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Abstract 

Propensity Score Matching (PSM) has become a popular approach to estimation of causal 

effects. It relies on the assumption that selection into a treatment can be explained purely in 

terms of observable characteristics (the “unconfoundedness assumption”) and on the property 

that balancing on the propensity score is equivalent to balancing on the observed covariates. 

Several applications in social sciences are characterized by a hierarchical structure of data: 

units at the first level (e.g., individuals) clustered into groups (e.g., provinces). In this paper 

we explore the use of multilevel models for the estimation of the propensity score for such 

hierarchical data when one or more relevant cluster-level variables is unobserved. We 

compare this approach with alternative ones, like a single level model with cluster dummies. 

By using Monte Carlo evidence we show that multilevel specifications usually achieve 

reasonably good balancing in cluster level unobserved covariates and consequently reduce the 

omitted variable bias. This is also the case for the dummy model.  

 

Keywords 

propensity score, multilevel studies, unconfoundedness, causal inference 

 

1. Introduction 
In many fields of the social sciences, there is a growing interest in methods that can be used to 

evaluate the effects of social programs and public policies. A large part of the recent literature 

on program evaluation focuses on estimation of the average effect of the treatment under the 

potential outcomes framework for causal inference, which was pioneered by Neyman (1923) 

and Fisher (1925) and extended by Rubin (1974, 1978) to observational studies. Following 

the seminal work of Rosenbaum and Rubin (1983a) the literature on estimating average 

treatment effects under the unconfoundedness assumption has become widespread (Imbens, 
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2004). In particular, propensity score matching methods have become popular among 

researchers: this approach is, for example, widely applied when evaluating labour market 

policies (see e.g., Bryson et al, 1992; Heckman et al, 1997; Dehejia and Wahba, 1999; Manski 

and Garfinkel, 2002; Sianesi, 2004). In the empirical labour economics literature, matching 

has been used to evaluate the returns from education (e.g., Blundell et al, 2005; Brand and 

Halaby, 2006) and the union membership wage premium (e.g. Bryson, 2002; Eren, 2007). 

Empirical examples can be found in very diverse fields of observational studies whenever the 

researcher aims to evaluate the effect of a variable (often of some policy relevance) on 

another. In the demo-economic literature, researchers are often interested in the evaluation of 

the effects of demographic events, like childbearing or marital disruption, on economic 

variables, like wellbeing and labour force participation (e.g., Aassve et al, 2007; Aassve and 

Arpino, 2007). The approach is also applied in the educational literature to study the effect of 

educational programs and policies on students’ performances (e.g., Hong and Raudenbush, 

2006).  

 

In all these applications, the possible occurrence of selection bias needs to be discussed and 

addressed. In fact, taking the mean outcome of non-participants as an approximation for 

absence of treatment is not advisable, since participants and non-participants usually differ 

even in the absence of treatment. This is the well-known selection bias problem and one 

possible solution is the matching approach: the basic idea is to find in the group of non-treated 

units, those individuals who are as similar as possible to the treated subjects in all relevant 

pre-treatment characteristics, X. Once this is done, differences in outcomes for this 

purposefully selected control group and of participants can be attributed to the treatment. The 

underlying assumption is known as unconfoundedness. In practice, we attempt to identify a 

set of pre-treatment characteristics, X, which includes all observable variables affecting both 

the outcome and the treatment assignment. Since conditioning on all relevant covariates is 

difficult in the case of a high dimensional set X (curse of dimensionality problem), 

Rosenbaum and Rubin (1983a) suggest the use of a balancing score, b(X), a function of the 

observed covariates X, such that the conditional distribution of X given b(X) is independent of 

assignment to treatment. The propensity score, the probability of participating in a treatment 

given the observed characteristics, X, is a balancing score. The resulting matching technique 

is known as propensity score matching (PSM).  

 

Obviously, PSM cannot solve the evaluation problem in every case. As noted by Blundell et 

al (2005), it should only be applied if the unconfoundedness assumption can be credibly 

invoked based on the informational richness of the data and a detailed understanding of the 

institutional set-up by which selection into treatment takes place. In fact, the underlying 

identification assumption, unconfoundedness, rules out the role of the unobservable variables. 

If any of the relevant covariates is unobserved, PSM estimates will be biased.  

 

The issue of selection on unobservables, without moving to instrumental variable methods, 

has been addressed using models for sensitivity analysis (e.g., Rosenbaum and Rubin, 1983b; 

Ichino et al, 2008) or by means of non parametric bounds for treatment effects (Manski, 

1990).  

 

In this paper we address the selection bias problem due to unobserved covariates in a specific 

setting, that of multilevel studies where the unobserved covariates are at the higher (cluster) 

levels. Multilevel studies analyse multilevel structured populations, which are the norm in 

many fields. Education provides a prototype example. Pupils or students are grouped in 

classes; classes are nested within schools; and schools may be administered within local 
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authorities or school boards. The units in such a system lie at four different levels of a 

hierarchy: pupils are assigned to level 1, classes to level 2, schools to level 3 and authorities 

or boards to level 4. Other examples of hierarchical populations are people within households, 

within geographical areas of residence (which are often found in the demographic and socio-

economic research); workers within firms within local labour markets (which are the typical 

structure in the labour economic literature). Multilevel research analyses the interrelationship 

existing between the different levels and takes into account the variability associated with 

each level of the nesting. Multilevel modelling techniques have been used to bring together, 

simultaneously, macro and micro level variables while accounting for the dependence of 

observations within groups (see e.g., Goldstein, 1995; Hox, 1995; Snijders and Bosker, 1999).  

