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Abstract

Empirical observations suggest that linear dynamics are not an adequate representa-
tion of ecological systems and that a realistic representation would require adoption
of complex nonlinear dynamical systems with characteristics encountered in complex
adaptive systems (CAS). Adequate modelling should include and combine, among
others, strategic interactions among economic agents, nonconvexities induced by non-
linear feedbacks, separate spatial and temporal scales and modeling of spatiotempo-
ral dynamics, and allowance of alternative time scales. Ignoring these characteristics
might obscure very important features that we observe in reality such as bifurcations
and irreversibilities or hysteresis. As a consequence, the design of policies that do not
take CAS characteristics into account might lead to erroneous results and undesirable
states of managed economic-ecological systems.



1 Introduction

Empirical observations suggest that linear dynamics are not an adequate representa-
tion of ecological systems and that a realistic representation would require adoption
of complex nonlinear dynamical systems with characteristics encountered in complex
adaptive systems (CAS), which can be de�ned as systems consisting of many inter-
acting components in which macroscopic systems properties emerge from interactions
among these components. These macroscopic properties may not be obvious from
the properties of the individual components at the microscopic level. A complex sys-
tem is adaptive if the macroscopic properties feed back and in�uence the interactions
among systems components (Levin 1998). Economic, social and ecological systems
are examples of CAS. Economic systems are comprised of individual agents that pur-
sue own objectives and interact among themselves. These interactions lead to the
emergence of macro behaviors that ultimately may feed back to in�uence the actions
of individual agents, but typically on di¤erent time and spatial scales. The actions
of individual agents and the emerging macroscopic outcomes may also be in�uenced
by actions taken by regulatory institutions in their attempt to mitigate externalities
associated with individual actions
CAS are characterized by three basic properties (Levin 1998): (i) diversity and

individuality of components, (ii) localized interactions among those components, and
(iii) an autonomous process that uses the outcomes of those interactions to select
a subset of those components for replication. As a result CAS are dynamic nonlin-
ear systems, evolving in time and space, which self organize from local interactions
and are characterized by historical dependencies, complex dynamics, thresholds and
multiple basins of attraction (Carpenter et al. 1999, Levin 1999b).
Economic systems such as CAS have been regarded as very similar to ecologi-

cal systems (Levin 1999a). There are strong similarities between them, emerging
from the fact that in both systems there is competition for limiting resources, but
there is also a fundamental di¤erence. In economic systems agents� behavior is for-
ward looking since agents typically solve dynamic optimization problems by forming
rational expectations, while in ecological systems the behavior of ecological agents
is determined by solving optimization problems backwards, since evolution in these
systems takes place in the context of Darwinian dynamics where adaptive evolution-
ary changes can be attributed to past mutations. This di¤erence has a profound
impact on economic policy design, since an e¢cient and successful regulatory frame-
work should take into account the way in which the agents that are subjected to
regulation form expectations about future.
Recent advances in environmental and resource economics emphasize the need for

a realistic representation of the ecological system and stress the presence of thresh-
olds, multiple steady states and hysteresis e¤ects, which are empirically observable
features in these ecosystems associated with CAS structures, as opposed to the tradi-
tional approach of simple linear dynamics. Good examples are lakes, grasslands and
coral reef systems.1 Agricultural economics, a �eld where economic agents interact
with ecosystems, can be regarded as an area where modelling in the framework of
CAS should increase our insights both with respect to the internal structure and
the self organizing aspects of agricultural systems, and our capacity for designing of
e¢cient policies.
Modeling of these systems will in broad terms include a dynamical system con-

sisting of transition equations which describe the evolution of state variables char-

