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1 Introduction

Explaining the observed positive comovements between nominal money stocks and

real activity over the business cycle has been one of the principal challenges to mon-

etary economics. Is the empirical relationship between money and real activity a

result of significant causal effects of money on output, or do the movements in nomi-

nal money stocks reflect developments in the real economy?

Friedman and Schwartz (1963) represent the most influential study arguing for the

former interpretation of the data. A key observation in their study motivating their

view is that in the U.S. business cycle movements in the monetary aggregate M2

systematically precede movements in real output. Tobin (1970), King and Plosser

(1984), and Freeman and Huffman (1991), however, challenge such a view. Specifi-

cally, Tobin (1970) makes the point that the observed movements in money likely re-

flect systematic responses of the Federal Reserve to the economy, while King and Plosser

(1984) and Freeman and Huffman (1991) make the case that movements in broad

monetary aggregates, such as M2, result from the endogenous responses of the bank-

ing sector to cyclical fluctuations in the demand for deposits. Thus, according to

these researchers the causality primarily runs from real economic activity to money.

However, when Coleman (1996) and Ireland (2003) quantitatively evaluate such

‘reverse causality’ mechanisms within dynamic general equilibrium models (an oth-

erwise prototypical real business cycle model in the case of Coleman and a New-

Keynesian model in the case of Ireland), they find that the reverse causality channels

do not account for the cyclical behavior of money data. Coleman (1996) especially

points out the inability of reverse causality to generate the lead-lag relationship be-

tween money and output documented by Friedman and Schwartz (1963).1 Our aim is

1In line with the data, reverse causality channels generate positive contemporaneous correla-
tions between broad monetary aggregates, such as M1 or M2, and output, as Coleman (1996) and
Freeman and Kydland (2000) show. But, in contrast to the data, such aggregates lag output in their



to revisit this issue. Although our primary focus is on the Friedman-Schwartz obser-

vation, we evaluate our general equilibrium model against a broader set of monetary

facts that we document here.

Figure 1 presents a version of the empirical regularity highlighted by Friedman and Schwartz

(1963). It plots the correlations of real GDP in quarter t with a monetary aggregate

called MZM in quarter t + j, for j ∈ {−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}. Both data

series are in logs and filtered with the Christiano and Fitzgerald (2003) band-pass

filter.2 The acronym MZM stands for ‘money zero maturity’. This aggregate was

proposed by Motley (1988) in response to compositional issues with M2 and the label

was coined by Poole (1991). The reason for using MZM rather than M1 or M2 is

that, unlike M1 or M2, MZM is constructed in a consistent way. More precisely, it

consists of currency and all sight deposits – deposits that are immediately available

for withdrawal. In contrast, M1 does not contain all sight deposits, while M2 contains

also time deposits – deposits that are issued in specific maturities and withdrawal of

which prior to the maturity date is subject to stiff penalties. The key point of the

figure is that MZM , like M2 in Friedman and Schwartz (1963), on average leads real

GDP – it is more strongly positively correlated with future output than with current

and past output. The lead is of three to four quarters.

Figure 1 also plots cross-correlations with real GDP for some other measures of

money. Specifically, the monetary base (central bank money given as the sum of

currency in circulation and bank reserves), time deposits, and the broadest monetary

aggregate published by the Federal Reserve, labeled L. This aggregate is given as the

sum of MZM and time deposits.3 We see that the monetary base slightly lags real

models – the aggregates are more strongly positively correlated with past output than with current
and future output.

2The data are for the period 1959.Q1-2003.Q4. Detrending the series with the HP filter or taking
first differences does not qualitatively change the basic finding presented in the figure.

3The measure of time deposits used here – a difference between L and MZM – also includes
short-term Treasury securities held by the public, in addition to genuine time deposits issued by
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GDP by one quarter, time deposits lag by four to five quarters, and the L aggregate

lags by one quarter.

Figure 2 shows the cross-correlations with real GDP when the nominal stocks

are deflated with a GDP deflator. We see that MZM still exhibits a strong lead

while time deposits still exhibit a strong lag. The only lead-lag relationships that

change relative to Figure 1 are that the monetary base and the L aggregate become

coincident with the cycle.

It is worth pointing out that the dynamics of MZM and time deposits in relation

to output are qualitatively unaffected by the 1979 monetary policy change aimed at

combating inflation.4 Figure 3 plots the cross-correlations between real GDP and

nominal money stocks for two subsamples, 1959.Q1-1979.Q3 and 1979.Q4-2003.Q4.

We see that in both subsamples MZM strongly leads while time deposits strongly

lag real GDP. In contrast, the dynamics of the monetary base – an aggregate di-

rectly controlled by the Federal Reserve – change not only quantitatively, but also

qualitatively. While the monetary base strongly lags output in the first subsample,

it slightly leads in the second subsample. Similar findings are also obtained for the

real stocks, as Figure 4 shows. (For comparison we also include M1 in both figures,

whose dynamics change in a similar way as the dynamics of the monetary base.)

We ask if reverse causality can account for the empirical lead-lag relationships

documented in Figure 1, and for the lead in MZM in particular. We do so within

a calibrated dynamic general equilibrium model with multi-stage production and

purchase-size heterogeneity, in which business cycles are set off by technology shocks.

banks. The cyclical behavior of time deposits is unaffected when these securities are stripped out off
the measure of time deposits. As the Federal Reserve stopped publishing the L aggregate in 1998,
our data for L, and thus also for time deposits, are only for 1959.Q1-1997.Q4.

4Gavin and Kydland (1999) document that the cyclical behavior of the monetary base, M1, and
M2 changes in a statistically significant way with the 1979 policy change. Dressler (2007) constructs
a dynamic general equilibrium model that accounts for the observed changes in the behavior of the
monetary base and M1.
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We allow for the reverse causality mechanism highlighted by Tobin (1970) as well as

for that suggested by King and Plosser (1984) and Freeman and Huffman (1991).

Our way of modeling endogenous responses of deposits to real factors builds on the

framework of Freeman and Kydland (2000). In our model agents buy a continuum of

goods of different sizes that are used for consumption, capital accumulation, and as

intermediate inputs in multi-stage production. They optimally choose their balances

of cash and checkable deposits based on the size of purchases made and the nominal

rate of return paid by deposits. Tobin’s mechanism is captured by assuming that a

central monetary authority controls a nominal rate of return on a one-period bond,

set according to the Taylor (1993) rule. The authority then endogenously supplies

the monetary base in an amount consistent with the nominal interest rate.

As in Coleman (1996) both consumption and investment purchases (and in our

case also purchases of intermediate inputs) have to be made with either cash or check-

able deposits. While the use of cash in transactions is costless, the use of checkable

deposits incurs a fixed cost – a cost independent of the purchase size. Weighting

this cost against the nominal rate of return paid by deposits, agents optimally choose

checkable deposits for purchases of big-ticket items and cash for purchases of small-

ticket items. On average, consumption purchases are small, while investment pur-

chases are large (and intermediate input purchases fall somewhere in-between). In

addition, similarly to Baumol (1952) and Tobin (1956), agents can use higher-yield

time deposits to replenish their balances of cash and checkable deposits within a

period. The responses of consumption, investment, and intermediate inputs to tech-

nology shocks then induce dynamics of monetary aggregates as the agents optimally

rebalance their mix of cash, checkable, and time deposits over the business cycle in

response to the purchases made and the rates of return.