 

In the paper we explore the use of multilevel techniques for the specification of the propensity 

score for multilevel data. The issue has received little focus in the literature. For the best of 

our knowledge only Kim and Seltzer (2007) address the issue explicitly. They propose use of 

a multilevel model for estimation of the propensity score and then implementation of the 

matching algorithm within each cluster. If we impose the condition that treated and matched 

controls must belong to the same cluster, we then automatically achieve perfect balancing in 

all the observed and unobserved cluster characteristics. This strategy is not likely to be 

feasible in those situations, representing the norm in social and economic observational 

studies, where we have relatively few units within each cluster. In these cases, in fact, it is 

likely that in several clusters it is difficult to find for each treated unit a good matched control 

belonging to the same cluster.  

 

We distinguish between two assignment mechanisms, and the consequent version of the 

unconfoundedness assumption needed for the identification of causal effects, that differ 

according to the way the cluster effects enter the selection into treatment process. In the first 

case, the cluster characteristics along with individual ones affect the selection probability. In 

the second situation, the selection process differs by cluster and belonging to a cluster instead 

of another leads the individual probabilities to be selected to vary. This distinction is relevant 

not only conceptually but also for the practical implementation of the matching procedure. In 

fact, in the first case within-cluster matching is not needed since what we require is that 

matched treated and control units belong to similar clusters and not necessarily to the same 

cluster. In this paper we focus on this kind of setting and on typical large-scale surveys (e.g. 

national surveys often characterised by a two-stage sampling scheme), where the cluster sizes 

are generally small. For this setting, we explore the use of multilevel specifications for the 

propensity score without imposing a within-cluster matching requirement. We also propose a 

more direct way to control for unobserved heterogeneity at the cluster level: this consists in a 

two-stage procedure, where in the first stage we estimate a multilevel model for the selection 

process and obtain predictions of the random error at the cluster level then, at the second 

stage, we estimate a single level model for the propensity score including as an additional 

covariate the predictions of the random effects obtained at the previous stage. We will refer to 

this method as the two-stage procedure. Both the multilevel specification of the propensity 

score and the two-stage procedure should help to mitigate the biasing effect of unobserved 

macro level covariates. We compare these multilevel specifications with single level ones by 

using a series of Monte Carlo experiments, where the interest lies in the bias of the Average 

Treatment effect on the Treated (ATT) estimators. We also compare multilevel specifications 

with alternative approaches which try to keep into account for unobserved cluster effects. 

Instead of using a random variable to represent the cluster effects, as in multilevel models, an 

alternative could be that of estimating fixed intercepts by including a dummy variable for 

each cluster (and omitting the overall intercept). We will refer to this approach as the dummy 
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model. In the logistic regression literature, it is well known that this approach can give rise to 

inconsistent estimates due to the so-called incidental parameter problem. However, in PSM 

the focus is not on the consistency of the estimated coefficients of the propensity score model 

but on the balance it obtains and in the consequent estimated ATT. Therefore, even if the 

dummy model suffers from the incidental parameter problem it could be appropriate for the 

estimation of the propensity score.  

 

An alternative way to control for cluster effects in models for binary data is the conditional 

logistic regression, that eliminates the cluster-specific effect by constructing a likelihood that 

is conditional on the number of treated in the cluster (Agresti, 2002). This approach resolves 

the inconsistency of the dummy model but is less efficient than the random effect model, 

especially when there are clusters containing only treated or controls; these clusters, in fact, 

cannot be considered in the analysis. In addition, since intercepts are not estimated using a 

conditional logistic regression, we could use this model to construct propensity score based 

distance measures only within clusters. Therefore, we will not consider this method since we 

focus only on approaches not forcing a within-cluster matching.  

 

The paper is organised as follows. Section 2 sets up the framework using the potential 

outcomes framework and provide a motivation for the paper by means of examples where the 

topic could be relevant. Section 3 discusses some different multilevel setting and alternative 

propensity score specifications. Section 4 provides Monte Carlo results for the performance of 

these specifications and section 5 concludes.  

 

2. Framework and motivation 
 

The propensity score matching methodology for the estimation of 
causal effects 

We use a standard setup in the treatment effect literature. Let us suppose we have a population 

of individual units under study indexed by i = 1, 2, ... , N, an indicator for a binary treatment, 

T, which assumes the value 1 for treated units and 0 for untreated, or controls, and an outcome 

variable, which we indicate by Y. Under the potential outcomes framework, each unit, i, has 

two potential outcomes associated with the two treatment levels: Yi1 if Ti = 1 and Yi0 if Ti = 0. 

