
Munich Personal RePEc Archive

Weighted Component Fairness for Forest

Games

Béal, Sylvain and Rémila, Eric and Solal, Philippe

Université de Saint-Etienne, CREUSET

18 August 2009

Online at https://mpra.ub.uni-muenchen.de/17455/

MPRA Paper No. 17455, posted 22 Sep 2009 11:08 UTC



Weighted Component Fairness for Forest Games∗
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Abstract

We present the axiom of weighted component fairness for the class
of forest games, a generalization of component fairness introduced by
Herings, Talman and van der Laan (2008) in order to characterize the
average tree solution. Given a system of weights, component efficiency
and weighted component fairness yield a unique allocation rule. We pro-
vide an analysis of the set of allocation rules generated by component
efficiency and weighted component fairness. This allows us to provide a
new characterization of the random tree solutions.

Key words: (Weighted) component fairness – Core – Graph games –
Alexia value – Harsanyi solutions – Random tree solutions.

1 Introduction

In this paper we study TU-games with restrictions on cooperation possibilities,
represented by an undirected communication graph as introduced by Myerson
(1977). The links in the graph represent the bilateral communication possibilities
between the agents. Agents can only cooperate if they are connected. In this
paper we assume that the communication graph is represented by a forest, i.e.
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each component of the graph is a tree. A forest game is a pair consisting of a
TU-game and a forest on the agent set.

Herings, van der Laan and Talman (2008) introduces a new allocation rule
for the class of forest games, the so-called average tree solution. The average
tree solution is the average of specific marginal contributions vectors, where each
marginal contribution vector is defined according to an orientation of the links
of the forest. Quite naturally, Herings, van der Laan and Talman (2008) follow
Demange (2004) and envisage the set of rooted trees in each component as the
set of orientations. A rooted tree is an orientation of a tree such that all links
are directed away from a designated agent, called the root. Such a rooted tree
describes how the agents can communicate with each other, namely: two agents
cannot communicate with each other if one is not a subordinate of the other.
The marginal contribution of an agent in a rooted tree is equal to the worth of the
coalition consisting of this agent and all her subordinates minus the sum of the
worths of the coalitions consisting of any of her successors and all subordinates
of this successor. The average tree solution can be characterized by two axioms:
component efficiency and component fairness. Component efficiency asserts that
the members of a component ought to allocate to themselves the total worth
available to them. When a link is severed in a component of a forest, this
component breaks up into two new components that will be called the proper
cones incident to the link. The component itself and the empty set form a cone.
It turns out that this system of coalitions formed by the set of cones is a union
stable system as introduced by Algaba (2001) and Bilbao (2000). Component
fairness asserts that deleting a link between two agents in a component yields
for both resulting proper cones the same average change in payoff, where the
average is taken over the players in the component.

Recently, Béal et al. (2009) build on the work of Herings, van der Laan and
Talman (2008) by relaxing the assumption that each rooted tree has the same
impact in the computation of the solution. Two new sets of allocation rules are
proposed for the class of tree games: the set of marginalist tree solutions and
the set of random tree solutions. A marginalist tree solution is defined as a linear
combination of the marginal contribution vectors and a random tree solution
is defined as a probability distribution over the set of all marginal contribution
vectors. The authors provided an axiomatic characterization of each of these
sets of solutions.

Here, we keep component efficiency as an axiom, replace component fairness
by weighted component fairness, and study the properties of the induced set
of allocation rules. Combining component efficiency with component fairness
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implies that the members of each proper cone receives the sum of two parts.
One part is the worth of the proper cone to which they belong and the second
part is a share of the surplus (positive or negative) generated by the deletion
of the link. This share is precisely the relative size of this proper cone. In
order to explore the consequences of the change of this share on the induced set
of allocations rules, we introduce a system of weights and then generalize the
fairness criterion from component fairness to weighted component fairness. A
system of weights assigns to each proper cone of each forest a weight between
zero and one, which determines the share of the surplus between the two proper
cones incident to a link.

Our first result establishes that for a fixed system of weights, component
efficiency and weighted component fairness yield a unique allocation rule on the
class of forest games. The expression of this rule reveals that, for each forest
game, it induces a payoff vector of the cone-restricted game associated with
the forest game. This cone-restricted game is defined as the restriction of the
underlying TU-game on the union stable system formed by the set of cones of
the forest. In addition, each agent receives the sum of two parts. The first part
is the worth of the component to which he or she belongs times the payoff he
or she receives in the unanimity game defined on this component. The second
part is determined link by link with each of his or her neighbors. More precisely,
this part of the payoff is a sum of compensation schemes between this agent
and each of his or her neighbors. We provide a geometric interpretation of these
compensation schemes.

Our next task is to consider the relationships between the set of allocation
rules generated by component efficiency and weighted component fairness, and
the core of the cone-restricted games associated with the forest games. This
core is component decomposable. First, we provide a necessary and sufficient
condition under which the core of a cone-restricted game is non-empty and then
show that its forms a polytope in each component. Second, we establish that this
core coincides with the full set of payoff vectors induced by component efficiency
and weighted component fairness. In other words, a payoff vector belongs to
the (non-empty) core of the cone-restricted game associated with a forest game
if and only if it is obtained by component efficiency and weighted component
fairness for some system of weights. Third, we show that the center of gravity
of the core of a cone-restricted game coincides with the average lexicographic
value of this game, also called the Alexia value, and introduced by Tijs (2005)
for balanced TU-games. Because the Alexia value is a core element, it is also
obtained by component efficiency and weighted component fairness for a certain
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system of weights. This system is such that each proper cone of a forest game
has the same weight. This is equivalent to say that the Alexia value is the only
component efficient rule which distributes the surplus generated by the deletion
of a link equally among the two proper cones incident to this link.

Another contribution of this paper is to draw a relationship between the ran-
dom tree solutions of a forest game and the Harsanyi solutions of the associated
cone-restricted game. We first identify the systems of weights which generate
Harsanyi payoff vectors in the corresponding cone-restricted games. We then
show that among the component efficient and weighted component fair alloca-
tion rules, only the random tree solutions generate Harsanyi payoff vectors in
the associated cone-restricted games. This allows us to provide an alternative
characterization of the random tree solutions in terms of component efficiency
and weighted component fairness.

As final way of calculating the allocation rules introduced in this paper, we
highlight their combinatorial nature by underlying that all these rules are equal to
a weighted average of the solutions of Cramer systems constructed from a subset
of the orientations of the forest and the TU-game associated with a forest game.
For instance, each random tree solution can be viewed as a weighted average of
these solutions, where the average is taken from the set of all rooted trees. In
the say way, the Alexia payoff vector is the average of the these solutions over
the full set of orientations.