We find that when calibrated to meet long-run features of the U.S. economy the
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model accounts for three key monetary facts documented in this paper: MZM leads

real GDP, time deposits lag real GDP, and the L aggregate is broadly coincident

with real GDP. In addition to these monetary facts, the model’s implications are also

consistent with the observed cyclical dynamics of real variables, such as consumption,

investment, the change in input inventories, the flow of bank lending, and labor

productivity. The key elements of our model generating many of these results are the

multi-stage nature of production and purchase-size heterogeneity of consumption,

investment, and intermediate goods.

The lead in MZM in our calibrated model is not affected, at least qualitatively, by

the way monetary policy is conducted. Specifically, the model predicts MZM leading

real GDP even when the monetary authority uses the growth rate of the monetary

base as its instrument (and keeps it constant) rather than the nominal interest rate

set according to a Taylor rule. The dynamics of MZM are thus primarily deter-

mined by the reverse causality mechanism highlighted by King and Plosser (1984)

and Freeman and Huffman (1991), rather than by that suggested by Tobin (1970).

This robustness of the lead-lag relationship between broad money and real GDP in

our model is generally in line with our empirical finding that qualitatively the lead-lag

relationship between MZM and output was not affected by the 1979 monetary policy

change.

The rest of the paper is organized as follows. Section 2 describes the model.

Section 3 qualitatively characterizes the optimal choice of the mix of cash, checkable,

and time deposits and describes how it relates to movements in monetary aggregates.

Section 4 describes calibration. Section 5 presents the quantitative results. Section 6

concludes.
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2 The model economy

The model economy consists of an infinitely lived representative consumer, a repre-

sentative producer, and a representative bank. All three agents take all prices as

given. In addition, there is a monetary authority that controls a nominal rate of

return on a one-period bond and issues fiat money. Fiat money can be used as ‘cur-

rency’ to buy goods and as ‘reserves’ held by the representative bank. The role of the

representative bank is to create ‘inside’ money (as opposed to ‘outside’ fiat money

issued by the monetary authority), which can also be used in purchases of goods. In

contrast to fiat money, inside money pays a nominal rate of return, but its use in

transactions is costly.

The only source of uncertainty are shocks to total factor productivity in an ag-

gregate production function. Each period, a shock is observed by all agents at the

beginning of the period before any decisions are made.

2.1 Preferences, technology, and purchase-size heterogeneity

A single technology produces a continuum of goods, indexed by j ∈ [0, 1]. These

goods can be used for consumption, capital accumulation, and as intermediate inputs.

Demand for these different goods is generated by a Leontief-type preferences and

technology. The proportions in which these goods are either consumed or used in

production determine the ‘size’ of each good.

The consumer’s preferences are characterized by the utility function5

Et

∞
∑

t=0

βtu(ct, lt), β ∈ (0, 1), (1)

5Through out the paper we denote individual-level variables by lower-case letters and their aggre-
gate (per capita) counterparts by corresponding upper-case letters. We also employ the convention
that a subscript accompanying a function denotes the derivative of the function with respect to the
argument in the subscript. For example, fx (x, y) denotes the first derivative of a function f with
respect to x.
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where ct is given by

ct ≡ min

[

ct(j)

(1 − ωC)j−ωC

]

, ωC ∈ (−∞, 0), (2)

lt is leisure, and u(., .) is increasing and concave in each argument. In (2) ct(j)

denotes consumption of good j. These within-period preferences for the individual

goods, borrowed from Freeman and Kydland (2000), induce the consumer to choose

consumption of the goods according to the rule

ct(j) = (1 − ωC)j−ωCct (3)

for some ct. Integrating (3) from 0 to 1 shows that ct is total consumption, defined

as
∫

1

0
ct(j)dj.

6

Notice that according to (3) consumption of the individual goods increases in j.

We therefore interpret j as an index of a purchase size and refer to the right-hand

side of equation (3) as a ‘purchase-size function’. A small j represents a purchase of

a small-ticket item, such as a newspaper, whereas a large j represents a purchase of

a big-ticket item, such as a weekly supermarket basked of goods. For ωC > −1, the

function is strictly concave, for ωC = −1 it is linear, and for ωC < −1 it is strictly

convex. We discuss the meaning of this curvature in Section 4.

Production has two stages of processing. This is captured by assuming that cur-

rent output depends on both current value added by primary factors of production

(capital and labor), as well as on intermediate inputs produced in the previous pe-

6As all goods are produced by the same technology, their relative prices are equal to one. Total
consumption is therefore given as a simple sum of the c(j)’s.
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riod.7 The aggregate production function has the form

Yt =











G1−ζ
t Xζ

t if ν = 0
[

(1 − ζ) (Gt)
−ν + ζ (Xt)

−ν
]− 1

ν if − 1 < ν < 0 or ν > 0,
(4)

where ζ ∈ [0, 1), Yt is gross output, Gt is value added by primary factors of production,

and Xt is a composite intermediate input produced in period t−1. Gt is in turn given

by the Cobb-Douglas production function

Gt = exp(zt)K
θ
t H

1−θ
t , θ ∈ (0, 1) , (5)

where Kt is a composite capital stock, Ht is labor, and zt is the log of total factor

productivity evolving as

zt = ρzzt−1 + εt, ρz ∈ (0, 1), εt ∼ N(0, σz). (6)

As in the case of consumption, the composite intermediate input and capital are given

by

Xt ≡ min

(

Xt(j)

(1 − ωX)j−ωX

)

, ωX ∈ (−∞, 0),

Kt ≡ min

(

Kt(j)

(1 − ωK)j−ωK

)

, ωK ∈ (−∞, 0).

The consumer owns all Kt(j)’s and Xt(j)’s and rents them out to the producer.

For positive rental rates of the individual goods, the producer’s cost minimization

dictates the following choices, Kt(j) = (1−ωK)j−ωKKt and Xt(j) = (1−ωX)j−ωXXt,

for some Kt and Xt. In turn, the consumer optimally accumulates the individual

7An extension to more than two stages is straightforward but makes the exposition somewhat
cumbersome without changing the main insight. Edge (2007) provides a brief overview of empirical
work on multi-stage production.
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capital and intermediate goods according to the rules

IKt(j) = (1 − ωK)j−ωKIKt, (7)

IXt(j) = (1 − ωX)j−ωXIXt, (8)

for some IKt and IXt, which satisfy IKt = Kt+1 − (1 − δK)Kt and IXt = Xt+1 − (1 −

δX)Xt. Here δK and δX are depreciation rates.8 As in the case of consumption, it

is easy to verify that Kt, Xt, IKt, and IXt are, respectively, total capital stock, the

total stock of intermediate inputs, (gross) total investment in capital, and (gross)

total investment in intermediate inputs. The optimality conditions (3), (7), and (8)

characterize the purchase sizes of the individual goods, depending on their final use.