1See for example Sche¤er (1997), Carpenter and Cottingham (1997), Crépin (2007), Crépin and
Lindahl (2008).
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acterizing the natural system such as biomass, water, pollutants, and state variables
characterizing the economic systems such as physical capital, knowledge, R&D. The
complex adaptive character of the system implies that: the dynamical system will
be nonlinear and nonconvex to allow for nonlinear feedbacks and multiple basins of
attraction, and will evolve in both the temporal and the spatial dimension to include
spatiotemporal interactions; temporal scales of evolution could be di¤erent so that
some state variables evolve in fast time and some in slow time; and the spatiotempo-
ral dynamics will be a¤ected by control variables which will be decided by interacting
forward looking optimizing economic agents. Because of this optimization, the dy-
namical system describing the dynamics of the uni�ed economic-ecological system can
be regarded as a set of dynamic constraints which, along with other possible static
constraints, is the relevant set of constraints for the economic problem of optimizing
some criterion function, such as a utility or bene�t function, of the economic agents,
which is de�ned in the same spatiotemporal domain of the dynamic constraints.
Similar problems have been addressed recently both in the ecological and eco-

nomic literature. For example, in the ecological literature Sche¤er (1997), or Car-
penter (2003) study nonconvex ecosystems, characterized by regime shifts, thresh-
olds, hysteresis and irreversibilities using lake ecosystems as the reference ecosystem.
Studies that examine semiarid savanna grazing systems from the same point of view
can be found for example in Walker et al. (1981), Scholes and Walker (1993), Scholes
and Archer (1997), Ludwig et al. (1997), while Mahon et al. (2008) discuss �sheries
as CAS.
The economics of complex ecosystems have also been analyzed in recent years (e.g.

Janssen 2002, Dasgupta and Mäler 2003). In particular management of ecosystems
with non-convex positive feedbacks are examined by Brock and Starret (2003), while
a similar problem is studied by Wagener (2003). Mäler et all (2003) and Kossioris
et al. (2007) examine the management of a shallow lake which is regarded as a non-
convex system with hysteresis, where individual forward looking optimizing agents
strategically interact among themselves using open loop and nonlinear-closed loop (or
feedback) strategies. This work can be regarded as close to the concept of managing
a forward looking CAS, since individual agents interact among themselves and the
underlying dynamics are characterized by thresholds, hysteresis, irreversibilities, and
multiple basins of attraction. Another strand of this literature studies the spatial
scale and analyzes interactions between agents at the temporal and the spatial scale of
these systems, endogenous formation of spatial patterns and spatial regulation. These
models originating from metapopulation �shery management models (e.g. Sanchirico
and Wilen 1999), have moved to the analysis of continuous spatial dynamic processes
(e.g. Wilen 2007, Smith et al. 2009). Brock and Xepapadeas (2008a, 2008b) have
developed a version of Pontryagin�s maximum principle for optimal control with
spatial di¤usion and study optimal spatial pattern formation and spatial regulation
in uni�ed ecological economic models.
In this context the purpose of the present paper is to describe the way in which a

complex adaptive model that uni�es economic and ecological systems can be devel-
oped and to present the mathematical tools that can be used to analyze it.

2 Strategic interactions and nonconvexities

The main approach for modeling strategic interactions among agents is to consider a
setup where the utility or bene�t function of each agent depends on the state variable
x, that is we have stock dependent utility, and the evolution of the state variable de-
pends on the controls u of all agents. This formulation is common in problems such
as: common access resource harvesting problems where individual pro�ts depend on

2



resource stock through stock externalities and the evolution of the resource stock
depends on harvesting by all agents; knowledge formation problems, where individ-
ual pro�ts depend on total knowledge through positive knowledge externalities and
the evolution of the total knowledge depends on R&D undertaken by all agents;
global pollution problems where individual (country) utility depends on the stock of
global pollutant through a damage function and the evolution of the global pollutant
depends on emissions by all agents.
Let Ui (x; u) be a standard utility or bene�t function for agent i = 1; :::; n. Stock

e¤ects mean that (@Ui=@x) 6= 0 while (@Ui=@u) measures the marginal control im-
pact, which could be for example marginal pro�ts, utility or costs. Let u =(u1; :::; un)
be the vector of controls undertaken by all agents. Then using single species logistic
dynamics as an example, the optimization problem for the individual agent harvest-
ing biomass x; is