Potential outcomes for unit i and treatment t can be written as Yid, with t = {0,1}. The fact that 

this variable is labelled only by i and t corresponds to the “no interference among units” 

assumption of Cox (1958), which Rubin (1980) extended to the Stable Unit Treatment Value 

Assumption (SUTVA). This standard assumption requires that potential outcomes for a unit 

are not affected by the treatment received by other units and there are no versions of the 

treatment. Under the SUTVA, we can define several causal effects the most popular being the 

Average Treatment effect on the Treated:  

 

 ATT = E(Y1-Y0| T = 1), (1)  

 

which focuses explicitly on the effects on those for whom the program is actually intended. In 

particular, the ATT gives the expected effect of the treatment on a randomly drawn unit from 

the population of treated. It is therefore more interesting for policy makers than the average 

treatment effect on the whole population (Heckman et al, 1997). The identifying assumptions 

are usually stated as follows: 
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Unconfoundedness (A.1):  Y1, Y0 ⊥ T |X,  

Common support (A.2):  0 < P (T =1| X) < 1,  

 

where ⊥ in the notation introduced by Dawid (1979) means independence. The combination 

of the two assumptions A.1 and A.2 is referred to as strong ignorability (Rosenbaum and 

Rubin, 1983a). Assumption A.1, known as the unconfoundedness assumption, asserts that the 

probability of assignment to a treatment does not depend on the potential outcomes 

conditional on observed covariates. In other words, within subpopulations defined by values 

of the covariates, we have random assignment. This assumption rules out the role of the 

unobservable variables and therefore is referred to also as selection on observables (Imbens, 

2004). Assumption A.2, known as the common support assumption, implies equality in the 

support of X in the two groups of treated and controls (i.e. Support(X|T=1) = Support(X|T=0)) 

which guaranties that the ATT is well defined (Heckman et al, 1997); otherwise, for some 

values of the covariates there would be some treated for which we could not find any 

comparable units in the control group.  

 

It is instructive to remember the decomposition of the selection bias proposed by Heckman et 

al (1998). They showed that the selection bias (B) can be decomposed in three components: B 

= B1 + B2 + B3. The first component, B1, refers to the bias caused by non-overlapping supports 

of X in the treated and control group. The term B2 depends on misweighting within the 

common support, as the empirical distributions of treated and non-treated may not be the 

same even when restricted to the common support. Finally, the term B3 is the “true 

econometric selection bias” resulting from “selection on unobservables”, that is, it is the bias 

arising from a different distribution of relevant unobserved variables between treated and 

controls. Under A.1 the term B3 is zero. The other bias components are cancelled out when we 

restrict the analysis on the common support (B1) and we balance covariates in the group of 

treated and control units (B2).  

 

Several methods are available to balance covariates across the groups of treated and controls. 

Among them matching has become very popular. Matching is an intuitive and appealing 

method, which basic idea consists of contrasting treated and control units with the same 

characteristics X. Starting from assumption A.1, the basic idea is that within each cell defined 

by the values of the covariate X assignment to treatment or control group is random. 

Therefore, if in a given application we are willing to assume that all relevant variables that 

affect the selection on treatment and outcome are collected in the set X (and hence we are 

confident that assumption A.1 holds) we can match each treated unit with one (or more) 

control unit with the same values of X. The group of treated and matched controls will differ 

only for the exposure to treatment and, therefore, differences in the outcome between the two 

groups can be attributed to the treatment. When the number of matching variables is large 

and/or when some of X are continuous exact matching becomes unfeasible and a distance 

metric have to be used to weight comparisons of matched treated and control units. An 

alternative is to implement the matching on a univariate variable, which “summarizes” the 

information incorporated in X, as opposed to matching directly on the multivariate set X. Well 

known are matching methods that use the propensity score, which can be defined as the 

conditional probability of receiving a treatment given pre-treatment characteristics:  

 

 e(X) ≡ Pr{T = 1|X} = E{T|X}. (2)  
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The substitution of the multivariate set X with the univariate e(X) in the matching procedure is 

justified by two important theorems due to Rosenbaum and Rubin (1983a). The first one, 

referred to as the balancing property of the propensity score, asserts that conditioning on the 

propensity score, X and T are independent: X ⊥ T | e(X). This result implies that observations 

with the same propensity score have the same distribution of characteristics X, independently 

of treatment status. When the propensity scores are balanced across the treatment and control 

groups, the distribution of all the covariates are balanced in expectation across the two groups. 

Therefore, matching on the propensity score is equivalent of matching on X. The second 

theorem shows that if treatment assignment is strongly ignorable given X, then it is strongly 

ignorable given any balancing score, then adjusting for e(X) is sufficient to produce unbiased 

estimates of the ATT. On the basis of these two theorems we can write the ATT as:  

 

 

                   (3) 

 

where the outer expectation is over the distribution of e(X) in the sub-population of the treated 

units.  

 

In observational studies the propensity score is not known and it has to be estimated from the 

data available. Using the common logit or probit models, we can write e(X) ≡ Pr{T = 1|X} = 

F[h(X)], where F(.) is, respectively, the normal or the logistic cumulative distribution and 

h(X) is a function of covariates with linear and higher order terms. The choice of which higher 

order terms to include, as well as interactions among covariates, is determined solely by the 

need to balance covariates distribution in the two treatment groups (Dehejia and Wahba, 

1999). Simple parametric specifications for the propensity score have indeed often been found 

to be quite effective in achieving the balancing required (see for example Zhao, 2005).  