2.2 Inside money

Inside money takes the form of ‘checkable’ deposits – deposits that can be used in

purchases of goods. In addition, banks also offer ‘time’ deposits, which even though

cannot be used to purchase goods directly, can be turned into checkable deposits or

currency at a cost. We will refer to currency, checkable, and time deposits as the

‘means of payment’.

As in the U.S. economy, banks in the model are required to hold a fraction α

of checkable deposits in the form of fiat money as reserves; no reserves are required

against time deposits. In addition to reserves, checkable deposits are backed by loans

financing purchases of capital and intermediate inputs. Time deposits are fully backed

by such loans. Inflation is assumed to be always positive so that in equilibrium the

real rate of return on loans always exceeds that on fiat money (given by the inverse

of the inflation rate). As a result banks do not hold reserves above and beyond the

8It is assumed here that the stocks of the individual capital and intermediate goods in period 0
satisfy K0(j) = (1 − ωK)j−ωK K0 and X0(j) = (1 − ωX)j−ωX X0 for some initial K0 and X0.
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required minimum. The balance sheet identity of the banking sector is therefore

α (DCt/pt) + St+1 (Kt+1 + Xt+1) = DCt/pt + DTt/pt, (9)

where St+1 is the fraction of the aggregate stock of capital and intermediate inputs

financed through bank loans, DCt is the nominal amount of checkable deposits, DTt

is the nominal amount of time deposits, and pt is the aggregate price level – the price

of goods in dollars. Notice that the amount of new loans (in real terms) extended by

banks in period t is given by

Qt ≡ St+1 (Kt+1 + Xt+1) − St (Kt + Xt) . (10)

The interest rates offered on deposits and charged for loans are assumed to be

contingent on the realization of zt (the aggregate technology shock). Perfect com-

petition then ensures that in each state of the world the net real rates of return on

checkable and time deposits, rCt and rTt respectively, are given by

rCt = (1 − α) rLt + α

(

pt−1

pt

− 1

)

− ΩC , (11)

rTt = rLt − ΩT , (12)

where rLt is the net real rate of return on loans, and ΩC and ΩT are unit costs of

managing checkable and time deposits, respectively. These costs are used here as

stand-ins for factors outside of our model affecting the average rates of return on

these two types of deposits. Notice that as checkable deposits are partly backed by

reserves, their real rate of return depends on the weighted average of the real rates of

return on loans and fiat money. In contrast, the real rate of return on time deposits

depends only on the real rate of return on loans, which is given by the weighted
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average of the rates of return on capital rKt and intermediate inputs rXt

rLt = rKt

Kt

Kt + Xt

+ rXt

Xt

Kt + Xt

. (13)

The rates of return on capital and intermediate inputs are in turn determined by the

producer’s profit maximization conditions, rKt = YG(., .)GK(., .) and rXt = YX (., .).

Condition (13) again follows from perfect competition and the assumption that the

interest rate on loans is state contingent.

2.3 Monetary policy and outside money

In line with much of the literature, the monetary authority controls a nominal rate of

return Rt on a one-period bond, set according to a Taylor (1993)-type rule. Specifi-

cally,

Rt = (1 − ρR) [R + ωy (ln yt − ln y) + ωπ (ln πt − ln π)] + ρRRt−1, (14)

where yt is real GDP, πt ≡ ln pt−ln pt−1 is the inflation rate, ρR ∈ (0, 1) is a smoothing

coefficient, and a symbol without a time subscript represents a variable’s steady-state

value. Notice that real GDP is a narrower measure of aggregate output than gross

output Yt, specified in Subsection 2.1. Real GDP is defined as yt ≡ (dY/dG)Gt =

Yt − rXtXt, which in the National Income and Product Accounts (NIPA) corresponds

to the product approach to measuring GDP, and where the second equality follows

from perfect competition and the constant-returns-to-scale property of the production

function (4).

As the monetary authority uses a nominal interest rate to conduct monetary

policy, the amount of fiat money in the economy, denoted by MBt (as for ‘monetary

base’), is supplied elastically to accommodate the demand for fiat money at that

interest rate. Specifically, the monetary base is given as the sum of currency Mt

11



demanded by consumers and reserves αDCt held by banks

MBt = Mt + αDCt. (15)

2.4 The consumer’s problem

The consumer maximizes the utility function (1) subject to three sets of constraints:

transaction, time, and budget.

2.4.1 Transaction constraints

As mentioned above, goods can only be purchased with currency or checkable de-

posits. Time deposits cannot be exchanged for goods directly but they can be used

to replenish the balances of currency and checkable deposits. Within a period, the

ratio of checkable deposits to currency after each replenishment is assumed to be the

same. Thus, if the consumer wants to replenish his money balances nt times, he has

to hold time deposits in the amount

dTt = nt(dCt + mt). (16)

Each replenishment, as well as making the initial deposit dTt at the start of the period,

costs the consumer φ units of time.9

The use of checkable deposits in purchases incurs a fixed cost (i.e., independent

of j), normalized by the average size of the type of purchases made (by ‘type’ we

mean whether the purchases are for consumption, intermediate input accumulation,

or capital accumulation). We denote this cost by γC , γX , or γK , depending on the

type of purchases made and assume that γC > γX > γK . This captures the notion

9This cost captures the time lost in various activities related to making transfers to and from
time deposits, such as trips to the bank, making phone calls to call centers, etc. Making this cost
payable in goods rather than time turns out not change our main result.
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that the average size of consumption purchases made by households is smaller than

the average size of intermediate input purchases made by firms, which in turn is

smaller than the average size of capital goods purchases. Or in other words, that

consumption goods are on average small-ticket items, whereas capital goods are on

average big-ticket items, while intermediate good purchases fall on average somewhere

in-between.

As the cost incurred in the use of checkable deposits is independent of j, but

the interest earned on the balances used is increasing in j (since the purchase size is

increasing in j and therefore so are the required balances), it is profitable to incur

the cost in purchases of big-ticket items, but to use cash in purchases of small-ticket

items. There is therefore an optimal jCt such that all consumption purchases with

j < jCt are made with cash while all consumption purchases with j ≥ jCt are made

with checkable deposits. Analogously, there are also optimal jKt and jXt. This implies

the following constraints on the balances of currency and checkable deposits10

mt

pt

=
1

nt + 1

[
∫ jCt

0

ct (j) dj +

∫ jKt

0

iKt(j)dj +

∫ jXt

0

iXt(j)dj

]

dCt

pt

=
1

nt + 1

[
∫

1

jCt

ct(j)dj +

∫

1

jKt

iKt(j)dj +

∫

1

jXt

iXt(j)dj

]

.

