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Abstract

In this paper, I build on (Blackmore 2000) to propose a formal theory of demographic

transition (fertility decline) and associated growth of the stock of knowledge. The novelty of

this theory is to entirely exclude private consumption from the objective function of the decision

makers, and to assume that their goal is to maximize their social influence, that is, the number of

people in the next generation utilizing their ideas. With high communication costs, one’s ideas

are utilized mainly by his/her children, which creates an incentive to have as many children as

possible. With modern communication technologies, one’s ideas can be used by millions, which

makes people invest time into improvement of own ideas rather than production of children.

Even those who can influence only their own children are induced to have smaller families and

improve own ideas, because their children now have access not only to ideas of parents but also

to ideas from the outside world.
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1 Motivation

In the last ten or fifteen years, demographers have increasingly argued that one important deter-

minant of fertility decline is social influence exerted on high-fertility societies by the outside world.

People who have been exposed to the ideas delivered by the outside world are choosing to have

smaller families. For example, (Axinn and Barber 2001) discover that proximity of young girls in

rural Nepal to a school, controlling for their subsequent attendance of the school and their future

husbands’ attendance of the school, has a negative impact on their subsequent fertility. (Axinn and

Yabiku 2001), from the same data, discover that proximity to such public places as a market or a

bus stop during childhood increase the rate of contraception among women.

A good example of the opposite phenomenon – little contact with the outside world and high

fertility – is Amish community in the United States. They voluntarily abstain from modern com-

munication devices such as phones and television, as well as from modern vehicles and travel

opportunities. Such an abstention effectively limits the number of people with whom Amish com-

munity members can interact, and increase the frequency of interaction with parents and other

close relatives. At the same time, Amish families are very large. (Greksa 2002) estimates fertility

among Old Order Amish at 7.7 children per woman, which makes Amish community one of the

fastest-growing communities in the world, and certainly the fastest-growing community among the

OECD countries.

In this paper, I propose a formal theory of demographic transition (fertility decline) that relates

the outside social influence with fertility choices of the decision makers. Conventional economic the-

ories of demographic transition are ill-equipped to modeling social influence: it is usually assumed

that economic agents rationally maximize utility based on personal consumption and, occasion-

ally, include children’s consumption with a smaller weight (e.g. (Becker 1960), (Becker, Murphy

and Tamura 1990), (Caldwell 1976), (Galor and Moav 2002)). The novelty of my theory is to

abstract from consumption-based utility, and to embed social influence directly into individuals’

utility function. The next paragraph outlines the theory in greater detail.

Every agent creates two types of output over his lifetime: ideas and children, each of which

require a time input to produce. Since time is a limited resource, there exists a tradeoff between

the quality of ideas and the number of children produced by an agent. Production of ideas requires

absorption of ideas created by the previous generation; the goal of agents is to maximize their social

influence, that is, the extent to which their own ideas have been absorbed by the next generation.

Higher-quality ideas are absorbed more intensively, which creates an incentive to spend more time

on development of ideas and have fewer children. Having more children, however, increases the

number of people in the next generation utilizing one’s ideas, which creates incentives to have more

children and spend less time on development of ideas.

In traditional societies, non-relatives are isolated from each other, and children absorb ideas

of their own parents regardless of the quality of these ideas. This creates incentives for parents
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to save time on development of ideas and have as many children as possible. In modern societies,

learning from non-parents (and therefore teaching non-children) is nearly as easy as learning from

parents, which makes demand for one’s ideas more elastic and induces people to spend more time on

development of their own ideas and thus have fewer children. In an extension of the model, I show

that fertility declines even when people cannot influence the outside world themselves, but their

children are influenced by the outside world. Too fertile, and therefore too uneducated, parents

will not be able to influence even their own children in the presence of ideological competitors from

the outside world.

1.1 Social influence versus social learning

While the effect of informational exposure to the outside world on fertility causes little doubt

among demographers, the precise mechanism of how the former affects the latter is less obvious.

This paper models the social influence mechanism, that is, families exposed to the outside world

are less willing to have children. An alternative mechanism is social learning, according to which

high fertility in traditional societies occurs not because parents are willing to have many children,

but because they do not know how to control fertility. Interaction with the outside world brings

knowledge of contraception techniques, and thus lowers fertility.

To find out which of the two factors – social influence or social learning – is significant in practice,

(Behrman, Kohler and Watkins 2002) conduct a detailed empirical analysis of rural households in

Kenya, and find that both play a significant role; social learning is relatively more important in more

developed (urbanized) areas, while social influence plays a role in more remote places. This finding

can be interpreted as follows: in urban areas, the willingness to have smaller families emerged

before ability to control fertility; thus, fertility declines due to acquisition of new “skills” rather

than changes in preferences over the family size. In more remote places, it is not (in)ability but

(un)willingness to control family size that is most important for fertility.

An additional evidence for this argument comes from (Bongaarts and Watkins 1996): they show

that countries that entered demographic transition fairly late for their level of development (e.g.

