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Abstract

The odds of success in creative industries like the book, music or movie industry are

often said to be particularly low. A 1763 rule by Denis Diderot, for example, says

that only one out of ten published books is a commercial success. Yet, representative

evidence on new-product success rates and their development over time is scarce.

Furthermore, the standard approach to use sales as success measure can be mislead-

ing from the producer’s perspective. This paper presents a novel approach to em-

pirically identify producer success by incorporating the standard terms of contract

between creator and producer into a parsimonious model of information diffusion

(word-of-mouth). The model is applied to a random sample of novels. Parametric

and semiparametric estimates imply a success rate between 10 and 15% for this mar-

ket. Set against Diderot’s rule, these results suggest that new-product success in the

book industry has been fairly constant over time.
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cal change.
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1 New-product success in creative industries

The commercial success of a new creative good such as a theatrical movie, a music record

or a novel is extremely difficult to foresee. According to screenwriter William Goldman

(1983), not even industry experts are able to predict a particular movie’s box office perfor-

mance. As a result, box office ‘flops’ are an empirical regularity. Similarly, the market for

music albums has been said to be dominated by a “stiff ratio” – the share of loss-making

albums – of around 90% (Caves, 2000, p. 79; Denisoff and Schurk, 1986, p. 4). The title of

this paper refers to an old quantification of new-product success in the book industry: in

1763, Denis Diderot (1713-1784) – French philosopher, writer and editor-in-chief of one of

the world’s first encyclopedias – estimates in an article on book publishing that at most

one out of ten published books is a success, while four recover costs in the long run, and

five end up with losses.1

Rules of this kind are often circulated in the respective industries.2 The odds of suc-

cess are clearly important for the economic agents in these industries, such as authors,

actors, producers and publishers – but why should anyone with a more general research

perspective care? First of all, these rules of thumb suggest that patterns of new-product

success resemble each other across different creative industries, but differ from the 80/20

rule commonly claimed for other, more ‘industrial’ industries.3 If there is stronger em-

pirical support for such a structural difference, this will have implications for industrial

policy. And the perspective of producers is crucial in these industries, as they decide

which creative project will be realized and brought to the market, and which not.

Another open question is whether patterns of new-product success may change over

time, in particular as information technologies change. Hendricks and Sorensen (2009)

find that the release of a new music album significantly increases sales of the artist’s

previous album, which implies that incomplete information and consumer learning are

major determinants of success in this industry. Hendricks and Sorensen (2009) show that

1“Ajoutez que, de compte fait, sur dix entreprises, il y en a une, et c’est beaucoup, qui réussit, quatre dont on
recouvre ses frais à la longue, et cinq où l’on reste en perte” (Diderot, 1763/2003, p. 61). See Turnovsky (2003) for
a review of the general reception of Diderot’s article.

2Diderot’s rule is cited, for example, by Escarpit (1969, p. 123), Tietzel (1995, p. 38) and von Lucius (2005,
p. 66).

3For example, the Food Marketing Institute (2002) reports failure rate estimates for new grocery products
between 25% and 80%. To the best of my knowledge, there are no estimates for other markets. The vast
management literature on the subject of course focuses on the determinants of new product success, not on
the aggregate success rate (see Henard and Szymanski, 2001, for a meta analysis).
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if consumers were more fully informed, the distribution of sales across titles would be

substantially less skewed. The authors conclude that with the rise of the internet, con-

sumers will overcome “information bottlenecks” of the analog world, and the distribu-

tion of sales and profits will become more equal. In contrast, the results presented in this

paper suggest that it is unlikely that new-product success in creative industries changes

significantly with changes in information technology. Similarly, Prince and Simon (to ap-

pear) find that although the internet has increased new-product diffusion by improving

shopping convenience and product research, it has not increased consumer awareness

for new products. In other words, the internet facilitates assessment and purchase of

products of which consumers are already aware, but it does lead consumers to discover

significantly more or other new products.

The odds of new-product success in creative industries are rarely subject to a direct

empirical evaluation, except for the movie industry, which is well-studied empirically

(see Elberse, Eliashberg and Leenders, 2006, for a recent review of the literature). With

respect to new-product success, De Vany and Walls (2004) find that in the U.S. market,

6.3% of all movies earn 80% of all profits. The reason for the lack of direct results for

other industries, next to the difficulty of obtaining a representative set of products, is

that profits are unobservable. The data available to researchers usually contain product

sales, but accounting data such as costs or profits are typically unobservable or unreliable.

Therefore, studies revert to sales or bestseller status as measure of a product’s success,

and concentrate on studying the distribution of sales. For example, Sorensen (2007) and

Gaffeo, Scorcu and Vici (2008) show that the distribution of sales across book titles is

highly unequal (skewed) in the U.S. and Italian book industry.

Yet, the concentration on sales as profit measure can misrepresent the perspective

of producers, because potent creators (ie. ‘star’ actors or authors) often demand a large

share of the revenues that can be expected from the presence of predetermined success

factors such as the star herself. For example, Elberse (2007) finds that the involvement

of star actors increases expected revenue of movie producers (film studios), but it does

not increase their company valuation (expected profits). In other words, the fraction of

new products that were profitable for the producer does not equal the fraction of its new

products whose sales exceeded some threshold.
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The first contribution of this paper is a novel approach to empirically identify new-

product success, which combines the standard terms of contract between creator and

producer with a parsimonious model of new-product diffusion. The resulting empirical

identification strategy does not rely on a product’s absolute level of sales, but on sales

dynamics, and is based on the common observation that word-of-mouth – or, more gen-

erally, social influence – is a crucial success factor.4 Recent experimental evidence by

Salganik, Dodds and Watts (2006) shows that new-product success is basically unpre-

dictable when consumption is subject to word-of-mouth. Participants in their study were

offered to sample and then download previously unknown music. In some experiment

groups, participants also received ‘top downloads’ information about the number of a

song’s previous downloads. In a significant number of cases, the same songs that were

sampled but rarely downloaded in a group where participants did not receive ‘top down-

loads’ information became ‘top downloads’ in groups where participants did receive this

information. Vice versa, songs that were popular in groups with ‘top downloads’ infor-

mation were unpopular in groups without this information. Salganik, Dodds and Watts

(2006) conclude that “experts fail to predict successes not because they are incompetent

[...] but because when individual decisions are subject to social influence, markets do not

simply aggregate pre-existing individual preferences.”

In this paper, I show that measures of word-of-mouth approximate producer success

better than nominal sales because the effects of word-of-mouth are hard to appropriate

by creators in ex ante bargaining. In that case, the products that are profitable for the

producer are those products that received unpredictable positive word-of-mouth. The

theoretical model directly leads to a parametric approach to identify the occurrence and

effect of word-of-mouth in week-to-week variation in unit sales. In order to allow for

more general models of word-of-mouth, I also propose a semiparametric method of iden-

tification.