Substituting from the optimality conditions (3), (7), and (8), these two constraints

become

mt

pt

=
(jCt)

1−ωC ct + (jKt)
1−ωK iKt + (jXt)

1−ωX iXt

nt + 1
(17)

dCt

pt

=
[1 − (jCt)

1−ωC ]ct + [1 − (jKt)
1−ωK ]iKt + [1 − (jXt)

1−ωX ]iXt

nt + 1
. (18)

10We assume that ΩC > ΩT > 0, which means that rLt > rTt > rCt. Furthermore, we assume that
inflation is always positive. These assumptions together guarantee that the transaction constraints
(16)-(18) hold with equality.
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2.4.2 Time and budget constraints

The time constraint is

lt + ht + φ(nt + 1) = 1, (19)

where ht is time spent working, and the budget constraint is

ct + iKt + iXt + ϕt +
dCt

pt

+
dTt

pt

+
mt

pt

+
bt

pt(1 + Rt)

= wtht + (1 − St)(rKtkt + rXtxt) + Qt (20)

+(1 + rCt)
dC,t−1

pt−1

+ (1 + rTt)
dT,t−1

pt−1

+
mt−1

pt

+
bt−1

pt

,

where

ϕt ≡ (nt + 1) [γC(1 − jCt) + γK(1 − jKt) + γX(1 − jXt)] (21)

is the total cost incurred by using checkable deposits, bt is holding of the nominal

bond, assumed to be in net zero supply, and wt is the real wage rate given by the

profit-maximization condition wt = YG(., .)GH(., .).

Finally, the total stocks of capital and intermediate inputs follow the laws of

motion

kt+1 = (1 − δK)kt + iKt, (22)

xt+1 = (1 − δX)xt + iXt. (23)

It is assumed that the entire stock of intermediate inputs is used up in production in

every period, implying δX = 1.
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2.5 Monetary aggregates

In addition to the monetary base we also define two other monetary aggregates. In line

with the U.S. data, we define MZM as the sum of currency and checkable deposits

MZMt ≡ Mt + DCt (24)

and L as the sum of MZM and time deposits

Lt ≡ MZMt + DTt. (25)

Notice that combining constraints (16)-(18), the L aggregate satisfies

Lt = Mt + DCt + DTt = pt(Ct + IKt + IXt) = ptYt. (26)

Equation (26) resembles a standard ‘cash-in-advance’ constraint, except that ‘cash’

here includes all three means of payment in our model. For future reference we also

rewrite MZM as

MZMt = Mt + DCt = MBt + (1 − α)DCt =

[

1 + (DCt/Mt)

1 + α(DCt/Mt)

]

MBt, (27)

where the expression in the square brackets is a money multiplier. MZM is thus

given as a product of a money multiplier, which in equilibrium is determined by

the optimal checkable deposits to currency ratio chosen by the consumer, and the

monetary base, determined by the total demand for fiat money at the interest rate

set by the monetary authority.
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2.6 Equilibrium

The equilibrium is defined in its recursive form. The individual state variables are

υ1t = (kt, xt, dC,t−1, dT,t−1, at−1), where at−1 ≡ mt−1 + bt−1, and the correspond-

ing aggregate state variables are Υ1t = (Kt, Xt, DC,t−1, DT,t−1, At−1), where At−1 ≡

Mt−1 + Bt−1. In addition, Υ2t = (zt, pt−1, Rt−1). The individual decision variables

are λt = (nt, jCt, jKt, jXt, ht, ct, iKt, iXt, dCt, dTt,mt, bt+1) and their aggregate coun-

terparts are Λt = (Nt, JCt, JKt, JXt, Ht, Ct, IKt, IXt, DCt, DTt, Mt, pt).

A recursive competitive equilibrium of this economy consists of a value function

V (υ1, Υ1, Υ2), individual decision rules λ = λ(υ1, Υ1, Υ2), and aggregate decision rules

Λ = Λ(Υ1, Υ2) such that for every (υ1, Υ1, Υ2) these functions satisfy:

1. V (υ1, Υ1, Υ2) = maxλ{u(c, 1 − h − φ(n + 1)) + βE [V (υ′
1, Υ

′
1, Υ

′
2)|Υ2]}

subject to: (16), (17), (18), (20), (22), and (23);

2. The constraints (16), (17), (18), (20), (22), and (23) are also satisfied at the

aggregate level and zt evolves according to (6);

3. rCt, rTt, rLt, St, Qt, and Rt are given respectively by (11), (12), (13), (9), (10),

and (14); and

4. Individual decisions are the same as aggregate decisions and υ1 = Υ1.

It is easy to verify that the aggregate resource constraint Ct + IKt + IXt +ϕt = Yt,

not used in the definition of the equilibrium, is satisfied by Walras’s Law. Notice

that we can rewrite the constraint as Ct + IKt + (IXt − rXtXt) + ϕt = yt, where

IXt − rXtXt is a change in input inventories. This expression for GDP corresponds

to the expenditure approach in the NIPA.

The equilibrium is computed by first approximating the economy with a linear-

quadratic economy and then by applying the method described by Hansen and Prescott
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(1995).11

Notice that as the model has no nominal rigidities, nominal variables affect the

dynamics of real variables only through inflation tax effects, which (as the next section

shows) affect nt, and thus time available for work, as well as the optimal j’s, and

thus output lost in transactions. For plausible calibration, however, these effects are

quantitatively small. It is therefore instructive to think of the economy as being block

recursive: given the aggregate state (Υ1, Υ2), all quantities (including real holdings of

the means of payment) and relative prices are determined independently of nominal

variables; then, given the equilibrium quantities and relative prices, nominal variables

are determined. In addition, among the nominal variables, pt and Rt are determined

first by an Euler equation for bonds and the monetary policy rule (14). The monetary

aggregates MBt, MZMt, and Lt are then residually determined by equations (15),

(26), and (27). Monetary aggregates in our model thus affect neither quantities

nor prices (real or nominal). Their movements only reflect the underlying economic

activity and the responses of monetary policy to fluctuations in output and inflation,

as summarized by the Taylor rule (14).

3 The optimal choice of the means of payment

Characterizing the optimal choice of the means of payment will help us understand

the dynamics of monetary aggregates presented in Section 5. Notice from equations

(16)-(18) that, for given ct, iKt, and iXt, the optimal mt/pt, dCt/pt, and dTt/pt are

determined by the optimal choice of nt, jCt, jKt, and jXt. After substituting from the

transaction constraints (16)-(18) for mt/pt, dCt/pt, and dTt/pt in the budget constraint

11Before computing the equilibrium, the model is transformed so that all nominal variables are
stationary.
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(20), the first-order condition for nt becomes

(nt + 1)

{

uLtφ +
uLt

wt

[γC(1 − jCt) + γK(1 − jKt) + γX(1 − jXt)]

}

(28)

= βEt

uL,t+1

wt+1

{[

rT,t+1 −

(

pt

pt+1

− 1

)]

mt

pt

+ (rT,t+1 − rC,t+1)
dCt

pt

}

,

while the first-order conditions for jCt, jKt, and jXt, become, respectively,

(nt + 1)
uLt

wt

γC = Ξt

ct(1 − ωC)(jCt)
−ωC

nt + 1
, (29)

(nt + 1)
uLt

wt

γK = Ξt

iKt(1 − ωK)(jKt)
−ωK

nt + 1
, (30)

(nt + 1)
uLt

wt

γX = Ξt

iXt(1 − ωX)(jXt)
−ωX

nt + 1
. (31)

Here

Ξt = βEt

uL,t+1

wt+1

[

rC,t+1 −

(

pt

pt+1

− 1

)]

= βEt

uL,t+1

wt+1

RC,t+1,

where RC,t+1 ≡ rC,t+1 + πt+1/(1 + πt+1) ≈ rC,t+1 + πt+1 is the nominal interest rate

for checkable deposits.

