

@ TSI T T T e e Q
@ 1. Read in parameters of the City-Economy @

@ T T T Q

// Aggregate Population:
xaxis = pvunpack(theta,"xaxis"); yaxis = pvunpack(theta,"yaxis");
ncell = pvunpack(theta,"ncell"); phi = pvunpack(theta,"phi");

@ 2. Compute Weights ("weig’) to be used at @

22

@ integration of the Trunc. Biva. Normal densities. @
@ Also compute the node points ("xnod’ & ’ynod’). @

xgr = seqa(xaxis[1],(xaxis[2]-xaxis[1]) /ncell[1],ncell[1]+1)’ ; // grid for partitions at x-axis

yer = seqa(yaxis[1],(yaxis[2]-yaxis[1]) /ncell[2],ncell[2]4+1) ; // grid for partitions at y-axis

area = (xgr[2]-xgr[1])*(yer[l]-ygr[2]) ; // area of each partition cell

xnod = meanc(trimr(xgr’,0,1)’|trimr(xgr’,1,0)’)’ ; // nodes at x-axis for each partition cell
ynod = meanc(trimr(ygr,0,1)’|trimr(ygr,1,0)’) ; // nodes at y-axis for each partition cell

weig = arrayinit(rows(phi)|rev(ncell’),0); // 'weights’ used at integration

for j(1,rows(phi),1);

den = pdf bn(xnod,ynod,phi[j,1:2],phi[j,3:4]’,phi[j,5]) ; // Bivariate Normal Density at each node
weig[j,.,.] = (area®den)/sumc(sumc(area*den)) ; // weights at each node (used at integration)
endfor;

clear xgr,ygr,area,den;

retp(xnod,ynod,weig);
endp;

23

A.6. Procedure pdf bn.src

/*
* pdf _bn.src This procedure returns the density values for the
* Bivariate Normal distribution given specified

* mean and Variance-Covariance parameters.

*

* Written by Gustavo Vicentini

* First version: March 2006

* This revision: March 2006

*

* Format: {den} = pdf bn (xref,yref,mean,var,cov) ;
*

* Inputs:
* xgr - row grid of reference points at x-axis

ygr - column grid of reference points at y-axis

mean - (2x1) coordinates of mean of the distribution
var - (2x1) Variances of x- and y-axis, respectively
cov - scalar - Covariance of the distribution

* %X X ¥ X ¥

Outputs:

* den - density values at the reference points
*

*

*/

proc(l) = pdf bn(xref,yref,mean,var,cov) ;

local sd,cor,den ;

sd = sqrt(var) ; // standard deviations of x and y

cor = cov/prodc(sd) ; // correlation between x and y

xref = (xref-mean[1])/sd[1] ; // standardized x variables

yref = (yref-mean[2])/sd[2] ; // standardized y variables

den = (1/(1-cor~2)) * (xref.”2 + yref.”2 - 2¥cor*yref.*xref) ; // quadratic form
den = 1/(2*pi*prode(sd)*sqrt(1-cor~2))*exp(-1/2*den) ; // density points
retp(den);

endp;

24

A.7. Procedure spatial ld.src

/*
** gpatial _ld.src Procedure that computes the equilibrium LOCAL

** DEMANDS 'Ld’ of each representative consumer in the

** city-market C for each firm’s branches, given the price vector

** of all firms and the Geographic profile of firms’

** networks (i.e. the locational state space). Firms are

** competing in a Bertrand Spatial competition model in this

** City-Economy.
ok

*%

** by Gustavo Vicentini
** First version: August, 2004

** This revision: August 2006
*x

*%

** MODEL

*%

*k
** Please see 'bertrand _spatial.sr¢’ for the Economy Model.
*ok

*%

*%

K%
*%

** FORMAT:

** {Ld} = Ld_ spatial (p,aval theta,xnod,ynod) ;
ok

*%
** INPUTS:
*ok

** p - (numa*numv x nf*L) matrix with prices charged at each firm/branch

** aval - (numa x nf*L) matrix with possible network state spaces
** theta - see ’bertrandSpatial.src’ for a description of this PV structure
** xnod - points of reference of x-axis

** ynod - points of reference of y-axis
ok

ok
** QUTPUT:

Kok

** Ld - (numa*numv x nf*L x ngr[2] x ngr[l]) Array with bertrand equilibrium

** local Demands for each firm (given the state space and a price vector p).
*ok

*%

** Note: when a firm-outlet is inactive, its demand is 0.
Kk

*/

#include pv.sdf ;

proc (1) = spatial Ld (struct PV theta,p,state,xnod,ynod) ;
local tau,miu,outs,zmat,Lnum,

Inum,omeg,L.d,dis ;

25

// Individual Consumers:

tau = pvunpack(theta,"tau");

miu = pvunpack(theta,"miu");
outs = pvunpack(theta,"outs");

// Locations:

zmat = pvunpack(theta,"zmat");
Lnum = pvunpack(theta,"Lnum");
// Firms:

Inum = pvunpack(theta,"Inum");
omeg = pvunpack(theta,"omeg");

@ 2. Compute local Demands ’Ld’ for each state space, @
@ given the price matrix p @

Ld = arrayinit(rows(state)|Inum*Lnum|rows(ynod)|cols(xnod),0); // matrix of local Demands
for s(1,rows(state),1); // loop for State Space

for j(1,Inum*Lnum,1); // loop for each firm and location

if state[s,1+j]==0 ;

dis = zeros(rows(ynod),cols(xnod)); // ’'dis’ is a Disposable matrix

else;

dis = exp (1/miu * (omeg[ceil(j/Lnum)] - p[s,j] // Consumers indirect utility
- tau * dist_ p(zmat[(j-1)%Lnum+1,1],zmat[(j-1) %Lnum+1,2],

xnod,ynod))) ;

endif;

setarray Ld,s|j,dis ;

endfor;

dis = asum(Ld[s,.,.,.],3)+exp(outs/miu);

dis = areshape(dis,1|Inum*Lnum |rows(ynod)|cols(xnod));

Ld[s,.,.,.] = Ld[s,.,.,.]./dis;

endfor;

clear p,state,xnod,ynod,dis ;

retp(Ld);
endp;

26

A.8. Procedure dist p.src

/*

** dist_p.src This procedure computes the linear distance ON A PLANE
** between a given point 'z’ and the plane point(s) in 'xnod’ and ’ynod’.
** Note that 'z’ is a single point, while 'nod’ can be many points.

*ok

** Written by Gustavo Vicentini

** Department of Economics, Boston University

** August 2005

ok

** Inputs: Zx = x-coordinates of point Z

** Zy = y-coordinates of point Z

** xnod = x-coordinates of point(s) 'nod” ==> a row vector (x grid)
** ynod = y-coordinates of point(s) 'nod’ ==> a column vector (y grid)
ok

** Output: distance ’dist2’ between 'Z’ and the 'nods’
ok

*/

proc (1) = dist_p(Zx,Zy,xnod,ynod) ;

local dist2 ;

dist2 = (Zx-xnod).”2 ;

dist2 = dist2 4+ (Zy-ynod)."2 ;

dist2 = sqrt(dist2) ; // linear distance
clear Zx,Zy,xnod,ynod ;

retp(dist2) ;

endp ;

27

A.9. Procedure iv.src

*

iv.src This procedure returns the Integrated Value (=’intv’)
for a function ’funct’ in the city C. It applies a

simple Gaussian Quadrature method by multiplying

'funct’ (the function to be integrated) by the

'weight’ (=area*density) at specified Node points.

See Judd (1995, page 257)

Written by Gustavo Vicentini
First version: August 2004
This revision: March 2006

Format: {intv} = iv (funct,weight) ;

Inputs:

funct - ((numa*numv) x (nf*L) x ngr[2] x ngr[1]) -

values of the function to be integrated in the city

weig - (numv x ngr[2] x ngr[l]) Array with 'weights’ (= area*density)
of the Partitions of the City-Market C.