The second contribution of this paper is an empirical application to a representative

sample of novels released on the German book market (section 3). Results indicate that

between 10 and 15% of titles enjoy positive word-of-mouth. On average, titles that are es-

timated to enjoy positive word-of-mouth perform better in terms of total sales, however,

4In the context of this paper, ‘word-of-mouth’ is a catch-all phrase for the diffusion of consumer aware-
ness for a product and information about its quality. This includes person-to-person communication, but
also online and offline product reviews (Chevalier and Mayzlin, 2006; Sorensen and Rasmussen, 2004) and
less direct forms of communication such as blogs, bestseller lists and Oprah’s Book Club.
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some of these titles have relatively low sales whereas some of the sample’s best sellers

are not estimated to enjoy positive word-of-mouth. It is therefore possible that a success

measure based on word-of-mouth leads to a different result than a standard measure

based on nominal sales.

Moreover, my estimates of word-of-mouth and new-product success in the book

market are in line with Diderot’s rule of thumb. As such, they suggest that, in spite

of changes in information and communication technology since 1763 – amongst other

revolutions – the odds of success in the book market have stayed largely the same. In the

conclusion, I therefore extrapolate that the internet revolution will not make a significant

difference for new-product success in creative industries, but I suggest that the internet

will significantly change their channels and costs of production and distribution.

2 Identifying word-of-mouth and new-product success

This paper’s strategy to empirically identify new-product success is based on a parsimo-

nious formal model of new-product diffusion with word-of-mouth. The model features

two ingredients that are essential for word-of-mouth to have an effect on sales: hetero-

geneous buyers and intertemporal dynamics. In contrast, most studies in the extensive

theoretical and empirical literature on new-product diffusion follow Bass (1969) in as-

suming that consumers are homogeneous regarding their propensity to buy and differ

only in the timing of their purchase5. Yet, in a model with homogeneous buyers, word-

of-mouth among these buyers can only affect the distribution of sales over time, not their

overall level. To have an effect on overall sales, word-of-mouth needs to take place be-

tween consumers that are heterogeneous in their propensity to buy.

I consider the simplest case of heterogeneity: a two-segment structure, where the

population of M potential buyers of a newly released creative good – henceforth “title”

– consists of two types: Nb buffs and Nc casuals (title subscripts omitted).6 Buffs buy the

title in any case. Casuals only buy if they are exposed to positive word-of-mouth. If there

5See Van den Bulte and Joshi (2007) for a review. Variants and extensions of the Bass model have also
been used in a related literature on the diffusion of technological and organizational innovations across firms
(Clerides and Kassinis, 2009).

6Caves (2000, p. 173) observes that the “distribution of consumers between ‘buffs’ and ‘casuals’ strongly
influences the organization of an art realm”.
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is no positive word-of-mouth about a certain title, its long-run sales are restricted to Nb.

The case of negative (sales-destructive) word-of-mouth is discussed in section 2.3.

Heterogeneity-driven word-of-mouth has implications for the ex ante as well as the

ex post view on title performance. First, it affects ex ante bargaining over contract terms

between creator (henceforth “author”) and producer (henceforth “publisher”). Second,

the heterogeneity implies that ex post studies of aggregate product-level sales need to

address an identification problem: the extent of word-of-mouth needs to be inferred by

decomposing observed sales into unobserved sales to buffs and casuals. In section 2.2,

I therefore consider a parametric specification for intertemporal sales dynamics that can

be used to identify the effect of word-of-mouth. In section 2.3, I discuss semiparametric

identification in the context of more general models.

2.1 Ex ante bargaining and Diderot’s rule

The typical contract between author and publisher grants the publisher the exclusive

right to market the author’s title. This publishing contract consists of a royalty scheme

through which publisher and author share revenues from sold copies. Royalty schemes

are a commonplace in creative industries, where the creator of a good typically lacks the

funds to produce and market it, so that the producer takes over the investment risk in

return for a share of the revenues.7

The advance. An additional – and in our context more important – aspect of author-

publisher contracts is the fact that authors (or their agents) require a nonrefundable ad-

vance payment on the expected royalties before a title is released. The advance is often

interpreted as a device to increase the publisher’s incentives to market a title, which re-

lates to one of the problems associated with the difficulty of profit-sharing (Caves, 2003),

but the advance may serve other means as well.8 Hansmann and Kraakman (1992) con-

sider the context of an early contracting stage, before the author has written the book,

and study a ‘hands-tying’ contract where the advance helps publishers to commit to pro-

ducing the title without detailed knowledge of its contents. Here, it is simply taken as

7Horvitz (1966) and a subsequent literature discuss in more detail why the seemingly more natural alter-
native of profit-sharing is rarely observed in academic (textbook) publishing. Dana and Spier (2001) show
that revenue sharing is valuable in manufacturer-retailer contracts, when demand uncertainty realizes only
after inventory decisions have been made.

8For example, the advance insures the author against publisher insolvency, and the publisher may save on
transaction costs after release, when a potentially large number of small royalty payments can be accounted
against the advance.
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given that each contract between author and publisher includes a nonrefundable advance

royalty that is contracted upon under common knowledge of some forecast for a title’s

sales.

To be more precise, let r be the author’s revenue share (0<r≤1) and A the advance

on this share. Assuming fixed production costs of C and normalizing the title’s wholesale

price to one, the publisher’s expected gross profits at the time of bargaining are

E[Q] − A − rE[max{0; Q − A/r}] − C, (1)

where E[Q] are expected sales. Since A is nonrefundable, it implicitly defines a threshold

value for sales (A/r) below which the author’s factual ex post revenue share exceeds r.

For any value of r, the author may use A to appropriate the remaining expected publisher

profits. In practice, royalty rates indeed vary little across different contracts, whereas

advance payments tend to vary strongly, even in relation to the number of copies finally

sold (Caves, 2000, pp. 56ff). Book authors are frequently represented by literary agents

who receive up to 20% of their client’s remuneration and who thus have a direct incentive

to achieve a high advance. In fact, agents often attempt to maximize the author’s share

of expected profits by auctioning publishing rights.9

The combination of royalty and advance implies that publisher profits are not mono-

tone increasing in sales Q, but rather in their relation to expectations E[Q].10 In particular,

this is true for titles whose authors have a strong bargaining position and are thus able

to pocket much of the expected profits – presumably titles with high E[Q]. In the auction

case with sufficiently many competing publishers, A will be close to E[Q]-C, such that

the winning publisher’s profits are close to zero in expected terms and positive ex post

only if sales exceed their expectation.