Although these optimality conditions look complicated, they have simple inter-

pretations. The expression on the left-hand side of equation (28) is the cost of using

time deposits – the cost of withdrawal φ, incurred n + 1 times, and the total costs of

using checkable deposits in purchases after each withdrawal (both types of costs are

expressed in the utility of leisure). The expression on the right-hand side of equation

(28) is the cost of holding currency and checkable deposits – the expected extra in-

terest that could be earned if the balances were held instead as time deposits. After

substituting for mt/pt and dCt/pt in (28) from (17) and (18) we see that, other things

being equal, an increase in ct, iKt, or iXt increases nt. Notice also that an increase in

rT,t+1 increases nt, whereas an increase in pt/pt+1 reduces it.

The expression on the left-hand side of equations (29)-(31) is the marginal cost
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of increasing the number of goods purchased with checkable deposits – the respective

fixed cost paid nt + 1 times. The right-hand side of that equation is the marginal

benefit – the interest earned on the balances used in purchases of the additional

good. Focusing, for example, on equation (29), other things being equal, an increase

in ct leads to a lower jCt; i.e., more goods are purchased with checkable deposits

when total expenditures on consumption increase. A fall in jCt leads to an increase

in the checkable deposits to currency ratio and thus to an increase in the MZM

multiplier. An increase in the nominal interest rate also decreases jCt; i.e., the size

of the marginal purchase for which it is profitable to use checkable deposits decreases

as the opportunity cost of holding currency increases. Notice also that a decline in

nt leads to a lower jCt. This is because a lower nt increases the purchase-size after

each withdrawal across all goods; i.e., the consumer makes less frequent but larger

purchases of all goods. A similar argument also applies to equations (30) and (31).

Finally, notice from equations (17) and (18) that an increase in ct, iKt, or iXt

mechanically increases both mt/pt and dCt/pt for a given set of nt, jCt, jKt, and

jXt. How this affects the checkable deposits to currency ratio, and thus the MZM

multiplier, depends on whether the j’s are closer to zero or closer to one. If, for

instance, jC is close to zero (i.e., most consumption purchases are made with checkable

deposits) an increase in ct increases the ratio and thus the MZM multiplier.

4 Calibration

Baseline parameter values are summarized in Table 1. Most of these values are based

on U.S. postwar averages. In the next section we also experiment with alternative

parameterizations.

To start, the length of the period in our model corresponds to one quarter. The

parameter θ in the production function equals the model’s steady-state capital share
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of GDP and is set equal to 0.36 on the basis of the average capital share in NIPA.

We set ν equal to 4, which implies an elasticity of substitution between value added

and intermediate inputs of 0.2. This elasticity is sufficient to generate a delayed full

response of real GDP to a technology shock. The depreciation rate δK is set equal to

0.025, which together with the long-run share of investment in GDP equal to 0.25,

implies a steady-state capital to (quarterly) GDP ratio equal to 10. As mentioned

above, the depreciation rate for intermediate inputs is set equal to one. The weight

on intermediate goods in production ζ is chosen together with the discount factor β

so that the model generates the steady-state capital to GDP ratio equal to 10, and

the ratio of the stock of intermediate inputs to GDP equal to 0.31 – an estimate

obtained when intermediate inputs are measured as the sum of material and supplies,

goods in progress, and unfinished construction. In line with the RBC literature, the

autocorrelation coefficient ρz in the process for technology shocks is set equal to 0.95

and the standard deviation of its innovations to 0.0076.

As in Freeman and Kydland (2000), the reserve ratio α is set equal to 0.1. ΩT is

set equal to 0.0571, which implies a steady-state real rate of return on time deposits

equal to the average real rate of return on 3-month certificates of deposit. The value

of ΩC is set equal to 0.0581, which implies a steady-state annual real rate of return

on checkable deposits equal to 0.1%. This is somewhat higher than the weighted

average of the quoted rates for MZM deposits in order to take account of implicit

returns from services that come with checkable deposits (such as direct debits or

payroll management in the case of firms).

As mentioned above, the parameters ωC , ωK , and ωX govern the curvature of

the purchase-size function and thus the dispersion of ct(j), iKt(j), and iXt(j). A

ω ∈ (−1, 0) means that the purchase-size function is strictly concave and thus that

the dispersion of purchase sizes is relatively small. In contrast, a ω < −1 means
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that the purchase-size function is strictly convex and thus that the purchase-size

dispersion is relatively large. We set ωC equal to -0.5 and ωK equal to -2 based on the

notion that the differences is the sizes of capital goods are larger than the differences

in the sizes of consumption goods.12 The purchase-size dispersion of intermediate

goods probably falls somewhere in-between. We therefore set ωXt equal to -1. The

purchase-size functions for Ct(j), IKt(j), and IXt(j) are plotted in Figure 5.

The costs of using checkable deposits, γC , γK , and γX , are calibrated on the

basis of the average use of currency in purchases of consumption, intermediate, and

capital goods. When currency held abroad (usually estimated to be around 70%

of the outstanding stock) is excluded, currency makes up on average about 1.74%

of the L aggregate. We distribute this stock across purchase types in the following

way, using information on sectoral money balances in the United Kingdom (we are

not aware of similar publicly available data for the United States). In the United

Kingdom, about 90% of all currency is held by households, with the remaining part

held by private nonfinancial corporations (PNFCs). We use the holdings of currency

by households as a proxy for the amount of currency used for consumption purchases.

We further assume that PNFCs use 90% of their currency balances for intermediate

input purchases. This distribution of the use of cash, together with the average

fraction of currency in the L aggregate, implies the following values for the costs of

use of checkable deposits: γC equal to 0.0014, γK equal to 0.0000416, and γX equal

to 0.0002579.

The cost of replenishment φ is calibrated to match the average MZM to L ratio.

In the United States, about a half of MZM consists of saving deposits. Although,

unlike time deposits, saving deposits can be easily withdrawn, it is plausible that at

12The difference between expenditures on an aircraft and a TV set (a ‘large’ vs. a ‘small’ capital
good) is likely to be bigger than the difference between expenditures on weekly supermarket shopping
and a coffee (a ‘large’ vs. a ‘small’ consumption good).
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least part of the stock is not used for transaction purposes on a regular basis. In

our baseline calibration we assume that only 50% of saving deposits are held for their

transaction services. This implies a MZM to L ratio of 0.36 and φ equal to 0.0001577.