 

The estimation of the propensity score is, however, not sufficient to estimate ATT using the 

(3). The reason is that the probability of observing a treated and a control unit with exactly the 

same value of the propensity score is, in principle, zero, since e(X) it is a continuous variable. 

Then, we need to use some algorithm to match treated and controls. Various matching 

methods have been proposed in the literature to overcome this problem and the most widely 

used are nearest neighbour, stratification, radius, kernel matching (see e.g., Caliendo and 

Kopeining, 2008).  

 

Motivation: The “unmeasured context” problem 

As said before, the PSM methodology is based on the validity of the unconfoundedness 

assumption. If one or more variables affecting the selection into treatment and potential 

outcomes are not observed, making the unconfoundedness assumption to fail, the estimated 

ATT will be biased.  

 

In this paper we consider a particular case of omitted variable bias caused by one or more 

unobserved cluster level covariate in a multilevel data structure. We refer to this issue as the 

“unmeasured context” problem. To give a concrete exemplification we consider the case of 

the evaluation of labour market programs. Workers belonging to the same local labour market 

share the same institutional, cultural and socio-economic environment and, as a consequence, 

they are likely to show, ceteris paribus (with respect to individual characteristics), more 

similar probabilities to be selected into the program and more similar outcomes (e.g., earnings 

( ) ( )[ ] )(,0|)(,1|  ATT 011 | )( XeTYEXeTYEE TXe =−== =
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or employment status) with respect to people working in different places. This is a well-

known issue in labour economics addressed, for example, by Heckman et al. (1997). The 

authors pointed out that matching methods are far more effective in recovering the parameter 

of interest when the comparison and treatment group both are drawn from the same local 

labour markets since both the levels and dynamics of earnings and employment are affected 

by the conditions of the local labour market in which persons are located. This is confirmed 

also by Friedlander and Robins (1995) and Bloom et al. (2002) which compare, in the U.S. 

context, findings for a number of experimental comparison groups with those for non-

experimental control groups obtained both from the same and from different states with 

respect to the program samples. The resulting non-experimental estimates were usually quite 

different from the experimental estimates derived from the same data when out-of-state 

comparison groups are used. On the contrary, when comparison samples are drawn in the 

same state as the program sample the average discrepancy between experimental and non-

experimental estimates was smaller. These studies illustrate the risks involved in comparing 

the behaviour of individuals residing in different geographic areas and can be generalised to 

all situations where context matters, that is where people residing in different areas are subject 

to different environments, and these are likely to affect the selection and outcomes under 

study. For example, Aassve and Arpino (2007) analysed the effect of childbearing events on 

economic wellbeing in rural Vietnam using data from the Vietnamese Living Standard 

Measurement Survey (VLSMS). The contextual dimension, represented by the community 

characteristics, plays an important role in this application. The authors can benefit from an 

important series of information at the community level which is available for the rural sample 

of the VLSMS (concerning for example health facilities, educational indexes, the presence of 

roads and other infrastructures). But this is not always the case. For example, community 

information is unavailable for the urban sample of the VLSMS, likewise for some others 

surveys of this kind (e.g., the LSMS for Armenia, Bosnia and Herzegovina, Romania, Serbia). 

Estimates of the fertility effect on wellbeing on this kind of data would be affected by the 

problem of omitted cluster level variables. In this paper we address the issue of the 

specification of the propensity score model when an unmeasured context problem is at hand. 

In the next section we characterise the different situations we can encounter when evaluating 

treatment effects in multilevel studies, in terms of the assumptions we can make on the 

assignment mechanism, and we discuss alternative specifications of the propensity score 

which aim to face a potential unmeasured context problem. We consider typical data 

structures in large scale surveys, characterised by a relative high number of small clusters as 

in Aassve and Arpino (2007), where the sample size consists of 2023 households clustered in 

120 communities.  

 

3. The specification of the propensity score model for 
multilevel data 
In this section we adapt the general framework outlined in the previous section to a multilevel 

setting. Let suppose to have a two-level data structure in which N micro units at the first level, 

indexed by i (i = 1, 2, ... , nj), are nested in J macro units at the second level, indexed by j (j = 

1, 2, ..., J). We can have variables measured both at the first (X) and at the second level (C). 

With respect to the level of assignment of treatment(s) we can have the following situations: 

 

a) one (or more) treatment(s) assigned at the individual level 

b) one (or more) treatment(s) assigned at the second level 

c) one (or more) treatment(s) assigned at each level 
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In this paper we focus on situations of type a, where the treatment is assigned at the individual 

level only, and we distinguish between the following two situations: 

 

1. the treatment is assigned at the individual level but one or more cluster-level 

characteristics affect both the selection into treatment status and on the potential 

outcomes. The equivalent randomised experiment is the so-called multi-site 

experiment, where units are randomly assigned to treatment or control within cells 

jointly defined by unit and cluster-level characteristics. 

 

2. the treatment is assigned at the individual level but belonging to a cluster instead that 

to another has an affect the selection (and the potential outcomes). This corresponds to 

the so-called cluster randomised experiment, where first the level of treatment is 

randomly assigned to clusters, then within clusters units are randomly assigned to 

treatment or control on the basis of blocks defined by individual characteristics.  

