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Abstract

We demonstrate that shortfall-minimizing portfolio selection based on the Cressie-
Read family of divergence measures maps to the HARA family. This means that all
HARA utility functions can be interpreted as “endogenous” in the sense described
in Stutzer (2003), and that traditional HARA expected utility maximization has an
analog to the behavioral notion that an investor seeks to organize their selection of
assets to minimize the probability of realizing a return below some pre-determined
target or benchmark rate. We show that not only do risk aversion parameters
arise endogenously, given the choice set, but that the type of risk aversion, relative
or constant, is also determined endogenously. We also connect this approach to
portfolio selection to some topics in behavioral economics.
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1 Introduction

The purpose of this short paper is to expose an extremely interesting relationship between
Hyperbolic Absolute Risk Aversion (HARA) utility, disparity minimization, and shortfall.
Specifically, we show that the entire family of HARA utility functions has a minimium-
divergence, shortfall-based representation, which means that HARA utility can be under-
stood through the simple notion that the decision maker seeks the allocation that minimizes
the probability of realizing an outcome below some pre-determined reference level. This
result bridges the behavioral notion of shortfall minimization, first espoused by Roy (1952),
with the now-familiar expected utility idea in a broad way. Specifically, we extend the en-
dogenous utility arguments of Stutzer (2000, 2003), showing that his findings are special
cases of a much more expansive relationship between shortfall, disparity, and conventional
expected utility.

2 Background

We begin with a brief, but by no means exhaustive, overview of three seemingly unrelated
topics and then demonstrate their connections in the following sections.

2.1 Shortfall

The notion of portfolio selection by way of shortfall minimization is frequently associated
with the Safety First (SF) principle, as developed in the celebrated paper by Roy (1952).
The behavioral notion is simple: select the mix of assets that minimizes the probability of
realizing a return below some pre-determined, disaster-level of return. Roy’s presentation
laid bare how the seemingly simplistic notion of arranging one’s assets to avoid a sub-target
return actually mapped to a rich decision environment that very closely paralleled the famed
mean-variance model developed in Markowitz (1952). In fact, Markowitz (1999) referred to
Roy’s shortfall-based idea as a “tremendous contribution” and writes (p. 5): “On the basis
of Markowitz (1952), I am often called the father of modern portfolio theory (MPT), but
Roy (1952) can claim an equal share of this honor.”

The evolution of MPT has included numerous extensions to Roy’s work, and the core
notion of avoiding shortfall has since extended beyond portfolio theory to other areas of choice
under uncertainty. Some examples, among many others, are the semi-variance methods of
Markowitz (1970) and the lower partial-moment methods of Bawa (1976,1978). Related to
these applications is the Sortino ratio (see, for example, Sortino and Price, 1994) which
is a version of the Sharpe ratio (SR) (see, for example, Sharpe, 1994) that penalizes only
downside risk. Value-at-Risk builds on the shortfall notion when quantifying how exposed a
financial position is to a given percentage loss; see, for example, Jorion (2000). The notion
of Loss Aversion (see, for example, Rabin 1998) from behavioral economics also has ties to
shortfall.

2.2 Entropy, Economics and Disparity

The tenets of entropy go back some two centuries, but recently information theoretic ap-
proaches have been broadly applied in economics. For example, labor economists use the
entropy-based Theil index as one measure of income inequality. The econometrics literature
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has emphasized the close connection between method of moments estimators and dispar-
ity measures; Kitamura and Stutzer (1997) explored the relationship between entropy and
GMM estimation; and Imbens (1998) et al. compare an exponential tilting estimator with
other divergence measures.1 Micro theorists have recently shown a strong connection be-
tween information theory and expected utility; see, for example, Candeal et al. (2001). In
macro and finance settings, Robertson et al. (2005) show how entropy can be used to impose
moment restrictions on macroeconomic models to improve forecasting, and Stutzer (1996)
demonstrates how an information theoretic approach can be used to price options.

The general spirit of this paper is to emphasize that the relative entropy approach taken
in the papers cited above is a special case of a much broader divergence-based approach.
This relationship is well known in other contexts (see, for example, Baggerly (1998), Qin
and Lawless (1994), Basu et al. (2004)), but can be applied more generally to many of the
economic environments described above. Within this general spirit we expose a particu-
larly interesting connection between two specific “endogenous” expected utility functions
described in Stutzer (2000,2003) and a likewise endogenized version of the entire HARA
family of expected utility functions.

2.3 HARA Expected Utility and Endogenous

Expected utility functions with the HARA property are commonly used in a wide variety of
economic models. As is well known, HARA is a relatively general family of utility functions,
including the family of Constant Relative Risk Aversion (CRRA) utility functions. Because
of its broad application, deeper insights into its properties are of interest.