max
fui(t)g

Ji =

Z 1

0

e��tUi (x; ui) dt (1)

subject to _x= sx
�
1�

rx

s

�
�

nX

i=1

ui ; x (0) = x0

where s is intrinsic growth rate and s=r is the environment�s carrying capacity. Prob-
lem (1) is an in�nite time horizon di¤erential game with Ji being the payo¤ for agent
i: A di¤erential game can be de�ned as a situation of con�ict where players choose
strategies over time. For each player i, a control space exists whose elements are
the control variables for each player. The strategy for each player is a function
ui (t) = �i (x (t) ; t). The set of strategies for player i is her/his strategy space. Cru-
cial to the structure of the di¤erential game is the speci�cation of the information
about the state of the game gained and recalled by each player at each point in time .
There are a number of possible information structures for a di¤erential game (Basar
and Olsder 1982), only two of which are considered here.

i The di¤erential game is said to have an open-loop informational structure if the
players follow open-loop strategies: ui (t) = �i (x0; t) :

ii The di¤erential game is said to have a closed-loop or feedback informational
structure if the players follow feedback strategies: ui (t) = �i (x (t) ; t) :

In the di¤erential game (1), the open-loop Nash equilibrium is de�ned as the
n-tuple of open-loop strategies (u�1; :::; u

�
n) satisfying

Ji (u
�
1; :::; u

�
n) � Ji

�
u�1; ::; u

�
i�1; ui; u

�
i+1; :::; u

�
n

�
: (2)

A closed-loop (or feedback) Nash equilibrium is an n-tuple of closed-loop strate-
gies that satis�es conditions (2) for every possible initial state x0. The open-loop
Nash equilibrium is not subgame perfect, while a closed-loop equilibrium is subgame
perfect. By de�ning a cooperative solution as the problem (1) but with the objec-
tive replaced by J =

R1
0
e��t

Pn
i=1 [Ui (x; ui)] dt; it is possible to study deviations

between cooperative behavior and noncooperative behavior corresponding to open-
loop or closed-loop Nash equilibrium.
Di¤erential games are important analytical tools when it comes to the analysis

of strategic interactions among players in a dynamic setup which is a fundamen-
tal ingredient of CAS. Di¤erential games could become closer to CAS if non linear
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feedbacks are incorporated into the transition dynamics of the state variables. A com-
monly used way to model these nonlinear feedbacks is the Holling type-III functional
response which is de�ned as

f (x) = �
x2

�2 + x2
: (3)

The introduction of (3) into (1) introduces nonconvexities and the possibility
of multiple basins of attraction both in the cooperative and the noncooperative
equilibrium. The functional form (3) was originally used by Ludwig, Jones, and
Holling (1978) to understand the dynamics of the spruce budworm. Function (3),
in a nondimesionalized form with � = � = 1; has been extensively used recently
to study, through the di¤erential games framework, the economics of the so-called
shallow lake problem (Mäler et al. 2003, Kossioris et al. 2008). The shallow lake
problem, which incorporates strategic interactions among many agents and nonlin-
ear dynamics leading to multiple steady states, hysteresis and irreversibilities, can
be written as:

max
fui(t)g

Ji =

Z 1

0

e��t [U (ai)�D (x)] dt (4)

subject to _x= ai +
nX

j 6=i

aj � bx+
x2

1 + x2
; x (0) = x0

where ai is individual phosphorus loadings due to agricultural activities, x is accu-
mulated phosphorus in the lake, U (ai) is bene�ts from agricultural activities and
D (x) is damages from eutrophication of the lake. This is a di¤erential game with
nonconvex dynamics for which analytic solutions cannot be obtained. Numerical so-
lutions have shown that in the OLNE multiple steady states exist where saddle points
are followed by unstable spirals with Skiba points. On the other hand the CLNE is
characterized by equilibrium nonlinear closed-loop strategies which lead to inferior
outcomes relative to the cooperative solution and the OLNE (see �gures below).