From the publisher perspective, title success therefore depends on the accuracy of

sales predictions. In a recent interview, Jonathan Galassi, the president of New York pub-

lisher Farrar, Straus, and Giroux nicely illustrates this point: “With regard to big advances,

I’ll tell you a dirty little secret. I think that very often the big advances you pay, at least for

9An auction is the optimal selling format from the author viewpoint (Bulow and Klemperer, 1996) and has
a long tradition in the book industry: see Moldovanu and Tietzel (1998) for an analysis of ‘Goethe’s second-
price auction’ and Hansmann and Kraakman (1992) and De Vany and Walls (2004) for further anecdotal
evidence.

10For authors, in contrast, total sales remain important ex post because they are associated with auxiliary
revenues, for example from live performances or movie deals.
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a company like ours, don’t end up having the result you want. Sometimes you just have

to pay them. But the real successes, which make the difference in our business, don’t

come from the books for which we pay big money. When we pay a big advance our job is

to earn back what we gave the author so that we come out clean – basically break even or

make a small profit. Whereas a book where we start much lower, and go a big distance,

is much more mutually profitable.” (Galassi and Ferrari-Adler, 2009)

Forecasting sales. The accuracy of sales predictions, in turn, is related to word-of-

mouth. Suppose a title’s potential market has the two-segment buyer structure discussed

above. Since buffs buy the title in any case but casuals buy only if there is positive word-

of-mouth, expected sales consist of

E[Q] = E[Nb] + Pr(word)E[Nc|word], (2)

where Pr(word) is the ex ante probability that a title receives positive word-of-mouth and

E[Nc|word] are expected sales to casuals in that case. The key question is whether it is

possible, at the time of bargaining, to predict sales in all consumer segments. Some pre-

determined observable characteristics – like sales of previous titles by the author or the

size of the author’s fan club – are certainly informative regarding expected sales to buffs

(Nb). Author-publisher bargaining is thus likely to operate under common knowledge

of E[Nb]. In contrast, the findings by Salganik, Dodds and Watts (2006) and Hendricks

and Sorensen (2009) indicate that predetermined characteristics are unlikely to contain

information on the title-specific propensity to receive word-of-mouth (Pr(word)) and the

corresponding additional sales (E[Nc|word]). In that case, parties can at best work with

market-level statistics or general principles such as Diderot’s rule.

For example, suppose the average probability for the occurrence of word-of-mouth

(Pr(word)) is δ and the average value for the resulting additional sales E[Nc|word] is k

times Nb. The maximum advance a publisher is willing to pay is then Ā = E[Nb](1 +

δk) − C. It follows immediately that, with titles whose authors have strong bargaining

power (hence A→Ā), publishers end up making profits only in case of word-of-mouth,

that is, only with probability δ. With titles whose authors have weak bargaining power –

presumably titles with low E[Nb] – publishers may bargain down the advance payment.
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For these titles, however, production costs are relatively more important, which can also

lead to negative ex post profits in case there is no word-of-mouth.11

Empirical implication. In either case, given that data on advances, royalty rates and

production costs are typically not available or unreliable, differences in ex ante expecta-

tions and advance payments across titles cannot be accounted for empirically. In conse-

quence, observed total sales are not an appropriate success measure from the publisher

perspective. But we can utilize the fact that the more appropriate success measure, the

difference between ex ante expectations and ex post sales, is particularly affected by the ex

post extent of word-of-mouth. We can thus empirically estimate new-product success by

estimating the distribution of positive word-of-mouth across titles. The corresponding

interpretation of Diderot’s rule, for example, holds that δ= 1
10 : one out of ten titles enjoys

positive word-of-mouth.

An implementation of this empirical approach requires (i) a method to identify the

presence of positive word-of-mouth in sales and (ii) data on a representative sample of

titles. With respect to (i), the following model of new-product diffusion illustrates that

– with reasonable assumptions on how sales to buffs and eventually casuals distribute

over time – it is possible to not only identify the existence of positive word-of-mouth but

also to quantify its effect on a title’s overall sales (that is, to estimate Nc).12 In section 2.3,

I discuss more general models and semiparametric identification.

2.2 Intertemporal sales dynamics

As a matter of notation, it is more convenient to consider the total number of potential

buyers of a title M = Nb + Nc and its share of buffs θ = Nb
M . Time-invariant predetermined

variables that may affect Nb and thus M, such as a title’s characteristics and price, can be

omitted in this section.13 Operating within a continuous-time framework, denote by Fb(t)

the c.d.f. of a title’s sales to buffs, that is, cumulative sales to this group at time t divided

11If the negotiated advance payment is ρĀ, where 0<ρ≤1, publisher profits are negative ex post if there is
no word-of-mouth and C > E[Nb](1 − ρ

1−ρ δk).
12Moul (2007), who quantifies the average effect of word-of-mouth in motion picture revenues, also iden-

tifies word-of-mouth through intertemporal dynamics of weekly unit sales. However, the specific demand
model underlying his analysis (nested logit) is very different from the new-product diffusion model pre-
sented here, variants of which are widely applied in the marketing literature.

13In most European countries, book prices are by law subject to resale price maintenance and thus in-
variant over time. Even in the unregulated U.S. market, intertemporal price variation is virtually inexistent
(Clerides, 2002).
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by its population (θM). Similarly, Fc(t) is the c.d.f. of sales to casuals and fb(t) and fc(t)

are the corresponding densities.14

Buffs buy the title in any case, however, not necessarily in its release week. For

example, some may want to first finish the book they are currently reading. A standard

assumption is that in every period the title is bought by a fraction p of those buffs who

have not bought earlier. In continuous terms, this is a constant hazard rate: p = fb(t)
1−Fb(t)

.

Since Fb(0)=0, we can solve for Fb = 1 − exp(−pt) and the cumulative number of sales

to buffs at time t is

nb(t) = θM − θM exp(−pt). (3)

Sales to buffs in the period (t − 1, t) are nb(t) − nb(t − 1) and follow the steady decay

pattern typically observed, for example, for blockbuster movies. In terms of the model,

aggregate sales exhibit steady decay in two cases: if the number of casuals is zero (θ=1), or

if there are casuals (θ > 1) but there is no word-of-mouth from buffs. In both cases, overall

sales are limited to Nb and sales dynamics are determined by equation 3. The upper left

title in figure 1 provides an example for sales dynamics without word-of-mouth. An

important implication for empirical work is that in this case, θ and M are not separately

identified. In other words, it is impossible to say how much a title would have sold if it

had received some word-of-mouth. As I discuss below, a related identification problem

is associated with negative word-of-mouth.

