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Abstract

We define a new solution concept for an undiscounted dynamic game - a perfect uni-
form normal-form constant-expectation correlated approximate equilibrium with a
canonical and universal correlation device. This equilibrium has the following appeal-
ing properties: (1) “Trembling-hand” perfectness - players do not use non-credible
threats; (2) Uniformness - it is an approximate equilibrium in any long enough finite-
horizon game and in any discounted game with a high enough discount factor; (3)
Normal-form correlation - The strategy of a player depends on a private signal he
receives before the game starts (which can be induced by “cheap-talk” among the
players); (4) Constant expectation - The expected payoff of each player almost does
not change when he receives his signal; (5) Universal correlation device - the device
does not depend on the specific parameters of the game. (6) Canonical - each signal
is equivalent to a strategy. We demonstrate the use of this equilibrium by proving
its existence in every undiscounted multi-player stopping game.

Key words: Keywords: stochastic games, stopping games, perfect correlated
equilibrium, distribution equilibrium, Ramsey Theorem. JEL classification: C73

1 Introduction

Consider the following example of strategic interaction in the financial mar-
kets:
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Example 1 The Bureau of Labor Statistics publishes each month a news re-
lease on U.S. employment situation (ES). This news release is announced
in the middle of the trading day in the European stock markets.? The ES
announcement has strong impact on these markets (see Nikkinen et al. [25]
and the references within). Empirical studies (see for example, Christie-David,
Chaudhry and Khan [6]) show that a few dozen minutes elapse before financial
instruments adjust to such announcements. This gap of time (the “adjustment
period”) may provide an opportunity for substantial profit by quick trading
(“news-playing”). Consider the strategic interaction between a few traders of a
financial institution that coordinate their trading actions in the adjustment pe-
riod. Fach trader is responsible for some financial instruments, and can make
buy and sell orders for these instruments during the adjustment period. The
traders share a common objective - maximizing the profit of the institution.
In addition to this, each trader has also a private objective - mazrimizing the
profit that is made in financial instruments that are under his responsibility
(which influence his bonuses and prestige).

Three natural questions arise when modeling the strategic interaction among
the traders in this example: (1) Which kind of game should be used? (2) Which
solution concept should be chosen? (3) Is it possible to prove the existence of
this solution in this game? which simplifying assumptions are needed?

We begin by dealing with the first question. The adjustment period is relatively
short in absolute terms - a few dozen minutes. Nevertheless, the traders have
many opportunities to act, as they can make different orders in each fraction of
a second. In addition, the point in time where the markets have fully adjusted
may not be known to the players in real-time. Thus, it seems more appropriate
to model this situation as a stochastic (dynamic) game with infinite-horizon,
rather then modeling it as a game with a fixed finite large number of stages (see
Rubinstein [30, Sect. 5], for a discussion why even short strategic interactions
may be better analyzed as infinite-horizon games).

Each buy order induces a single-stage profit (or loss) that depends on the
difference between the value of the bought amount at the buying time and at
the end of the adjustment period, and similarly for sell orders. The total payoft
of each trader depends on his own profit (the sum of his single-stage profits)
and on the profit of all the traders in the company. As all profits and losses
are accumulated in the same day, it is natural to assume that these sums are
undiscounted: there is no difference between earning a dollar at early or late
stages of the game.

Due to the above arguments we model the interaction in example 1 as an
undiscounted infinite-horizon stochastic game. We now deal with the second

2 Tt is published on the first Friday of each month at 13:30 London time (8:30
Eastern Time).



question: which solution concept is appropriate for this game. In order to
avoid the use of equilibria that rely on “non-credible” threats of punishment, we
require the solution concept to satisfy the standard requirement of “trembling-
hand” perfection (Selten, |31]).?

Aumann (|1]) defined the concept of correlated equilibrium in a finite normal-
form game as a Nash equilibrium in an extended game that includes a corre-
lation device, which sends a private signal to each player before the start of
play. The strategy of each player can then depend on the private signal that
he received.* It is well known that a correlation device can be induced by
pre-play non-biding communication among the players (“cheap-talk”).®

For sequential games, two main versions of correlated equilibrium have been
studied (see e.g., Forges [10]): normal-form correlated equilibrium, where each
player receives a private signal only before the game starts, and extensive-form
correlated equilibrium, where each player receives a private signal at each stage
of the game. In example 1, the traders can freely communicate and coordinate
their future actions before the play starts (that is, before the adjustment period
begins). On the other hand, communication and coordination along the play
are very costly: the adjustment period is short (a few dozen minutes), and
each moment that is spent on communication may slow down the traders and
limit their potential profits. Thus, the smaller set of normal-form correlated
equilibria is more appropriate to example 1.°

The above arguments limit the plausible outcomes of the game to the set of
perfect normal-form correlated equilibria. A few papers defined and studied
the properties of perfect correlated equilibria in finite games, see e.g., Myerson
(]20,21]) and Dhillon and Mertens ([7]). As infinite undiscounted games may
only admit approximate equilibria, we generalize the definition of the last

3 In the rest of this paper we use the shorter term “perfection” to denote “trembling-
hand” perfection.

4 Correlated equilibria in finite games have a number of appealing properties. They
are computationally tractable. Existence is verified by checking a system of linear
inequalities rather than a fixed point. The set of correlated equilibria is closed and
convex. Aumann (|2]) argues that it is the solution concept consistent with the
Bayesian perspective on decision making.

® Ben-Porath (|4]) shows that if there are at least three players and if there are two
distinct Nash equilibrium payoffs for each player, then each correlated equilibrium
distribution can be implemented as a perfect Nash equilibrium of an extended game
with pre-play “cheap-talk”. Urbano and Villa ([38]) demonstrate the use of crypto-
graphic methods to achieve similar implementation when there are only two players.
Heller ([14]) shows that the implementation can be done in way that is also resistant
to joint deviations of coalitions.

6 Note that every normal-form correlated equilibrium is an extensive-form correlated
equilibrium, but the converse is not true.



paper, and define a perfect correlated (9, €)-equilibrium, as a strategy profile
where with probability of at-least 1 — §, no player can earn more than € by
deviating at any stage of the game and after any history of play (as formally
defined in Section 2).