Latin American countries), had experienced faster decline of fertility than other countries. By the

time of the beginning of the fertility decline, Latin American countries apparently had already

been influenced by the Western world and had unfulfilled demand for small families; social learning

allowed them to rapidly meet their demand. In less developed countries, fertility declines more

slowly, apparently because it is driven not by social learning but by social influence which operates

more slowly.

Thus, we may conclude, while social learning does play a role in fertility decline, social influence

is a more fundamental factor of fertility change. After all, Amish community members who live

in the middle of the most advanced civilization have easy access to all contraception techniques

they need; their large family sizes are determined by (lack of) social influence, rather than lack of
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knowledge about contraception.

1.2 The willingness to influence: evidence and theoretical background

One of key innovations of this paper is to assume that people care about their social influence

rather than their consumption of goods and services. In this section, I justify this assumption.

There is plenty of anecdotal evidence that many people care about their own lifetime legacy

being utilized by the next generations. In pre-industrial societies, many fathers wanted their sons

to continue their family business. Many elderly people want their values to be absorbed by younger

generations. There are countless examples of people giving up their wealth, or even risking their

lives, for the sake of defending and popularizing their ideology. Most scientists want their research

to be cited, even when their own wealth no longer depends on the number of citations. Suicide

bombers sacrifice their lives in exchange for high respect in their community.

Modern Economics originates from Adam Smith who defined the objective of people as the

maximization of personal wealth; Adam Smith himself, however, did not seem to maximize his

wealth: writing “The Wealth of Nations ” took twelve years of Smith’s life, between age 41 and 53,

and was probably in contemplation twelve years prior to that (Rae 2006 (1895)). Thus, developing

his theory took a quarter of Smith’s life; the monetary reward for his effort was 300 pounds

(Rae 2006 (1895)), which was equivalent to his yearly income. Moreover, given eighteenth-century

life expectancy, it was not obvious at all that Smith will be able to complete his project and receive

his monetary reward. Thus, we may conclude, engaging is such an extensive project was probably

not the first-best income maximization strategy. Adam Smith’s behavior is rational if his objective

was to maximize his social influence (in which he was highly successful); if he was a selfish Homo

economicus, he should probably not have written his book.

Why is the desire to influence so strong that it may cause people to sacrifice their biological

fitness? Below, I outline an evolutionary explanation. For most of their evolutionary history,

humans lived in small groups of less than one hundred people, with very limited contact between

the groups (Cosmides and Tooby 1994). Evolutionary psychology suggests that human preferences

must have been “hard-wired” to living in such environment (Tooby and Cosmides 1992). In such

traditional societies, highly regarded individuals were likely to become patriarchs and matriarchs

(Newson, Postmes, Lea and Webley 2005), that is, their ideological fitness could have been positively

correlated with biological fitness, which could cause an emergence of preference for social influence.

Modern environment, however, is very different from the environment in which human psychology

has evolved: thanks to travel possibilities and mass-media, humans routinely interact, personally

and impersonally, with thousands of people; some celebrities influence the minds of millions. In

this new environment, the preference for social influence is maladaptation from the standpoint of

genetic fitness: the desire to become a patriarch with many children has been replaced by the desire

to become a top manager, or a movie star, or a top scientist, or a politician, which requires having

4



genetic fitness
(family size)

number of people
to be influenced

hunter-
gatherer
society

modern
society

Actual relationship

Perceived relationship

Figure 1: Preference for social influence: an illustration

a small family and spending a lot of time at work. Figure 1 illustrates the argument.

Two influential theories – memetics (Dawkins 2006 (1976)), (Blackmore 2000) and dual inher-

itance theory (Boyd and Richerson 1985) make a clear distinction between humans and all other

species: humans are unique in their ability to imitate one another’s behavior and communicate

information. Only humans can directly copy goals and motor patterns of each other (Henrich and

Gil-White 2001); in the language of this paper, only humans are able to absorb each other’s ideas.

Thus, humans are the only species that are able to produce not only biological, but also ideologi-

cal offspring; therefore, humans are the only species that may theoretically deviate from standard

Darwinian incentive of producing as many biological offspring as possible.

Dual inheritance theory does not suggest that being imitated is the objective of humans; imi-

tation of the most successful peers is a skill that benefits the imitators, but has no effect on those

being imitated. Memetics assumes that humans brains are infected by “viruses of the mind”, or

memes, whose only goal is to get copied into other brains; the role of humans is diminished to

simply hosting the memes and doing what is best for them. This research is similar to memetics

in the sense that humans are willing to seed their ideas into as many brains as possible; however, I

abstract from empirically unobserved memes and assume that humans themselves desire to spread

their ideas. Otherwise, the ideology of this research is similar to that of (Blackmore 2000) who

offers a “memetic” theory of demographic transition: in isolated communities, memes cannot go

far, and the “standard” genetic incentive to have as many children as possible dominates; small-

family communities simply become extinct. When long-distance communication becomes available,

people spend more time sending out their memes and thus have smaller families.
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2 Model

2.1 Basics

The environment is characterized by non-overlapping generations1 indexed by t. Each generation

t is populated by a continuum Gt of agents.