Casuals. As long as θ<1 the title under consideration has the potential to benefit

from word-of-mouth. In particular, an independent buyer may recommend the product

to a non-negative number w (≥0) of casuals each period following her purchase. Param-

eter w can be interpreted as a population average: For example, w=.5 means that one

out of two buffs recommends the title to a casual each period after her purchase.15 The

contacted casuals then go ahead and buy the recommended title, unless they have not

already done so in response to an earlier recommendation. Since the probability that a

casual exposed to word-of-mouth at time t has not been contacted and therefore has not

bought earlier is 1 − Fc(t), the cumulative number of sales-effective recommendations at

14The following specification was developed independently by Van den Bulte and Joshi (2007) and myself.
In Beck (2007), I study the estimation properties of the model with a Monte Carlo simulation and present
detailed estimation results for four example titles. In Van den Bulte and Joshi (2007), this model is a special
case of a more general class of models (discussed in more detail in section 2.3 below).

15A simplifying assumption is that casuals do not recommend the title to other people (see section 2.3
below for a discussion).
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Figure 1: Example sales patterns
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time t is 1 − Fc(t) multiplied by w and nb(t). Divided by the overall number of casuals,

(1 − θ)M, this amounts to the density fc(t) and rearranging yields the relationship

fc(t)

1 − Fc(t)
= qFb(t), (4)

where Fb(t) = nb(t)
θM and q = w θ

1−θ is a convenient reparametrization. Using equation 3

and the fact that Fc(0)=0, this differential equation solves for

Fc(t) = 1 − e
q
p (1−e−pt−pt). (5)

Hence, cumulative sales to casuals are nc(t) = (1 − θ)MFc(t), and total cumulative sales

at time t are the sum of nb(t) and nc(t):

N(t) = M(1 − θe−pt − (1 − θ)e
q
p (1−e−pt−pt)). (6)

Period sales within the interval (t,t − 1) are then described by N(t) − N(t − 1). Fig-

ure 1 plots the corresponding sales pattern for four different value combinations of pa-
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rameters θ and w. Most notably, sales without word-of-mouth follow a convex pattern,

whereas with word-of-mouth they are concave (hump-shaped) in early sales weeks: due

to an increasing number of buff buyers engaging in word-of-mouth, sales to casuals rise

initially. The size and width of the resulting sales hump depends on the intensity of

word-of-mouth and on the relative number of casuals.

2.3 Generalizations

Equation 6 provides a functional form that can be used to structurally identify the extent

of word-of-mouth in title-specific time series of sales. As usual in structural modeling,

the corresponding results depend on the viability of the model. It is therefore important

to discuss the potential limitations of the above model.

First, it only considers positive word-of-mouth, although anecdotal evidence from

the movie industry suggests that negative word-of-mouth can also be important. In terms

of the model, negative word-of-mouth would not only imply that w=0, but in addition

that buffs engage in sales-destructive communication among each other. Negative word-

of-mouth aggravates the identification problem already present when w=0; for example,

among buff buyers it implies that their overall number (θM) is subject to decay over

time: first-week buff buyers dissuade other buffs from their initially planned purchase.

As evident from equation 3, it is impossible to distinguish this effect from the hazard rate

p. For example, consider the upper left title in figure 1, whose observed sales decline

steadily after release. Based on such data, it is impossible to say whether the particular

pattern is driven by negative word-of-mouth (decreasing θM over time) or merely by the

decay parameter p. This is unproblematic in the context of this paper, which focuses on

identifying positive word-of-mouth. However, if we wanted to identify negative word-

of-mouth among buffs separately from the usual intertemporal sales decay, we would

need to place more restrictions on parameter p, for example by assuming it to be equal

across titles.

A second, more important restriction in the above model is that casuals care exclu-

sively for recommendations from buffs. In general, however, positive word-of-mouth

within segments – for example among casuals – may also be sales-effective. Van den

Bulte and Joshi (2007) analyze a more general class of models, which allows for positive

word-of-mouth within both segments. These more general cases have the property that
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period sales exhibit a ‘dip’ or are convex for early sales periods, when decreasing sales to

buffs are not yet over-compensated by increasing sales due to word-of-mouth. In other

words, a hump-shaped sales curve driven by word-of-mouth can have more than one

stationary point and only one of these is the global maximum. Van den Bulte and Joshi

(2007) present evidence on sales of music CDs that seem to exhibit such a ‘dip’ in early

sales weeks. Since models of new-product diffusion are inherently nonlinear, model com-

plexity increases exponentially for these more general cases. Indeed, estimation based on

standard methods can be troublesome, which complicates comparison between model

variants. Nevertheless, all cases share the property that word-of-mouth leads to a con-

cave (hump-shaped) pattern around the global maximum of a title’s sales curve. The

semiparametric identification of word-of-mouth proposed in the next section relies on

this property.

Alternative explanations for hump-shaped sales patterns. A related literature stud-

ies the diffusion of new technologies across firms, typically over a longer time period.

Next to imitation effects, which are similar to effects of word-of-mouth in the diffusion of

consumer goods, this literature generally explains a hump-shaped pattern in adoptions

by decreasing costs or increasing benefits of adoption over time (Hall and Khan, 2003;

Clerides and Kassinis, 2009). For a new creative good, however, both material product

characteristics and price are constant within its short selling period. This is certainly the

case in the data studied here, as prices in the German book market are governed by a law

on retail price maintenance that prevents retailer discounts. Therefore, the only possible

kind of increase in benefit is one associated with immaterial characteristics: for example,

consumers may change their perception of the intellectual value of a title. This view is

consistent with the occurrence of positive word-of-mouth.

Other, ‘behavioral’ explanations for hump-shaped sales often assume some form of

suboptimal behavior by producers or retailers, which is outside the scope of this paper.

For example, a publisher may gradually increase marketing efforts for some titles, al-

though the logic of bestseller lists and return of investment implies that all marketing

should be concentrated at the release date. At least in the book industry, in any case, tra-

ditional instruments such as advertising seem to have modest effects. Instead, industry
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sources emphasize the effects of public performances by a title’s author, which are often

out of direct publisher control.16

2.4 Parametric identification

The standard approach to estimating parametric models of new-product diffusion with

aggregate sales data is based on first differences of the cumulative sales function (Putsis

and Srinivasan, 2000) :

S(t) = N(t; φ) − N(t − 1; φ) + εt, (7)

where S(t) denotes observed sales of a given title during the period (t − 1,t). N(.) is the

cumulative sales function defined by the particular model, φ is the set of model param-

eters and t=1,...,T. Here, N(.) is defined by equation 6 and φ consists of M, θ, p and q.