A topic of recent research occurring at the confluence of utility theory and behavioral
economics is the notion of “endogenous” utility; see, for example, Stuzer (2000, 2003) or
Perets and Yashiv (2005). In these models the utility function, or the parameters thereof,
arise within the economic model, in sharp contrast to tractional expected utility wherein the
utility function and its parameters are thought to be exogenous. For example, Stutzer (2003)
demonstrates that maximization of the decay-rate of the shortfall probability in a portfolio
selection environment can be interpreted, by way of Large Deviations theory, as form of power
utility that exhibits constant relative risk aversion. Furthermore, the coefficient of relative
risk aversion is a choice variable, indicating that it is not independent of the investment
opportunity set as in standard models of expected-utility-based portfolio selection.

The notion of endogenous utility raises many questions. Among them: Is Stutzer’s finding
an anomaly or an indication of a much broader relationship between shortfall-minimization,
entropy, and utility theory? At first glance, it would seem that the simple notion of meeting
or not meeting a target would have little in common with the more sophisticated decision
process implied by HARA utility maximization. However, we prove that there does exist a
comprehensive relationship between the notion of shortfall minimization and HARA utility
maximization. Specifically, we show that posing the shortfall minimization portfolio selection
problem in terms of the Cressie-Read family maps directly to the family of HARA utility
functions. Therefore, HARA utility functions do in fact have a shortfall-based analog. This
relationship also implies that HARA utility functions have endogenous utility analogs. Thus,
in thinking of HARA through this surprising and alternative lens, we can understand how
the notion of goal attainment/failure (see Fishburn 1977) relates to the traditional HARA

1Golan and Maasoumi (2008) provide a much broader review of the econometric literature.
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interpretation and the choice set.

3 Shortfall and Exponential Tilting

Despite the early utility connections made to shortfall, the connection between shortfall-
based rules and traditional expected utility theory has not been fully exposed.2 Stutzer
(2000) began this bridging by relating his Portfolio Performance Index (PPI) to the familiar
negative exponential utility model wherein the coefficient of absolute risk aversion entered
the decision problem as a choice variable. Stutzer’s more general 2003 paper, built on the
geometric mean, related the familiar log-optimal utility function to an endogenized CRRA
utility function; this version is referred to as the decay-rate maximizing criterion (DRMC).
Haley and Whiteman (2008) connect their Generalized Safety First (GSF) rule to Stutzer’s
PPI, and highlight that both methods can be posed as moment-constrained Kullback-Leibler
(KL) optimization problems in iid sample. Their posing of the problem is the basis of our
method for bridging shortfall, disparity, and HARA utility.

Suppose an investor desires the portfolio that minimizes the probability of realizing a
return below some self-selected (or imposed) target or benchmark rate of return, denoted as
d. Falling below this level results in a shortfall, with d being the point of shortfall. Let the
portion of initial wealth W0 allocated to asset i be denoted as wi, and collect them in the
vector w = (w1, ..., wJ), where J indicates the number of admissible assets. Further assume
that the returns of each asset are random variables, denoted as Ri.

The T -sample PPI is

max
θ,w

(

dθ − log
{ 1

T

T
∑

t=1

exp[θRt(w)]
})

where

Rt(w) =
J

∑

j=1

wjRjt

denotes the time-t portfolio return, and where the negative of the choice variable θ ∈ ℜ− can
be interpreted as an endogenous constant absolute risk aversion parameter or a Lagrange
multiplier.3 Haley and Whiteman (2008) pose, in iid sample, this objective function directly
as an equivalent d-mean constrained minimum-disparity optimization problem:

max
θ,w

T
∑

t=1

πt(θ,w) log
[πt(θ,w)

u

]

− θ
[

T
∑

t=1

πt(θ,w)Rt(w) − d
]

,

where

πt(θ,w) =
exp[θRt(w)]

∑T

t=1 exp[θRt(w)]
,

again subject to the usual wealth exhaustion constraint. Here, θ retains its endogenous
utility parameter interpretation, but is transparently the Lagrange multiplier on the twisted

2 Some utility connections to SF have been advanced; see, for example, Pyle and Turnovsky (1970) and
Levy and Sarnat (1972).

3 As per usual, the weights w sum to one. We permit shorting, though this can be constrained if needed.
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moment restriction.4 Note that the πt(θ,w)s are the exponential tilting weights that appear
in the KL divergence.