Outputs:
intv - ((numa*numv) x (nf*L)) - integrated value at each state
space and firm/location

¥ OO X X K K X K X X KX X XK X X K K X K X K K X K KT~

~

proc (1) = iv(funct,weig);

local a,b,intv ;

a = getorders(funct) ;

b = getorders(weig) ;

weig = areshape(weig,a[1]*a[2]/b[1]|b[1]|a[3]]a[4]) ;
weig = atranspose(weig,2|1|3]4);

welg = areshape(weig,a[1]]a[2]|a[3]|a[4]);
intv = asum(asum(funct.*weig,2),1);

intv = arraytomat(areshape(intv,a[1]|a[2]));
clear funct,weig ;

retp (intv);

endp;

28

/¥
K%
*%
*%
*%
*%
K%
*%
*%
*%
*%
*%
%%
*ok
*%
*%
*%
K%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*k
*%
*%
*%
*%
*%
*%
*%
*%
%%
*%
*%
*%
*%
*%
K%
*ok
*%
*%
*%
%%

A.10. Procedure spatial mpe.src

spatial mpe.src

This procedure computes players’ Markov Perfect Equilibrium (MPE)
strategies in Probability Space, and the corresponding Value Functions.

The MPE is for firms’ entry/exit/location choice under incomplete information.
The game is one of firms’ entry, exit and location choice under incomplete
information, combined with Spatial Bertrand Competition in

differentiated products, in a city-market C with continuous population.

It uses Gauss-Jacobi fixed-point iteration procedure for the

computation of value functions.

by Victor Aguirregabiria and Gustavo Vicentini
University of Toronto and Analysis Group, respectively

First version: December 2005
This revision: May 2007

DETAILS OF PROGRAM

FORMAT:

{ pia, ccvalue, Palpha, tr_s, psteady }
= spatial mpe (theta, state, R) ;

INPUTS:

theta - this is a PV structure with all the parameter vectors of the
City economy packed into it. Its member vectors are:

* Parameters for Market 'C’:

xaxis = (1 x 2) left and right boundaries of x-axis of Market ’C’, respectively
yaxis = (2 x 1) upper and lower boundaries of y-axis of Market *C’, respectively
ncell = (1 x 2) # of grid cells at x-axis and y-axis of the market, respectively (used at integration)
* Aggregated Population Primitives:

phi = (nump x 6) Matrix with parametrization of different possible

realizations of Population process 'phi’.

(nump = |phil|); (Please see the manual for further details).

tr_p = (nump x nump) transition matrix for Population process 'phi’.

* Individual Consumers parameters:

tau = scalar, consumers’ Transportation Costs parameter

miu = St. dev. of consumers unobserved heterogeneity

outs = Utility of purchasing from Outside alternative

* Geographic Locations parameters:

L = scalar - Number of Feasible Business Locations

z = (L x 2) - x and y coordinates of each location

* Firms parameters:

29

*%
*%
*%
*%
*%
%%
*%
*%
*%
*%
%%
*%
*%
*%
*%
*%
%%
*ok
*%
*%
*%
K%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
*%
%%
*%
*%
*%
K%
*%
*%
*%
*%
*%

*/

I = number of potential firms in the market

beta = Time discount factor

omeg = (I x 1) vector with firms’ observable quality

¢ = (I x 1) vector with firms’ variable costs

ec = (I x L) matrix of firms’ Entry Costs at each location
ev = (I x L) matrix of firms’ Exit Values at each location

state - (nums x 14+I*L) matrix listing the entire state space
(nums = [state| = size of state space).
(Please see the manual for further details).

R - (nums x I*L) Matrix of equilibrium Variable Profits
of each store at each state space.

OUTPUTS:

pia - (I x nums x (1+2*L)) array with Obervable Portion of Current
Profit function of Firms (the 'pi(a)’ function in the paper,
for each Player, State and Action

cevalue - (I x nums x (14+2*L)) array with conditional choice Value Functions
for each Player, State and Action

Palpha - (I x nums x (1+2*L)) array with MPE Conditional Choice
Probability strategies (CCP) for each firm, state, and action.

The first 'face’ of the array reflects the optimal strategies for

firm 1 for either doing nothing, opening a store somewhere,

or closing an active store.

(please see 'Spatial Manual.pdf’ for further details.)

tr_s - (nums x nums) matrix with equilibrium transition matrix
for the states { phi[t], Market Structure[t] }

psteady - (nums x 1) vector with steady-state distribution
of states { phi[t], Market Structure[t] }

REMARK: For further details on the algorithm, see the Manual:
"Software for the Computation of Markov-Perfect Equilibria in a Dynamic Model of Spatial Competition,"
by Victor Aguirregabiria and Gustavo Vicentini, available at the Authors’ websites.