Assuming that the error term ε has the usual least squares properties, parameters may be

estimated by nonlinear least squares (NLS). A grid search procedure yields proper initial

values for iterative estimation. Through log-transformations, I impose that all parame-

ters are non-negative and that θ, p≤1.

Neither asymptotic nor small-sample properties of such estimators are known (Bos-

wijk and Franses, 2005), but bias and consistency can be studied by means of a a Monte

Carlo simulation. For the present model, NLS estimates are reliable if observations cover

a sufficiently large part of a title’s life cycle and are not too volatile. Furthermore, residual

autocorrelation may be present: for example, a television appearance by a title’s author

may boost sales not only in that but also in the following weeks. The procedure to test

and account for residual autocorrelation is straightforward (see Beck, 2007, for more de-

tails on these issues).

Applied to a title with hump-shaped sales, the model provides estimates for all four

parameters and thus identifies both the existence of word-of-mouth (w) and its relative

sales effect (1 − θ). Based on a representative sample of titles, this approach therefore

yields an estimate of the distribution of positive word-of-mouth – the share of titles with

a positive w – and thus yields a measure of new-product success in this market.

Yet, such a parametric approach is associated with two main problems. First, equa-

tion 3 indicates that the parameters of the model are not identified when sales of a ti-

16“Booksellers say author tours, Oprah most effective for marketing books”, Book Publishing Report, vol. 24,
iss. 38; “Suche nach Öffentlichkeit”, Handelsblatt, iss. 54, 16 March 2006.
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tle decrease steadily over time. Effectively, estimates for such titles tend to converge at

boundary values (p̂ or θ̂ equal to zero or one, ŵ equal to zero). Results of this kind may

indicate that the respective title did not enjoy positive word-of-mouth and hence that

w=0, but they may also be driven by data volatility (Beck, 2007). Second, as discussed

in the previous section, parametric estimates are meaningful only if the imposed model

is a good approximation of the data generating process. If more general forms of word-

of-mouth cannot be excluded or if data volatility complicates estimation, semiparametric

methods provide useful alternatives to test for the existence of positive word-of-mouth.

2.5 Semiparametric identification

A more general empirical specification for intertemporal sales dynamics is

S(t) = g(t) + εt, (8)

where g(t) denotes the unknown function according to which period sales distribute

over time. Various methods are available to semiparametrically estimate g(t) in order

to obtain a smoothed time series Ŝ(t). In principle, these methods can be viewed as

variants of kernel density estimation that differ mainly in the employed kernel and the

degree of smoothing. Results are typically invariant to the researcher’s choice of kernel

but highly sensitive to the chosen bandwidth (Cameron and Trivedi, 2005). Further, a

crucial distinction is between global estimators that search for a function that fits best

over all available data, and local estimators that smooth over a moving data window

(Ruppert, Wand and Carroll, 2003). Estimators also differ in their treatment of extreme

observations (‘outliers’).

For the purposes of this paper, the locally weighted regression approach (loess, fol-

lowing Cleveland, 1979) seems most appropriate. First, as a local estimator it does not

exhibit irregularities at the beginning or end of the sample that have been found with

global estimators. This is important for the present application because sales humps

driven by word-of-mouth tend to occur in early sales weeks. Second, the loess approach

has a high degree of automation, which facilitates application to a large number of titles:

only one smoothing parameter has to be chosen, and procedures exist to automate even

this decision (I will use the improved Akaike information criterion developed by Hur-
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vich, Simonoff and Tsai, 1998)). Finally, by iterative reweighting of observations the loess

estimate is robust to extreme observations, which due to events like a television appear-

ances of authors are likely to occur in sales data of creative goods.

3 Application to a representative sample of novels

The data used in this study is a sample of 229 novels randomly drawn from the set of all

novels released 2003 as hardcover in Germany. The data come from a marketing research

firm that aggregates scanner data from over 750 physical points of sale and all main

internet retailers in Germany. In the appendix, I discuss data characteristics and sampling

procedure in more detail.

I focus on novels because this segment is most important for the book trade – both

in economic and cultural terms – and on hardcover editions because only newly released

titles are of interest. German paperback editions of a title are delayed by one to two

years.17 Therefore, the sales data analyzed in this paper cover all sales of the respective

new product and are not affected by other competing editions of the same title. The

data proprietor was obliged to give me anonymized data, where all title-, author- and

publisher-specific information had been removed, leaving as sample variables a title and

publisher code, sales (by week) and price (constant). The release date of each title is

inferred from the sales data (see the appendix for more details). The sample period ends

in summer 2004, providing between 41 and 81 weekly sales observations per title.

3.1 Sample characteristics

Figure 2 presents a histogram of total sales observed across titles. It does not account for

the fact that titles are observed for differently long time periods, however, this turns out

to be inessential: most sales take place within the first 26 weeks after release, which are

observed for all titles.18 The result is a well-known picture: most titles have very low

overall sales – about 43% of titles sell less than 500 copies – and only few titles get to

five- or six-digit sales figures. In effect the distribution of total sales is skewed: whereas

17This release strategy is a textbook example of intertemporal price discrimination (Clerides, 2002).
18Figure 6 in the appendix gives standard kernel density estimates for the distribution of cumulated sales:

one including the first 26 sales weeks only and one including all observed weeks for each title. The distribu-
tion for sales including all observed weeks is quite similar and only slightly broader than the one including
the first 26 weeks only.
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Figure 2: Distribution of sales across titles
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the best sellers drive the sample mean up to 3785 copies, the median title sells 704 copies

only. Sorensen (2007) presents a similar graph based on U.S. data.

The data lack detailed information on title characteristics, but one might expect a ti-

tle’s retail price to proxy for characteristics like author reputation or the number of pages.

Yet, in aggregate terms there does not seem to be a systematic relationship between a ti-

tle’s sales and its price: figure 3 relates cumulated sales after 26 weeks to price by title

and gives the correlation coefficient, which is close to zero. The second panel in figure 3

relates sales by title to the number of titles a publisher has in the sample, a measure of

firm size constructed from the publisher code. For the median title the measure is 1, but a

number of publishers have multiple titles in the sample. There seems to be no correlation

between this measure of publisher size and title sales.

The primary information contained in the sample are title-specific dynamics that un-

derly week-to-week variation in sales. To illustrate both the variety of patterns observed

in the sample as well as some of the estimation issues, figure 4 presents four example

titles. Three observations can be made:
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Figure 3: No evident relation between sales and price or publisher size
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Note: graph omits one title with 26−week cumulated sales of 91939 copies and a price of 19.