This paper is organized as follows. Section 2 contains definitions and a
preliminary result. The axiom of weighted component fairness is introduced in
section 3. We establish that, for a given system of weights, component efficiency
and weighted component fairness yield a unique allocation rule on the class of
forest games. In section 4, we investigate the structure of the core of the cone-
restricted game. Section 5 is devoted to the relationship between the Harsanyi
solutions of the cone-restricted game and the random tree solutions.

2 Preliminaries

2.1 Cooperative games

Consider a finite set of agents N = {1, 2, . . . , n}. Let 2N be the set of all subsets
of N partially ordered by the set inclusion ⊆. Any subset of 2N inherits the set
inclusion order from 2N . A coalition is an element S of 2N , and N is called the
grand coalition. For a coalition S, the small letter s denotes its cardinal. In
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many practical situations some coalitions may not be meaningful. This may due
to the lack of communication possibilities, or certain institutional constraints. It
means that some coalitions are not feasible, so that the partially ordered set is no
more 2N , but a subcollection Ω of it. Several models of restricted cooperation
have been proposed. We refer the reader to the book of Bilbao (2000). Here, we
will light upon the union stable systems as introduced by Algaba et al (2001). A
subset of coalitions Ω is union stable if for any two feasible coalitions S, T ∈ Ω
such that S ∩ T 6= ∅, then S ∪ T ∈ Ω. This condition means that if two
feasible coalitions have common elements, these ones will act as intermediaries
between the two coalitions in order to establish meaningful cooperation in the
whole group.

A cooperative game with transferable utility is a pair (N, v) where N is the
set of agents and v : Ω −→ R is the characteristic function on the set of
feasible coalitions Ω. It is assumed that ∅ ∈ Ω and v(∅) = 0. The characteristic
function v assigns to every coalition S ∈ Ω its worth v(S), which is interpreted
as the maximal value the members of S can obtain by agreeing to cooperate.
The set Ω0 denotes the set of all non-empty coalitions in Ω.

By C(Ω), we denote the real linear space of all characteristic functions v on
Ω, which can be identified with R

ω−1, where ω stands for the size of Ω. Each
v ∈ C(Ω) can be expressed in a unique way as:

v =
∑

T∈Ω

av(T )uT ,

where the real numbers av(T ), T ∈ Ω0, are called the Harsanyi dividends of
v and where the collection of games {uT : Ω −→ R : T ∈ Ω0}, called the
unanimity games, are given by: uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise.

A payoff vector x ∈ R
n of v ∈ C(Ω) is a vector giving a payoff xi ∈ R to

any agent i ∈ N . For a non-empty coalition S ∈ Ω and a payoff vector x, the
notation xS stands for

∑

i∈S xi.
A solution on C(Ω) is a mapping F that assigns to every v ∈ C(Ω) a set of

payoff vectors F (v) ∈ R
n. In case F (v) is single-valued, we say that F is an

allocation rule, and we will use the small letter f instead of the capital letter F .
In this paper, we consider the class of Harsanyi solutions proposed by Vasil’ev

(1982) and applied recently by van den Brink et al. (2007) to graph-restricted
games (see Section Solutions for graph games). First a sharing system on Ω0

is a system p = (pS)S∈Ω0 , where pS is an s-dimensional vector assigning to each
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player i ∈ N a share pS
i such that:

pS
i ∈ [0, 1] and

∑

i∈S

pS
i = 1.

For a sharing system p, the corresponding Harsanyi solution fp induces the
Harsanyi payoffs defined as:

∀v ∈ C(Ω),∀i ∈ N, fp
i (v) =

∑

S∈Ω0:
i∈S

pS
i av(S).

2.2 Graph games

Let N = {1, 2, . . . , n} be a finite set of agents who face restrictions on com-
munication possibilities. The bilateral communication possibilities between the
agents are represented by an undirected graph on N , denoted by (N, L), where
the set of nodes coincides with the set of agents N , and the set of links L is
a subset of the set of unordered pairs {i, j} of elements of N . For simplicity,
we write ij to represent the link {i, j}, and so ij ∈ L indicates that i and j
are linked in (N, L). The notation L−ij stands for the set of links obtained by
deleting the link ij from the set of links L.

For each agent i ∈ N , the set Li = {j ∈ N : ij ∈ L} denotes the
neighborhood of i in (N, L). The degree of an agent i ∈ N in (N, L), denoted
by di, is the number of elements of Li. For each non-empty coalition S of N ,
L(S) = {ij ∈ L : i ∈ S, j ∈ S} is the set of links between agents in S. Note
that L(N) = L. The graph (S, L(S)) is the subgraph of (N, L) induced by S.
A sequence of distinct agents (i1, i2, . . . , ip) is a path in (N, L) if ikik+1 ∈ L for
k = 1, . . . , p − 1. Two agents i and j are connected in (N, L) if i = j or there
exists a path from i to j. A graph (N, L) is connected if any two agents in N
are connected. A tree is a minimally connected graph (N, L) in the sense that
only one path connects any two agents. Note that a tree on N has exactly n−1
links. A coalition S is connected in (N, L) if (S, L(S)) is a connected graph. The
empty coalition ∅ is trivially connected. Note that the set of connected coalitions
of a graph is union stable. A coalition C of N is a component of a graph (N, L)
if the subgraph (C, L(C)) is maximally connected, i.e. if the subgraph (C, L(C))
is connected and for each i ∈ N\C, the subgraph (C ∪ {i}, L(C ∪ {i})) is not
connected. Note that the collection of components of (N, L) forms a partition of
N . Let N/L be the collection of components of a graph (N, L). The concept of
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component is defined similarly for each subgraph (S, L(S)). A forest is a graph
(N, L) such that each subgraph (C, L(C)) induced by a component C ∈ N/L
is a tree, i.e a forest is a collection of disconnected trees. Note that a forest with
c components and n nodes has n − c links.

The set of cones of a forest (N, L) consists of the set of components N/L,
the set ∅, and for each i, j ∈ C ∈ N/L such that ij ∈ L the two components
of the subgraph of (C, L(C)) that are obtained after the deletion of the link ij.
Every cone strictly included in C is a proper cone of C. The unique agent of a
non-empty proper cone K who has a link with the complement of C\K is called
the head of K and is denoted by h(K). Observe that K ⊆ C is a cone if and
only if C\K is a connected coalition. If K is a cone, then the cone C\K is the
complement of K in C and is denoted by Kc. In order to insist on the link ij,
K(j,i) denotes the cone with head i and K(i,j) its complement with head j in
the corresponding component. Denote by ∆L and by ∆0

L the set of cones and
the set of non-empty proper cones of a forest (N, L) respectively. The set ∆L

is union stable since the union of two cones with a non-empty intersection is the
component to which they belong or one of the cones in case they are comparable
with respect to set inclusion.

An orientation ◦ of a graph (N, L) is a directed graph (N, L◦) obtained
from (N, L) by replacing each link ij by either the directed link (i, j) or the
directed link (j, i). Each component C ∈ N/L of a forest (N, L) admits exactly
2c−1 orientations. Denote by ◦(ij) the orientation of a link ij ∈ L.