#include pv.sdf ;

proc (5) = spatial _mpe(struct PV theta,state,R) ;

local Lnum, tr _p, Inum, beta, ec, ev,

kcons, nump, nums, numa, pia,

Palpha, crit, iter, Palpha0, tr_s,

i, ccvalue, buffpi, psteady0, psteady ;

@ 0. Read in parameters of the City-Economy @

30

// # of Locations:

Lnum = pvunpack(theta,"Lnum");

// Markov Transition Matrix for Aggregate Population Distribution (’phi’):
tr_p = pvunpack(theta,"tr_p");

// Firms:

Inum = pvunpack(theta,"Inum"); beta = pvunpack(theta,"beta");

ec = pvunpack(theta,"ec"); ev = pvunpack(theta,"ev");

@ 1. Some Constants & Parameters @
@ used through the procedure @

kcons = -(1 4+ abs(maxc(maxc(R))))*1e6 ; // payoff for infeasible choices
nump = rows(tr_p) ; // # of possible realizations of 'phi’

nums = rows(state) ; // size of state space

numa = 1 + 2*Lnum ; // Number of choice alternatives

@ 2. Conditional-Choice Current Profits (= 'Pi(a)’). @
@ This is the "Pi(a)’ profit in the paper. @

R = R * (eye(Inum).*.ones(Lnum,1)) ; // Equilibrium Variable Profits aggregate over locations
R = reshape(R’,nums*Inum,1) ;

pia = areshape(state[.,2:1+Inum*Lnum]’,Inum|Lnum|nums) ;

pia = atranspose(aconcat(pia,pia,2),1|3|2) ;

pia = arraytomat(areshape(pia,l|Inum*nums|2*Lnum)) ;

pia = (pia.==(170).*.ones(1,Lnum))*kcons ; // impose penalty for non-feasible actions

pia = pia + (-ec.*.ones(nums,1) " ev.*.ones(nums,1)) ; // entry costs and exit values

pia = areshape(R™(R+pia),Inum|nums|2*Lnum+1) ; // Add Equilibrium Variable Profits

skt ook ook ook kSRR N1
)
WA AAAEEEAAAAEAKAEN
)
" BEGIN MPE Computation:" ;
N oo ook ok ook ok ook ook kRN
)
// Initial choice probabilities
Palpha = arrayinit((Inum|nums|(1+2*Lnum)),0);
i=1;
do while i<=Inum ;

Palphali,.,.] = ones(nums,1) zeros(nums,2*Lnum) ;
i=i41;

endo ;

crit = 1000 ; // Initial Criterium

iter =1 ;

do while crit>1e-6 ; // Outer loop

Palpha0 = Palpha ;

i=1;

do while i<=Inum ; // Inner loop

// Calling procedure to compute conditional choice values

ccvalue = spatial dp(i,arraytomat(piali,.,.]),beta,state,Palpha,tr _p) ;
// Calling procedure to compute best response probabilities

buffpi = spatial _bestp(ccvalue) ;

Palphali,.,.] = buffpi ; // Updating probabilities

i=i+1;

31

endo ;
// Check for Convergence of 'Palpha’
crit = arraytomat(maxc(areshape(abs(Palpha-Palpha0),Inum*nums*numall))) ;

"iter:";; iter;; " Criterion = ";; crit;
iter=iter+1;
endo;

10 3k 3k sk sk sk ok ok ok o KRR R K oK ok ok ok Sk Sk sk sk sk sk RRR KKKk 11
7
15k sk ok sk sk sk ok ok ok ok ook ok ok ok okokokok sk ok sk ok koo okokokkokok Rk ok I
)

" END MPE Computation:" ;

115k 3k 3k >k ok sk >k ok Sk ok ok sk ok ok ok ok skook sk skok sk skok skokokskokokskkoksksk
)