We further impose four more requirements from the solution concept:

e Uniformness - An equilibrium of an undiscounted game is uniform if it is an
approximate equilibrium in any long enough finite-horizon stopping game
and in any discounted stopping game with a high enough discount factor.”

o Canonical correlation device - each signal is equivalent to a strategy.

o Universal correlation device - The correlation device does not depend on
the specific payoff functions of the players (it only depends on the number
of players and on €). This property allows the traders to use the same
correlation device for all news-playing interactions, rather than devising a
new correlation device each time.

o Approzimate constant-erpectation equilibrium - Sorin ([37]) defines a distri-
bution equilibrium in a normal-form finite game, as a correlated equilibrium
where the expected payoff of each player is independent of his signal. With-
out this property the implementation of a correlated equilibrium by pre-play
communication is much more complex: a trader who receives a bad signal
that induces a low payoff, may not cooperate in the rest of the communica-
tion, and this may interfere with the construction of the correlated profile.
We generalize Sorin’s definition and define a (6, €)-constant-ezpectation cor-
related equilibrium, as a correlated equilibrium where the expected payoff
of a player almost does not change when he receives his signal.

The first contribution of this paper is the presentation of this new solu-
tion concept for undiscounted dynamic games: a perfect uniform normal-form
constant-expectation correlated approximate equilibrium with a canonical and
universal correlation device. Our second contribution is demonstrating its use
in a specific family of dynamic games (stopping games, described below). We
hope that this concept will be useful in future study of other dynamic games. ®

We now deal with the third question: proving the existence of this equilibrium.
We prove it under two simplifying assumptions on the strategic interaction.
Each trader in example 1 may act several times during the adjustment phase.
Specifically, for each financial instrument under his responsibility, the trader
chooses a stage to buy and a stage to sell. Our first simplifying assumption
assumes that each trader only acts once: he chooses a single stage in the
entire game where he “stops” - makes a single buy or sell order. The second

" See Aumann and Mashcler ([3]) for arguments in favor of this notion.

8 Our definition is analog to the notion of sub-game perfect (9, €)-equilibrium pre-
sented in Mashiah-Yaakovi ([17]), where it is proven that such equilibrium exists in
multi-player stopping games where at any stage a single player is allowed to stop.



simplifying assumption requires that throughout the game, the traders have
symmetric information on the financial markets (such as past prices of the
different markets).

Our model of the strategic interaction and the solution concept, are also ap-
propriate in other situations, as demonstrated in the following examples.

Example 2 A few countries plan to ally together in a war against another
country. The allying countries share a common objective - maximizing the mil-
itary success against the common enemy. In addition to this, each country has
private objectives, such as maximizing the territories and resources it occupies
during the war, and minimizing its losses.

Example 3 A few male animals compete over the relative positions they shall
occupy in the social hierarchy or pack order. This competition is often settled by
“a war of attrition” (Maynard Smith, [18]). In such a contest the animals use
“ritualized” fighting and do not seriously injure the opponents. The winner is
the contestant who continues the war for the longest time. Fxcessive persistence
has the disadvantages of waste of time and energy in the contest.

Examples 2 and 3 share similar properties to example 1. These similarities
make our model and solution concept appropriate to these examples as well:

e In both examples, the war is relatively short in absolute time (a modern
war typically lasts a couple of weeks; a war of attrition usually lasts a few
hours or days). Nevertheless its length is not bounded, and it consists a
large unknown number of stages. Thus, it seems appropriate to model these
situations as undiscounted infinite-horizon stochastic games.

e Normal-form correlation is appropriate to both examples. The country Rep-
resentatives in example 2 can communicate and coordinate their future ac-
tions before the war begins. On the other hand, secure communication and
coordination during the war is costly and noisy. Shmida and Peleg (|33])
discuss how a normal-form (but not extensive-form) correlation device can
be induced in nature by phenotypic conditional behavior. °

e FEach country in example 2 does many actions in the battlefield, but usually
only a few of them are crucial to the outcome of the war. A simplifying
model may concentrate on the most important action of each country, such
as the timing of the main military attack. The only choice of strategy of
each animal in example 3, is the maximal period for which he is prepared to
continue in the contest (and this period may depend on the set of animals

9 They present an example ([33, Section 5]) of butterflies who compete for sunspot
clearings in a forest in order to fertilize females. When two butterflies meet in a
sunspot, they engage in a war of attrition. The period of time each butterfly was in
the spot before the fighting, is used as a normal-form correlation device: a “senior”
butterfly stays for a long time in the war, while a “new” butterfly gives up early.



who are still competing).

e The constant-expectation requirement defined earlier is specially appeal-
ing in a biological setup as in example 3. As discussed in [37], constant-
expectation is a necessary requirement for the stability of the population in
evolutionary setups. 1°

Under the two simplifying assumptions mentioned earlier, the strategic inter-
action is a stopping game. An undiscounted discrete stopping game is played
by a finite set of players. There is an unknown state variable, on which play-
ers receive symmetric partial information along the game. At stage 1 all the
players are active. At every stage n, each active player declares, independently
of the others, whether he stops or continues. A player that stops at stage n,
becomes passive for the rest of the game. The payoff of a player depends on
the history of actions while he has been active and on the state variable.

Stopping games have been introduced by Dynkin ([8]) as a generalization of
optimal stopping problems, and later used in several models in economics,
management science, political science and biology, such as research and de-
velopment (see e.g., Fudenberg and Tirole [11] and Mamer [16]), struggle of
survival among firms in a declining market (see e.g., Fudenberg and Tirole
[12], Ghemawat and Nalebuff [13|, and Fine and Li [9]), auctions (see e.g.,
Krishna and Morgan [15]), lobbying (see e.g., Bulow and Klemperer [5]), and
conflict among animals (see e.g., Nalebuff and Riley [22]).

Much work has been devoted to the study of undiscounted 2-player stopping
games. This problem, when the payoffs have a special structure, was stud-
ied, among others, by Neveu ([24]), Mamer ([16]), Morimoto ([19]), Ohtsubo
(|27]), Nowak and Szajowski ([26]), Rosenberg, Solan and Vieille (|29]), and
Neumann, Ramsey and Szajowski ([23]). Those authors provided various suffi-
cient conditions under which (Nash) e-equilibria exist. Recently, Shmaya and
Solan (|32]) have proved the existence of (Nash) e-equilibria assuming only
integrability of the payoffs. In contrast with the 2-player case, there is no
existence result for e-equilibria in multi-player stopping games.

Our main result shows that for every ¢, ¢ > 0, a multi-player stopping game ad-
mits a perfect normal-form constant-expectation correlated (d, €)-equilibrium
with a canonical and universal correlation device. The proof relies on using
stochastic variation of Ramsey’s theorem ([32]) to reduce the problem to that

10 This is demonstrated in [37, example 1]. Consider a symmetric two-player game
where the payoff (fitness) is 1 if both players play A, 2 if both play B and 0 otherwise.
Consider a correlated equilibrium in some population: half of the population are type
A - they always play against other A-s and they play action A; the other half are type
B- they always play against other B-s and they play action B. This equilibrium does
not satisfy the constane-expectation property, and it is not atable in an evolutionary
setup: type B gets a higher fitness and they would invade the whole population.



of studying the properties of correlated e-equilibria in multi-player absorbing
games. ! The study uses the result of Solan and Vohra [36] that any multi-
player absorbing game admits a correlated e-equilibrium.