A graph game on N is a pair (v, L) such that (N, v) is a cooperative game in
C(2N) and (N, L) is a communication graph on N . In what follows, we consider
only the set of forest games on N , denoted by F . As for cooperative games on
C(Ω), an allocation rule on F is a map f on F which assigns to every forest
game (v, L) an n-dimensional payoff vector f(v, L).

2.3 Solutions for graph games

While for the class C(Ω) it is explicitly assumed that only coalitions in Ω are
feasible, a graph game (v, L) indicates that the entire set of coalitions 2N may
be affected by (N, L). The payoff vector f(v, L) determines precisely how the
communication links affect both the formation of coalitions and the process
of redistribution. Therefore, f(v, L) can be expressed as a payoff vector g(w)
on some class C(Ω) where w and Ω incorporate both the possible gains from
cooperation as modeled by v and the restrictions on communication reflected by
the communication graph. Myerson (1977) is the first to study graph games. He
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introduces the so-called graph-restricted game vL on C(2N) associated with a
graph game (v, L). The characteristic function vL is defined as follows:

∀S ∈ 2N , vL(S) =
∑

C∈S/L(S)

v(C).

This means that if S is a connected coalition, then its members can cooperate
and obtain the worth v(S). Otherwise, not all agents in S can communicate with
each other, and the coalition is partitioned into components according to S/L(S).
The best that the members of S can accomplish under these communication
constraints is to cooperate within each component. Myerson (1977) introduces
the Shapley value (Shapley, 1953) of vL ∈ C(2N), also known as the Myerson
value for graph games, i.e the Myerson value M(v, L) = Sh(vL) where Sh(·)
denotes the Shapley value. The Shapley value is the Harsanyi solution associated
with the sharing system p given by pS

i = 1/s. Van den Brink et al. (2007)
discuss Harsanyi solutions for vL and provide an axiomatic characterization of
these solutions.

The Myerson value can be characterized by two properties: component
efficiency and fairness. Component efficiency requires that the payoffs in a
component add up to the worth of that component.

Component efficiency. A solution f on F is component efficient if for each
(v, L) ∈ F and each C ∈ N/L, it holds that:

∑

i∈C

fi(v, L) = v(C).

Fairness requires that the payoffs of two agents incident to the same link
increase or decrease by the same amount when the link is severed.

Fairness. A solution f on F is fair if for each (v, L) ∈ F and each ij ∈ L it
holds that:

fi(v, L) − fi(v, L−ij) = fj(v, L) − fj(v, L−ij).

Herings, van der Laan and Talman (2008) discuss the axiom of fairness and
suggest to replace it by the alternative axiom of component fairness. This axiom
says that deleting a link between two agents yields for both resulting cones the
same average change in payoffs. Component fairness therefore emphasizes that
in forest games the gains associated to linking one cone to its complement in a
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component should be attributed to these two proper cones, rather than to the
two agents whose link is deleted, and the gains should be proportional to the
the size of the cones.

Component fairness. A solution f on F satisfies component fairness if for
each (v, L) ∈ F and each link ij ∈ L, it holds that:

1

k(j,i)

(

fK(j,i)
(v, L) − fK(j,i)

(v, L−ij)

)

=
1

k(i,j)

(

fK(i,j)
(v, L) − fK(i,j)

(v, L−ij)

)

(2.1)
Herings, van der Laan and Talman (2008) show that component efficiency

and component fairness characterize a new allocation rule called the Average
Tree solution. The Average Tree solution is a marginalist rule in the sense that
it can be expressed as the average of marginal contribution vectors. Each of
these vectors calibrates the importance of each agent in the different coalitions
by taking into account the communication possibilities. To describe these vectors
some definitions concerning rooted trees are in order. By a rooted tree tCr on the
subgraph (C, L(C)), we mean an orientation that arises from a component C of
a forest (N, L) by selecting agent r ∈ C, called the root, and directing all links
of L(C) away from the root r. Because r belongs to exactly one component of
(N, L), we will use the notation tr instead of tCr when no confusion arises. Each
agent r ∈ N is the root of exactly one rooted tree tr. Note also that for any
rooted tree tr on (N, L), any agent k ∈ C\{r}, there is exactly one directed
link (j, k); agent j is the unique predecessor of k and k is a successor of j in tr.
Denote by sr(j) the possibly empty set of successors of agent j in tr. An agent
k is a subordinate of j in tr if there is a directed path from j to k, i.e. if there
is a sequence of distinct agents (i1, i2, . . . , ip) such that i1 = j, ip = k and for
each q = 1, 2, . . . , p − 1, iq+1 ∈ sr(iq). The set Sr(j) denotes the union of the
set of all subordinates of j in tr and {j}. So, we have sr(j) ⊆ Sr(j)\{j}. A
rooted tree reflects the idea that two agents incident to a communication link
do not have equal access or control to that link.

Pick any (v, L) ∈ F , any component C ∈ N/L, any root r ∈ C, and
consider the marginal contribution vector mr(v, L) on R

c defined as:

∀i ∈ C, mr
i (v, L) = v(Sr(i)) −

∑

j∈sr(i)

v(Sr(j)) (2.2)

The marginal contribution mr
i (v, L) of i ∈ C in tr is thus equal to the worth of

the coalition consisting of agent i and all his subordinates in tr minus the sum of
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the worths of the coalitions consisting of any successor of i and all subordinates
of this successor in tr.

The Average Tree solution is the allocation rule AT on F which assigns to
each (v, L) ∈ F the payoff vector in which agent i in a component C receives
the average over r ∈ C of the payoffs mr

i (v, L):

∀C ∈ N/L,∀i ∈ C, ATi(v, L) =
1

c

∑

r∈C

mr
i (v, L) (2.3)

For further developments on the average tree solution, see Herings, van der Laan
and Talman (2008) and Baron et al. (2009). Béal et al. (2009) introduce and
characterize the set of Random Tree solutions on the class of forest games. An
allocation rule on F is a Random Tree solution, denoted by RTq, if for each
forest (N, L) and each component C ∈ N/L, there is a probability distribution
qC = (qC(r))r∈C over the set of c rooted trees in (C, L(C)) such that:

∀C ∈ N/L,∀i ∈ C, RTq
i (v, L) =

∑

r∈C

qC(r)mr
i (v, L).

Thus, AT is the Random Tree solution where qC(r) = 1/c.
Two remarks motivate this paper. First, note that in (2.1), the weight of

each proper cone K(j,i) ⊂ C, ij ∈ L(C), can be measured by its relative size
k(j,i)/c since (2.1) is equivalent to the following expression:

k(i,j)

c

(

fK(j,i)
(v, L) − fK(j,i)

(v, L−ij)

)

=
k(j,i)

c

(

fK(i,j)
(v, L) − fK(i,j)

(v, L−ij)

)

.