Members of two consecutive generations are linked to each other by parent-child relationship:

each child has one parent.2 Formally, I define a parental operator C : Gt−1 → Gt such that for

every i ∈ Gt−1, C(i) is the set of all children of i.

2.2 Constraints

I describe an individual’s problem in a somewhat unusual way: I first present their constraints and

then define the utility function. Each individual j ∈ Gt,∀t is endowed with L units of time that

can be separated into two activities: learning Lj and production of children. I assume that raising

each child takes ν units of parent’s time, so an individual j who has nj children has the following

budget constraint:

Lj + νnj ≤ L (1)

Note that individuals are allowed to choose non-integer number of children, which can be

interpreted as follows. While the choice of parents nj may be non-integer, the actual number

of children is a multinomial random variable with an expectation of nj. As defined below, parents

are risk neutral with respect to the number of children, and thus the variance in the number of

children is immaterial: any mean-preserving spread in the distribution of the number of children

does not change parents’ decisions. Also, I assume that the time burden of raising children depends

on expected value nj, rather than on actual realization.

Each individual j ∈ Gt is characterized by the quality qj of his idea. In this stylized model,

we assume for simplicity there is only one idea per person, which represents all intellectual legacy

produced by that individual over his or her lifetime. To develop an idea, j has to absorb ideas

developed by the previous generation. This assumption relies on the fact that knowledge accumu-

lation is a social activity; the most successful ideas “stand on the shoulders of giants” rather than

are developed in isolation. The parent of j has a strictly positive influence on the formation of

j’s idea, while everybody else in generation t − 1 (denote them non-parents) have an infinitesimal

impact on j. Given that there is a continuum of non-parents, all of them together have a sizeable

1It is more intuitive to assume that generations do overlap, so that younger generation could absorb ideas of living
members of the older generation. Non-overlapping generations structure was introduced to simplify exposition of the
model.

2I abstract from genders in the model; see (Becker et al. 1990) and (Galor and Moav 2002) for similar assumptions
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impact on the formation of j’s idea. Formally,

qj =

(

M
(

qC−1(j)xC−1(j)j

)γ
+

∫

i∈Gt−1\C−1(j)
(qixij)

γ di

)
1

γ

(2)

Here M is a positive constant which shows the weight of a parent, relative to non-parents, in

the formation of one’s idea; C−1(j) indicates the parent of j; xij > 0 is the intensity of j’s learning

from i ∈ Gt−1: it indicates to what extent individual j has absorbed i’s ideas. While qi are given

for the person j, he is free to choose his learning intensities xij subject to a time constraint outlined

below.

Absorbtion of ideas incurs a time cost of τij per unit of learning intensity. The total amount of

time spent on learning from all sources must add up to Lj:

MxC−1(j)jτC−1(j)j +

∫

i∈Gt−1\C−1(j)
xijτijdi = Lj (3)

I assume that the time cost of learning from one’s parent is fixed and is normalized to unity:

τC−1(j)j ≡ 1,∀j ∈ Gt,∀t (4)

The time cost of learning from non-parents may vary; the main goal of this research is to study the

effect of changes in the cost of learning from non-parents on family size.

2.3 Objective function

Finally, I define the objective function of individuals. I assume that individuals are willing to

maximize the extent to which their idea has been utilized by the next generation; they place a special

emphasis on their own children. More formally, the extent to which j’s child has absorbed his/her

ideas has a strictly positive weight on j’s utility, while each of non-children has an infinitesimal

impact. Since there is a continuum of non-children, all of them combined have a sizeable effect on

j’s utility:

Uj∈Gt = njMxjC(j) +

∫

k∈Gt+1\C(j)
xjkdk (5)

Given that all children of any given j are identical, by xjC(j) I mean, with a slight abuse of notation,

the intensity of learning from j by his representative child. Note that nj is (generically) non-integer

expected number of children, hence the above formula describes the expected utility rather than its

actual realization.

Note that individual j does not choose the learning intensities of the next generation xjk; the

control parameters of j are the learning time Lj, the number of children nj, and his own learning
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intensities xij for i ∈ Gt−1.

3 Analysis

3.1 Optimal learning intensities

It is intuitively obvious and is formally shown below that the intensity of learning xjk of k ∈ Gt+1

from j ∈ Gt is increasing with the quality qj of j’s idea; therefore, for any given value of learning

time Lj individual j attempts to achieve the highest possible qj. This allows us to find the optimal

learning intensities xij from every teacher i. By maximizing (2) subject to (3) over all xij,∀i ∈ Gt,

we come up with the optimal learning intensities (see appendix A for derivation). Before presenting

the solution, it is convenient to define the following variable:

Ej ≡ M
(

qC−1(j)

)
γ

1−γ +

∫

i∈Gt−1\C−1(j)

(

qi

τij

)
γ

1−γ

di (6)

The variable Ej describes the learning environment of individual j: it shows how smart j’s potential

teachers are, and how easy it is to absorb their ideas. By definition, Ej does not depend on j’s

decisions and is taken by him as given.