The paper is arranged as follows. Section 2 presents the model and the result.
A sketch of the proof appears in Section 3. In Section 4 we reduce the problem
to induced games “deep enough” in the tree. Section 5 studies games played on
finite trees. In Section 6 we use the stochastic variation of Ramsey’s theorem,
which allows us to construct a perfect correlated (d, €)-equilibrium in Section
7. The formal model in Sections 2-7 deals only with stopping games that
terminate as soon as any of the players stop. In Section 8 we discuss how to
apply our result for more general stopping games.

2 Model and Main Result

Definition 4 A stopping game is a 6-tuple G = (1,9, A, p, F, R) where:

I is a finite set of players;

(22, A, p) is a probability space;

o F = (Fn),s is a filtration over (Q,.A, p);

R = (Rn)nzo is an F-adapted RII-2"=1)_yalued process. The coordinates
of R, are denoted by Ry, wherei e [ and ) #S C N.

A stopping game is played as follows. At each stage n, each player is informed
which elements of F,, include w (the state of the world), and declares, indepen-
dently of the others, whether he stops or continues. If all players continue, the
game continues to the next stage. If at-least one player stops, say a coalition
S C I, the game terminates, and the payoff to player 7 is RZS” If no player
ever stops, the payoff to everyone is zero.

Remark 5 Definition 4 describes games that end as soon as one of the players
stop. In Section 8 we discuss how to extend our results to more generalized
stopping games where a player that stops gets his payoff and becomes passive
for the rest of the game, and the game continues with the other players.

Definition 6 defines a correlation device:

Definition 6 A (normal-form) correlation device is a pair D = (M, u): (1)
M = (M"),;, where M" is a finite space of signals the device can send player
i, and (2) u € A (M) is the probability distribution according to which the
device sends the signals to the players before the stopping game starts.

11 An absorbing game is a stochastic game with a single non-absorbing state.



Given a correlation device D, we define an extended game G (D). The game
G (D) is played exactly as G, except that before the game starts, a signal
combination m = (m'),_; is drawn according to u, and each player 7 is privately
informed of m’. Then, each player may base his strategy on his signal.

For simplicity of notation, let the singleton coalition {i} be denoted as i,
and let —i = {I\i} denote the coalition of all the players besides player i. A
(behavioral) strategy for player i € I in G (D) is an F-adapted process z* =
(25),0, Where z : (Q x M") — [0,1]. The interpretation is that z! (w, m")
is the probability by which player i stops at stage n when he has received
a signal m’. A strategy profile x = (2'),; is completely mized if at each
stage, given any signal, each player has a positive probability to stop and a
positive probability to continue. Formally: for each i € I, m* € M, n € N:
0 <zl (w,m') <1

Consider a function that assigns a correlation device to each stopping game,
given some positive values of § and e. We say that the assigned correlation
device is universal if it depends only on the number of players and e.

Definition 7 Let f be a function that assigns to each stopping game G and
to each €¢,0 > 0 a correlation device f(G,¢,0) = D(G,¢,d). The function f
is universal if the assigned correlation device depends only on the number
of players and e: D(G,¢,5) = D(|I],¢). Given such a function, we call the
assigned device a universal correlation device.

A correlation device D = (M, p) is canonical if each signal m® € M' is equiv-
alent to a strategy of player i.

Definition 8 Let G be a stopping game. A correlation device D = (M, ) is
canonical given the strategy profile x in G (D) if , for each player i there is an
injection between M* and his set of strategies in G. That is x (m') # z (m")
for each m® # m/t. 12

Let 6; be the stage in which player ¢ stops and let #; = oo if player ¢ never
stops. If 0; < oo let Sy, C I be the coalition that stops at stage 6;, and if
0; = oo let Sy, C I be the coalition of players who never stops in the game.
The expected payoff of player i under the strategy profile z = (z%) ieq 18 given

by 7 (z) = E, (Rf%.ﬁi) where the expectation E, is with respect to (w.r.t.)
the distribution P, over plays induced by z. Given an event E C Q, let 7' (z|E)
be the expected payoff conditioned on E: v (z|E) = E, ( Z;5’92_|E>, and let it
arbitrarily equal to 0 when p (E) = 0.

12 The standard definition of canonical correlation device for finite games, is that
the set of signals is equal to the set of strategy profiles. Our definition is somewhat
different because the set of signals is finite, while the set of strategies is infinite.



Given a correlation device D and d,¢ > 0, we say that a profile z has (J, €)-
constant-expectation if with high probability the expected payoff of a player
almost does not change when he obtains his signal. '

Definition 9 Let G be a stopping game, ¢,0 > 0, D = (M, 1) a correlation
device. The strategy profile x in G(D) is (0, €)-constant-ezpectation if there
is a set M’ C M satisfying u(M’) > 1 — §, such that for every player i € I
and every signal m' € (M')": |y'(z|m’) — ~v(z)| < €, where 7*(z|m?) is the
expected payoff of player ¢ where all players follow x, conditioned on that
player i received a signal m'’.

The strategy ' is e-best reply for player i when all his opponents follow 2~ if
for every strategy y' of player i: 7' () > ~' (z7%, 3") — e. Similarly, 2 is e-best
reply conditioned on E if 4! (z|E) >~ (z7%, y'|E) — e.

Given w € Q let H, (w) C F, be the elements F, that include w: H, (w) =
{F, € F,|w € F,}, and let 'H,, the set of all such sets: H,, = {H, (w) |w € Q}.
Let G(H,, D) be the induced stopping game that begins at stage n, when the
players are informed of H,, € H,, (i.e, they are informed that the elements of
F,, that include w are the elements of H,,). For simplicity of notation, we use
the same notation for a strategy profile in G (D) and for the induced strategy
profile in G(H,, D). We now define a few auxiliary definitions that are used
to define a perfect correlated (0, €)-equilibrium. The definition extends [7]’s
definition of perfect correlated equilibrium in normal-form finite games.

Definition 10 Let G (D) be a stopping game, let £ C 2 be an event, let
M'" C M be a set of signal profiles, and let € > 0. A strategy profile z = (xi)iel
is a perfect e-equilibrium of G (D) conditioned on E and given M', if there
exists a sequence (Y)pen—(¥i) pen.ier Of completely mixed strategy profiles in
G (D), and a sequence (ex),on (0 < € < 1) converging to 0, such that for all
1€I,neN, H, € H,, x'is e-best reply for player ¢ € I in the induced game
G(H,, D) when all his opponents j € —i use (1 — ¢;) 27 + eyl conditioned on
E and given that the signal profile is included in M.