Our aim is to extend the axiom of component fairness by considering all the
possible weights for the proper cones. The corresponding axiom will be called
weighted component fairness. Second, as noted by Béal et al. (2009), only cones
of (N, L) are used to compute a Random Tree solution RTq(v, L). Therefore,
for each forest (N, L), the map v 7−→ RTq(v, L) determines an allocation rule
f on the set of cone-restricted games v∆L ∈ C(∆L), where each v∆L is defined
as the restriction of v to the union stable system ∆L ⊂ 2N , i.e. for all K ∈
∆L, v∆L(K) = v(K). In other words, we have RTq(v, L) = f(v∆L). When
considering all the possible weights for the proper cones, the induced solutions
are also payoff vectors of the cone-restricted game. We will show that these
payoff vectors have some interesting properties.

Before introducing this new axiom, we present a preliminary result which
will be very useful for the rest of the paper. Let (N, L) be a forest. Pick any
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component C ∈ N/L and consider the directed subgraph (C, L◦(C)) obtained
from the orientation ◦. Define a collection of real numbers {bK : K ∈ ∆L} such
that:

∀K ∈ ∆0
L, bC = bK + bKc

(2.4)

From (C, L◦(C)) and {bK : K ∈ ∆L}, construct the following system of c linear
equations with c unknowns:

∑

k∈C

xk = bC and
∑

k∈K(j,i)

xk = bK(j,i) for each directed link (j, i) ∈ L◦(C),

(2.5)
where K(j,i) denotes the proper cone whose head is i and obtained by deleting
the directed link (j, i). Because the directed subgraph (C, L◦(C)) has exactly
c − 1 directed links, this procedure selects c − 1 proper cones plus the cone C.

For each forest game (v, L) ∈ F and each directed subgraph (C, L◦(C)),
C ∈ N/L, obtained from the orientation ◦, we will consider the linear system of
the form (2.5) with constant terms bC = v(C) and for each directed link (j, i),
bK(j,i) = v(K(j,i)). Such a system will be called a ◦-system associated with

(v, L) in component C. Denote by x◦(v, L) a solution of such a linear system.

Lemma 2.1 For each collection {bK : K ∈ ∆L} and each orientation ◦ of
(C, L(C)), the system (2.5) admits exactly one solution.

Proof. Consider any collection {bK : K ∈ ∆L} satisfying (2.4), and any ori-
entation ◦ of (C, L(C)). Pick any directed link (j, i) ∈ Lo(C). If we substi-
tute the equation

∑

k∈K(j,i)
xk = bK(j,i) in (2.5) by the complementary equation

∑

k∈K(i,j)
xk = bC −bK(j,i) , then we get an equivalent system. Thus, it suffices to

prove that a system of c linear equations including the equation
∑

k∈C xk = bC

and, for each (j, i) ∈ Lo, a linear equation either of the form:

∑

k∈K(j,i)

xk = bK(j,i) or
∑

k∈K(i,j)

xk = bC − bK(j,i)

has a unique solution. To construct such a system, we consider an ordering of
the elements of C, i.e. a bijective function σ on C. Given an ordering σ on
C, σ(i) is the agent at position i ∈ C in this ordering. We define the ordering
σ such that σ(1) is a leaf of the tree (C, L(C)) and for each i ∈ C, σ(i) is
a leaf of the (sub)tree obtained by deleting the set {σ(1), σ(2), . . . , σ(i − 1)}.
Let {σ(i), σ(j)} ∈ L(C) and assume without loss of generality that i < j. We
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have the following facts: σ(i) is a leaf of the tree obtained by deleting the set
{σ(1), σ(2), . . . , σ(i − 1)}; σ(i) is linked to σ(j) in this tree; for each k ∈ C
such that σ(k) ∈ K(σ(j),σ(i)), it holds that k ≤ i. By construction, for each
i ∈ C there is a unique cone Kσ(i) such that σ(i) is the head of Kσ(i) and k ≤ i
for each σ(k) ∈ Kσ(i). In particular, Kσ(c) = C. Now, order the unknowns
according to σ and choose the equation associated with the cone Kσ(i) for each
σ(i). We get a linear system of the following form:

∀i ∈ C,
∑

σ(k)∈Kσ(i)

xσ(k) = bKσ(i) .

The above system is lower triangular and each diagonal term is equal to 1. Thus,
it admits exactly one solution. �

Note that each marginal contribution vector mr(v, L) ∈ R
c as defined in (2.2)

is the unique solution of the tr-system associated with (v, L) in component C,
where tr is the orientation inducing the directed tree tr rooted at r ∈ C. Hence,
a Random Tree payoff vector (RTq

i (v, L))i∈C is a convex combination of these
solutions over the c orientations that induce the c rooted trees of (C, L(C)).

3 Weighted component fairness

In this section, we introduce the axiom of weighted component fairness. A
system of weights on the set of forests on N is a function α which assigns to
each L the system of weights

α(L) =
{

αK(L) : K ∈ ∆0
L, αK(L) ∈ [0, 1], αK(L) + αKc(L) = 1

}

.

Let A be the set of all systems of weights α.

α-component fairness. Given a system of weights α ∈ A, an allocation rule
f on F satisfies α-component fairness if for each (v, L) and each link ij ∈ L,
it holds that:

αK(i,j)
(L)

(

fK(j,i)
(v, L)−fK(j,i)

(v, L−ij)
)

= αK(j,i)
(L)

(

fK(i,j)
(v, L)−fK(i,j)

(v, L−ij)
)

.

The axiom of component fairness as introduced in (2.1) corresponds to the
special case where αK(i,j)

(L) = k(i,j)/c, where c is the size of the component C
and k(i,j) is the size of the proper cone K(i,j) ⊂ C.
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Theorem 3.1 For each system of weights α ∈ A on the set of forests on N ,
there is a unique allocation rule fα on F that satisfies component efficiency and
α-component fairness. Moreover, for each (v, L) ∈ CN it holds that fα(v, L) =
gα(v∆L) where for each C ∈ N/L and each i ∈ C,

gα
i (v∆L) = v(C) −

∑

j∈Li

v(K(i,j)) −
∑

j∈Li

αK(i,j)
(L)

(

v(C) − v(K(j,i)) − v(K(i,j))
)

(3.1)

Proof. Suppose that an allocation rule f satisfies component efficient and α-
component fairness for some α ∈ A. Pick any (v, L) ∈ CN and any component
C ∈ N/L of size c. Component efficiency implies that

fC(v, L) = v(C) (3.2)

By component efficiency, we also have for each ij ∈ L(C), fK(i,j)
(v, L−ij) =

v(K(i,j)), fK(j,i)
(v, L−ij) = v(K(j,i)), and fK(j,i)

(v, L) = v(C) − fK(i,j)
(v, L).