This value of φ gives the total replenishment cost, φ(n + 1), equal to 0.0415% of the

time endowment, which is about 36 minutes per quarter, or 0.085% of the model’s

GDP [calculated as wφ(n + 1)]. The sum of the total replenishment and transaction

costs, wφ(n + 1) + ϕ, in turn amounts to about 0.56% of the model’s GDP. This is

close to the estimated cost of 0.5% of GDP incurred by banks in providing checkable

deposits and credit services, obtained by Aiyagari, Braun, and Eckstein (1998).

The final set of parameters that need to be assigned values are the parameters of

the utility function and the monetary policy rule. Given that most of the movements

in hours worked over the business cycle are due to the movements in the number of

people employed, rather than hours worked per person, we use the specification of

the utility function due to Hansen (1985). Specifically, u(., .) = ln(c) + bh with b

equal to 3.028. As for the parameters of the monetary policy rule, we set ωy equal to

0.125, which is equal to 0.5 when inflation and interest rates are annualized, ωπ equal

to 1.5, and ρR equal to 0.75. These are relatively standard in the literature (see, for

instance, Woodford, 2003, Chapter 1).

5 Quantitative analysis

This Section first reports the cross-correlations of the model’s variables with output.

It then displays impulse-response functions in order to bring out the mechanism

behind the cross-correlations. Finally, it reports cross-correlations for alternative

parameterizations. It also links our results with the previous literature by comparing

our model’s implications with those of Freeman and Kydland’s (2000) model.
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5.1 The baseline experiment

Figure 6 displays the main results for our baseline calibration. As Figure 1 it

plots correlations between yt (real GDP) and MBt+j, MZMt+j, and DT,t+j for

j = {−5, ..., 0, ..., 5}.13 The correlations are based on 100 draws of sequences of

εt, with the length of each sequence the same as the length of the actual data. As

in the case of the actual data, in each draw the artificial time series were filtered

with the Christiano-Fitzgerald (2003) band-pass filter and the cross-correlations were

recorded. Figure 6 plots the average cross-correlations for the 100 repetitions.

We see that as in the U.S. economy, MZM in the model leads real GDP. In

addition, although in the model time deposits do not lag real GDP, they are more

positively correlated with past GDP than with future GDP. In contrast to the data,

however, the model generates a strongly lagging monetary base.

Table 2 reports cross-correlations between real GDP and some additional macro

variables for the United States and the model economy. As in the U.S. economy,

consumption, investment, and hours worked in the model are strongly procyclical.14

Although our model has a two-stage production process, these results are in line

with those of a prototypical business cycle model set off by technology shocks (e.g.,

Cooley and Prescott, 1995).

In addition, in line with the U.S. data, the model generates movements in labor

productivity (real GDP per hour worked) that lead movements in output. This

dynamics of labor productivity has been highlighted as an important feature of the

U.S. business cycle by, among others, Christiano and Todd (1996). Also in line with

13Lt, which is constrained according to equation (26) by movements in Yt and pt, is in all experi-
ments strongly procyclical with no phase shift, and is therefore omitted from this and the following
figures.

14Consumption in the data is measured as the sum of nondurables, services, and government
consumption. Investment is constructed as the sum of durables, private fixed investment, government
fixed investment, and the change in inventories. In the model, investment is defined accordingly as
the sum of IKt and a change in input inventories.
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the U.S. data, the change in input inventories in the model (dXt = IXt − rXtXt), as

well as bank lending Q, lead real GDP.15 Finally, the price level is countercyclical

both in the data and in the model, but the model does not generate the observed

lead-lag relationship between the price level and real GDP.

As the movements in monetary aggregates in our model are primarily driven

by real economic activity, and by the dynamics of expenditures on consumption,

capital accumulation, and intermediate inputs in particular, it is important that the

model generates dynamics of these variables that are broadly in line with the U.S.

data. Furthermore, as the multi-stage feature of the production process is a crucial

element of our model (as the next subsection shows), it is also desirable that it

implies dynamics of labor productivity that are not out of line with respect to the

U.S. experience.

5.2 Impulse-responses

Figure 7 plots the responses of key variables to a 1% increase in total factor produc-

tivity in period 1 in order to demonstrate the mechanism generating the results in

Figure 6 and Table 2. The top panel shows responses of expenditures on consump-

tion Ct, capital accumulation IKt, and intermediate inputs IXt, together with the

response of real GDP yt. On impact, real GDP somewhat increases but it does not

reach its peak until period 2 due to the two-stage production process. Consumption

increases on impact due to consumption smoothing and continues to slightly increase

for several periods afterwards. Expenditures on intermediate inputs also increase on

impact. This is because intermediate inputs accumulated in period 1 increase the

marginal product of primary factors of production, capital and labor, in period 2.

After period 1, IXt returns slowly back to its steady state. Finally, expenditures on

15Defining the change in input inventories as IXt − Xt does not change this result.
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investment in capital IKt somewhat fall on impact but increase sharply in period 2,

after which they slowly return back to their steady state.

The mid-left panel shows the responses of the optimal cut-off j’s. As expendi-

tures on consumption and intermediate inputs increase in period 1, the sizes of these

types of purchases increase across all j’s. As discussed in Section 3, this makes it

profitable to use checkable deposits for more goods. Both jCt and jXt therefore fall.

As expenditures on investment increase in period 2, jKt also falls in that period.

The movements in jCt and jXt in period 1, and in jKt in period 2, are reflected

in the changes in the balances of checkable deposits used for expenditures on Ct,

IKt, and IXt, plotted in the mid-right panel. In particular, the declines in jCt and

jXt in period 1 are reflected in the pick-ups in that period in the real balances of

checkable deposits used for consumption and intermediate input purchases, defined

as DC,C,t ≡ [1−(jCt)
1−ωC ]Ct/(nt +1) and DC,X,t ≡ [1−(jXt)

1−ωX ]IXt/(nt +1), respec-

tively. And the decline in jKt in period 2 is reflected in the increase in that period in

the real balances of checkable deposits used for expenditures on investment, defined

as DC,K,t ≡ [1 − (jKt)
1−ωK ]IKt/(nt + 1).

The bottom left panel plots the responses of time deposits DTt and the frequency

of withdrawals nt. Notice that both nt and DTt increase in period 2 as IKt increases.

This is because, as discussed in Section 3 in relation to equation (28), increases in

Ct, IXt, or IKt, increase nT . As all three types of expenditures are above their steady

states in period 2, nt increases in that period (in period 1 instead the increase in

C and IX is somewhat counterbalanced by the decline in IKt). The increase in nt

in turn reduces the size of all purchase sizes per withdrawal, making jCt and jXt to

increase in period 2. These increases in jCt and jXt occur because the average sizes of

consumption and intermediate input expenditures are smaller than the average size

of investment expenditures. A given increase in nt thus has a bigger effect on jCt
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and jXt than on jKt. As a result, the real balances of checkable deposits used for

purchases of consumption and intermediate inputs fall in period 2 and the consumer

ends up using checkable deposits predominantly for expenditures on investment.