That is, x is a perfect e-equilibrium conditioned on E and given M’, if it is a
limit of completely mixed profiles v, such that for each player i, 2° is is e-best
reply for y, ' whenever the state w is in E and the signal profile is in M'.

Remark 11 In the setup of stopping games, the history up to stage n only
includes the symmetric information on w, which is given by H, € H,. In a
more general stochastic game, Def. 10 would remain the same, except that 'H,
should be modified to denote the set of all possible histories of length n.

13 This generalizes [37]’s definition of distribution equilibrium for finite normal-form
games, which was discussed in Section 1.



A profile is a perfect (9, €)-equilibrium if it is an e-equilibrium conditioned on
E and given M’, where E and M’ have probabilities of at least 1 — 4.

Definition 12 Let G (D) be a stopping game and let §,¢ > 0. A profile
x = (2'),.; is a perfect (0, €)-equilibrium of G (D) if there exists an event £ C Q
and a set of signal profiles M’ C M, such that p(E) > 1 —0, u(M') > 1 — 4,
and z is a perfect e-equilibrium of G (D) conditioned on E and given M.

Finally, we define a perfect correlated (0, €)-equilibrium.

Definition 13 Let G be a stopping game and let d, ¢ > 0. A perfect correlated
(0, €)-equilibrium is a pair (D, x) where D is a correlation device and z is a
perfect (0, €)-equilibrium in the extended game G (D).

Our main Result is the following:

Theorem 14 Let §,e > 0 and let G = (I,Q, A, p, F, R) be a multi-player
stopping game such that SUP,e (N oo) |Rnll, € L'(p) (integrable payoffs).

Then for every 0, ¢ > 0, G has a perfect normal-form (0, €)-constant-expectation
correlated (6, €)-equilibrium with a canonical and universal correlation device.

Remark 15 The perfect correlated (6, €)-equilibrium that we construct is uni-
form in a strong sense: it is a (6, 3¢)-equilibrium in every finite n-stage game,
provided that n is sufficiently large. This can be seen by the construction itself
(Prop. 29) or by applying a general observation made by [34, Prop. 2.13|.

3 Sketch of the Proof

In this section we provide the main ideas of the proof. Let G be a stopping
game. To simplify the presentation, assume that F, is trivial for every n,
so that the payoff process is deterministic, and that payoffs are uniformly
bounded by 1. For every two natural numbers £ < [, define the periodic game
G(k,1) to be the game that starts at stage k and, if not stopped earlier, restarts
at stage [. Formally, the terminal payoff at stage n in G(k,1) is equal to the
terminal payoff at stage k + (nmod [ — k) in G.

This periodic game is equivalent to an absorbing game, where each round of
T stages corresponds to a single stage of the absorbing game.'* Moreover, it
has two special properties: It is recursive (payoff in the non-absorbing state
is 0), and there is a unique action profile with a 0 absorbing probability.
Solan and Vohra (36, Prop. 4.10]) proved a classification result for absorbing

14 Recall that an absorbing game is a stochastic game with a single non-absorbing
state.

10



games. Applying it to the two special properties yields that G/(k, 1) has one of
the following: (1) A stationary absorbing equilibrium. (2) A stationary non-
absorbing equilibrium. (3) A correlated distribution 7 over the set of action
profiles in which a single player stops. This distribution has special properties
that allow to construct a correlated e-equilibrium.

Assign to each pair of non-negative integers k < [ an element from a finite
set of colors c(k,l); the color is a couple where the first element, which is 1,
2 or 3, denotes which case of the classification result holds in G(k,[), and the
second element is a vector in a dense subset of [—1,1]" that approximates
the equilibrium payoff in G(k,[). A consequence of Ramsey’s theorem ([28])
is that there is an increasing sequence of integers 0 < k; < ky < ... such that
c(ky, ko) = c(k;, kj41) for every j.

Assume first that k; = 0. A perfect correlated 3e-equilibrium is constructed
as follows. The construction depends on the case indicated by c(kq, ky). If
the case is 1, then between stages k; and k;i; the players follow a periodic
equilibrium in the game G(k;, kj11) with a payoff in an e-neighborhood of the
payoff indicated by c(k1, k2). For this concatenated strategy to be a perfect 3e-
equilibrium in G, it is needed to verify that: (1) The equilibrium in each G(k, ()
is e-perfect. (2) The game is absorbed with probability 1. This is done by giving
appropriate lower bounds to the stopping probability of each G(k;, k;41) in the
first round. If the case indicated by c¢(kq, ko) is 2, then always continuing is an
equilibrium. If the case indicated by c¢(kq, ko) is 3, then we adapt the procedure
presented by Solan and Vohra for the construction of a correlated e-equilibrium
in a quitting game (|35, Section 4.2]). The adaptation is required to allow the
construction of a perfect (6, €)-equilibrium, despite the use of punishments in
the procedure.

If k&1 > 0, then Between stages 0 and kq, the players follow an equilibrium in
the ki-stage game with the terminal payoff that is induced by c(k1, k2). From
stage k; and on, the players follow the strategy described above. It is easy to
verify that this strategy profile forms a 3e-equilibrium.

When the payoff process is general, a periodic game is defined now by two
stopping times p; < po: py indicates the initial stage and po indicates when
the game restarts. We analyze this kind of periodic games, by adapting the
methods presented in [32] for two-player stopping games, and by using their
stochastic version of Ramsey’s theorem.

11



4 Preliminaries

The definitions imply that for every two payoff processes I and R such that
E (supn>0 HR T ) < €, every perfect correlated (6, €)-equilibrium in the
stopping game G = (I,Q, A, p, F, R) is a (J, 3¢)-equilibrium in the stopping
game G = (I,Q,A,p, F, ]:2) Hence we can assume w.l.o.g. that the payoff
process R is uniformly bounded and that its range is finite. Actually, we assume
that for some K € N, Ry, € {O7i%,i%,...,i%} for every n € N. Let
D = 1lier, 0£sct {O, j:%, j:%, e i%} be the set of all possible one-stage payoff
matrices of the stopping game G. Let R, (w) be the payoff matrix at stage n.

Given any payoff matrix d € D, let A; C \/,en Fn be the event that d occurs
infinitely often: Ay = {w € Qli.o. R, (w) = d}, and let By C V,en Fn be the
event that d never occurs after stage k: By = {w € Q|Vn >k, R,(w) # d}.