Therefore, using the fact that αK(i,j)
(L) + αK(j,i)

(L) = 1, α-component fairness
reduces to

fK(i,j)
(v, L) = v(K(i,j)) + αK(i,j)

(L)
(

v(C) − v(K(j,i)) − v(K(i,j))
)

(3.3)

For each component C of size c, there is one linear equation (3.2) and c−1 linear
equations of type (3.3). It follows that equations (3.2) and (3.3) constitute a
linear system of c linear equations with c unknowns. This linear system is of the
form of the system (2.5) where the constant terms are: bC = v(C), and

∀ij ∈ L(C), bK(i,j) = v(K(i,j)) + αK(i,j)
(L)

(

v(C) − v(K(j,i)) − v(K(i,j))
)

.

Clearly, these constant terms satisfy (2.4). By Lemma 2.1, this linear system has
a unique solution (fα

i (v, L))i∈C . Continuing in this fashion for each component
C of (N, L), we conclude that component efficiency and α-component fairness
yield a unique solution fα(v, L). Next, pick any i ∈ C. By component efficiency,
we have:

fα
i (v, L) = v(C) −

∑

j∈Li

fα
K(i,j)

(v, L).

Using the expression of fα
K(i,j)

(v, L) given in (3.3), we obtain:

fα
i (v, L) = v(C) −

∑

j∈Li

v(K(i,j)) −
∑

j∈Li

αK(i,j)
(L)

(

v(C) − v(K(i,j)) − v(K(j,i))
)

.

The right-hand side of this expression is precisely the right-hand side of (3.1).
Since only cones of (N, L) are used to compute fα(v, L), the result follows. �
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Expression (3.1) of gα
i (v∆L) will prove very useful in the next section. Nev-

ertheless, as such it is not very appealing. The payoff gα
i (v∆L) can be rewritten

is such a way that it is equal to the sum of two parts: the first part is a multiple
of the payoff obtained in the unanimity game u∆L

C and the second part is deter-
mined for each link ij ∈ L by the area of the parallelogram formed by the vectors
(αK(i,j)

, 1 − αK(i,j)
) and (v(K(i,j), v(K(j,i)), which represent the parallelogram’s

sides. To see this, consider again expression (3.1):

gα
i (v∆L) = v(C) −

∑

j∈Li

v(K(i,j)) −
∑

j∈Li

αK(i,j)
(L)

(

v(C) − v(K(j,i)) − v(K(i,j))
)

= v(C)

(

1 −
∑

j∈Li

αK(i,j)
(L)

)

+
∑

j∈Li

(

αK(i,j)
(L)v(K(j,i)) −

(

1 − αK(i,j)
(L)

)

v(K(i,j))

)

= v(C)gα
i (u∆L

C ) +
∑

j∈Li

det Av,α
ij (3.4)

where det Av,α
ij denotes the determinant of the 2 × 2 matrix Av,α

ij defined as:

Av,α
ij =

(

v(K(j,i)) αK(j,i)
(L)

v(K(i,j)) αK(i,j)
(L)

)

.

The payoff gα
i (u∆L

C ) is directly obtained from (3.1). The determinant
det Av,α

ij can be viewed as the oriented area of the parallelogram with ver-
tices at (0,0), (v(K(j,i)), v(K(i,j))), (αK(j,i)

(L), αK(i,j)
(L)) and (v(K(j,i)) +

αK(j,i)
(L), v(K(i,j)) + αK(i,j)

(L)). The oriented area is the same as the usual
area, except that it is negative when the vertices are listed in clockwise order.
Note also that the allocation process associated with a link ij has the zero-sum
property: agent i receives det Av,α

ij and agent j receives exactly − det Av,α
ij . In

order to interpret this situation, assume that the connected component C forms.
Because L(C) is minimally connected all communication links are necessary to
coordinate the actions inside C. Suppose that the link ij ∈ L(C) is broken.
How should i and j be compensated? The determinant det Av,α

ij offers a com-
pensation scheme between i and j whose geometric interpretation in the form of
an orientated area is quite natural.

Lemma 2.1 and Theorem 3.1 are also useful to construct new allocations
rules. By equation (3.3) in Theorem 3.1, each allocation rule satisfying com-
ponent efficiency and α-component fairness distributes to the members of the

14



cone K(i,j) the sum of two parts. One part is the worth of K(i,j) and the second
part is a share αK(i,j)

(L) of the surplus v(C) − (v(K(j,i)) + v(K(i,j))) generated
by the creation/deletion of the link ij. For instance, the allocation rule AT
distributes this surplus according to the relative size of the cone. Instead,
consider the case where this surplus is equally distributed to the members
of the two cones incident to the link ij. The associated system of weights,
denoted by e, is such that eK(L) = 1/2 for each forest (N, L) and each proper
cone K ∈ ∆0

L. From this, we derive the following axiom of e-component fairness.

e-component fairness. An allocation rule f on F satisfies e-component

fairness if for each (v, L) ∈ F and each link ij ∈ L, it holds that:

fK(j,i)
(v, L) − fK(j,i)

(v, L−ij) = fK(i,j)
(v, L) − fK(i,j)

(v, L−ij) (3.5)

The unique allocation rule f e satisfying component efficiency and e-
component fairness will be called the Egalitarian Cone-Surplus Sharing Rule.
As for AT, the allocation rule f e is equal to the average of the solutions of a set
of linear systems of the form (2.5). More precisely, we have the following result.

Theorem 3.2 For each forest game (v, L) ∈ F , each component C ∈ N/L
and each agent i ∈ C, the payoff f e

i (v, L) is equal to the average over the set
of all orientations of the solutions of the ◦-systems associated with (v, L) in
component C.

Proof. Pick any (v, L) ∈ F , any C ∈ N/L. From (3.3), we have:

∀ij ∈ L(C), f e
K(j,i)

(v, L) = v(K(j,i)) +
v(C) − v(K(j,i)) − v(K(i,j))

2
.

On the other hand, consider the solutions x◦(v, L) = (x◦
k(v, L))k∈C of the ◦-

systems associated with (v, L) in component C. There are exactly 2c−1 such
linear systems, one for each orientation ◦ of the subgraph (C, L(C)). Define the
payoff vector (AO(v, L))k∈C as the average of the solutions x◦(v, L) over the set
of all orientations:

∀k ∈ C, AOk(v, L) =
1

2c−1

∑

◦

x◦
k(v, L).

Proceeding in this way for each component C ∈ N/L, we obtain a unique n-
dimensional payoff vector AO(v, L).
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Pick any link ij ∈ L(C) and compute the aggregate payoff vector AOKi
(v, L).

We get:

AOK(i,j)
(v, L) =

1

2c−1

[

∑

◦:◦(ij)=(j,i)

v(K(j,i)) +
∑

◦:◦(ij)=(i,j)

(

v(C) − v(K(i,j))
)

]

.