The overall effect of this rebalancing on MZM is summarized in the response of

this aggregate plotted in the bottom-right panel. The initial increase in DC,C,t and

DC,X,t in period 1 increases MZM on impact, before the full rise in real GDP in

period 2. And as the effect of the increase in DC,K,t in period 2 on MZM is smaller

than the effect of the declines in DC,C,t and DC,X,t in that period, MZM peaks in

period 1, rather than in period 2. MZM thus leads real GDP.

The shift away from currency to checkable deposits in period 1 also causes a sharp

fall in MB on impact. This is because a dollar fall in the demand for currency is

compensated by an increase in the demand for reserves of only α dollars. Subse-

quently, MB recovers and starts to increase, as the size of purchases, and thus the

use of checkable deposits in transactions, begins to fall.

5.3 Alternative parameterizations

Figure 8 reports the cross-correlations for MZMt, DTt, and MBt under alternative

parameterizations in order to further investigate the mechanism and the model’s

ability to account for the data. In particular, we consider alternative steady-state

checkable deposits to currency ratios as well as equal treatment of the three purchase

types (i.e., ωC = ωK = ωX = −1 and jC = jK = jX). Finally, we also compare the

predictions of our model with those of Freeman and Kydland (2000) model, hereafter

referred to as the FK model. As mentioned in the Introduction, the FK model is one

of the few models in the literature incorporating different monetary aggregates into a

dynamic general equilibrium. And as their modeling approach is the closest to ours,

their model is a natural benchmark with which to compare our results.

26



The top-left panel of Figure 8 plots the cross-correlations when the steady-state

checkable deposits to currency ratio is equal to 12.5 (in the baseline case the ratio

is 20.8). This ratio is obtained when all saving deposits in the United States are

excluded from our measure of checkable deposits. As a result the implied costs of

using checkable deposits are higher than in the baseline case, as the cash intensity is

higher. Under this alternative calibration the phase shift of MZM is much stronger

than in the baseline case. In fact, MZM now leads real GDP by about as much as in

the data (in both cases by about three quarters). Furthermore, time deposits in the

model lag real GDP almost as much as in the data (three compared to four quarters).

The top-right panel shows the results for the opposite case when all saving deposits

are included in our measure of checkable deposits. The average checkable deposits to

currency ratio is now equal to 29.17 and the implied costs of using checkable deposits

are smaller than in the baseline case. In this case both MZM and time deposits

become more coincident with the cycle.

In both cases, the dynamics of the monetary base, which is out of line with respect

to the data in the baseline case, becomes largely unaffected. This is further discussed

at the end of this subsection.

The bottom panel of Figure 8 shows the results when we make the steady-state

cash intensity, as well as the purchase-size function, identical across the three purchase

types. Specifically, the purchase-size function is now linear. We see that in this case

the lead in MZM largely disappears. This is because demand for checkable deposits

now reaches its peak at the same time as real GDP. Essentially, the rise in DC,C,t

and DC,X,t in period 1 is not big enough and MZM reaches its peak with the rise in

DC,K,t in period 2.

Finally, Figure 9 compares the cross-correlations for MZM in our model with

those in the FK model. Freeman and Kydland (2000), however, assume that the
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monetary authority follows a constant money growth rule, ln(MBt)−ln(MBt−1) = µ.

In order to make our model comparable with theirs, we replace the Taylor rule with

this constant money growth rule. This way we also investigate the extent to which the

results are driven by the endogeneity of monetary base that occurs due to the Taylor

rule, and thus the quantitative importance of Tobin’s channel of reverse causality in

our model.

When we assume a constant money growth rule, our model differs from the FK

model only by the multi-stage feature of the production process, the requirement

that all three types of purchases are made with cash or checkable deposits (only

consumption is subject to such a constraint in the FK model), and the presence of

time deposits.16

When MBt is exogenous, the price level pt is determined in a market for fiat

money by equating the supply of fiat money with the demand for its real balances

so that the money market clearing condition (15), when expressed in real terms, is

satisfied.

As the monetary base is now exogenous, it is uncorrelated with real GDP. The

amount of monetary base used as currency, however, is still endogenous. We therefore

plot cross-correlations for Mt in Figure 9 instead of those for MBt. We see that even

under a constant money growth rule MZM leads real GDP in our model, although

less so than under the Taylor rule. In contrast, in the FK model it slightly lags. The

fact that MZM leads output under both the Taylor rule and the constant money

growth rule implies that, at least in our setup, the Friedman-Schwartz observation

is driven by endogenous creation of deposits in response to real activity, rather than

the endogenous nature of fiat money.

Notice that in both models currency is countercyclical and its cross-correlations

16Freeman and Kydland (2000) refer to the aggregate in their model consisting of currency and
checkable deposits as M1.
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with real GDP are a mirror image of the cross-correlations of MZM . This behavior

of currency also drives the lagging character of the monetary base in our model. In

order to overturn this result and bring the movements in the monetary base closer to

the data, perhaps more complicated purchase-size functions would be required. Such

functions need to generate a rise in the checkable deposits to currency ratio when

expenditures on consumption and intermediate inputs increase, in order to generate

the lead in MZM , but at the same time also increase demand for currency.17

6 Conclusion

The empirical regularity that over the business cycle movements in monetary aggre-

gates, such as MZM , precede movements in output has led to two broad lines of work.

One line of work develops theories based on important nominal rigidities that make

movements in money cause movements in output. The other line of work explores

the possibility that the observed money-output correlations are due to systematic

responses of the Federal Reserve to the economy or due to the endogenous nature

of deposit creation. Previous studies, however, have found that when incorporated

into quantitative dynamic general equilibrium models, reverse causality channels do

not, by themselves, generate the observed lead-lag relationship between money and

output. Indeed, in contrast to the data, monetary aggregates, such as M2 or MZM ,

tend to lag output in such models.

We revisit the question if reverse causality can account for the observed dynamics

of money data in relation to output. Incorporating an optimal choice of the mix

of cash, checkable, and time deposits into an equilibrium business cycle model with

purchase-size heterogeneity and multi-stage production, we find that when calibrated

17We have experimented with different parameterizations of our purchase-size functions but did
not find a set of parameter values that would generate the observed behavior of both MZM and
MB at the same time.
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to the U.S. economy, the model produces movements in MZM , time deposits, and

the broad aggregate L in relation to output that are consistent with the post-war

U.S. experience – MZM leads output, time deposits lag output, and the L aggregate

is broadly coincident with output.

A key mechanism generating this result is that, following a positive aggregate

technology shock, but before output reaches its peak, agents start making purchases

for which it is optimal to use checkable deposits. Although the central bank in our

model responds to the economy by following a Taylor rule, the dynamics of monetary

aggregates are primarily determined by endogenous creation of deposits in response

to changes in the demand for different means of payment. This result is broadly in

line with the empirical finding documented in this paper that both before and after

the 1979 monetary policy change the lead-lag empirical relationship between MZM

and output, and between time deposits and output, stayed qualitatively the same.