Now, we are equipped to demonstrate the optimal learning intensities:

xij =
Lj

Ej
q

γ

1−γ

i τ
− 1

1−γ

ij (7)

Learning intensity of j from i increases linearly with the overall length of education Lj ; it increases

with the quality of teacher’s idea qi (as claimed above), decreases with learning cost τij. Learning

intensity from any given teacher also decreases as the overall learning environment Ej improves.

From (2) and (7), we can also compute the optimal (highest possible) quality of j’s idea given

the learning time Lj :

qj =
Lj

Ej

(

M
(

qC−1(j)

)
γ

1−γ +

∫

i∈Gt−1\C−1(j)

(

qi

τij

)
γ

1−γ

di

)
1

γ

=
Lj

Ej
E

1

γ

j

= E
1−γ

γ

j Lj (8)
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Using (8), we can rewrite (7) and (6):

xij =
Lj

Ej
EiL

γ
1−γ

i τ
− 1

1−γ

ij (9)

Ej = MEC−1(j)

(

LC−1(j)

)
γ

1−γ +

∫

i∈Gt−1\C−1(j)
Ei

(

Li

τij

)
γ

1−γ

di (10)

Using (1) and (9), we can rewrite (5) as follows:

Uj = L
γ

1−γ

j Ej

[

M
L − Lj

ν

LC(j)

EC(j)
+

∫

k∈Gt+1\C(j)

Lk

Ek

τ
− 1

1−γ

jk dk

]

(11)

The objective of individual j ∈ Gt is to maximize (11) over Lj, keeping in mind that Ek, k ∈ Gt+1

depend on Lj. The relationship between the latter two can be described by extrapolating (10) one

generation forward:

Ek = MEC−1(k)L
γ

1−γ

C−1(k)
+

∫

j′∈Gt\C−1(k)
Ej′

(

Lj′

τj′k

)
γ

1−γ

dj′ (12)

When k is a child of j (k ∈ C(j)), the above formula simplifies to

EC(j) = MEjL
γ

1−γ

j +

∫

j′∈Gt\j
Ej′

(

Lj′

τj′k

)
γ

1−γ

dj′ (13)

When k is a child of j, Lj has a sizeable effect on k’s learning environment; otherwise, the effect

of Lj on Ek is negligible: j is one of continuum of non-parents of k that affect it.

3.2 Symmetric learning environment

Definition 1 Symmetric learning environment occurs when all members of any given generation

have the same learning environment: Ei = Ej ≡ Et,∀i ∈ Gt,∀j ∈ Gt,∀t

In the rest of the paper, we will only deal with symmetric learning environment. For this

environment, the following several results can be established.

Proposition 1 In symmetric learning environment, one’s utility does not depend on his or her

learning environment

Intuitively, a better learning environment (smarter ancestors or easier access to the knowledge of

ancestors) makes not only j ∈ Gt, but also all his contemporaries smarter; as a result, the influence

of j on the next generation remains the same as before.

Proof. Consider the learning environment of an agents k ∈ Gt+1 shown in (12). It depends on

learning environments of agents from the previous generation t. If the latter have the same learning
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environments, they can be factored out in (12):

Et+1 ≡ Ek = Et

(

ML
γ

1−γ

C−1(k)
+

∫

j′∈T (k)

(

Lj′

τ

)
γ

1−γ

dj′

)

,∀k ∈ Gt+1 (14)

Now, consider the utility of an agent j ∈ Gt shown in (11). It is proportional to his own learning

environment Ej ≡ Et. It also depends on learning environments of the next generation Ek, k ∈ Gt+1,

which, by assumption, are equal to each other and thus can be factored out in the expression for

utility:

Uj = L
γ

1−γ

j

Et

Et+1

[

M
L − Lj

ν
LC(j) +

∫

k∈Gt+1\C(j)
Lkτ

− 1

1−γ

jk dk

]

(15)

where Et+1 is the learning environment of some representative k ∈ Gt+1. From (14), Et+1 is

proportional to Et, which means that the latter cancels out from the expression for utility (15).

Thus, one’s utility does not depend on his learning environment.

Independence of utility on one’s learning environment allows us to establish the following im-

portant result.

Proposition 2 Members of generation t, when making optimal learning choices, treat the learning

choices of the next generation as given. Formally, dLk

dLj
= 0,∀j ∈ Gt,∀k ∈ Gt+1,∀t

Proof. From Proposition 1, it follows that the utility of j ∈ Gt, and thus his optimal learning

time Lj, do not depend on his learning environment:
dLj

dEj
= 0. By extrapolating this result one

generation forward, we get dLk

dEk
= 0,∀k ∈ Gt+1. Therefore, learning decisions of j, which affect the

learning environment of k, do not affect the learning decisions of the latter. Formally,

dLk

dLj
=

dLk

dEk

dEk

dLj
= 0 (16)

While dEk

dLj
is positive, the effect of Lj on Lk is zero.