Obviously, there are as much orientations such that ◦(ij) = (j, i) as orienta-
tions such that ◦(ij) = (i, j). Thus, we have:

AOK(j,i)
(v, L) =

1

2c−1

[

2c−2v(K(j,i)) + 2c−2
(

v(C) − v(K(i,j))
)

]

= f e
K(j,i)

(v, L).

In the same way, we obtain AOK(j,i)
(v, L) = f e

K(j,i)
(v, L). By component effi-

ciency of f e, we get: AOK(i,j)
(v, L) + AOK(j,i)

(v, L) = v(C). Since this equality
holds for each (v, L) ∈ F , each C ∈ N/L and each link ij ∈ L(C), we have
shown that AO satisfies component efficiency. By component efficiency, we also
obtain:

AOK(j,i)
(v, L) = v(K(j,i)) +

v(C) − v(K(j,i)) − v(K(j,i))

2

= AOK(j,i)
(v, L−ij) +

v(C) − AOK(j,i)
(v, L−ij) − AOK(i,j)

(v, L−ij)

2
,

and so

1

2

(

AOK(j,i)
(v, L)−AOK(j,i)

(v, L−ij)

)

=
1

2

(

AOK(i,j)
(v, L)−AOK(i,j)

(v, L−ij)

)

,

which is precisely the axiom of e-component fairness expressed in (3.5). There-
fore, AO satisfies component efficiency and e-component fairness on F . By
Theorem 3.1, we conclude that f e = AO, as desired. �

In view of Theorem 3.2, the only difference between AT(v, L) and f e(v, L)
is the subset of orientations from which the average of the solutions x◦(v, L) is
taken. Besides the fact that f e coincides with the Average Orientation solution
AO on F , it possesses interesting features that will be studied in the next section.
In particular, it is worth noting that x◦(x, L) can equivalently be obtained on F
by component efficiency and α-component fairness for a system of weights α ∈ A
such that αK(j,i)

(L) = 0 if (j, i) ∈ L◦(C) and αK(j,i)
(L) = 1 otherwise.
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4 Fairness, the core and the Alexia value

Fix a forest (N, L). Theorem 3.1 indicates that for each system of weights α,
the map v 7−→ fα(v, L) determines an allocation rule gα(v∆L) on C(∆L). In
this section, we study the properties of these solutions on C(∆L).

A payoff vector x ∈ R
n is acceptable with respect to the union stable system

∆L if xK ≥ v(K) for each K ∈ ∆L. The core is the most well-known component
efficient solution for cooperative games. Given a cone-restricted game v∆L , the
core of v∆L is the convex set of payoff vectors that are both acceptable and
component efficient, i.e. it is the possibly empty set defined as:

Core(v∆L) =

{

x ∈ R
n : ∀C ∈ N/L, xC = v(C), and ∀K ∈ ∆0

L, xK ≥ v(K)

}

.

A payoff vector x ∈ R
n is an extreme point of the core if there do not

exist distinct payoff vectors z and y in Core(v∆L) and a ∈]0, 1[ such that x =
az + (1 − a)y.

Assume that we narrow attention to the (non-empty) core of a cone-restricted
game. If we want only one of all these payoff vectors how can we do it? Tijs
(2005)1 suggests an allocation rule for cooperative games with a non-empty
core, called the average lexicographic value or the Alexia value. The Alexia
value is defined as the average of the leximals, where a leximal is defined as a
lexicographical maximum of the core, with respect to an arbitrary ordering on
the agents. In a leximal, the amount allocated to an agent is the maximum he or
she can obtain within the core, under the constraint that the agents before him
or her in the corresponding ordering recursively obtain their restricted maximum.

Let ΣN the set of n! orderings σ on N . Given an ordering σ on N , σ(i) is
the agent at position i ∈ N in this ordering For a game v∆L ∈ C(∆L) with a
non-empty core, the leximal λσ(v∆L) ∈ R

n is the payoff vector defined as the
lexicographic maximum with respect to the ordering σ, i.e. for each i ∈ N ,

λσ
σ(i)

(

v∆L
)

= max

{

xσ(i) ∈ R : x ∈ Core
(

v∆L
)

, λσ
σ(k)

(

v∆L
)

= xσ(k), k < i

}

.

For a game v∆L ∈ C(∆L) with a non-empty core, the Alexia value of v∆L ,

1Tijs (2005) introduces the Alexia value for the class of games with a non-empty core
belonging to C(2N ). Here, we adapt the definition to the class of cooperative games with a
non-empty core in C(∆L).
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denoted by AL
(

v∆L
)

, is defined as the average of the leximals, i.e.

AL
(

v∆L
)

=
1

n!

∑

σ∈ΣN

λσ(v∆L).

A cooperative game v∆L ∈ C(∆L) is cone-modular if for each link ij ∈ L,
it holds that:

v(C) ≥ v(K(j,i)) + v(K(i,j)),

where C denotes the unique component containing i and j.
The first result of this section establishes that a cooperative game v∆L ∈

C(∆L) has a non-empty core if and only if it is cone-modular. Moreover, the
core of a cone-modular game v∆L coincides with the set of all allocations gα(v∆L)
obtained by component efficiency and α-component fairness on F . In this sense,
the core of a cone modular game is fair.

Theorem 4.1 A game v∆L ∈ C(∆L) has a non-empty core if and only if it is
cone-modular. Moreover, for each cone-modular game v∆L ∈ C(∆L) we have:

Core
(

v∆L
)

=

{

x ∈ R
n : x = gα(v∆L), α ∈ A

}

.

Proof. Pick any game v∆L ∈ C(∆L). It is obvious that Core
(

v∆L
)

= ∅ if v∆L

is not cone-modular. So, assume that v∆L is cone-modular. Since the core is
component decomposable, it is sufficient to focus the analysis on the case where
(N, L) has a single component. So, assume without loss of generality that N is
the unique component of (N, L). We proceed in four steps.

(a) We show that Core
(

v∆L
)

is a polytope. The core is a convex polyhedron,
so it remains to verify that it constitutes a bounded set. Consider any i ∈ N
and any payoff vector x ∈ Core

(

v∆L
)

. To show: there exist ai ∈ R and bi ∈ R

such that ai ≤ xi ≤ bi. Recall that di denotes the number of elements of Li,
i ∈ N . For each j ∈ Li, we have: xKji

≥ v(Kji). Summing over the neighbors
of agent i, we get:

∑

j∈Li

xKji
≥

∑

j∈Li

v(Kji), or equivalently, dixi ≥
∑

j∈Li

v(Kji) −
∑

j∈Li

xKji\{i}.