Since all Ay and By, are in \V/ F,,, there exist Ny € N and sets (Ad, Bd) p €
neN

Fn, such that: (1) For each d € D: AyNBy = 0 and (AdUBd) = Q. (2)

Vd € D, p(AdAa) >1- (3) Vd € D, p (Bano|Ba) > 1 -

3 \DI 3 ID\

Let £ = Ugen ({w € Aglw ¢ Ad} U {w € Bylw ¢ Bd7NO}). Observe that p(E) <

% Forany F € Flet Dy = {d € D|F € fld}, and let o, = max gdii}’d € DF).
That is Dp is the sets of payoff matrices that repeat infinitely often in F', and
. is the maximal payoff a player can get by stopping alone in these matrices.

The following standard lemma shows that it is enough to show that every
induced game G (H,, D) deep enough in the tree (n > Ny) has an approximate
constant-expectation perfect correlated equilibrium.

Lemma 16 Let G be a stopping game, d,¢ > 0, D = (M, ) a correlation
device, M’ C M a set of signals such that u(M’) > 1 — 4§, 7 a bounded
stopping time, and £ C Q) an event such that p(F) > 1 — §. Assume that for
every w € () and for every H = H,(,) € H(), there is a constant-expectation
perfect (6, €)-equilibrium x g of G(H D) condltioned on F and given M’. Then
G (D) admits a constant-expectation perfect (26, 2¢)-equilibrium.

PROOF. Tt is well known that any finite-stage game admits a 0-equilibrium
(see, e.g., [29, Prop. 3.1]). Since 7 is bounded, p(E) > 1—06 and u(M') > 1—9,
the following strategy profile z is a (26, 2¢)-equilibrium in G(D):

e Until stage 7, play an equilibrium in the game that terminates at 7, if no
player stops before that stage, with a terminal payoff v'(zg).
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e [f the game has not terminated by stage 7, play from that stage on the
profile xy in G(H, D).

5 stopping Games on Finite trees

An important building block in our analysis is stopping games that are played
on finite trees. In this section we define these games. discuss their equivalence
with absorbing games, and study some of their properties.

5.1 Finite trees

Definition 17 A stopping game on a finite tree (or simply a game on a tree)
is a tuple T = (1,V, Vieas, 7, Vatop (Cos Py B yery,, ) Where:

e [ is a finite non-empty set of players.

° (V, Vieaf, T <Cv)veV\Vlwf) is a tree, V is a nonempty finite set of nodes,
Vieaf € V is a nonempty set of leaves, » € V is the root, and for each
v € V\Vieas, C, € V\{r} is the nonempty set of children of v. We denote
by Vo = V\Viear the set of nodes which are not leaves.

o Viop C V1 is the set of nodes the players can choose to stop in. Observe
that players can not stop at the leaves.

and for every v € Vi

e p, is a probability distribution over Cy; We assume that Vo € C,: p,(0) > 0.

_ (pi
* R, = (R%S i€l 0£SCI
S stops at that node.

€ D is the payoff matrix at v if a nonempty coalition

A stopping game on a finite tree starts at the root and is played in stages.
Given the current node v € Vy,,, and the sequence of nodes already visited,
the players decide, simultaneously and independently, whether to stop or to
continue. Let S be the set of players that decide to stop. If S # (), the play
terminates and the terminal payoff to each player ¢ is Ri,s- If S =0, anew
node v € CYy is chosen according to ps. The process now repeats itself, with v
being the current node. If v € V\Vy,, then the players can not stop at that
stage, and a new node v € Cy is chosen according to p,. If v € Vjoy then
the new current node is the root r. A game on a tree is essentially played in
rounds, where each round starts at the root and ends once it reaches a leaf.

A stationary strategy of player i is a function z' : Vg, — [0,1]; 2%(v) is
the probability that player 1 stops at v. Let ¢! be the strategy of player 4 that
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never stops, and let ¢ = (¢'),;. Given a stationary strategy profile x = (2),;,
let v4(z) = ~*(z) be the expected payoff under x, and let 7r(x) = 7(x)
the probability that the game is stopped at the first round (before reaching
a leaf). A profile of stationary strategies * = (x;);er is an e-equilibrium of
the game on a tree T if, for each player ¢ € I, and for each strategy v;,

7 (2) > @y —e

Assuming no player ever stops, the collection (p,),cy, of probability distri-
butions at the nodes induces a probability distribution over the set of leaves
or, equivalently, over the set of branches that connect the root to the leaves.
For each set V C Vo, we denote by p; the probability that the chosen branch
passes through V. For each v € V', we denote by F), the event that the chosen
branch passes through v.

5.2 Representative Finite Approximations

In the following subsections we are going to use finite games on trees to rep-
resent periodic stopping games. Since the state space () is arbitrary, while
games on trees only represent games with a finite state space, we need to
approximate F by representative finite partitions. This can be done by using
the method presented in Shmaya and Solan (|32, Sect. 6]). For each number
n > 0 and bounded stopping time o we define a representative finite partition
G of Q such that: (1) G, , refines Gy, whenever k <n and 7 <o. (2) G, ,
is F,-measurable. (3) G, , contains all the information relevant to the players
until o is reached. Given k > 0, w € Q, and 7 > k, let Fj, ; (w) be the element
of Gy - that includes w.

Let n < o be a bounded stopping time, and F' € G, ,. We define the game
on a tree T, ,(F) as follows: The game begins at stage n, when the state
w € F C G,, is randomly chosen (according to p|F). If the game has not
absorbed before reaching stage 7(n), the game restarts at stage n again (and
anew w € ' C G, , is randomly chosen). Players are only allowed to stop in
nodes where the matrix payoff is in Dp (repeats infinitely often in the infinite
stopping game). Formally:

Definition 18 Let G = (1,92, A, p, F, R) be a stopping game , n > 0 a num-
ber, n < 7 a bounded stopping time, (Gj -) -, representative finite approx-
imating partitions of F, and F' € G, , . The game on the finite tree T,, . (F) is

(I, V., Vieass Ty Vstops (Cs Do, Rv)ve\/\vlw,-) where:

o V= U weF {Fk,ﬂ'(w)}a ‘/leaf = LEJF {FT(w),T(w)}7 r=1F s Vstop = {U € V’dv € DF}

n<k<t(w)

e R,, C,, p, are defined by induction. Assume that v € V\V.y and v € Gy,
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for some n < k, then: R, = R, (v), Cp, = {Fgt1.+ € Ger1.7|Fri1+ C v}, and
Po(Fri1,r) = D (Fry1,0v).

5.3  FEquivalence with Absorbing Games

A stopping game on a finite tree T is equivalent to an absorbing game, where
each round of T corresponds to a single stage of the absorbing game (a stochas-
tic game with a single non-absorbing state). As an absorbing game, the game
T has two special properties: (1) It is a recursive game: the payoff in the non-
absorbing state is zero; (2) There is a unique non-absorbing action profile.