Without this result, we would need to assume that Lk is an unknown function of Lj, and solve

a differential equation to find the optimal value of the latter. When Lk does not depend on Lj ,

solving an agent’s problem becomes a trivial task, with closed-form solutions in many cases.
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4 Results

4.1 A primer: isolated families

Consider an extreme case in which children can only learn from their parents, that is τij = ∞,∀i 6=

C−1(j). Then, utility (11) simplifies to

Uj = L
γ

1−γ

j EjM
L − Lj

ν

LC(j)

EC(j)
(17)

where EC(j) takes a simple form of

EC(j) = MEjL
γ

1−γ

j (18)

By plugging (18) into (17), we end up with the following optimization problem:

max
Lj

L − Lj

ν
LC(j) (19)

From Proposition 2, LC(j) does not depend on j’s decisions. Then, it is straightforward to observe

that individual j chooses the lowest possible level of education Lj = L. Intuitively, when children

can learn only from their parents, the latter are effectively monopolists in the ideological market

for their children and have no incentives to improve the quality of their own ideas. Parents choose

to maximize the number of their children: having secured the share of their ideological market at

100%, they maximize the size of that market.

Therefore, when families have limited ability to communicate with one another, we end up with

a standard Darwinian/Malthusian equilibrium in which parents maximize the number of children

and have the minimal level of education.

4.2 Learning from parent’s neighbors

For further analysis, it is convenient to define a spatial allocation of agents, which enables us to

measure distance between any two agents and define a “neighborhood” of one’s parent. I assume

that all members of a given generation are distributed uniformly on a circle. The density of agents

on the circle is constant, so the circle expands with population growth.

To define the structure of the learning costs, I divide the set Gt−1 of all potential teachers

of any given individual j ∈ Gt of any given generation t into three subsets. The first subset

consists of only one element, the parent of j; the cost of learning from the parent is unity as before:

τC−1(j)j = 1. The second subset is the mass N0 of the “neighbors” of C−1(j), denote it T (j) (where

T stands for “teachers”). Formally, T (j) is a subset of Gt−1\C
−1(j) such that |T (j)| = N0 and

||i, C−1(j)|| ≤ ||i′, C−1(j)|| for any i ∈ T (j) and i′ ∈ Gt−1\T (j)\C−1(j). The operator |X| here is

the mass (“number”) of all agents in the set X, while ||x, y|| measures distance between elements x
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Gt−1

C−1(j)

T (j)

Gt

j

Gt+1

C(j)

S(j)

Figure 2: The geography of influence: an illustration

and y of a set. I assume that the cost of learning from parent’s neighbors is τi,j = τ ≥ 1,∀i ∈ T (j)

Finally, the third subset of all potential teachers is “non-neighbors” of j’s parent; I assume that

learning from them is impossible. Formally,

τi,j = ∞,∀i ∈ Gt−1\T (j)\C−1(j)

For any given j ∈ Gt, define S(j) as a set of all potential students of j, besides j’s own children,

who’s learning cost from j is finite. Formally, S(j) is the set of all k ∈ Gt+1 such that j ∈ T (k).

Assuming that the representative family size (number of children) is nt, the measure of the set S(j)

is ntN0 for all j ∈ Gt, for all t.

The key variable of interest here is N0, the mass of neighbors of one’s parent from which

it is possible to learn: it shows the extent to which people are exposed to the outside world.

Traditional societies, in which people interact with a small number of neighbors who live in the

same village, correspond to a small value of N0. Modern world, where most people live in large

cities and frequently travel to other cities, corresponds to large N0. Below, we analyze how family

size decisions depend on N0. An extreme case of N0 = 0, when learning from parent’s neighbors is

impossible and families are virtually isolated from each other, has been analyzed in section 4.1.

Due to symmetry, all agents k ∈ Gt+1 choose the same learning intensity Lk = Lt+1,∀k which

can therefore be factored out in the expression for utility (11). Then, j’s utility can now be rewritten
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as

Uj = Lt+1L
γ

1−γ

j Et

[

M
L − Lj

ν

1

EC(j)
+

∫

k∈S(j)

1

Ek

τ
− 1

1−γ dk

]

= Lt+1L
γ

1−γ

j Et

[

M
L − Lj

ν

1

EC(j)
+ ntN0

1

Et+1
τ
− 1

1−γ

]

(20)

where EC(j) can be rewritten from (13) as

EC(j) = Et

(

ML
γ

1−γ

j + N0

(

Lt

τ

)
γ

1−γ

)

(21)

Agent j maximizes (20) over Lj subject to (21). Appendix B proves that the optimal learning

decision of a representative agent is

L ≡ Lj = max{
A

1−γ
γ

+ A
L,L},∀j ∈ Gt,∀t (22)

where

A ≡
N0τ

− γ

1−γ

M + N0τ
− γ

1−γ

+
N0

M
τ
− 1

1−γ (23)

By setting N0 = 0 or τ = ∞ which both correspond to the isolated families case (see section 4.1),

we can verify that agents choose the lowest possible level of education L. Also note that having

no children (that is, choosing Lj = L) is not possible in equilibrium: if none of j’s neighbors has

children, then j has no one to influence except his own children, hence a marginal decrease in

the level of education and increase in the family size from zero to a small positive number would

increase the influence/utility of j.