Stable manifolds OLNE Best nonlinear CLNE strategies

The deviations between cooperative and noncooperative solutions suggest that
regulation is required. The problem of regulation becomes complicated due to hys-
teresis. Mäler et al. (2003) derived a �xed tax which in a decentralized regulated
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OLNE moves the system to the cooperative steady state. Kossioris et al. (2009)
present preliminary results from the far more di¢cult problem of deriving a �xed tax
which steers a decentralized regulated CLNE with nonlinear strategies to the cooper-
ative steady state. Brock and Xepapadeas (2004a) studied the problem of managing
�sheries with interacting species, under nonconvex dynamics and hysteresis. They
show that the cooperative solution leads to a unique steady state while open access
equilibrium leads to multiple steady states with hysteresis e¤ects. They also show
that regulation of the hysteretic system in the sense of approaching the cooperative
steady state depends on whether biomass dynamics move slower than economic dy-
namics. This result opens the issue of multiple time scales which will be addressed
latter.

3 Spatiotemporal dynamics in CAS

3.1 Modelling spatial interactions in economics and ecology

Let x (z; t) be a state variable denoting the concentration of a biological or economic
variable at time t � 0 at the spatial point z 2 Z, where space is assumed to be one
dimensional and modelled by a line segment. The classic approach for modelling spa-
tial movements of this state variable is through di¤usion. In this context di¤usion
is a process through which the microscopic irregular motion of an assemblance of
particles such as cells, chemicals, animals, or resources results in a macroscopic reg-
ular motion of the group. This classical approach to di¤usion implies that di¤usion
has local or short range e¤ects. A measure of di¤usion is the di¤usion coe¢cient,
or di¤usivity, which measures how e¢ciently the particles move from high to low
density. Let F (x (z; t) ; u (z; t)) be a density dependent source, or a growth function,
for the state variable where u (z; t) is a control variable such as harvesting by eco-
nomic agents, and Dx be the di¤usion coe¢cient. Then the basic di¤usion equation
describing the spatiotemporal evolution of the state variable is:2

@x (z; t)

@t
= F (x (z; t) ; u (z; t)) +Dxr

2x (z; t) ; r2x (z; t) =
@2x (z; t)

@z2
:3 (5)

If the source term represents logistic population growth net of harvesting u (z; t) at
spatial point z and time t; or F (x) = x (z; t) (s� rx (z; t))� u (z; t) ; then we obtain
the Fisher equation:

@x (z; t)

@t
= sx (z; t)

�
1�

rx (z; t)

s

�
� u (z; t) +Dxr

2x (z; t) : (6)

The Fisher equation can be generalized to several interacting species or activities.
With two interacting species (x; y) which are both harvested and no cross di¤usion,
we obtain:

@x (z; t)

@t
= F1 (x; y)� ux +Dxr

2x (7)

@y (z; t)

@t
= F2 (x; y)� uy +Dyr

2y: (8)

System (7)-(8) is referred to as a reaction-di¤usion system or as an interacting

2For details see Murray (2003).
3 In general rdy = @dy

@zd
; d = 1; 2:
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population di¤usion system.4 In more general di¤usion models the di¤usion coe¢-
cient could be density dependent or Dx = Dx (x (z; t)) :
Modelling spatial movements through di¤usion implies that di¤usion is a local or

short range e¤ect. In many applications however it is necessary to model nonlocal
or long range e¤ects. This is done by using an integral equation formulation. In the
presence of nonlocal e¤ects the temporal change of the state variable at spatial point
z depends on the in�uence of neighboring state variables in all other locations z0:
Then the evolution equation analogous to (5) is:

@x (z; t)

@t
= F (x (z; t) ; u (z; t)) +

Z 1

�1

w (z � z0)x (z0; t) dz0 (9)

where w (z � z0) is the kernel function which quanti�es the e¤ects of neighboring
x (z0; t) on x (z; t) :5