Adapting |36]’s Prop. 4.10 to the two special properties gives the following:

Definition 19 Let 7" be a game on a tree, and 7 € I a player. ¢* = max,cvy,,,,
(R;:,v) is the maximal payoff a player can get in T by stopping alone. Let o'
be a node that maximizes the last expression, and let dz € D be the payoff
matrix in that stage.!?

Proposition 20 Let 7 be a game on a finite tree. T has one of the following:

(1) A stationary absorbing equilibrium = # c.
(2) For each player i € I and for each node v € Viygp, : R}, < 0. This implies
that c is a perfect stationary equilibrium.
(3) There is a distribution n € A(I x {9'}) such that:
(a) Sier Py (00,1) = L. R
(b) For each player j € I : 3ie; Py(0',8) - Ry 5 2> ¢
(c) Let the players ¢ € I that satisfy P,(0%,4) > 0 be denoted as the
stopping players. For every stopping player ¢ € [ there exists a player
Ji # i, the punisher of ¢, such that: g* > Riji}jji.
When we want to emphasize the dependency of these variables on the game
T, we write g, 04, np, xp. The equilibrium in case 1 may not be perfect, as
players may use non-credible threats after of-equilibrium path. The following
lemma asserts that a perfect e-equilibrium exists in case 1.

Lemma 21 In case 1 of prop. 20, T admits a stationary absorbing perfect
e-equilibrium x # c.

15 Originally part 3 of Prop. 20 requires that every player would have a unique
pure action that maximizes his payoff, conditioned on that the other players always
continue. This can be achieved by small perturbations on the payoffs (o (€)), such
that Rz,@i is strictly larger than any other payoff Ré,u where v € Viiop.
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PROOF. Let T, be a perturbed version of the game on a tree 7": In T, when a
non-empty coalition wishes to stop at some node, there is a probability € that
the “stopping request is ignored”, and the game continues to the next stage.
In T, under any profile x, any node is reached with a positive probability, thus
non-credible threats cannot be used in a stationary equilibrium. If case 1 of
prop. 20 applies, then T, admits a perfect stationary equilibrium z., and x. is
a perfect stationary absorbing e-equilibrium in 7.

5.4 Limits on Per-Round Probability of Termination

In this subsection we bound the probability of termination in a single round
when a stationary equilibrium z # ¢ exists (case 1 of Prop. 20), by adapting to
the multi-player case the methods presented in [32, Subsec. 5.2| for two players.
We first bound the probability of termination in a single round when the e-
equilibrium payoff is low for at least one player. The lemma is an adaptation
of Lemma 5.3 in [32], and the proof is omitted as the changes are minor.

Lemma 22 Let G be a stopping game, n > 0 a number, o > n a bounded
stopping time, F' € G, », and € > 0. Let x # ¢ be a stationary §-equilibrium in
T,.o(F) such that there exists a player ¢ € I with a low payoff: v'(x) < a% —e.
Then n(c',z™") > £ - ¢', where ¢' = ¢ = p (Uvevswp {FAR@M = a}}) is the
probability that if all the players never stop, the game visits a node v € Vi),

with Ry, , = af in the first round.
We now define a subgame of a game on a tree.

Definition 23 Let 7= (1, V, Vicas,, Vatop: (Co, Do, Ru) ey, ) and let T7 =
(17 V' Viears™'s Vitops (C;,p;,R’v)UeVé) be two games on trees. We say that 7"
is a subgame of T if: V! CV, Vi, = Ve, NV', 1" =7, and for every v € Vj,

C! =C,, p, =py,and R, = R,.

In words, 7" is a subgame of T if we remove all the descendants (in the
strict sense) of several nodes from the tree (V, Vieaf, T (Cv>vevo) and keep all
other parameters fixed. Observe that this notion is different from the standard
definition of a subgame in game theory.

Let T be a game on a tree. For each subset D C V[, we denote by Tp the sub-
game of T generated by trimming 7" from D downward. Thus, all descendants
of nodes in D are removed. For every subgame 7" of T and every subgame
T" of T', let prvqr = pyr v , be the probability that the chosen branch in

leaf’ " lea

T passes through a leaf of T” strictly before it passes through a leaf of T".
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The following definition divides the elements of G, , into two kinds: simple and
complicated. This division will be used in the following sections. The simple
sets have at least one of the following properties: (1) There is a player that
receives a negative payoff whenever he stops alone. (2) There is a distribution
over the set of action profiles in which a single player stops. Moreover, each
player receives payoff af” when he stops, and approximately this is also his
average payoff when another player stops.

Definition 24 Let G be a stopping game, € > 0, and Ny < n a number, and
7 > n a bounded stopping time. The set F' € G, ; is e-simple if one of the
following holds:

(1) For every i € I: o’ < 0. or
(2) There is a distribution § € A(Dp x I) such that for each player i € I:

(a) 0(d,i) > 0= Ry, ;= af. and

(b) ap+e> ¥ 0(d,j) Ry .= ap—e

jel, deDp

F'is simple if it is e-simple for every € > 0. F' is complicated if it is not simple,
i.e.: there is an ¢y > 0 such that /' is not ¢p-simple. In that case we say that
I is complicated w.r.t. €.

The next proposition analyzes stationary e—equilibria that yield high payoffs
to all the players. The proposition is an adaptation of Prop. 5.5 in |32, Sec.
8]. The proof is omitted as the changes compared with [32] are minor.

Proposition 25 Let G be a stopping game, Ny < n a number, ¢ > n a
bounded stopping time, F' € G, , a complicated set (w.r.t. ), € << ﬁ ,
and for each i € I let a* > ai}, — €. Then there exists a set U C V{ of nodes

and a strategy profile x in 7' = T,, ,(F') such that:

(1) No subgame of Ty has an e-equilibrium with a corresponding payoff in
I1 [a*, a* + €]
icl

(2) Either: (a) U = 0 (so that Ty = T') or (b) x is a 9e-equilibrium in T,
and for every i € I and for every strategy y': a’ —e < ~'(z), v (xz 7, y') <
a’ + 8¢, and w(x) > € - pr, .

6 The Use of Ramsey Theorem

In this section we use a stochastic variation of Ramsey theorem (]28,32]), to
disassemble an infinite stopping game into games on finite trees with special
properties. We begin by defining an F-consistent C-valued NT-function.

Definition 26 An N7T-function is a function that assigns to every integer
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n > 0 and every bounded stopping time 7 an J,-measurable r.v. that is
defined over the set {7 > n}. We say that an NT-function f is C-valued,
for some finite set C, if the r.v. f, , is C-valued, for every n > 0 and every
bounded stopping time 7.

Definition 27 An NT-function f is F-consistent if for every n > 0, every
Fn-measurable set F, and every two stopping times 7, 75, we have: 7y = 75 > n
on F' implies f,, 5, = fno, O0 F.