Because any agent in N\{i} belongs to all but one of the cones with head i, we
can rewrite the previous inequality as follows:

dixi ≥
∑

j∈Li

v(Kji) − (di − 1)xN\{i}.
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Finally, by efficiency of x we obtain the following lower bound for xi:

xi ≥
∑

j∈Li

v(Kji) − (di − 1)v(N). (4.1)

The upper bound for xi is obtained by replacing in the equation of efficiency
the payoff xk of any agent k ∈ N\{i} by (4.1). Conclude that Core

(

v∆L
)

is a
polytope and thus is defined as the convex hull of its extreme points.

(b) We determine the profile of Core
(

v∆L
)

, i.e. the collection of all extreme
points of Core

(

v∆L
)

. We claim that the profile of Core
(

v∆L
)

is given by:

{

x ∈ R
n : x = x◦(v, L) for some orientation ◦

}

(4.2)

Pick any orientation ◦ of (N, L). The solution x◦(v, L) ∈ R
n of the ◦-system

associated with (v, L) in component N belongs to Core
(

v∆L
)

. To see this,
note that by construction, the solution x◦(v, L) is component efficient, and for
each (j, i) ∈ Lo, it holds that x◦

K(j,i)
(v, L) = v(K(j,i)), and x◦

K(i,j)
(v, L) =

v(N) − v(K(j,i)) ≥ v(K(i,j)) by component efficiency of x◦(v, L) and cone-
modularity of v∆L .

Assume, by way of contradiction, that x◦(v, L) is not an extreme point of
Core(v∆L). Then, we can choose x and y in Core(v∆L) such that x 6= x◦(v, L)
and x◦(v, L) = (x + y)/2. There necessarily exists a cone K(j,i) for which
xK(j,i)

6= x◦
K(j,i)

(v, L). One can assume without loss of generality that xK(j,i)
<

x◦
K(j,i)

(v, L). If (j, i) is an element of L◦, then x◦
K(j,i)

(v, L) = v(K(j,i)), which

contradicts the fact that x ∈ Core(v∆L). Thus, (i, j) is necessarily an element
of L◦ and x◦

K(i,j)
(v, L) = v(K(i,j)). By component efficiency, we have xK(i,j)

>

x◦
K(i,j)

(v, L) = v(K(i,j)). It follows that yK(i,j)
< x◦

K(i,j)
(v, L) = v(K(i,j)), which

contradicts the fact that y ∈ Core(v∆L). Therefore, the solution x◦(v, L) is an
extreme point of Core(v∆L).

To complete the proof of the claim, let x be an extreme point of Core(v∆L).
We show that at least one of the following equalities holds for each link ij ∈ L:
xK(j,i)

= v(K(j,i)) or xK(i,j)
= v(K(i,j)). Suppose this claim is false, i.e. suppose

there exists at least one link ij ∈ L such that both equalities are violated.
Consider any such link ij ∈ L, choose any ǫ ∈ R and construct the payoff vector
xǫ as follows: xǫ

i = xi + ǫ, xǫ
j = xj − ǫ and xǫ

k = xk for each k ∈ N \ {i, j}.
For |ǫ| sufficiently small, it easy to see that xǫ and x−ǫ belong to Core(v∆L) and
x = (xǫ + x−ǫ)/2, which contradicts the premise that x is an extreme point of
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Core(v∆L). Thus the claim is true. It immediately follows that we can orientate
all links in such a way that for each directed link (j, i) of Lo, xK(j,i)

= v(K(j,i)).

By definition and Lemma 2.1, x = xo(v, L). Therefore, the profile of Core(v∆L)
coincides with the set given in (4.2), as claimed.

(c) We claim that:

Core
(

v∆L
)

⊆

{

x ∈ R
n : x = gα(v∆L), α ∈ A

}

.

For each pair α1 and α2 in A, and each a ∈ [0, 1], we have aα1 +(1−a)α2 ∈ A
and

agα1

(v∆L) + (1 − a)gα2

(v∆L) = gaα1+(1−a)α2)(v∆L),

where the equality follows from equation (3.1) in Theorem 3.1. This means that

{

x ∈ R
n : x = gα(v∆L), α ∈ A

}

(4.3)

is a convex set of payoff vectors. On the other hand, we see that each element
x◦(v, L) belonging to the profile of Core

(

v∆L
)

is obtained on F by component
efficiency and α-component fairness, where α ∈ A is such that αK(j,i)

(L) = 0 if

(j, i) ∈ L◦(C) and αK(ji)
(L) = 1 otherwise. So, x◦(v, L) = gα(v∆L) for such

a system of weights α ∈ A. Since Core
(

v∆L
)

is a convex hull of its profile by
point (a), the claim follows by convexity of the set (4.3).

(d) It remains to show the reverse inclusion:

{

x ∈ R
n : x = gα(v∆L), α ∈ A

}

⊆ Core
(

v∆L
)

.

Pick any payoff vector gα(v∆L). By equation (3.3) in Theorem 3.1, we know
that:

∀K ∈ ∆0
L, gα

K(v∆L) = v(K) + αK(L)
(

v(N) − v(Kc) − v(K)
)

.

By cone-modularity of v∆L , v(N)−v(Kc)−v(K) ≥ 0, and so gα
K(v∆L) ≥ v(K),

which means that gα(v∆L) is acceptable for all proper cones of (N, L). By
component efficiency of gα(v∆L), we conclude that gα(v∆L) is acceptable for all
cones of (N, L), which means that gα(v∆L) ∈ Core

(

v∆L
)

, as desired. �
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In case Ω = 2N , Shapley (1971) shows that the Shapley value is the center
of gravity of the core – the average of its extreme points – of each supermodular
game belonging to C(2N). Tijs (2005) shows that the Alexia value coincides with
the Shapley value in supermodular games. The next theorem extends this result
on the class of games C(∆L). More precisely, we establish that the Egalitarian
Cone-Surplus Sharing Rule selects the Alexia value in each cone-modular game.
In other words, e-component fairness and component efficiency on F selects the
Alexia value in each cone-modular v∆L associated with the forest game (v, L),
and the Alexia value in the center of gravity of this cone-modular game.

Theorem 4.2 The payoff vector ge(v∆L) of a cone-modular game v∆L ∈ C(∆L)
is the center of gravity of Core

(

v∆L
)

and ge(v∆L) = AL(v∆L
)

.

Proof. See supplementary material. �

5 Harsanyi solutions

In this section, we show that an allocation rule gα, α ∈ A, on C(∆L) is a
Harsanyi solution if and only if it is a Random Tree solution. We also provide a
new characterization of the Random Tree solutions on F in terms of component
efficiency and α-component fairness. Let H be the set of Harsanyi solutions on
C(∆L). Note that H is a convex set.

Theorem 5.1 Let gα, α ∈ A, be an allocation rule on C(∆L). The following
assertions are equivalent.