Note that the constant A consists of two components, both of which are positively related to

N0. The first component reflects the fact that when the network size N0 increases, one’s children

are affected by an increasing number of non-parents. To retain influence on his own children, one

has to study more. The second component is due to the fact that as the network size N0 increases,

one gets an opportunity to influence an increasing number of someone else’s children. To maximize

one’s utility, it becomes optimal to reduce the number of own children and increase the quality of

own idea.

We can also compute the optimal family size:

n = min{
L

ν

1

1 + γ
1−γ

A
,
1

ν
(L − L)} (24)

which decreases with an increase in the network size N0. In the modern world, families are smaller,

for the two reasons outlined above.
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Another parameter of interest is the growth rate of the quality of ideas. From (8) and (14),

qt+1

qt
=

E
1−γ

γ

t+1 L

E
1−γ

γ

t L

=

(

Et+1

Et

)
1−γ

γ

= L
(

M + N0τ
− γ

1−γ

)
1−γ

γ
(25)

As the size of the network N0 expands, and the rate of knowledge growth accelerates for two reasons.

First, with access to knowledge of a wider network of predecessors, agents are able to learn more

given the same learning time.3 Second, a wider network of competitors induces people to spend

more time on learning ( dL
dN0

> 0), which also accelerates the rate of improvement of ideas.

4.3 Endogenous network size

Previous section assumes that the number of people from which one can learn is fixed. Now

suppose that an agent can learn from all members of the previous generation, that is, the network

size N0 for j ∈ Gt is equal to Nt−1 ≡ |Gt−1|. With the increase of literacy rates, knowledge of

foreign languages, and development of modern information technology, this assumption becomes

increasingly realistic. As directly follows from this assumption, the network size now varies with the

population size, and therefore the constant A defined in (23) is no longer a constant: it increases

with the increase in population; denote by At the value of A for generation t. Formula n describes

the family size, which decreases with A. Therefore, when the world population is small, the value

of At is low, families are large, and the rate of population growth is high. As the world population

gets larger, family size decreases until the size of the world population eventually arrives to a steady

state. Given that nt decreases with At, while At increases with population size, such a steady state

is unique. This result is consistent with the forecast of the United Nations that population size will

stabilize by the end of the 21-st century.

The rate of knowledge growth, vice versa, will accelerate as population rises. This result is

similar to Michael Kremer’s work on population growth and technological change (Kremer 1993),

but the mechanism of acceleration is different. According to Kremer, knowledge grows faster in

larger populations because of non-rivalry of knowledge. Assuming that a new invention can be

utilized by everyone and assuming a constant number of innovators per capita, larger population

means larger total number of innovators which means faster growth of technology. In my model,

larger population means that each person has more people to influence and thus will accumulate

more knowledge in order to look more appealing and to stay on par with his/her contemporaries

who also acquire more knowledge.

3Mathematically, this effect is identical to the “love of variety” property of the Dixit-Stiglitz preferences widely
used in International Trade literature
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5 The effect of outside influence

People living in the province, especially in rural areas, have a very limited ability to influence the

rest of the world; in this respect, they are not very much different from traditional societies that

dominated the world two centuries ago. Nevertheless, demographic transition has occurred in the

province too.

I propose the following explanation of the phenomenon. Agents choose to have fewer children

not only when they face an opportunity to influence non-children, but also when their children

can be influenced by the outside world. In traditional societies, parents are monopolists in the

“ideological market” of their children, and hence have no incentive to improve the quality of their

ideas. In the modern world, children can learn not only from their parents, but also from many

other sources – travelers visiting their community, radio, television, and finally the internet. In this

environment, a parent of fifteen children, who has spent all his life on raising children and thus

has little education, will have very little influence even on his own children: they would choose to

learn from television instead. A rational parent should reduce the family size and acquire more

education, in order to be able to compete with the ideas delivered by the outside world.

In this section, I develop an extension of the model that formalizes the above intuition. I

assume that at the beginning of their lives, all people are randomly divided into two groups –

artists (fraction α of population) and peasants (fraction 1−α). Formally, the set Gt of all agents of

generation t is partitioned into the subset of artists GA
t and peasants GP

t . As before, all agents are

distributed uniformly on a circle. Given randomness of division into artists and peasants, agents

within each of these groups are also uniformly distributed on that circle. Each agent j ∈ Gt, either

artist or peasant, can learn from two sources. First, he can learn from own parent C−1(j), with the

learning cost τ−1
C (j)j = 1 as before. Second, he can learn from the mass N0 of the nearest artists;

denote the set of these artists by T (j). The cost of learning from artists is τij = τ ≥ 1, i ∈ T (j).

Learning from artists other than those belonging to T (j), as well as from peasants other than one’s

parent, is impossible. Note that when α = 0, we are back to the isolated families scenario analyzed

in section (4.1).