The portfolio selection process works by finding the portfolio weights w that correspond to
the largest of the KL minimum divergences, which themselves are governed by the choice for
θ, the exponential tilting parameter. The portfolio return distribution that requires the most
re-weighting will be the one that is, in theory, least likely to result in a shortfall return. We
say “in theory” because, as Haley and Whiteman emphasize, the PPI is actually an upper
bound on the shortfall probability, thus the method minimizes the upper bound, not the
actual shortfall probability itself. In fact, unless the data-generating process follows certain
probability laws (e.g., Gaussian), the portfolio that minimizes the upper probability bound
may not be exactly the same as the portfolio that minimizes the actual shortfall probability;
see Haley and Whiteman (2008) for a counter-example.

In finite sample applications, the KL-based methods can be easily adapted as an alterna-
tive to direct evaluation of the empirical shortfall probability

1

T

T
∑

t=1

H(Rt)[Rt(w)]

where

H(Rt) =











0 if Rt(w) > d,
1
2

if Rt(w) = d,

1 if Rt(w) < d

is the complementary Heaviside function. While direct computation of this expression de-
livers the true (in-sample) shortfall-minimizing portfolio, solving the problem in this way
is computationally expensive, and is generally infeasible for practical size J . Thus, most
shortfall rules are actually based on approximations to the actual shortfall probability. The
methods of Roy and Stutzer, for example, both operate by embedding the portfolio selection
process in a bound on the shortfall probability.

The KL-based methods are connected directly to a bound (induced by Chernoff’s theorem
in iid sample) on the shortfall probability. The family of disparity-based selection rules
we propose herein do not correspond directly to the shortfall bound, but rather to the
optimization process — the tiling to achieve a distribution with mean equal to d — embedded
in the KL-based rules. Thus, our family of portfolio rules is related to the notion of shortfall
minimization in the latter sense. However, as we will demonstrate below, the shortfall notion
is well-represented in the operating details of our method.

4 The Cressie-Read Family of Portfolio Selection Criteria

Developing a generalized alternative, which nests the KL-based rules, is the focus of this
section. Our approach involves the Cressie-Read (CR) divergence family; see Cressie and
Read (1984) or Baggerly (1998).5

4 The DRMC formulation from Stutzer (2003) is similar, though focussed instead on the decay rate of the

portfolio time-average associated with terminal wealth WT = W0

∏

T

t=1
Rt(w).

5 Other families exist as well; see, for example, Granger et al. (2002).
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The CR divergence between the observed (τt) and tilted (τ̂t) measure is defined by

CRt(τ̂t, τt;λ) =
2

λ(1 + λ)
τt

[(

τt
τ̂t

)λ

− 1

]

,

for fixed scalar parameter λ ∈ ℜ. We use the CR divergence because it generalizes many
well-known divergence measures. For example, λ = −2 yields the Neyman-modified χ2

divergence, λ = 1 gives Pearson’s χ2, and λ = −1/2 is the Freeman-Tukey measure. Two
limiting distributions which are also encountered frequently are the empirical likelihood
measure (λ→ 0) and the KL measure (λ→ −1).

Factoring the CR function according to Basu and Lindsay (1994) provides additional
insight:

T
∑

t=1

CRt(τ̂t, τt;λ) =
2

λ(λ+ 1)

T
∑

t=1

[

τt

{(

τt
τ̂t

)λ

− 1

}

+ λ(τ̂t − τt)

]

= 2
T

∑

t=1

τ̂tD(δt;λ)

where

D(δ;λ) =
(δ + 1)λ+1 − (δ + 1)

λ(λ+ 1)
−

δ

λ+ 1
, δt =

(

τt
τ̂t

− 1

)

.

Thus, the CR divergence may be interpreted as a weighted function (D) of disparity
measures (δ) between the actual and tilted probability measures. The function D(·) is non-
negative, defined on [−1,∞) and equals zero if and only if the disparity between the two
measures is also zero (i.e., τt = τ̂t ∀ t). In figure 1 we plot the CR disparity measure for
λ = [−2,−0.5, 0, 0.5, 2].6

Embedding the portfolio selection rule (i.e., an optimization over w) into the CR function
culminates in definition 1.

Definition 1. Let the relevant measure of disparity be governed by the CR power divergence.
Then, for portfolio return Rt(w), benchmark return d, Lagrange multipliers θ and φ, initial
measure u = ut = 1/T for all t, and tilted weights τ̂1, ...τ̂T , the CR optimal portfolio is
determined by

max
w,θ,φ

min
τ̂

T
∑

t=1

ut

λ(λ+ 1)

[(

τ̂t
ut

)−λ

− 1

]

+ θ

[ T
∑

t=1

τ̂tRt(w) − d

]

+ φ

( T
∑

t=1

τ̂t − 1

)

subject to the usual wealth exhaustion constraint. This can be simplified by solving the interior
minimization problem, which gives

τ̂t(w, θ, φ) =
ut

(

(λ+ 1){θ[Rt(w) − d] + φ}
)

1
λ+1

.