1. The allocation rule gα belongs to H.

2. The system of weights α is such that for each i ∈ N , it holds that

∑

j∈Li

αK(i,j)
(L) ≤ 1 (5.1)

3. The allocation rule gα is a Random Tree solution, i.e. gα(v∆L) = RTq(v, L)
for each cone-restricted game v∆L ∈ C(∆L).

Notation: in the following proof, uK stands for u∆L

K where K is a non-empty
of (N, L).
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Proof. (1) ⇐⇒ (2). Pick any α ∈ A and define the system p = (pK)K∈∆L\{∅}

as follows: for each non-empty cone K ∈ ∆L, pK is a k-dimensional real vector
assigning to each i ∈ K the value

pK
i = 1 −

∑

j∈Li∩K

αK(i,j)
(L) (5.2)

Note that the system p depends only on the forest (N, L).
By (3.1), gα is a linear allocation rule on C(∆L) so that for each v∆L ∈

C(∆L), we have:

gα(v∆L) =
∑

K∈∆
L
\{∅}

av∆L (K)gα(uK).

Consider a non-empty cone K ⊆ C, C ∈ N/L. Observe that for each
i ∈ C\K and each link ij ∈ L(C), either K(i,j) ⊇ K or K(j,i) ⊇ K, and there
is exactly one link ij ∈ L(C) such that K(i,j) ⊇ K. From this observation and
from (3.1) in Theorem 3.1, we immediately get:

gα
i (uK) =

{

pK
i if i ∈ K

0 if i ∈ N\K.

In case C = K, we see from the expression of pC that every agent i ∈ C gets
precisely the payoff expressed in (5.1):

gα
i (uC) = 1 −

∑

j∈Li

αK(i,j)
(L).

Therefore, we can rewrite gα(v∆L) as follows:

∀i ∈ N, gα
i (v∆L) =

∑

K∈∆L:

i∈K

pK
i av∆L (K).

By component efficiency of gα, we obtain
∑

i∈C

gα
i (uK) =

∑

i∈K

gα
i (uK) =

∑

i∈K

pK
i = 1.

Therefore, the system p is a sharing system if and only if for each non-empty
cone K and each i ∈ K, pK

i ∈ [0, 1], i.e. if and only if (5.1) holds. We conclude
that gα is a Harsanyi solution on C(∆L) if and only if (5.1) holds.
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(1) ⇐⇒ (3). To show: for any v∆L ∈ C(∆L), gα(v∆L) is a Harsanyi payoff
vector if and only if gα(v∆L) is a Random Tree payoff vector.

The set of payoff vectors gα(v∆L), α ∈ A, is a convex set by Theorem
4.1. The profile of this convex set, given by (4.2), is generated by the following
systems of weights. For L and each component C ∈ N/L, there is an orientation
◦ of (C, L(C)) such that for each orientated link (j, i), αK(i,j)

(L) = 1, and so
αK(j,i)

(L) = 0. Using component efficiency and α-component fairness on F ,

the induced payoff vectors gα(v∆L) are such that gα
i (v∆L) = x◦

i (v, L), i ∈ C,
C ∈ N/L. If an orientation ◦ is not a rooted tree, there is a least one agent who
has at least two predecessors in the induced orientated subgraph and so (5.1)
is violated. In case ◦ is a rooted tree, each agent belonging to this rooted tree
has at most one predecessor and (5.1) is satisfied. Thus, the systems of weights
constructed in this manner satisfy (5.1) on L if and only if the orientations ◦
on the components of L are rooted trees. In such a case, by (3.1) in Theorem
3.1, gα

i (v∆L) = mr
i (v, L), i ∈ C, C ∈ N/L. By the preceding point, we

know that assertion 2 is equivalent to assertion 1. Therefore, we conclude that
among the elements of the profile (4.2), only the marginal contribution vectors
are Harsanyi payoffs vectors, where the sharing system p is constructed as in (5.2)
from the vector of weights α(L) defined above. Because a convex combination
of Harsanyi payoff vectors is still a Harsanyi payoff vector, the set of Random
tree payoff vectors – the convex hull of the marginal vectors – belongs to the set
of Harsanyi payoff vectors.

It remains to show that the set of Harsanyi payoff vectors of the form gα(v∆L),
α ∈ A, belongs to the set of Random tree payoff vectors. It suffices to show
that the marginal contribution vectors constitutes the profile of the convex set
of these Harsanyi payoff vectors. Suppose, by way of contradiction, that this
assertion is false. Thus, there exists a Harsanyi payoff vector gα(v∆L) in this
profile such that for at least one link ij ∈ L we have αKi

(L) and αKj
(L) in

]0, 1[. Let (i1, i2, . . . , iq) be a maximal path in L such that for any link ikik+1,
k ∈ {1, 2, . . . , q−1}, on this path, αK(ik+1,ik)

(L) and αK(ik,ik+1)
(L) in ]0, 1[. Since

the path is maximal αK(i1,j)
∈ {0, 1} for each j ∈ Li1\{i2} and αK(iq,j)

∈ {0, 1}

for each j ∈ Liq\{iq−1}. Let ε ∈ R. For |ε| sufficiently small, define the system
of weights αε which differs from α only on L, and where

– for each link ikik+1, k ∈ {1, 2, . . . , q − 1}, on the path,

αε
K(ik+1,ik)

(L) = αK(ik+1,ik)
(L) + ε and αε

K(ik,ik+1)
(L) = αK(ik,ik+1)

(L) − ε;

– for any other link ij ∈ L, αε
K(j,i)

(L) = αK(j,i)
(L), and so αε

K(i,j)
(L) =
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αK(i,j)
(L).

As gα(v∆L) is a Harsanyi vector payoff, α(L) satisfies (5.1) since assertion 1
is equivalent to assertion 2, and the sharing system p is constructed as in (5.2).
Thus, for |ε| sufficiently small, gαε

(v∆L) is also a Harsanyi payoff vector since

∑

j∈Li1

αε
K(j,i1)

(L) =
∑

j∈Li1

αK(j,i1)
(L) + ε ≤ 1,

∑

j∈Liq

αε
K(j,iq)

(L) =
∑

j∈Liq

αK(j,iq)
(L) − ε ≤ 1

and for each other link ij ∈ L,

∑

j∈Li

αε
K(j,i)

(L) =
∑

j∈Li

αK(j,i)
(L) ≤ 1.

It follows that the convex combination
(

gαε

(v∆L) + gα−ε

(v∆L)
)

/2 is also a
Harsanyi payoff vector for |ε| sufficiently small, which contradicts the initial as-
sumption. Therefore, the marginal contribution vectors constitute the profile of
the Harsanyi payoff vectors of the form gα(v∆L), α ∈ A. �

From Theorem 3.1 and Theorem 5.1, we derive a new characterization of
the Random Tree solutions on F . Denote by B ⊆ A the subset of systems of
weights α which satisfy (5.1) for each L.

Theorem 5.2 An allocation rule on F is a Random Tree solution if and only if
it satisfies component efficiency and α-component fairness for some α ∈ B.
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