Where A holds on B (A, B € F) iff p(A°N B) = 0. When f is an NT-function,
and 71 < 7, are two bounded stopping times we denote f, -, (w) = fr (@) (W)
Thus f-, -, is an F,-measurable random variable. Shmaya and Solan proved
the following proposition (|32, Theorem 4.3]):

Proposition 28 For every finite set C, every (-valued F-consistent NT'-
function f, and every € > 0, there exists an increasing sequence of bounded
stopping times 0 < 0y < 03 < 03 < ...such that: p (fo, 5y = fopos = -..) > 1—€.

In the rest of this section we provide an algorithm that attaches a color ¢, ,(F)
and several numbers (A (F)); for every 0 > n >0 and F € G5, such that
Cno(F) is a C-valued F-consistent NT-function.

A (hyper)-rectangle ([a’, a’ + €]),; is bad if for every i € I, o}y —e < a’. It is
good if there exists a player ¢ € I such that a' + € < a% —e. Let W be a finite
covering of [~1,1]"! with (not necessarily disjoint) rectangles ([a’, a’ + €]),,,
all of which are either good or bad. Let B = {by,bs,...,b;} be the set of bad
rectangles in W and let O = {01, 09, ..., 0k } the set of good rectangles.

Set C' = (simple Jallbad\J{1 x O}U{2} U{3 x W x W}). Let G be a stop-
ping game, n > 0, 0 > n a bounded stopping time, and F' € G,,. If
F' is simple we let ¢, ,(F) = simple. Otherwise, F is complicated w.r.t.
to some ¢€(F'). In that case we assume that from now we fix ¢ such that

eo(F) 16
0<e<< mmFefN |

o The color ¢, 5(F) is determined as follows:

e Set T =T, ,(F).
e For 1 < j < J apply Prop. 20 to T(j_1 and the bad rectangle h; =

I1 {awa] + e} to obtain a subgame T of TU=1 and strategy profile x;
iel
in 7Y such that:

(1) No subgame of TV has a stationary e-equilibrium with a corresponding
payoff in h;.

(2) Either TU) = TU=Y or the following three conditions hold:
(a) Forevery i € I, a} — e < 7*(x5). - |
(b) For every i € I and every strategy y*: v'(z;",y') < a’ + 8e.

16 The procedure is an adaptation of the 2-player procedure described in [32, Sec. 5]
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(c) m(x;) > € X pro) p6-v-

o If T is trivial (the only node is the root), set ¢, ,(F) = allbad; otherwise

due to Prop. 20 and our procedure one of the following holds:

(1) T") has a perfect stationary absorbing e-equilibrium =, with a payoff ()
in one of the good hyper-rectangles. Let ¢, ,(F) = (1, 0;), where o; is the
good rectangle that includes 7, .

(2) T) has a perfect stationary non-absorbing equilibrium ¢, with a payoff
0. Let ¢, (F) = (2).

(3) There is a correlated strategy profile n € A(A) in T) that satisfies
3(a)+3(b)+3(c) in Prop. 20. Let ¢, ,(F) = (3, w1, w2) where w; is the
hyper-rectangle that includes v (n), and ws is the hyper-rectangle that
includes g(7)).

Each strategy profile x;, as given by Prop. 20, is a profile in TU=Y_ We consider
is as a profile in 7' by letting it continue from the leaves of T7U~1) downward.
We define, for every j € J, Ajno(F) = pro) r6-1-

By Prop. 28 there exists an increasing sequence of bounded stopping times
0 < o0y <oy < o3 < ..such that: p(co, oy = Copog = -..) > 1 — g. For every
Fe g0'170'277 let Cp = 001702(F>‘

Let (Acj, Ag)yey €V Fube: As { W T Noporss (ng(w)):oo},

n=1..00

Aej = {w < Q| Ajuoi o ( ) |J|} 8 (Acjr Asi)jes € n:\l/ooj:m
there is large enough N; > N, and sets (AE],A )jeJ € Fy, such thé.t: (1)
For each j € J :A;NAx, = 0 and(AEjUAooj) = Q. (2) p(AylAe;) >
1— ﬁ. (3) p (Aoo,j]floo’j) >1-z IJI From now on, we assume w.l.o.g. that
o1 > Nj. Let E' be defined as follows (Observe that p(E') > 1 —9):

Q\E,:E U {w (- A€7j| Z Aj7o'k7o'k+1 (Fak(cu)) > |6|}

jeJ k=1..00 J
jeJ k=1..00

U {w € QIn s.t. copony (W) # C12 (w)}

7 Approximate Constant-Expectation Perfect Correlated Equilib-
rium

We finish the proof of the main theorem by the following proposition:
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Proposition 29 Let G be a stopping game, d,¢ > 0, E' C Q, o1 and oy be
defined as in the previous subsection, and F' € G,, ,,. Then there is a universal
correlation device D = (M, u) and a strategy profile xp in the game G(F, D),
such that xp is a perfect (0, €)-constant-expectation e-equilibrium in the game
G(F,D) conditioned on E' and given M', where p(M') > 1.

PROOFEF. The proof is divided to a few cases according to the color of ¢y and
whether F' € A ;. The first 3 cases adapt the methods of [32, Sec.7|.

7.1 There exists j € J such that F € Ay

Let 1 < j < J be the smallest index such that F' € A ;. Let 2, »,,, be the
4t profile in the procedure described in Section 6, when applied to T,

kyOk+1"

Let xr be the following strategy profile in G (F, D): between o and 0.1 play
according to %4, ,,,- The procedure of Section 6 implies the following:

e (Conditioned on that the game was absorbed between o, and o1 the profile
Tjonons, Sives each player a payoff: a§ —e< 7§k70k+1(9€j) < a§ + Se.

e For each player i € I and for each strategy y' in T, 5,0 (1) 7%, 5, (277,9") <
CL;— + 8e. (2) 7T0k70k+1(x]') Z 62 X Aj(TUk,Uk+1)

Those facts that outside E’ the game is absorbed with probability 1, and that
zr is a 1le-equilibrium conditioned on Q\ £’ . Observe that crp = allbed implies
that there exists j € J such that F' € A ;.

7.2 Fe NA and cp =2
JjeJ

Let zr be the profile in which everyone continues. It is implied that no player
can profit more than e by deviating at any stage, conditioned on E'.