I make an additional assumption that artists have no children and spend all their life developing

their ideas. This assumption is motivated by the following several arguments. First, the main goal

of this section is to analyze the effect of artists’ influence on the fertility decisions of peasants;

fertility decisions of artists themselves are of secondary interest. Second, when α is small enough,

each artist has access to the minds of a large number of people, and having no children is an

incentive compatible strategy. Third, when artists have no families, everyone’s parent must be a

peasant; therefore, any agent j ∈ Gt, whether artist or peasant, has the same learning environment

Ej = Et. As discussed above, symmetry of the learning environment simplifies the analysis by

making one’s learning decisions independent of his learning environment. Lastly, it is an empirical

fact that many celebrities choose not to have children until their late-thirties, and spend little of
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their personal time on their nurture thereafter.

We now proceed to the analysis of learning and fertility decisions made by peasants. From (10),

the learning environment faced by an agent j ∈ Gt, either artist or peasant, is

Ej = MEC−1(j)

(

LC−1(j)

)
γ

1−γ +

∫

i∈T (j)
Ei

(

Li

τ

)
γ

1−γ

di

Note that learning environments of the predecessors are symmetric: EC−1(j) = Ei ≡ Et−1. Also,

the learning choices of the artists are also symmetric and equal to their upper bound: Li = L.

These considerations allow us to rewrite the above expression as follows:

Ej = Et−1

(

M
(

LC−1(j)

)
γ

1−γ + N0

(

L

τ

)

γ

1−γ

)

(26)

We now adapt the expression for utility (11) for the environment defined in this section. The utility

of artists is immaterial, since their choice of learning time is assumed rather than computed. The

utility of peasants j ∈ GP
t is

Uj = L
γ

1−γ

j EjM
L − Lj

ν

LC(j)

EC(j)

Note that peasants can influence only their own children.

From Proposition 2, children’s learning choices LC(j) = Lt+1 do not depend on parent’s decisions

and can be treated by parents as given. The utility can be rewritten as follows:

Uj = Lt+1
L − Lj

ν

ML
γ

1−γ

j

ML
γ

1−γ

j + N0

(

L
τ

)
γ

1−γ

(27)

If learning from artists is not possible (N0 = 0 or τ = ∞), parents do not have any competition

with the outside world for the minds of their children and are best-off choosing minimal education

and maximal family size. In a more general case, a closed-form solution for the optimal learning

time does not exist; appendix C proves that increased access to artists’ ideas induces peasants to

learn more and have smaller families:
dLj

dN0
> 0,

dnj

dN0
< 0. Increased influence from the outside world

induces parents to invest more in their own education, in order to be able to influence their own

children.

6 Conclusion

This paper develops an “influential” theory of demographic transition, according to which the ob-

jective of agents in generation t is to influence the minds of the next generation. In traditional

societies with poor communication technologies, it is difficult to influence anyone other than own
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children; in addition, children are unlikely to be influenced by anyone other than own parents. Both

of these considerations induce parents to maximize the size of families and minimize educational

effort. In modern societies with easy long-distance communication, competition for influence inten-

sifies, which induces agents to spend more time on development of own ideas at the cost of smaller

families.

The following extensions of this research may be of interest. First, a more general asymmetric

learning environment (i.e. the environment in which agents have asymmetric access to the ideas

of predecessors) can be studied. The difficulty of the analysis arises from the fact that in the

asymmetric setting, the learning environment Ej of an agent j ∈ Gt does not cancel out from his

utility function and affects his optimal choice of learning time Lj . Since j’s learning environment

depends on educational decision of j’s parent LC−1(j), we conclude that optimal Lj is a function of

LC−1(j). Extrapolating this conclusion one generation forward, we find that the optimal learning

decision of j’s children, LC(j), is an unknown function of j’s own decision Lj. Therefore, computation

of the optimal Lj (and therefore optimal family size) requires solving a differential equation, and

most likely will not result in a closed-form solution.

Another potential extension is a generalization of the utility function. Since ideas of generation

t − 1 are embedded in the ideas of generation t, the influence of the latter on generation t + 1

is also an indirect influence of t − 1 on t + 1. This indirect influence can be made part of the

objective function of the members of generation t − 1. This extension may help to explain why a

parent i ∈ Gt−1 may choose to send her child C(i) ∈ Gt to learn from other (more educated) people

i′ ∈ Gt−1 at the universities. By doing so, i reduces the share of her own ideas in C(i), but increases

the influence of C(i) on generation t + 1; on balance, i may be better-off. For example, parents

of Rudolph Diesel might have increased their own social influence by making their son learn from

smart teachers and thus making him more influential.

Another possible extension of the model is modification of the production function of ideas

(2). Instead of assuming that the elasticity of substitution between any two ideas is constant,

one could assume that all ideas (and thus all people) are divided into two sets, or two religions.