 

 

In both situations the cluster effects can operate in two ways. It could be restricted to the fact 

that the probability to get the treatment changes by clusters (according to clusters 

characteristics, in the first case, or cluster-belonging, in the second) but, for units with the 

same individual characteristics the relative percentage of treated units is fixed among clusters. 

In other words, the effect of individual characteristics on the probability to be selected into 

treatment is fixed. Alternatively, both the overall probability and the relative risk to get the 

treatment, depending on the individual characteristics, could change by cluster. In this case, 

there is interaction between the cluster and the individual effects. 

 

The previous classification is important both conceptually and for the statistical implications. 

In the first situation what is relevant for the analysis is the knowledge of the clusters 

characteristics and not cluster-belonging per se. Said in other words, we aim to compare 

treated and controls with both first and second level similar characteristics and we do not need 

to force that matched units belong to the same cluster. On the contrary, in the second 

situation, we would compare treated and control units belonging to the same cluster and with 

similar individual characteristics.  

 

More formally, the previous distinction can be done with respect to the way cluster effects 

enter in generating the treatment status and potential outcomes and consequently with respect 

to the unconfoundedness assumption needed to identify causal effects. It turns out natural to 

specify the unconfoundedness assumption for the two situations, respectively, as follows: 

 

Unconfoundedness assumption – case 1 (A.3):  Y1, Y0 ⊥ D |X, C; 

Unconfoundedness assumption – case 2 (A.4):  Y1, Y0 ⊥ D |X, C1, C2 ,…, CJ. 

 

Two simple data generation mechanisms that conform to these assumptions are the following: 

 

Data generation model – 1 

(Treatment) 

Tij* = Xij β + Cj α + εij 

Tij  = I (Tij* > 0) 
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(Potential Outcomes) 

Y1ij = Xij δ1+ Cj θ1 + η1ij 

Y0ij = Xij δ0 + Cj θ0 + η0ij 

 

 

Data generation model – 2 

(Treatment) 

Tij* = Xij β + C1j α1 + C2j α2 + … + CJj αJ + εij 

Tij  = I (Tij* > 0) 

 

(Potential Outcomes) 

Y1ij = Xij δ1 + C1j θ11 + C2j θ21 + … + CJj θJ1 + η1ij 

Y0ij = Xij δ0 + C1j θ10 + C2j θ20 + … + CJj θJ0 + η0ij 

 

where X and C in both models represent, respectively, a set of first and second level 

characteristics. In the first model ε is a random error uncorrelated with η1 and η0, while η1 and 

η0 are allowed to be correlated. In the second model, C1, C2 ,…, CJ are dummies for the J 

clusters (obviously the overall intercepts are omitted in this case). In both model, we could 

allow for interactions among cluster and individual effects. 

 

It is important to note that it does not make sense to order assumptions (A.3) and (A.4) with 

respect to their weakness. They are simply different and can be both more plausible than the 

other in a given application. However, there are practical implications for the implementation 

of the propensity score methods. Depending on the assumption we make we would use 

different propensity score matching strategies, with respect both to the specification of the 

propensity score and the matching algorithm. Our paper focuses on case (1) since it is the 

most common in observational studies. In the following we consider that an unmeasured 

context problem is at hand or, said, in other words that assumption (A.3) does not hold due to 

the fact that one or more relevant cluster level covariate is unobserved. For simplicity we 

consider a single cluster level covariate which is unobserved to the researcher. Our aim is to 

compare different specifications for the propensity score in such a situation. Our interest lies 

in the ability of the propensity score model to take into account the cluster effects and thus 

reduce the biasing effect on the ATT due to omission of a relevant macro variable. 

 

Several strategies for PSM implementation can be used in a situation like case 1. Among them 

we consider the following: 

 

Strategy 1  

 

Propensity score specification (simple single level): 

( )λπ ii XF=  

Propensity score estimates: 

( )λπ ˆˆ
ii XF=  

Matching: within clusters 
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Strategy 2  

 

Propensity score specification (cluster-specific single level): 

( )jijij XF λπ =  

Propensity score estimates: 

( )jijij XF λπ ˆˆ =  

Matching: within clusters 

 

 

Strategy 3  

 

Propensity score specification (multilevel random intercept):  

( )jijij uXF += λπ  

Propensity score estimates (empirical bayes probabilities): 

( ) ( ) jjnjjjijij duyyuPosterioruXF
j

 ,...,|   ˆˆˆ
1×+= ∫ λπ  

Matching: not forced to be within clusters 

 

 

Strategy 4  

 

Propensity score specification (2-stage): 

1
st
 stage: ( )jijij uXF += λπ 1  

2
nd

 stage: ( ) ˆ2 ωλπ jijij uXF +=  

Propensity score estimates: 

( ) ˆˆˆˆ ωλπ jijij uXF +=  

Matching: not forced to be within clusters 

 

 

Strategy 5 

 

Propensity score specification (“dummies model”):  

( )JJjjjijij CCCXF γγγλπ  ...  2211 ++++=  

Propensity score estimates: 

( )JJjjjijij CCCXF γγγλπ ˆ ...ˆ ˆ ˆˆ
2211 ++++=  

Matching: not forced to be within clusters 

 

Since our focus is on large scale observational studies (e.g. national surveys) where the 

typical data structure, characterised by a relatively large number of small clusters (few 

observations per cluster) makes the implementation of the matching algorithm within clusters, 

which would solve the omitted variable problem, difficult we consider only strategies 3 to 5.  