Back-substituting gives

max
w,θ,φ

T
∑

t=1

ut

(

{θ[Rt(w) − d] + φ}(λ+ 1)
)

λ
λ+1

λ
− φ−

1

λ(λ+ 1)

6 The measure becomes (1 + δ) log(δ + 1) − δ when λ → 0.
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Figure 1: Disparity measures for various λ

subject to wealth exhaustion.

Proposition 1. The CR portfolio has a unique solution.

Proof. See appendix.

The inner-workings of all members of the CR family of rules parallel the intuition of the
KL-based rules: find the portfolio with the largest of the CR-minimum disparities. As before,
the portfolio that requires the most re-weighting to achieve the tilted mean restriction is the
portfolio that, intuitively, is least likely to deliver a return below the target rate d.

4.1 Implementation

When using the CR family, the researcher must specify d and λ prior to conducting any
analysis. Selecting d is often straightforward, far more so than the prospect of parameterizing
a utility function, especially for the end-user of portfolio rules (e.g., financial planner, fund
managers). As Roy (1952 pg. 433) reminds us:

In calling in a utility function to our aid, an appearance of generality is achieved
at the cost of a loss of practical significance and applicability in our results. A man
who seeks advice about his actions will not be grateful for the suggestion that he
maximize expected utility.

This quote, while somewhat overly critical about the usefulness of expected utility, nicely
emphasizes the merit of Ockham’s razor in this context: If the two methods are equivalent,
the one preferred is the one that is less esoteric. Most anyone, perhaps even most economists,
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would likely find it easier to pin-point a shortfall level than a utility parameter for any given
decision.7

Benchmark or target rates are readily available to investors, and have long been considered
within modern portfolio theory. The Sharpe portfolio builds its excess return by subtracting
out the risk-free rate; the term “differential return” or “information ratio” is used if some-
thing other than the risk-free rate serves as the benchmark. Mutual fund manager’s today
face considerable criticism if they fail to meet or beat the sector-, cap-, or style-specific index
that is most comparable to the stated objectives of their fund.

A value for λ must be specified so the function can produce a result; i.e., a set of assets
weights w and Lagrange multipliers θ and φ. This partially amounts to specifying a specific
HARA utility function, but is less restrictive that traditional HARA implementation because
the remaining parameters are identified using the endogenous Lagrange multipliers. The
details of this connection are the focus of the next section.

5 CR and HARA

Our core contribution rests in exposing the relationship between our general CR-based family
of minimum disparity portfolio selection rules to the widely used HARA utility family. To
see the connection, rewrite the CR objective function from definition one as

ψ(θ, φ) =
1

λT

T
∑

t=1

[(λ+ 1)(θrt + φ)]
λ

λ+1 − φ

where rt ≡ Rt(w) − d. Now let β ≡ λ/(λ + 1), which implies that 1/λ = (1 − β)/β and
(λ + 1) = 1/(1 − β). Also, let η ≡ (λ + 1)φ, so φ = η(1 − β). Using these notational
substitutions yields

1

T

T
∑

t=1

(

1 − β

β

)(

θrt

1 − β
+ η

)β

− η(1 − β);

i.e., maximizing ψ(·) is equivalent to maximizing a time-averaged HARA utility function.
The HARA parameter β is plainly pinned down by the choice for CR parameter λ. The

other two HARA parameters, θ and η are pinned down by the CR parameters θ and φ.
While λ must be set exogenously, θ and φ are decision variables within the CR objective
function, and are thus endogenous in the same sense as in Stutzer (2000,2003). These values
are likewise identified by the user’s choice for d. The CR formulation exposes how the HARA
parameters θ and η are actually comprised of the CR Lagrange multipliers on the twisted
mean restriction, the constraint that the twisted weights must sum to one, and the choice of
the tilting measure (encapsulated by λ).

The endogenous analog to HARA utility is “twice endogenous” in the sense that for
various values of θ and φ that may be achieved by the optimization, CRRA or CARA may
obtain. For example, if φ = 0 arose endogenously, then η would also equal zero, and the
HARA expression would reduce to the familiar CRRA utility model; this would be true for

7 We would conjecture, based on the content of Rabin (1998) and like-minded research, that the sensibility
of specifying a shortfall value instead of a utility parameters is likely useful in many other areas of decision
under risk, not just the decision problem faced by an investor. We leave this possible extension to future
research.
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any values of θ and λ. Thus, the type of risk aversion arises endogenously, as do the risk
aversion parameter values.