Elasticity of substitution between two ideas from different religions is infinite, and therefore an

individual can choose to learn from representatives of only one religion. Given that parents enter

the learning environment of their children with a strictly positive weight, the latter are naturally

biased towards the religion of their parents. But if the “other” religion is sufficiently influential,

children may choose to switch to that other religion, dramatically reducing the influence (utility) of

their parents. In this environment, one could formalize a theory that celibacy of Christian priests

has helped them increase their influence in the society and convert a large part of the world into

Christianity (see (Blackmore 2000) for a verbal description of the theory).
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A Derivation of demand for ideas

Maximization of (2) subject to (3) over all learning intensities xij is equivalent to the following

unconstrained maximization:

max
xij ,∀i∈Gt−1

{

qj − λ

[

Lj − MxC−1(j)jτC−1(j)j −

∫

i∈Gt−1\C−1(j)
xijτijdi

]}

(28)

where qj is defined in (2), and λ is the Lagrange multiplier. Maximization with respect to an

arbitrary xij yields

q
1−γ

γ

j x
−(1−γ)
ij q

γ
i − λτij = 0 (29)

Note that this expression applies to both learning from a parent i = C−1(j) and a non-parent

i 6= C−1(j). We can now solve for xij:

xij = Cjq
γ

1−γ

i τ
− 1

1−γ

ij (30)

where Cj is some positive constant. We can now substitute (30) into (3), keeping in mind (4), to

obtain

Cjq
γ

1−γ

C−1

j

+

∫

i∈Gt−1\C−1(j)
Cj

(

γ

1 − γ

)
γ

1−γ

di = Lj (31)

By using the definition of the learning environment (6), we can simplify the above formula to simply

CjEj = Lj , or Cj =
Lj

Ej
. By substituting the latter expression into (30), we end up with the optimal

learning intensities presented in (7).

B Learning from parent’s neighbors: derivation of optimal learn-

ing time

In the expression for utility (20), the multiplier Lt+1Et is positive and constant and thus can be

ignored when searching for argmaximum. The first order condition is then as follows:4

γ

1 − γ
L

γ

1−γ
−1

j

[

M
L − Lj

ν

1

EC(j)
+ ntN0

1

Et+1
τ
− 1

1−γ

]

−L
γ

1−γ

j M
1

ν

1

EC(j)
−L

γ

1−γ

j M
L − Lj

ν

1

E2
C(j)

dEC(j)

dLj
= 0

(32)

4To simplify exposition, we abstract from upper and lower bounds on Lj ; the solution (22) presented in the main
body of the paper does account for the bounds.
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In symmetric equilibrium, EC(j) = Et+1 which now can be factored out; Lj = Lt. By dividing the

above expression by L
γ

1−γ
−1

j
1

Et+1
, we obtain

γ

1 − γ

[

M
L − Lt

ν
+ ntN0τ

− 1

1−γ

]

− LtM
1

ν
− LtM

L − Lt

ν

1

Et+1

dEC(j)

dLj
= 0 (33)

Here, the last component can be simplified to

Lt M
L − Lt

ν

1

Et+1

dEC(j)

dLj

= Lt M
L − Lt

ν

1

EtL
γ

1−γ

t

(

M + N0τ
− γ

1−γ

)
Et

γ

1 − γ
ML

γ

1−γ
−1

t

= M
L − Lt

ν

γ

1 − γ

M

M + N0τ
− γ

1−γ

(34)

Substituting (34) back into (33) and substituting the formula for optimal family size nt = L−Lt

ν
,

we obtain

γ

1 − γ

L − Lt

ν

[

M + N0τ
− 1

1−γ

]

− LtM
1

ν
− M

L − Lt

ν

γ

1 − γ

M

M + N0τ
− γ

1−γ

= 0 (35)

After some manipulations, we obtain

γ

1 − γ

L − Lt

ν

[

M
N0τ

− γ

1−γ

M + N0τ
− γ

1−γ

− N0τ
− 1

1−γ

]

= LtM
1

ν
(36)

By dividing both sides by M
ν

, we get

γ

1 − γ

(

L − Lt

)

A = Lt (37)

where A is defined in (23). Trivial manipulations with the above formula yield the optimal learning

time (22).

C Outside influence: derivation of optimal learning time

Define

G(x, y) ≡
Mx

γ

1−γ

Mx
γ

1−γ + y
(

L
τ

)
γ

1−γ
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Then, logarithm of utility (27) is

F (Lj , N0) ≡ log Uj(Lj , N0) = log
Lt+1

ν
+ log(L − Lj) + log G(Lj , N0) (38)

Abstracting from the bounds on Lj , the first-order condition for the optimal learning time is

dF

dLj
= −

1

L − Lj

+

dG
dLj

(Lj , N0)

G(Lj , N0)
= 0 (39)

By computing dG
dLj

, we can show that

dF

dLj
= −

1

L − Lj

+
γ

1 − γ

1

Lj
(1 − G(Lj , N0)) (40)

From the implicit function theorem,

dLj

dN0
= −

d2F
dLjdN0

d2F
dL2

j

(41)

It is straightforward to verify that d2F
dLjdN0

> 0 and d2F
dL2

j

< 0; therefore,
dLj

dN0
> 0.
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