 

4. The simulation procedure and results 
In this section we introduce the general setup and the results of the first set of simulations we 

currently have completed. 
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The setup of the Monte Carlo simulation in this paper builds on the setup used by Zhao 

(2005). As in Zhao’s paper also in our work the focus is on the bias (and the mean squared 

error) of the ATT estimators. However, while Zhao assesses the robustness of the estimated 

treatment effect to misspecifications (concerning the error term specification and the included 

covariates) of the propensity score, we compare alternative specifications of the propensity 

score in a multilevel setting with unobserved cluster level covariates.  

We generate two-level balanced data structures, where the overall sample size, N, is 

determined as the product of the number of clusters, nc, and the fixed cluster size, cs.  

 

As we said in the previous section, our paper focuses on situations where the data conforms to 

an unconfoundedness assumption like (A.3). In particular, imposing the condition that both 

selection into treatment and potential outcomes depend on three first level covariates X1, X2 

and X3 and one cluster level covariate, C, the unconfoundedness assumption under which our 

simulation study is carried on is: 

 

Unconfoundedness assumption – special case of (A.3):  Y1, Y0 ⊥ T | X1, X2, X3, C. 

 

In particular and similar to Zhao, we use the following data generation mechanism: 

 

(Treatment) 

Tij* = β0 + X1ij  β1 + X2ij  β2 + X3ij  β3 + α Cj + εij 

Tij  = I (Tij* > 0) 

 

(Potential Outcomes) 

Y1ij = δ10 + δ11 X1ij + δ12 X2ij + δ13 X3ij + θ1 Cj + η1ij 

Y0ij = δ00 + δ01 X1ij + δ02 X2ij + δ03 X3ij + θ0  Cj + η0ij 

 

Both X1 and the error terms are generated as standard normal variables, while X2 is generated 

from a chi-square distribution and X3 is a mixture of two normal distributions. We allow for 

correlation between the error terms η1ij and η0ij, but impose the error terms in the outcome 

equations to be uncorrelated with the error term in the selection equation. This amounts to 

imposing that the unconfoundedness assumption as specified above is respected. In the 

simulation procedure we fix parameters β, δ and θ, but allow α to vary. As α increases, that is 

the cluster effect becomes stronger, the biasing effect of omitting C turns out to be more 

important and we expect that using specifications that accounts for the omitted variable 

becomes more relevant.   

 

We compare strategies 3, 4 and 5 as outlined in the previous section. As a reference we also 

estimate two single-level propensity score models, one including and the other excluding the 

variable C. Finally, we estimate a single level propensity score with the inclusion of the 

cluster means of X1 as a substitute for C. In all cases, the employed matching method is 

nearest neighbour with replacement combined with a caliper of 0.01.  

 

Apart from the different values employed for the parameter α (0.1; 0.3; 0.5), the several 

setups considered in the simulations differ in terms of how C is generated and the data 

structure (number of clusters and cluster size). The cluster variable C is generated both to be 

uncorrelated and correlated with the first level covariates. We generated the C variable in four 

ways: a) uncorrelated with X and generated by a standard normal distribution; b) uncorrelated 

with X and generated by a chi-square distribution with one degree of freedom; c) uncorrelated 
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with X and generated by a mixture of two normal variables; d) correlated with X1: 

.1 errorXbaC ++=  When C is not normally distributed or is correlated with a first level 

variable the multilevel models used in strategies 3 and 4 are misspecified. We are interested in 

the effect of these misspecifications on the estimated ATT. Moreover, when the unobserved 

cluster variable C is correlated with X1 we could expect that including in the propensity score 

the cluster means of this variable, 1X , together with the first level covariates helps in 

balancing C. This idea relates to the so-called second level endogeneity problem in the 

multilevel modelling literature. This problem arises when in a multilevel regression model we 

omit a cluster level covariate which is correlated with a first level one. As a consequence, the 

error term at the cluster level will be correlated with the first level covariate, leading to 

inconsistent parameter estimates. The problem is circumvented by including the cluster mean 

of the endogenous first level variable (see e.g., Snijders and Bosker, 1999).  

 

As far as the data structure is concerned, when we allow the number of clusters to vary we fix 

the cluster size and vice versa. Both increasing the number of clusters (holding the clusters 

size constant) and increasing the cluster size (holding the number of clusters fix) result in an 

increase of the sample size and, as a consequence, each estimator should perform better. 

However, we are interested in comparing the relative performances of the several strategies. 

In the first set of simulations, whose results are shown in this paper, we fix the cluster size to 

20 units and consider four values for the number of clusters (25, 50, 100, 200). For the second 

set of simulations we plan to develop, we will fix the number of clusters to 50 and consider 

four values for the clusters size (10, 20, 40, 80). This design also allows comparison of three 

situations with the same sample size but different data structure (nc=50 and cs=10 versus 

nc=25 and cs=20; nc=100 and cs=20 versus nc=50 and cs=40; nc=200 and cs=20 versus 

nc=50 and cs=80).  