7.8 Fe NA and cp = (1,01) € (1 X O)

jeJ

Let 24, 4,,, be a stationary absorbing equilibrium in 7¢/) with a payoff s, .,
in the good hyper-rectangle o, [I;c; [al,, al, + €]. As o, is good, there is a
player ¢ € I such that: a!, < a%. — 2¢. Let xp be the following strategy profile
in Gr: between oy and oy play according to 5, ,,,,. Lemma 22 implies

i i ¢ . i i _ i
that m(c', 2, 50 .1) = §° Qopops Where gy o = p(Jo, < n < opqa, B, =
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o, Ri, € D). On E', R, | = of infinitely often and > > A <.

j=1..Jk=1..00
This implies that under xr the game is absorbed with probability 1, and that

Zp is a 4e-equilibrium in G, conditioned on FE’.

Jy0ksOk+1

7.4 FeN fleyj and cp = (1,wy,wy) € (1 x W x W)

jeJ

The construction in this case is as an adaptation of the procedure of [35],
which deals with quitting games (stationary stopping games where payoff is
the same at all stages). Let n = 1,, -, be a correlated strategy profile in T, ,,
that satisfies 3(a), 3(b) and 3(c) in Prop. 20. The definition of o} implies that
oy = ¢'(Ty,0,) € wh. This implies that there is a distribution § = 6(n) €
A(Dp x I) such that for each player i € I:
(1) 6(d,i) > 0 = R;d =a%, Vd # d € Dp, (d',i) = 0. Let d(i) € Dp be
the payoff satisfying 6(d;,i) > 0. If no such payoff exists, let d(i) = 0.
(2) Xjer,aep,0(d, j) - R?{j},d > O
(3) If there is d € Dp such that 6(d,i) > 0, then there exists a punisher
ji € I such that: d(j;) # 0 and d(j;)}, < o
Let ¢ € A(I) be: (i) = n(d(4), 1)- Let (70)icrh=1. oo
of stopping times defined by induction: 7{° is the first stage n such that R, =
d(ig). 7., is the first stage m > max (7!) such that R,, = d(ig). Observe that

be an increasing sequence

in E" each 7! < 0o. We now describe the correlation device Dp,. = (Mp,., up,)-
Let M}, = {1,..,T+T+1}, where T € N is sufficiently large, and T >> T'.
Let pip, be as follows:

1) A number [ is chosen uniformly over {1, e T}

(1)

(2) The quitter 7 € I is chosen according to . Player i receives signal .
(3) A number [ is chosen uniformly over {Z+ L. 1+ T}

(4) Player j;, the punisher of player i, receives the signal I.

(5)

5) Each other player i # i, j receives the signal [ + 1.

Let Msp, € Mp, be the signal profiles in which some of the players receive
an “extreme” signal: relative close to 1 or to T+T.IT,T are large enough, we
can assume that pu(Msp,) < 2%. Define now the following strategy z% for each
player ¢ € I: let m; be the signal of player i. Player i stops at stages 7,, that
satisfy: n = (m;) modT + T + 1,7 and continues in all other stages. Let the
universal correlation device D = (M, u) be the Cartesian multiplication: D =

17 On equilibrium path the player stops at stage 7,,. The requirement to stop at later
stages where n = (m;) mod T'+7T +1 is needed to satisfy the perfection requirement.
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[1p,cp DPp,.. Similarly let M' = M\Tlp,cp Msp,. Observe that p(M') >
1-9.

If the players follow the strategy profile zr then the game is absorbed with
probability 1 conditioned on £’ and the expected payoff satisfies o’ < vi(z) €
wt . Moreover, if T >> T, then immediately after receiving his signal m;
(assuming m € M’) no player can infer from his signal whether or not he is
the quitter, thus xp is (9, €)-constant-expectation.

We now verify that if 7', T are sufficiently large, no player can gain too much by
deviating at any stage of the game conditioned on that w € E" and given m €
M'. First, the probability the quitter i € I correctly guesses the punishment
stage is very low, and thus he cannot profit too much by deviating. Similarly,
any other player (j # ¢ € I) has a low probability to correctly guess 7';, the
stage the quitter stops . Moreover, if T is sufficiently large, then, with high
probability, player j does not know when he recieves his signal whether he is
the quitter, punisher or a “regular” player, and he cannot infer which of the
other players is more likely to be the quitter. Therefore, player j can not earn
much by stopping before stage [. Observe that when the quitter deviates and
does not stop. his punisher, say player i, does not know that he is a punisher.
When player j has to stop, he believes that he is the quitter (assuming m €
M’"). This implies that the players e-best-respond at all stages including while
(unknowingly) punishing, and that zp is a perfect e-equilibrium in G(F, D)
conditioned on w € E’ and given m € M.

7.5 cp = simple

If for every i € I: a% < 0, then the profile in which all the players always
continue is an equilibrium in E’. Otherwise, the fact that cp = simple implies
that there is a distribution § € A(Dpg x I) such that for each i € I: (1)

0(d,i) > 0= Ry, = ap. (2) ap+e> 'EI%:ED 0(d,j) - Rijyq > o —€. In
J ) F
this case, one can use a procedure similar to the one described in the previous

subsection, to construct a perfect e-equilibrium in G(F,D) conditioned on
w € E' and given m € M'.

8 Generalized Stopping Games

In the previous sections we only dealt with simple stopping games, which end
as soon as any player stops. In this section we show how to extend our result
to more generalized stopping games, where the game terminates only after all
the players stopped.
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A generalized stopping games is played as follows. There is an unknown state
variable, on which players receive symmetric partial information along the
game. At stage 1 all the players are active. At every stage n, each active player
declares, independently of the others, whether he stops or continues. A player
that stops at stage n, becomes passive for the rest of the game. The payoff of
a player depends on the history of actions while he has been active and on the
state variable. Theorem 14 shows that every simple stopping game admits a
perfect normal-form constant-expectation correlated approximate equilibrium
with a canonical and universal correlation device. For brevity, we will relate
to such an equilibrium in the rest of this section as a “good” approximate
equilibrium. We now sketch the outline of the proof that every generalized
stopping game admits a “good” approximate equilibrium.

Assume by induction that any m-player stopping game admits a “good” ap-
proximate equilibrium. Given a generalized stopping game G’ with m + 1
players, we construct an auxiliary simple stopping game G with the following
payoff process:

e When i e S: ng,n is equal to the payoff of player ¢ in the generalized game
G’ when coalition S stops at stage n, while no other player stopped before.

e When i ¢ S: ngm is the payoff of player 7 in a “good” approximate equi-
librium of the induced generalized m + 1 — |S|player stopping game that
begins at stage n + 1 with the players I'\S. Such an equilibrium exists due
to the induction hypothesis.

Due to Theorem 14, the simple game G admits a “good” approximate equi-
librium z. x induces a “good” approximate equilibrium 2z’ in the generalized
game G’ in a natural way:

e The players follow x as long as all the players continue.

e As soon as some of the players stop, the remaining active players play the
“good” approximate equilibrium of the induced generalized stopping game
with fewer players.
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