We have kept the model economy intentionally simple along many dimensions in

order to focus squarely on the reverse causality channels, and to transparently bring

out their mechanisms. We have thus abstracted from various sources of nominal

rigidities, such as sticky prices and wages, and various forms of limited participation

in money markets that give rise to money nonneutralities. We do not claim that

such frictions play no role in the dynamics of real or nominal variables. Our analysis

simply points out that the endogenous nature of deposit creation in response to

developments in real economic activity, thought by previous studies to be unable to

explain the empirical lead-lag relationships between money and output, can go a long

way in accounting for such empirical regularities once the multi-stage nature of the

production process and purchase-size heterogeneity of consumption, investment, and

intermediate goods are taken into account.
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Figure 1: Correlations between monetary aggregates in period t+j
and real GDP in period t for logged data filtered with Christiano-
Fitzgerald (2003) band-pass filter, 1959.Q1-2003.Q4.

34



−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

MB

MZM

Time dep.

L

j

LagsLeads

Figure 2: Correlations between deflated monetary aggregates in
period t + j and real GDP in period t for logged data filtered with
Christiano-Fitzgerald (2003) band-pass filter, 1959.Q1-2003.Q4.
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Figure 3: Cross-correlations between monetary aggregates and real GDP in
two subsamples. Solid line – 1959.Q1-1979.Q3; dashed line – 1979.Q4-2003.Q4
(1979.Q4-1997.Q4 in the case of time deposits and the L aggregate).
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Figure 4: Cross-correlations between deflated monetary aggregates and real
GDP in two subsamples. Solid line – 1959.Q1-1979.Q3; dashed line – 1979.Q4-
2003.Q4 (1979.Q4-1997.Q4 in the case of time deposits and the L aggregate).
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Table 1: Baseline calibration

Symbol Value Definition

Preferences
β 0.994 Discount factor
b 3.028 Weight on leisure

Production
θ 0.36 Capital share in GDP
ν 4.0 Parameter governing elasticity

of substitution
ζ 9.026 ∗ 10−4 Weight on intermediate goods
δK 0.025 Depreciation rate for capital
δX 1.0 Depreciation rate for

intermediate goods
ρz 0.95 Persistence of the technology shock
σz 0.0076 Standard deviation of εz

Banks
α 0.1 Required reserves ratio

Unit costs for:
ΩT 0.0571 time deposits
ΩC 0.0581 checkable deposits

Transaction technology
Curvature of the purchase-size

function for:
ωC -0.5 consumption goods
ωK -2.0 capital goods
ωX -1.0 intermediate goods
φ 1.577 ∗ 10−4 Cost of withdrawal from time deposits

Cost of use of checkable deposits
in purchases of:

γC 0.0014 consumption goods
γK 4.16 ∗ 10−5 capital goods
γX 2.579 ∗ 10−4 intermediate goods

Monetary policy
π 0.014 Steady-state inflation
ωy 0.125 Fed’s reaction to output
ωπ 1.5 Fed’s reaction to inflation
ρR 0.75 Smoothing coefficient

38



0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

C(j)

I
X
(j)

I
K

(j)

j

Figure 5: Purchase-size functions for baseline parameteriza-
tions: C(j) = 1.5j0.5, IX(j) = 2j, IK = 3j2.
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Figure 6: Results for baseline calibration.
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Table 2: Cross-correlations for additional variables

Correlation of Real GDP with:
Variable x x(t-5) x(t-4) x(t-3) x(t-2) x(t-1) x(t) x(t+1) x(t+2) x(t+3) x(t+4) x(t+5)

U.S. economy, 1959.Q1-2003.Q4
GDP 0.03 0.26 0.52 0.76 0.94 1.00 0.94 0.76 0.52 0.26 0.03
Consumption -0.17 0.06 0.29 0.51 0.69 0.80 0.83 0.78 0.68 0.54 0.38
Investment 0.11 0.31 0.55 0.77 0.92 0.96 0.86 0.66 0.39 0.12 -0.11
Change in inp. inventories 0.42 0.58 0.70 0.73 0.62 0.40 0.12 -0.16 -0.37 -0.50 -0.54
Hoursa -0.31 -0.09 0.18 0.46 0.71 0.88 0.94 0.89 0.75 0.56 0.34
Labor productivity 0.74 0.81 0.81 0.73 0.58 0.36 0.12 -0.12 -0.33 -0.47 -0.54
Bank lending 0.22 0.37 0.53 0.64 0.68 0.63 0.50 0.31 0.11 -0.09 -0.25
Price level -0.40 -0.58 -0.73 -0.81 -0.84 -0.79 -0.68 -0.53 -0.34 -0.14 0.06

Baseline calibration
GDP (y) -0.09 0.07 0.33 0.64 0.90 1.00 0.90 0.64 0.33 0.07 -0.09
Consumption (c) -0.23 -0.04 0.25 0.57 0.82 0.92 0.85 0.67 0.46 0.29 0.18
Investment (iK + dX) -0.05 0.11 0.37 0.67 0.91 0.99 0.87 0.58 0.25 -0.02 -0.18
Change in inp. inventories (dX) 0.29 0.52 0.67 0.63 0.35 -0.08 -0.47 -0.67 -0.63 -0.43 -0.21
Hours (H) -0.10 -0.02 0.17 0.46 0.76 0.96 0.95 0.73 0.40 0.08 -0.14
Labor productivity (y/H) -0.05 0.24 0.59 0.85 0.93 0.81 0.54 0.27 0.09 0.03 0.04
Bank lending (Q) 0.17 0.36 0.58 0.69 0.57 0.23 -0.21 -0.56 -0.69 -0.59 -0.37
Price level 0.54 0.52 0.45 0.31 0.12 -0.09 -0.28 -0.42 -0.49 -0.51 -0.50

Note: Except for the change in input inventories, which is measured relative to the stock, all series are in logs. Before
computing the statistics, the data were filtered with the Christiano-Fitzgerald (2003) band-pass filter. The entries for
‘baseline calibration’ are averages for 100 runs of the model, with each run of the length of 168 periods. Like the data,
the artificial series in each run were filtered with the Christiano-Fitzgerald (2003) band-pass filter.
a Hours are from the Establishment Survey, 1964.Q1-2000.Q4.
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Expenditures and real GDP
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Figure 7: Responses to a 1% increase in total factor productivity,
baseline calibration.
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Smaller steady-state DC/M than Larger steady-state DC/M than

in baseline (DC/M = 12.5) in baseline (DC/M = 29.17)
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Equal treatment of purchase types:

ωC = ωK = ωX = −1 and jC = jK = jX
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Figure 8: Alternative parameterizations of the transaction tech-
nology.
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Figure 9: The model under a money growth rule and the Freeman
and Kydland (2000) model; in both cases log(MBt)−log(MBt−1) =
µ.
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