Regarding λ and the type of absolute risk aversion: the Arrow-Pratt measure of absolute
risk aversion is

θ

(λ+ 1)(θrt + φ)
,

the derivative of which is

−(λ+ 1)

[

θ

(λ+ 1)(θrt + φ)

]2

.

Hence we have increasing (constant) (decreasing) absolute risk aversion if λ is less than
(equal to) (greater than) -1; table 1 summarizes some of these relationships. Note that the
case where λ = −1 corresponds to the endogenous negative exponential utility model as
derived in Stutzer (2000).

Table 1: Five CR Rules and their HARA Analogs

λ Disparity Name β Utility Name Type of Absolute Risk Aversion

1 Pearson’s χ2 0.5 — decreasing
0 Empirical Likelihood 0 — decreasing
-0.5 Freeman-Tukey -1 — decreasing
-1 Kullback-Leibler β → ∞ Exponential constant
-2 Euclidean 2 Quadratic increasing

5.1 Numerical Considerations

Because the calculation of the CR portfolio involves tilting from one distribution to another,
concepts from importance sampling can be used to gather additional insight into the portfolio
ranking process. Like our case here, importance sample involves evaluating the usefulness of
various “importance densities” (or kernels, where applicable) in estimating moments from
a different density, often call the “target” density. How well these target moments are
estimated depends critically on the importance density. If the importance density is poor,
the moment estimates will be likewise poor.

Haley and Whiteman (2008), using Geweke (1989), adapt this intuition to the KL-based
portfolio selection process. The result is a way to evaluate the reliability of the portfolio
selection process. In this case, the “importance density” is the empirical distribution of
portfolio returns induced by a given vector of asset weights w. The “target density” here is
the tilted distribution, meaned at d. The moment of interest, therefore, is the twisted mean.
Is it being estimated reliably in the portfolio selection process? As Haley and Whiteman
demonstrate, answering this question amounts to computing the Relative Numerical Effi-
ciency (Geweke, 1989) value of the divergence. This RNE value, generally appearing in the
unit interval, should be as close to one as possible. Geweke (1989) states that the effective
sample size being used to estimate the target moment, the twisted mean in our case, is equal
to the original sample size T times the RNE value.

The key insight into this reliability rating process surrounds the fact that for each portfolio
w considered within the optimization process, there is associated with it an RNE value. This
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means that the process can be muddied; i.e., the portfolio that is determined to be optimal
may in fact not be optimal because it may not have been sorted properly from its competitors.
This is analogous to sampling error, and in fact the RNE, as developed below, permits the
CR user to obtain a non-bootstrapped, and therefore computationally inexpensive, standard
error.

Because Haley and Whiteman (2008) offer an extended presentation of these concepts,
we leave aside the details and instead describe how to construct the RNE for the CR rule by
simply replacing the KL weights used in Haley and Whiteman (2008) with the more general
CR weights

τ̂t(w, θ, φ) =
ut

(

(λ+ 1){θ[Rt(w) − d] + φ}
)

1
λ+1

,

of which, of course, the KL weights are a special case.
As noted above, the CR parameters λ must be pre-specified (as does the benchmark rate

d), while the remaining HARA parameter values are determined endogenously. However, we
conjecture that it may also be possible to endogenize the choice of λ by augmenting the CR
portfolio selection rule with an RNE-maximization component. The implications would be
twofold: 1) the user would only need to (exogenously) state a benchmark value (or reference
level, of the parlance of loss aversion), and 2) the “best” tilting function (in the sense that
it maximizes RNE) would precipitate from the portfolio optimization process. We leave a
full investigation of this possibility to future research.

6 Conclusions

We have proposed a new family of disparity-based shortfall minimizing portfolio selection
rules, which we have related to the familiar HARA family of expected utility functions.
In this capacity, our work extends the endogenous utility interpretation from the KL case
found in Stutzer (2000,2003) to the entire CR family. This permits the HARA family to be
interpreted as minimum disparity estimation problems built on the behavioral hypothesis
that investors (in our immediate content) seek to minimize the probability of realizing a
return below some pre-determined target or benchmark rate. This application of disparity
minimization forms an interesting bridge between the seemingly simplistic and time-honored
notion of shortfall minimization (and related ideas such as loss aversion) to the formally
structured expected utility approach to decision under uncertainty.

The connection between the CR family of portfolio rules and the HARA family demystifies
the genesis of the HARA utility parameter values; i.e., we show how the measure change
parameters (λ) and the CR’s Lagrange multipliers relate to the three HARA parameters.
This also has implications for how the type of risk aversion, whether CARA or CRRA, arises
within the CR optimization process. By expanding the RNE-based method for gauging the
reliability of the tilt, we offer a general tool for scrutinizing various parameters for λ, which
determines the specific tilting function.
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Appendix

Collected herein is a detailed proof of the primary proposition. We construct the proof as
five subproofs, after first setting out a foundation and introducing a more compact notation.