First, an evident pattern in all four examples is that December observations tend to

depart quite starkly from whatever trend sales follow before and after December.19 Obvi-

ously, books are popular Christmas presents, which introduces an additional identifica-

tion problem for December observations. It is possible to estimate a separate Christmas

effect for each title (Beck, 2007), but for the purpose of this paper, it suffices to merely

acknowledge that this Christmas effect may lead December observations to deviate pos-

itively from a title’s sales pattern before and after December. In practical terms, this

amounts to placing zero weight to December observations in estimation of the word-of-

mouth effect.20

Second, a significant share of the sampled titles, like title 1135 in the upper left panel

of figure 4, has low overall sales and therefore zero sales in many weeks. For such a title,

neither econometric method will yield useful results based on week-to-week variation.

19No other significant seasonal variation seems to be present. In a panel regression specification following
Sorensen (2007), where Siτ = (αi + ατ + βtiτ)Siτ−1 + εiτ , τ denotes calendar weeks and tiτ denotes title i’s
weeks since release at week τ, all off-December week fixed effects ατ are insignificant.

20More details on estimation and interpretation of the Christmas effect can be found in section A.2 of the
appendix. There, I also present regression results which indicate, on the one hand, that additional Christmas-
driven sales do not have significant second-order effects on post-Christmas sales, and on the other hand, that
any potential effect of strategic pre-Christmas release timing by publishers seems to be of minor importance.
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Figure 4: Example titles
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Altogether, 51 titles (22.2% of the sample) have less than 13 positive off-December sales

observations before they reach 95% of cumulative sales. I assume that these titles, whose

cumulative sales range between 1 and 796 with an average of 116, have not received pos-

itive word-of-mouth; I do not attempt to estimate any other parameter econometrically

for these titles.

Third, for a number of titles, hump-shaped sales patterns such as those in the lower

two panels of figure 4 suggest the existence of word-of-mouth effects. For other titles,

such as title 1164 in in the upper right panel, sales variance is relatively high and it is dif-

ficult to infer a particular pattern merely by visual inspection. Therefore, figure 4 already

includes predicted values from parametric and semiparametric estimations. These pre-

dictions turn out similar for titles 1164 (upper right) and 1295 (lower left): the smoothed

series of title 1164 decrease quite constantly over time, while both methods indicate an

early hump in sales for title 1295. In contrast, sales of title 1179 – which has the highest

overall sales in the sample – remain at low levels initially and are hump-shaped only in

later weeks. This is a case where parametric estimation is troublesome because, in the un-

derlying model of positive word-of-mouth, the sales curve increases right from the start
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Table 1: Distribution of parametric estimates∗

Mean Minimum Median Maximum

Directly estimated:
Mi/Ni(T) 1.1 .901 1.08 1.56
pi .103 .0118 .0541 .894
θi .552 .0121 .606 .882
qi .914 .0213 .177 22

Indirectly estimated:
wi .529 .0121 .172 10.3
∗Summary statistics for 59 title-specific NLS results, based
on equation 7 including time dummies for December
observations (see section A.2 in the appendix).
For 12 of these titles, estimates base on an adapted
version of equation 7 that includes AR(1) errors.

and has at most one stationary point. Therefore, in cases with multiple stationary points

such as title 1179, NLS estimation based on equation 6 exhibits converges problems or

converges only at boundary estimates for p and θ. Locally weighted regression, instead,

is more adaptive to multiple stationary points and can thus identify patterns consistent

with more general models of new-product diffusion.

3.2 Estimation results

I apply the parametric and semiparametric estimators to all titles in the sample that have

at least 13 positive sales observations before they reach 95% of observed cumulative sales

(178 titles). Sales data for a title’s release week are omitted from all estimations because

they are not comparable to sales data for the following weeks: In contrast to theatri-

cal movies, new books do not have a particular weekday for release. One title may be

shipped on a Monday and another on a Friday, leaving only one or two sales days for the

latter title’s first calendar week.

Parametric results. As discussed earlier, parametric estimation based on equation 6

yields degenerate results for titles with steadily declining sales and does not converge for

titles whose sales pattern requires a more general diffusion model.21 Parametric estima-

tion converges and yields nondegenerate results for 59 titles in the sample.

21I classify converged estimates as degenerate if they fulfill at least one of the following conditions: (i) p̂ is
smaller than .01 and not significantly different from zero, (ii) θ̂ is smaller than .01 or larger than .99 and not
significantly different from zero or one (all with 95% confidence).
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Figure 5: Correlation of word-of-mouth intensity and overall sales
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The parametric test for the presence of positive word-of-mouth in sales of title i cor-

responds to a test for the significance of coefficient estimate q̂i. Within the set of nonde-

generate results, q̂ is significantly different from zero with 95% confidence for 23 titles.

In other words, the parametrically estimated share of titles that received positive word-

of-mouth is about 10%. Table 1 summarizes the corresponding coefficient estimates. To

facilitate comparison across titles, the estimated total number of buyers M̂i is summa-

rized relative to observed total sales Ni(T).22

The estimated hazard rate for sales to buffs (p̂i) is .1 on average, however, this aver-

age seems to be driven by some titles with high estimates. Mean and median estimates

for the share of buff buyers are closer to each other (.55 and .61, respectively) and indi-

cate that buff buyers tend to make up for the majority of sales also for titles with positive

word-of-mouth.

To assess the relationship between word-of-mouth and total sales, figure 5 provides

more details on the bivariate distribution of q- and M-estimates across titles. Most q-

estimates are below .5 and whereas the few larger estimates are almost all significant,

a good share of the lower estimates is significant as well. Altogether, across titles that

seem to have enjoyed some word-of-mouth there is no evident relationship between its

intensity (as measured by q) and overall sales (as measured by M).

22Since M̂i does not include Christmas sales, it can be lower than Ni(T) for titles with a large Christmas
share.
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Table 2: Distribution of total sales across titles with and without word-of-mouth

No. of Observed total sales Price PubSize∗

titles Mean Min. Median Max. Mean Mean

Full sample 229 3785.0 1 704 105416 17.40 3.1
Estimation sample 178 4836.2 87 1250.5 105416 17.71 3.4

Parametric test for convex sales (95% confidence):
not rejected 155 3743.6 87 1022 105416 17.66 3.3
rejected 23 12199.6 354 5911 43200 18.11 3.9

Semiparametric test for (locally) convex sales (95% confidence):
not rejected 144 3561.6 87 1139.5 43200 17.83 3.3
rejected 34 10234.4 218 1983.5 105416 17.21 3.8

∗Number of sampled titles published by the respective publisher.