 

Tables 1 and 2 summarise the results of the first set of simulations, where the number of 

clusters changes but the cluster size is hold constant to 20 units. In the tables we report only 

the results for the two extreme data structures (nc=25 and nc=200) and for α = 0.5 (highest 

effect of the cluster-level confounder in the data generating model for the true propensity 

score). The results for the other cases are qualitatively the same as those reported in the tables. 

In the simulations, we used a PSM with replacement and caliper = 0.01. In table 1, we 

generated the cluster-level confounder as a normal variable uncorrelated with the X, while in 

Table 2 we generated this variable to be normal but correlated with X1. The results we 

obtained when C was generated to have a chi-square or a bi-modal distribution are not shown 

here. These results, which are consistent with those shown in the paper, are available from the 

authors upon request.  

 

The following models are compared in the tables: 

 

M1 = single level logit including X1, X2, X3, C as covariates 

M2 = single level logit including X1, X2, X3 as covariates 

M3 = single level logit including X1, X2, X3, 1X  as covariates 

M4 = two-level logit (strategy 3) including X1, X2, X3 as covariates 

M5 = two-stage procedure (strategy 4) including X1, X2, X3, 1X  as covariates 

M6 = single level logit including X1, X2, X3, C1, C2 ,…, CJ  as covariates 
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From tables 1 and 2 we can see that the two-stage procedure (M5) and the dummy model 

(M6) show acceptable bias (measured as absolute standardise bias, ASB
1
.) and error (MSE) 

when compared to the benchmark model, M1. (M1 uses C as a covariate in the estimation of 

the propensity score and corresponds to the case where we have no omitted variables.)  

 

In most cases, the magnitudes of both bias and MSE for models M5 and M6 are comparable 

to those of M1. These methods perform much better than the single level model which does 

not take into account the omitted cluster level variable at all (M2). This is because both the 

two-stage and the dummy model achieve a reasonably good balancing of the omitted variable, 

C, between the treated and control groups, as attested by the ASB calculated after the 

matching. The inclusion of the cluster mean of the first level variable X1 (model M3) does not 

significantly improve the performance of model M2. Finally, a standard two-level logistic 

regression (M4) shows better bias and MSE with respect to a single level one (M2), but in 

most cases its performance is significantly worse than the two-stage and the dummy 

procedures.  

 

The previous results are not affected substantially by the way C is generated, by its effect on 

the selection into treatment (α) or by the number of clusters in the generated data (nc).  

 

Between the two-stage and the dummy procedure there is no a clear “winner”. In several 

cases the dummy procedure shows lower bias and MSE; in other cases the bias is lower but 

the MSE is higher. In most cases, however, there are no huge discrepancies between the two 

methods.  

 

5. Concluding remarks  
In this paper we address the problem related to the bias in the average treatment effect 

estimated with a propensity score matching procedure in the presence of unobserved higher 

level covariates. This problem arises in multilevel structured data where the contextual 

heterogeneity is not fully captured by the observed variables in the data set. 

 

We clarify the assumptions needed to identify causal effects in different multilevel settings. 

Our focus is on situations where we do not have a different treatment in different clusters, but 

cluster-level characteristics affect both the probability to take the treatment and the potential 

outcomes and can be considered as confounding variables, like the individual-level ones. In 

these cases within-cluster matching is not needed and propensity score specifications that take 

into account the unobserved cluster-level heterogeneity can be used. Using Monte Carlo 

simulations we compare the performance (bias and MSE) of multilevel and fixed-effect 

                                                 
1 The ASB, suggested by Rosenbaum and Rubin (1985), is defined as the absolute difference of sample means in 

the treated and matched control subsamples as a percentage of the square root of the average of sample variances 

in both groups. In formula, the ASB is given by:  

 

( )
( )2 2

100
0.5

T C

T C

X X
ASB

s s

−
=

−

 

 

where for each covariate 
TX  and 

CX  are the sample means, respectively, in the treated and control group and 2
Ts  

and 2
Cs  are the corresponding sample variances. One possible problem with the standardised bias approach is that 

one does not have a clear indication for the success of the matching procedure. Again, we compare the ASB for 

models M2-M6 with the ASB of our benchmark model, M1. 
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models (single level model with dummies for clusters). Among the multilevel specifications 

we propose a two-stage procedure that first estimates the contextual effects, as captured by the 

empirical bayes predictions of the random effects, and then, at the second stage, uses these 

predictions as a covariate to be used along with the observed potential confounds in the 

propensity score estimation. We find that the two-stage procedure (strategy M5) and the 

fixed-effect model (strategy M6) serve quite well the scope of capturing the unobserved 

heterogeneity. In fact, the bias and MSE for these strategies are comparable with our 

benchmark, which is represented by the fully specified propensity score procedure (that is, the 

one that assumes the cluster-level variables are observed). As a confirmation, these strategies 

achieve a balancing in the unobserved cluster-level variable which is comparable to that 

obtained with the benchmark model. This result is important for those situations, quite 

common in large-scale surveys where data are collected only at the lowest levels (for 

example, individuals and households), while no information is given at the higher levels (for 

example, communities or provinces).  