Proof of Proposition 1

Recall the objective function:

max
w,θ,φ

min
τ̂

T
∑

t=1

u

λ(λ+ 1)

[(

τ̂t
u

)−λ

− 1

]

+ θ

( T
∑

t=1

τ̂trt

)

+ φ

( T
∑

t=1

τ̂t − 1

)

(A1)

where rt ≡ Rt(w)− d (i.e., the return net of the target d) and where u = ut = 1/T ∀ t. For
notational parsimony we have suppressed rt’s dependence on w.

Taking first-order conditions of the interior minimization gives

Lτ̂t
= −

1

λ+ 1

(

τ̂t
u

)−(λ+1)

+ θrt + φ = 0,

which implies that

τ̂t(w, θ, φ) =
u

[(λ+ 1)(θrt + φ)]
1

λ+1

. (A2)

Back-substituting gives

max
w,θ,φ

T
∑

t=1

u[(θrt + φ)(λ+ 1)]
λ

λ+1

λ
− φ−

1

λ(λ+ 1)

subject to wealth exhaustion or, equivalently,

max
w,θ,φ

T
∑

t=1

u[(θrt + φ)(λ+ 1)]
λ

λ+1

λ
− φ− ν

( J
∑

j=1

wj − 1

)

where ν is the Lagrange multiplier for the (explicit) wealth exhaustion constraint.8

Because θrt = θ
∑

j wjrjt we can define γj ≡ θwj such that θrt =
∑

j γjrjt and
∑

j γj = θ,
which means that the wealth exhaustion constraint can be folded into the objective function,
thus reducing the maximization problem to

max
φ,γ

ψ(φ, γ) ≡

T
∑

t=1

u[(
∑

j γjrjt + φ)(λ+ 1)]
λ

λ+1

λ
− φ. (A3)

The first-orders for the resulting maximization problem are

ψφ =
T

∑

t=1

u[(λ+ 1)(θrt + φ)]
−1

λ+1 − 1 = 0 (A4a)

ψγj
=

T
∑

t=1

urjt[(λ+ 1)(θrt + φ)]
−1

λ+1 = 0 (A4b)

8 Assuming an interior solution, the second-order condition for the interior minimization produces a
diagonal Hessian with positive elements, indicating it to be positive definite.
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Equation (A4a) implies that
∑

t τ̂t = 1, while (A4b) states that
∑

t τ̂trjt = 0; i.e., the tilting
weights will be chosen so that the twisted distributions of each of the assets will be meaned
at d.

To assess the second-order conditions of (A3) let

mt ≡ −u[(λ+ 1)(θrt + φ)]
−(λ+2)

λ+1 ,

and write the Hessian as








∑

tmt

∑

tmtr1t

∑

mtr2t . . .
∑

t mtrJt
∑

tmtr1t

∑

tmtr
2
1t

∑

mtr1tr2t . . .
∑

tmtr1trJt

...
...

... . . .
...

∑

tmtrJt

∑

tmtr1trJt

∑

mtr2trJt . . .
∑

t mtr
2
Jt









.

The Hessian principal minors are all weighted sums of squares:

H1 =

T
∑

t=1

mt

H2 =
T−1
∑

t=1

T
∑

s=t+1

mtms(r1t − r1s)
2

H3 =

T−2
∑

t=1

T−1
∑

s=t+1

T
∑

q=s+1

mtmsmq[r2t(r1s − r1q) + r2s(r1q − r1t) + r2q(r1t − r1s)]
2

and so forth. If all the mts are negative then the Hessian is negative definite. However, from
the definition of mt, mt is negative if (λ + 1)(θrt + φ) is positive, which is also a necessary
condition for τ̂t to be positive. Since at least some of the rjt must be negative for the portfolio
decision to be nontrivial, we must have for

λ > −1, (θrt + φ) > 0

λ < −1, (θrt + φ) < 0 (A5)

If (A5) is met, any solution we have will be unique. We verify these using the following three
cases.9

1. The “upper” case: λ > 0, which implies that 0 < λ
λ+1

< 1. To explore the impact of
choosing the weight γj for any asset j, suppose that φ and the other γk 6=js have been
chosen, and denote φ∗

t = (φ+
∑

k 6=j γkrjt) for each time period t. Also denote as rjmax

and rjmin the rates of return for asset j farthest above and below their respective φ∗
t .