Semiparametric results. The semiparametric test for the existence of word-of-mouth

is directly based on the estimated shape of the sales curve. It draws on the theoretical

result that positive word-of-mouth leads to a concave sales pattern around a title’s peak

sales. Loosely speaking, it is a simple test whether there is a sales peak after week 2. More

technically, the semiparametric test corresponding to a test for q=0 in the parametric case

is a test for convexity of the sales pattern around peak (maximum) sales. In particular, I

reject local convexity if loess-predicted peak sales are significantly greater than predicted

sales in week 2; that is, if the 95% confidence intervals around these two predictions do

not overlap.

For example, the loess fit for sales of title 1164 in figure 4 is steadily decreasing. In

such a case, the test is trivial because peak sales and sales in week 2 coincide, as well as

their predicted values and confidence intervals, and convexity cannot be rejected. For ti-

tles 1295 and 1179 in figure 4, this test rejects convexity and thus indicates the existence of

positive word-of-mouth. Altogether, the semiparametric test rejects convexity for 34 titles

with 95% and hence suggests that less than 15% of the sampled titles received positive

word-of-mouth.

Table 2 compares the distribution of total sales across the identified subsamples of

titles with and without indication of word-of-mouth. For both methods of identification,

subsample averages of observed total sales are significantly different (t-test, 99% confi-

dence). On average, titles with signs of positive word-of-mouth perform better in terms

of total sales, however, some of these titles have relatively low sales whereas some of the

sample’s best sellers are not estimated to enjoy positive word-of-mouth. The two success
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measures nominal sales and word-of-mouth can therefore lead to contrasting findings. In

other words, a success measure based on word of mouth can lead to a different result than

a measure based on sales alone, although the two measures are somewhat correlated.

Table 2 also summarizes retail prices (in Euro) and a measure of publisher size (the

number of sampled titles published by the respective publisher) for each subsample. For

both methods of identification, both average retail prices and publisher size do not differ

significantly across titles with and without identified positive word-of-mouth (t-test, 95%

confidence). These results suggest that predetermined title or publisher characteristics

are of little help in predicting the occurrence of word-of-mouth.

4 Conclusion

In this paper, I propose a novel approach to study new-product success in creative in-

dustries. The empirical strategy to identify a profitable product is based on the standard

terms of contract between creator (author) and producer (publisher), combined with a

parsimonious model of new-product diffusion. In this context, measures of positive

word-of-mouth are better indicators of publisher profits than measures based on absolute

sales, because prominent authors can appropriate a large share of a product’s expected

revenues in ex ante bargaining. The existence and extent of positive word-of-mouth can

be identified from a products’s intertemporal variation in sales by either parametric or

semiparametric estimation methods.

In an application to a random sample of novels, estimation results indicate that be-

tween 10 and 15% of titles enjoy positive word-of-mouth. Estimates of positive word-

of-mouth are imperfectly correlated with a title’s total sales and are not correlated with

predetermined title characteristics such as a title’s retail price. These findings support the

view that the title-specific extent of word-of-mouth is extremely difficult to foresee and

that choice of measure is important in studying new-product success.

The results are in line with Diderot’s (1763) rule of thumb that one out of ten pub-

lished books is a commercial success. If Diderot’s rule is an appropriate description of

market conditions in 1763, then changes in information technology since then do not

seem to have much affected the odds of success in the book industry. I therefore sus-
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pect that current and future technological changes such as the internet revolution will

not significantly improve its new-product success rate.

It is likely, however, that new technologies decrease costs of production and distribu-

tion. Even with constant or slightly decreasing sales by product, this will have a positive

effect on the number of new books and thus variety in the market as predicted by Ander-

son (2006) and Hendricks and Sorensen (2009), because the investment requirements to

produce a book decrease.

In the medium and long term, new technologies may also change the relationship

between creators and producers. One possibility is that creators simply turn to producing

and marketing their product themselves, as it becomes easier and less expensive to do so.

For example, the number of self-published authors, who typically produce their books

by print-on-demand, has risen over the last years. Another possibility is that creators

and producers work more closely and concentrate on developing the content together,

leaving physical production and distribution to service providers. In either case, the

terms of contract and the distribution of revenues and profits across the value chain are

likely to change.
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A Appendix

A.1 Data characteristics

The data used in this paper is a sample of novels released 2003 as hardcover in Ger-

many. This is a representative sample that I drew myself on location at the data provider

(Media Control GfK International) from the set of all hardcover novels released in 2003.

Sampling was based on a computer-generated list of random numbers. Media Control

GfK International aggregates scanner data from over 750 points of sale (bookshops, de-

partment stores) as well as all main internet retailers in Germany. Not sampled are direct

sales from publishers to consumers, book club sales and mail order sales. Supermarket

sales are also not sampled, but they represent a negligible portion of German book sales.

Altogether the sampled retail channels account for about 66% of total book sales in Ger-

many. Yet, for the particular segment studied here (novels in hardcover), sales coverage

of sampled channels is likely to be much higher. First, publisher direct sales are not very

important for popular publications such as novels; direct sales usually concern profes-

sional publications. Second, book clubs can be regarded as a secondary market that only

becomes important for a title after its diffusion in the primary market (which is stud-

ied here). Furthermore, no particular estimation bias arises from this type of sampling.

By law, book prices are the same for all retail channels.23 In theory, buffs may be more

inclined to order directly from publishers because they do not need retailer advice; in

practice, however, title availability is high and ordering processes are quicker (typically

overnight) at stationary bookshops and online retailers. Direct orders from publishers

are thus unattractive for non-professional buyers.

The raw data indicate negative sales – books returned by consumers after purchase

– for 18 weekly observations. A good share of these take place in January and thus seem

to be mis-given Christmas presents. In estimations, I replace sales with value zero in

these observations. In addition, data for some titles appear to contain advance orders

erroneously booked as sales: sales of 1, 2 or 3 copies followed by a number of zero-sales,

long before sales actually take off with two- and three-digit weekly sales.24 I therefore

apply an automatic procedure to identify the most evident cases, namely those in which a

23In many European countries including Germany, book prices are by law subject to resale price mainte-
nance; that is, retailers must not offer discounts from the publisher’s list price.

24In fact, each observation of sales of 1, 2 or 3 may arise from just one pre-ordered copy because some
points of sale from which the data were aggregated have a sample weight larger than one.
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first sales observation of 1, 2 or 3 copies is below the respective title’s average weekly sales

(based on weeks with nonzero sales) and is followed by a zero-sale week. I assume that

such an observation represents an advance order and add the amount to the following

observation of positive sales, which I assume to be the effective release week. Since a few

titles seem to exhibit multiple weeks with such advance orders, I repeat the procedure

four times. In a similar exercise, I also interpret all first-week sales observations of sales of

1 to 3 copies as advance orders whenever they were below 10% of the title’s average sales

(based on weeks with nonzero sales). The main goal of these procedures is to identify

a title’s effective first sales week. They leave all other aspects of estimation essentially

unaffected because first-week sales observations are omitted from estimations.