 

However, further analyses are needed. We plan to develop simulations with smaller cluster 

sizes and with unbalanced data structures. We expect that in these cases the dummy model 

will lose efficiency with respect to the multilevel specifications. 
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Tables 
 

Table 1. Monte Carlo results for various PSM strategies. Variable nc, fixed cs = 20, α = 0.5. 

Unobserved cluster covariate (C): normal and uncorrelated with X. 
 

 M1 M2 M3 M4 M5 M6 

 nc=25 (n=500) 

True ATT 0.906 0.906 0.906 0.906 0.906 0.906

Estimated ATT 0.877 1.667 1.680 0.781 0.858 0.933

Bias -0.029 0.762 0.773 -0.131 -0.053 0.027

MSE 0.048 0.625 0.640 0.066 0.064 0.054

ASB Before X1 38.997 38.997 38.997 38.997 38.997 38.997

ASB Before X2 13.668 13.668 13.668 13.668 13.668 13.668

ASB Before X3 53.435 53.435 53.435 53.435 53.435 53.435

ASB Before C 100.680 100.680 100.680 100.680 100.680 100.680

ASB After X1 9.737 6.476 6.162 11.789 10.136 9.736

ASB After X2 10.121 6.705 7.788 10.816 10.822 11.244

ASB After X3 7.887 4.627 4.582 14.700 9.341 9.042

ASB After C 5.369 81.224 82.950 15.261 8.059 6.357

 nc=200 (n=4000) 

True ATT 0.908 0.908 0.908 0.908 0.908 0.908

Estimated ATT 0.912 1.670 1.664 0.736 0.867 0.920

Bias 0.004 0.762 0.757 -0.172 -0.041 0.013

MSE 0.008 0.584 0.577 0.041 0.014 0.014

ASB Before X1 41.054 41.054 41.054 41.054 41.054 41.054

ASB Before X2 20.157 20.157 20.157 20.157 20.157 20.157

ASB Before X3 58.777 58.777 58.777 58.777 58.777 58.777

ASB Before C 99.511 99.511 99.511 99.511 99.511 99.511

ASB After X1 3.324 1.912 1.934 9.655 4.631 4.509

ASB After X2 4.430 2.448 2.494 7.343 5.792 5.674

ASB After X3 3.445 1.364 1.453 14.482 5.066 4.181

ASB After C 2.141 80.427 80.114 16.407 4.716 2.872

Notes: Replications:300. ASB = absolute standardised bias. MSE = mean 

squared error; nc = number of clusters; cs = cluster size, n = sample size; α 

= coefficient of C in the data gene rating model. 
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Table 2. Monte Carlo results for various PSM strategies. Variable nc, fixed cs = 20, α = 0.5. 

Unobserved cluster covariate correlated with X1 (r = 0.63). 
 

  M1 M2 M3 M4 M5 M6 

  nc=25 (n=500) 

True ATT  0.908 0.908 0.908 0.908 0.908 0.908

Estimated ATT  0.901 1.647 1.423 0.761 0.914 0.906

Bias  -0.006 0.743 0.517 -0.145 0.005 0.002

MSE  0.050 0.592 0.308 0.077 0.060 0.066

ASB Before X1  51.845 51.845 51.845 51.845 51.845 51.845

ASB Before X2  21.098 21.098 21.098 21.098 21.098 21.098

ASB Before X3  52.926 52.926 52.926 52.926 52.926 52.926

ASB Before C  106.587 106.587 106.587 106.587 106.587 106.587

ASB After X1  9.676 5.354 7.149 12.308 10.850 10.285

ASB After X2  10.266 7.312 7.904 11.410 10.760 11.967

ASB After X3  8.504 5.573 7.196 14.996 9.411 10.469

ASB After C  5.843 80.280 48.028 16.891 7.755 7.383

  nc=200 (n=4000) 

True ATT  0.908 0.908 0.908 0.908 0.908 0.908

Estimated ATT  0.901 1.647 1.423 0.761 0.914 0.906

Bias  -0.006 0.743 0.517 -0.145 0.005 0.002

MSE  0.050 0.592 0.308 0.077 0.060 0.066

ASB Before X1  51.845 51.845 51.845 51.845 51.845 51.845

ASB Before X2  21.098 21.098 21.098 21.098 21.098 21.098

ASB Before X3  52.926 52.926 52.926 52.926 52.926 52.926

ASB Before C  106.587 106.587 106.587 106.587 106.587 106.587

ASB After X1  9.676 5.354 7.149 12.308 10.850 10.285

ASB After X2  10.266 7.312 7.904 11.410 10.760 11.967

ASB After X3  8.504 5.573 7.196 14.996 9.411 10.469

ASB After C  5.843 80.280 48.028 16.891 7.755 7.383

Notes: Replications:300. ASB = absolute standardised bias. MSE = mean 

squared error; nc = number of clusters; cs = cluster size, n = sample size; α 

=coefficient of C in the data gene rating model; r = correlation between X1 

and C. 

 