From (A3), ψ(φ, γ) will be real valued if all the (
∑

j γjrjt + φ) are nonnegative, which
in turn requires

−φ∗
t

rjmax

≤ γj ≤
−φ∗

s

rjmin

. (A6)

9 For completeness, we include cases four and five, though they have already been discovered elsewhere,
as noted.
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If (A6) is satisfied for all J assets, then (θrt +φ) will be positive, which by (A5) assures
concavity. Within the range (A6), all of the (γjrjt + φ∗

t ) are either monotonically
increasing or decreasing concave functions of γj, depending on the sign of rjt. At the
two boundaries (γjrjmin + φ∗

t )/λ or (γjrjmax + φ∗
s)/λ will equal zero. Since presumably

the majority of the rjts are positive, we might expect ψ(φ, γ) to be increasing over most
of the range. However, since from (A4b) the slope of ψ(φ, γ) approaches positive and
negative infinity at the lower and upper limits of the range, we must have an interior
maximum.

2. The “central” case: −1 < λ < 0, which implies that λ
λ+1

< 0. Using the same notation
as the previous case, note that since the exponent in (A3) will be negative, ψ(φ, γ) will
be discontinuous at every value of γj = −φ∗

t/rjt. The only range for which all the values
of (γjrjt + φ∗

t ) will be positive will be between the points of discontinuity for rjmin and
rjmax. Then a sufficient condition for all the τ̂ts to be positive and, by (A5), for all ψ(·)
to be concave is

−φ∗
t

rjmax

< γj <
−φ∗

s

rjmin

(A7)

for each asset.

As γj approaches either boundary, either (γjrjmin + φ∗
t )/λ or (γjrjmax + φ∗

s)/λ will
approach negative infinity. Otherwise the (γjrjt + φ∗

t ) are monotonically increasing or
decreasing functions of γj, depending on the sign of rjt, and the sum ψ(φ, γ) will have
a unique interior maximum.

3. The “lower” case: λ < −1, which implies that λ
λ+1

> 1. Again using the same notation,
since (λ + 1) is negative, our sufficient condition for concavity requires (θrt + φ) ≤ 0,
or each (γjrjt + φ∗

t ) ≤ 0, giving the range for γj:

−φ∗
t

rjmin

≤ γj ≤
−φ∗

s

rjmax

.

At the boundaries, ψγj
in (A4b) is zero for rjmin or rjmax; since its slope for the other

rjt will be positive or negative depending on the sign of rjt, and the magnitudes of
those slopes depend on the particular rjt values, there is no guarantee that the summed
slope will be positive at the lower boundary or negative at the upper boundary. In
short, we cannot be sure an interior maximum exists. However, for values of λ that
satisfy λ = −2k/(2k + 1), so λ/(λ + 1) = −2k, where k is any positive integer, then
[(λ+1)(γjrjt+φ

∗
t )]

−2k/λ is everywhere concave, and hence ψ(φ, γ) is everywhere concave,
and a unique maximum exists.

4. Case four (Kullback-Leibler): λ = −1; see Haley and Whiteman (2008) for additional
discussion. The following results establish the concavity of GSF in θ and w. The first
result (regarding θ) is standard in the theory of convex conjugates (see, for example,
Rockafellar, 1970), while the second (regarding w) is specific to portfolio analysis. We
include these proofs for completeness.
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For portfolio return R(w), portfolio weights w, target rate d, and parameter θ ∈ ℜ−,
GSF is concave in θ and w. To see this, let λ(θ,w) ≡ log

(

E{exp[θR(w)]}
)

. For
α, β ∈ [0, 1] such that α+ β = 1 and θ1, θ2 ∈ ℜ−,

E{exp[(αθ1 + βθ2)R(w)]} = E{exp[αR(w)θ1] exp[βR(w)θ2]},

then Hölder’s inequality implies that

E{exp[αR(w)θ1] exp[βR(w)θ2]} ≤
(

E{exp[R(w)θ1]}
)α(

E{exp[R(w)θ2]}
)β
.

The monotonicity of log(·) then implies that

λ(αθ1 + βθ2,w) ≤ αλ(θ1,w) + βλ(θ2,w),

which immediately implies that λ(θ,w) is convex in θ and that [dθ−λ(θ,w)] is concave
in θ.

Regarding w, for α, β ∈ [0, 1] such that α + β = 1 and wa,wb ∈ ℜN ,

E{exp[θR(αwa + βwb)]} = E{exp[αθR(wa)] exp[βθR(wb)]},

which uses the fact that R(αwa + βwb) is equal to [αR(wa) + βR(wb)]. Then Hölder’s
inequality implies that

E{exp[αθR(wa)] exp[βθR(wb)]} ≤
{

E[exp[θR(wa)]
}α{

E[exp[θR(wb)]
}β
.