The initial sample consisted of 307 titles, but many of those were actually not sold

before 2004 or very late in 2003. This is not unusual because a title’s release year is deter-

mined with publication of the publisher’s season catalogue, long before the start of the

season. For many titles the production process is not yet finalized at that point. There-

fore, a late start of observed sales is a sign of delayed release rather than weak demand.

In order to ensure a sufficient number of observations per title, I restrict attention to the

229 titles in the sample that began selling before mid-October (week 43 of 2003).

Figure 6: Distribution of cumulated sales across titles
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A.2 The Christmas effect

Christmas-driven purchases are usually concentrated on the December weeks (tD; D=1,...4)

and can boost a title’s sales significantly. This raises three empirical points to discuss

in this section: First, we have an additional identification problem because in each of

the four December weeks, sales Si(tD) now consist of three parts: Christmas-driven

sales sx
i (tD) in addition to the ‘usual’ model part f (t) and the error term ε itD

. Second,

Christmas-driven sales may have second-order effects on sales after Christmas. Third, if

Christmas sales are so important, publishers may engage in strategic release timing.

For the moment, suppose that f (t) and sx
i (tD) are independent (supportive evidence

is presented below). For parametric identification of f (t), I include time dummies for

each December week, whose coefficients (λD) are assumed to be non-negative. With

respect to estimation of model parameters, this amounts to placing zero weight on De-

cember observations only when they are above the title’s specific trend. Predicted values

from the original function to be fitted are then unresponsive to December spikes, and the

λ-coefficients capture all sales in excess of those predicted by the otherwise best-fitting

set of parameters. Provided E[ε itD
]=0, the sum of these coefficients may then be inter-

preted as an estimate for a title’s extra Christmas sales: S̃x
i = ∑D sx

i (tD) = ∑D λ̂D.25 On

average, parametrically estimated extra Christmas sales S̃x
i represent about 10% of the

average title’s overall sales; for some titles, however, S̃x
i represents up to one third of

overall sales.

If one is interested primarily in estimating f (t), a simple solution to the Christmas

identification problem is to place zero weight on December observations in estimation.

I follow this approach for the semiparametric estimation results presented in this paper.

The underlying assumption is again that f (t) and extra Christmas sales (sx
i (tD)) are in-

dependent. This assumption would be violated, for example, if extra Christmas had a

second-order effect on sales after Christmas - which brings us to the second point.

In order to assess the validity of this assumption, I first use the semiparametric model

to obtain a title-specific estimate of extra Christmas sales (Ŝx
i ). Provided E[ε itD

]=0 and

given an estimated smooth function f (t) for observed pre- and post-December sales, I

impute December values f (tD) by interpolation. An estimate for extra Christmas sales

in December week tD is then the difference Si(tD) − f (tD) whenever it is positive, or

25Alternatively, one may specify a functional form for sx
i (tD) and its relation to f (t) and εit.
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zero else. Yet, weekly sales are differently variant across titles (heteroskedastic), which

affects this estimate of sx
i (tD). As a more robust estimate that enables comparison across

titles with different sales variances, I therefore use the upper limit of the prediction’s

confidence interval f C̄I(tD) in calculating extra Christmas sales:

Ŝx
i =

4

∑
tD=1

(Si(tD) − f C̄I(tD)) 1(Si(tD) > f C̄I(tD)).

Based on this estimate for Sx
i , I assess a potential relationship between a title’s extra

Christmas sales and its post-Christmas performance by running the following cross-title

regression:

N2004
i

N2003
i − Ŝx

i

=
(1.16)

(1.76)
1.46

(−.04)

(−.02)
−.03 T2003

(−.09)

(+.33)
+ .12

Ŝx
i

N2003
i − Ŝx

i

+ ε i,

where i = 1, ..., 176 (R2 = .25).

In this regression, N2004
i denotes sold copies observed for title i’s in the first half of 2004,

N2003
i denotes sold copies observed for title i’s since its release in 2003, and T2003 denotes

the number of weeks title i has been sold in 2003 (52 minus its 2003 release week). In

other words, the regression relates a title’s level of observed 2004 sales (relative to 2003

non-Christmas sales) to the number of weeks it has been for sale in 2003 as well as to the

level of extra Christmas sales (relative to 2003 non-Christmas sales). Bracketed numbers

indicate 95% confidence intervals for the estimates (centred).26 The estimated coefficients

indicate, for example for a title released in mid-2003 (hence T2003=26), that on average

2004 sales represent about 68% of 2003 non-Christmas sales. The estimated effect of extra

Christmas performance is modestly positive on average but not significantly different

from zero (an increase in Sx
i

N2003
i −Sx

i

by .25 – about one standard deviation – is associated

with an increase in relative 2004 sales by about 3%-points on average.). Hence, additional

Christmas-driven December sales do not seem to induce significant second-order sales

effects in the new year.

26Confidence intervals do not account for the fact that Ŝx
i is itself the result of an estimation and are

therefore too narrow. Furthermore, the above estimates exclude two titles that due to large sales shocks
in 2004 have very large values of N2004

i /N2003
i . In a regression that includes these two titles, all coefficients

are insignificant.
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The third Christmas-related point that may affect estimation results is strategic re-

lease timing: do publishers strategically choose release times for titles that are expected to

do well in the Christmas season? A simple approach to this question is to assess whether

a title’s extra Christmas sales are related to its release date (its distance to Christmas).

Regressing extra Christmas sales, relative to overall non-Christmas sales (Ni), on release

week (T2003) gives the following result:

Ŝx
i

Ni − Ŝx
i

=
(.24)

(.40)
.32

(−.009)

(−.004)
-.006 T2003 + ε i,

where i = 1, ..., 178 (R2 = .12).

These estimates indicate that the relationship between release timing and Christmas sales

is indeed modestly positive: moving a title’s release date one week closer to Christmas

is associated with an estimated increase in the relative size of Christmas sales by .006%-

points. Yet, it is unclear whether this effect is a strategic one. A confounding effect is that

older titles are less attractive as Christmas presents because they have a higher probabil-

ity that the donee already knows them. Given the relatively modest economic effect and

the high variance in the data as indicated by a low R2, I conclude that strategic release

timing with respect to Christmas seems to be of minor importance.
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