L @
@ 4. Vector of Equilibrium Steady-State 'psteady’. @

@ TTT T TS T e @
tr_s = spatial _tranp(Palpha,tr _p,state) ;

crit = 30 ;

psteady0 = (1/nums) * ones(nums,1) ;
do while crit>(1e-5) ;

psteady = tr_s’ * psteadyO0 ;

crit = maxc(abs(psteady-psteady0)) ;
psteady0 = psteady ;

endo ;

retp(pia,ccvalue,Palpha,tr _s,psteady) ;
endp ;

32

A.11. Procedure spatial dp.src

/*
** gpatial _dp.src

*%

** This procedure takes as inputs of firms’ profits and

** choice probabilities and it solves the Bellman equation

** of an individual firm

Kok
** by Victor Aguirregabiria and Gustavo Vicentini

** (University of Toronto) (Analysis-Group)

ok
** This revision: May 2007
*k
o

** MODEL

*%

** See Aguirregabiria and Vicentini (2007) "Dynamic Spatial Competition

** Between Multi-Store Firms"
ok

ok

* DETAILS OF PROGRAM

*%

ok
** FORMAT:
*k
** cev = spatial _dp(i,profit,beta,state,Palpha,tr p) ;
ok

** INPUTS:

*k
** i - Firm index (an integer between 1 and Inum)
*k

** profit - nums x numa matrix of current profits

** (nums = |state| = size of state space)

** (numa = 1 + 2*Lnum = size of action space)
Kok

** beta - Discount factor

ok

*k

state - nums x (1 + Inum*Lnum) matrix with the value of the

** gtate variables (columns) at every state (rows).

K%

** Palpha - Inum x nums x numa array of conditional choice

** transition probabilities
** (nums = |state| = size of state space)
** (numa = 1 + 2*Lnum = size of action space)
ok

** tr_p - nump x nump matrix of transition probabilities of phi
*ok

** QUTPUTS:

*%

** ccv - nums x numa matrix of choice specific values

** (nums = |state| = size of state space)

33

** (numa = 1 + 2*Lnum = size of action space)
ok

*/
proc (1) = spatial _dp(i,profit,beta,state,Palpha,tr _p) ;

local ordprob, Inum, nums, numa, value0, ccval, criter,
cconv, j, valuel ;

ordprob = getorders(Palpha) ;

Inum = ordprobl[1] ;

nums = ordprob[2] ;

numa = ordprob|[3] ;

value0 = zeros(nums,1) ;

ccval = zeros(nums,numa) ;

criter = 1000 ;

cconv = le-6 ;

do while criter>=cconv ;

"Firm";; i;; "Value Function itertion" ;

// Calling procedure for expected next period value
ccval = spatial _cevalue(i,state,Palpha,tr _p,value0) ;
// Value function iteration

valuel = In(sumc(exp(profit + beta*ccval)’)) ;

// Check for convergence

criter = maxc(abs(valuel-value0)) ;

value0 = valuel ;

endo ;

retp(ceval) ;

endp ;

34

/¥
K%
*%
*%
*%
*%
K%
*%
*%
*%
*%
*%
*%
*ok
*%
*%
*%
%%
*%
*%
*%
*%
*%
%%
*%
*%
*%
*%
*%
*k
*%
*%
*%
*%
*%
*%
*%
*%
%%
*%
*%
*%
*%
*%
%%
*ok
*%
*%
*%

*/

A.12. Procedure spatial ccvalue.src

spatial _ccvalue.src
This procedure takes as inputs firms’ choice probabilities
and a value function and it returns expected next period

values conditional on current decision.

by Victor Aguirregabiria and Gustavo Vicentini
(University of Toronto) (Analysis-Group)

This revision: May 2007

MODEL

See Aguirregabiria and Vicentini (2007) "Dynamic Spatial Competition
Between Multi-Store Firms"

DETAILS OF PROGRAM

FORMAT:

ccv = spatial ccvalue(i,state,Palpha,tr_p,value0) ;
INPUTS:

i- Firm index (an integer between 1 and Inum)

state - nums x (1 + Inum*Lnum) matrix with the value of the
state variables (columns) at every state (rows).

Palpha - Inum x nums x numa array of conditional choice
transition probabilities

(nums = [state| = size of state space)

(numa = 1 4+ 2*Lnum = size of action space)

tr_p - nump x nump matrix of transition probabilities of phi
value0 - nums x 1 vector of values

OUTPUTS:

ccv - nums X numa matrix of expected next period values
conditional of current decision.