The monotonicity of log(·) then implies that

λ(θ, αwa + βwb) ≤ αλ(θ,wa) + βλ(θ,wb),

which immediately implies that λ(θ,w) is convex in w and that [dθ−λ(θ,w)] is concave
in w.

5. Case five (Empirical Likelihood): λ = 0. This proof appears in Haley and McGee
(2009), but we include it here for completeness. Under EL divergence the twisting loss
function that needs to be minimized is

T
∑

t=1

u log(u/ρt).

Therefore, we seek the portfolio weights wi and the twisted probabilities ρt that solve:

max
θ,wi

[

min
ρt,θ,φ

T
∑

t=1

u log(u/ρt) + θ
T

∑

t=1

ρtrt + φ
(

T
∑

t=1

ρt − 1
)

]

(A8)

subject to wealth exhaustion. Beginning with the interior minimization problem, the
first-order conditions are

Lρt
= −(u/ρt) + θrt + φ = 0,

Lθ =

T
∑

t=1

ρtrt = 0,

Lφ =
T

∑

t=1

ρt − 1 = 0.
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The conditions with respect to the ρt can be rewritten θρtrt + φρt = u. Summing over
the T periods gives

θ

T
∑

t=1

ρtrt + φ

T
∑

t=1

ρt =

T
∑

t=1

u = 1. (A9)

The other two first-order conditions imply
∑T

t=1 ρtrt = 0 and
∑T

t=1 ρt = 1, so (A9)
reduces to φ = 1, giving

ρt = u/(1 + θrt). (A10)

The second-order conditions for the interior minimization problem produce the bordered
Hessian

|H̄| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1 ... 1
0 0 r1 ... rT

1 r1 u/ρ2
1 ... 0

...
... . . .

. . .
...

1 rT 0 . . . u/ρ2
T

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
T

∑

t=1

T
∑

s=t+1

(rt − rs)
2

∏

n 6=s,t

u

ρ2
n

,

which is strictly positive for all the principal minors, ensuring a unique minimum.

Substituting (A10) for ρt into (A8), the outer maximization problem becomes

max
θ,wi

T
∑

t=1

u log
(

1 + θrt) (A11)

The derivative with respect to θ again produces E(rt) = 0, or E(Rt) = d. To charac-
terize the solving of θ, note first from (A10) that for all the ρt to be positive, we must
have all (1 + θrt) > 0. This condition is also required by (A11), for the logarithm to be
defined. Denoting rmin and rmax as the most extreme values of rt (for any given set of
weights wi), where rmin < 0 < rmax, then (1 + θrt) > 0 for all t requires

−
1

rmax

< θ < −
1

rmin

,

that is, θ must fall in an interval bounded around zero.10

To further limit the value of θ, let g(θ) be the partial derivative of (A11) with respect
to θ:

g(θ) =
T

∑

t=1

rt

1 + θrt

with the solution for θ at g(θ) = 0. Clearly, g′(θ) = −
∑T

t=1 r
2
t /(1 + θrt)

2 is negative.

Since g(0) =
∑T

t=1 rt = (µ− d) > 0, θ has a unique positive solution:

0 < θ < −
1

rmin

.

Rather than minimize (A11) with respect to the wi directly, note that θrt =
∑T

t=1 θwirit ≡
∑T

t=1 γirit, where γi ≡ θwi and
∑T

t=1 γi = θ. Replacing the N + 1 choice variables θ

10 This fact is useful when implementing this rule using numerical optimization techniques.
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and the wi in (A11) with the N variables γi makes the wealth exhaustion constraint
redundant, so (A11) reduces to

max
γi

=
T

∑

t=1

u log
(

1 +
N

∑

n=1

γirit

)

.

The first-order conditions are

Lγi
=

T
∑

t=1

urit

1 + θrt

= 0,

which again requires that under the twisted probabilities, the mean return for each of
the N assets equals d. The Hessian of the second partial derivatives is

|H| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−
∑T

t=1
ur2

1t

(1+θrt)2
−

∑T

t=1
ur1tr2t

(1+θrt)2
... −

∑T

t=1
ur1trNt

(1+θrt)2

−
∑T

t=1
ur1tr2t

(1+θrt)2
−

∑T

t=1
ur2

2t

(1+θrt)2
... −

∑T

t=1
ur2trNt

(1+θrt)2

...
...

. . .
...

−
∑T

t=1
ur1trNt

(1+θrt)2
−

∑T

t=1
ur2trNt

(1+θrt)2
... −

∑T

t=1
ur2

Nt

(1+θrt)2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The Hessian’s principal minors are weighted sums of squares, with weights of alternating
sign. Thus the Hessian is negative definite and the solution is a unique maximum.
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