(nums = [state| = size of state space)

(numa = 1 4+ 2*Lnum = size of action space)

35

proc (1) = spatial ccvalue(i,state,Palpha,tr p,value0) ;
local ordprob, Inum, nums, numa,

nump, ccv, aj, pbuff, tr_s;

ordprob = getorders(Palpha) ;

Inum = ordprobl[l] ;

nums = ordprob[2] ;

numa = ordprob[3] ;

nump = rows(tr_p) ;

ccv = zeros(nums,numa) ;

aj=1;

do while aj<=numa ;

pbuff = Palpha ;

// Replace firm i choice probabilities by deterministic choice
if (aj==1) ;

pbuff[i,.,.] = ones(nums,1)” zeros(nums,numa-1) ;

elseif (aj>1)and(aj<numa) ;

pbuff[i,.,.] = zeros(nums,aj-1) ones(nums,1)” zeros(nums,numa-aj) ;
elseif (aj==numa) ;

pbuff[i,.,.] = zeros(nums,numa-1)~ ones(nums,1) ;

endif ;

// Calling procedure to calculate transition probabilities
// Obtain expected next period values

tr s = spatial tranp(pbuff,tr p,state) ;

cevl.,aj] = tr_s*valueO ;

aj=aj+1 ;

endo ;

retp(cev) ;

endp ;

36

A.13. Procedure spatial tranp.src

/*
** gpatial _tranp.src

*%

** This procedure takes as input firms’ choice probabilities

** and transition probabilities of phi and it returns a matrix

** of transition probabilities for market structure and phi

K%

** by Victor Aguirregabiria and Gustavo Vicentini

** (University of Toronto) (Analysis-Group)

ok
** This revision: May 2007
*k
o

** MODEL

*%

** See Aguirregabiria and Vicentini (2007) "Dynamic Spatial Competition

** Between Multi-Store Firms"
ok

*%

** DETAILS OF PROGRAM

*%

*%

** FORMAT:

%%

** tr s = spatial tranp(Palpha,tr p,state)
ok

** INPUTS:

*x

** Palpha - Inum x nums x (14+2*Lnum) array of choice probabilities
*k
** tr _p - nump x nump matrix of transition probabilities of phi
*x
** gtate - nums x (14+Inum*Lnum) matrix with the values of the state

** variables (columns) at every state (rows).

*%

** OUTPUTS:
KoK
** tr s - nums x nums matrix of transition probabilities for

** phi and market structure.
*x

*/
proc (1) = spatial _tranp(Palpha,tr _p,state) ;

local ordprob, Inum, Lnum, nums, numa, nump,
amat, tr_s, s, j, sj, tr_sj, aj, ak ;

ordprob = getorders(Palpha) ;

Inum = ordprobl1] ;

nums = ordprob[2] ;

numa = ordprob[3] ;

37

Lnum = (numa-1)/2 ;

nump = rows(tr_p) ;

amat = zeros(1,Lnum)|(1|-1).*.eye(Lnum) ; // choice set of firms
tr_s = ones(nums,nums) ;

s=1;

do while s<=nums ; // loop on state

=1

do while j<=Inum ; // loop on players

sj = state[.,24(j-1)*Lnum:1+j*Lnum] ; // state of player ’j’
tr_sj=20;

aj=1;

do while aj<=(1+2*Lnum) ; // loop on actions

// ak is a nsum x 1 vector with zeros at every positiion
// except at those positions (states) for which the network
// of firm j at t+1 is reached from state s and choice aj
ak = prodc((sj-sj[s,.].==amat|aj,.])’) ;

// tr_sjis a 1 x nsum vector with the probabilities that
// that firmj reaches the correspoinding next period state
// given that the current state is s

tr_sj = tr_sjtak’.*arraytomat(Palphalj,s,aj]).~ (ak’) ;
aj=aj+1;

endo ;

tr_sfs,.] = tr_s[s,.].*tr_sj;

J=itl;

endo ;

s=s+1 ;

endo ;

tr s = tr_s.*(tr_p.*.ones(nums/nump,nums/nump)) ;

retp(tr_s) ;
endp ;

38