Local and nonlocal e¤ects can be combined to produce models described by inte-
grodi¤erential equations (e.g. Genieys et al. 2006) or

@x (z; t)

@t
= F (x (z; t) ; u (z; t)) +Dxr

2x (z; t) +

Z 1

�1

w (z � z0)x (z0; t) dz: (10)

Nonlocal e¤ects and the integral equation formulation are widely used in eco-
nomics to model knowledge or productivity spillovers on the production function
(e.g. Lucas 2001, Lucas and Rossi-Hansberg 2002) or to model long-range e¤ects of
knowledge accumulation (e.g. Quah 2002). Thus a constant return to scale produc-
tion function with knowledge spillovers can be written as

Q(z) = e
V (z)L(z)aK(z)bX (z)
1�a�b

(11)

where Q is the output, L is the labor input, K is physical capital, X is land, and
V is the productivity spillover which depends on how many workers are employed at
all locations and represents a positive externality.

V (r) = �

Z 1

�1

e��(z�z
0)2L(z0)dz0 (12)

The function e��(z�z
0)2 is the kernel. The production externality is a positive function

of labor employed in all areas and is assumed to be linear and to decay exponen-
tially at a rate � with the distance between z and z0: The idea is that workers at a
spatial point bene�t from labor in nearby areas, and thus the distance between �rms
determines the production of ideas and the productivity of �rms in a given region.
A high � indicates that only labor in nearby areas a¤ects production positively. In
terms of agglomeration economics, the production externality is a centripetal force,
i.e. a force that promotes the spatial concentration of economic activity.
If we interpret K as the stock of knowledge, then in the context of R&D based

growth the accumulation of knowledge depends on resources LK ; 0 < LK < L
devoted to the production of new knowledge,6 and spatial spillovers or

@K (z; t)

@t
= h (K (z; t) ; LK (z; t)) +

Z 1

�1

w (z � z0)K (z0; t) dz (13)

4Generalization to n species is straightforward.
5The spatial domain could be �nite with appropriate boundary conditions.
6 In this case L in (11) is replaced by labour used in output production LQ; with LQ +LK = L:
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where h (K;LK) is the R&D generating function.
Dynamical systems incorporating local and nonlocal e¤ects capture interactions

at both the temporal and the spatial scale and can be used as the foundations for
modelling complex systems. There are however more features of complex adaptive
systems which should be incorporated into this modelling framework. For the purpose
of this paper we consider that the features to be incorporated should include non-
convexities, di¤erent time scales, and strategic interactions among economic agents
choosing controls u:7

3.2 Economic analysis and complex adaptive systems in tem-

poral and spatial scales

To incorporate both the temporal and the spatial scale into economic problems, the
control variables in transition equations like (5), (7)-(8), (9), (10) or (13) should be
chosen by economic agents according to some behavioral assumption. It is assumed
that an economic agent is located at each spatial point z: Each agent has a bene�t
function U (x (t; z) ;u (t; z)) de�ned over the state and the control variables, which
is assumed to be increasing and strictly concave in the controls. In principle we can
distinguish between three type of behavior.

3.2.1 Myopic economic agents

In this case each economic agent acts myopically both temporally and spatially and
considers itself to be small in relation to the spatiotemporal evolution of the state
variables. Thus it chooses controls to maximize an objective at each instant of time
for the given spatial site, by treating the values of the state variables as exogenous
parameters. Therefore agents ignore the impacts of their actions on other sites.
However, these impacts emerge because of the di¤usion of the state variables and
this is the source of a di¤usion induced spatial externality which exists along with
the temporal externality
The private controls (or harvesting) can be de�ned in terms of two assumptions

which are associated with the type of property rights prevailing in the spatial domain.
If each agent owns enforceable property rights for her/his site, the optimal private
controls are de�ned as:

u0ij (t; z) = argmax
uij

Ui (x (t; z) ;u (t; z)) ; i = 1; :::; n; j = 1; :::;m:

Assuming that the optimal private control is interior, u0ij (t; z) is de�ned implicitly

by the system of �rst-order conditions @U(x(t;z);u(t;z))
@uij

= 0: Solution of the system

of �rst-order conditions de�nes the private optimal controls as state dependent rules
for given values of the state variables, thus,

u0ij (z; t) = h
0
ij (x (t; z)) ; j = 1; :::;m for all i: (14)

Under open access, controls are chosen so that rents are dissipated on each site,
or û (t; z) : Ui (x (t; z) ; û (t; z)) = 0 for all z: The open access controls are then
determined in a feedback form as:

ûij (t; z) = ĥij (x (t; z)) ; j = 1; :::;m for all i: (15)

7Risk and uncertainty, and especially the distinction between traditional risk associated with risk
aversion and unmeasurable uncertainty associated with multiple priors and uncertainty or ambiguity
aversion, is another important feature of CAS. Its discussion is, however, beyond the purpose of the
present paper.
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Brock and Xepapadeas (2008b) study a semi arid grazing system with two state
variables, plant biomass and underground water which evolve in time and space.
The system is managed by economic agents located at each site, whose objective is
maximization of private pro�t from cattle products. To obtain the cattle products
the economic agents harvest plant biomass by exercising costly grazing or harvesting
e¤ort. In the Brock-Xepapadeas set up, individuals are myopic and disregard spa-
tiotemporal dynamics. Substitution of myopic controls into transition equations like
(7)-(8) produces a system of partial di¤erential equations:

@x

@t
= F1

�
x; y; u0 (x; y)

�
+Dxr

2x (16)

@y

@t
= F2

�
x; y; u0 (x; y)

�
+Dyr

2y: (17)

The resulting system is a reaction-di¤usion, activator-inhibitor system where spa-
tial patterns emerge as a result of the celebrated Turing mechanism (Turing 1952) of
di¤usion induced instability. This means that the economic-ecological model leading
to (16)-(17) can be used as a conceptual basis for explaining observed spatial pattern
in semi arid grazing systems. Simulated spatiotemporal evolution for plant biomass
and groundwater indicating the emergence and persistence over time of spatial pat-
terns are shown below.

Plants biomass Groundwater

3.2.2 Cooperative optimum

In the cooperative or social optimum a social planner is introduced whose objective
is the maximization of discounted bene�ts over �nite spatial domain, subject to the
spatiotemporal constraints. By explicitly taking into account these constraints, the
social planner internalizes spatial and temporal externalities which were not taken
into account at the myopic private optimum. The problem of the social planner can
be stated as:

max
fu(t;z)g

Z 1

0

Z L

0

e��t [U (x (t; z) ;u (t; z))] dzdt (18)

subject to
@x (z; t)

@t
= F (x (z; t) ;u (z; t)) +Dr2x (z; t)

where D is a diagonal matrix of di¤usion coe¢cients. Brock and Xepapadeas (2008a,
2008b) study this abstract problem by extending Pontryagin�s maximum principle
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for the optimal control of systems governed by partial di¤erential equations. They
identify an optimal di¤usion induced spatial instability mechanism, analogous to the
Turing mechanism of di¤usion induced spatial instability. This mechanism implies
that it might be optimal to control the system in such a way that spatial patterns
emerge. The Brock-Xepapadeas result can thus be regarded as an optimal agglom-
eration result applying to ecological economic systems.
In this context Brock and Xepapadeas (2008a) study the cooperative solution for

the shallow lake problem. The problem is:

max
a(t;z)

Z 1

0

Z L

0

e��t [B (a (t; z))� C (x (t; z))] dzdt

s:t:
@x (z; t)

@t
= a (t; z)� bx (t; z) +

x2 (t; z)

1 + x2 (t; z)
+D

@x2 (z; t)

@z2
(19)

x (t; 0) = x (t; L)

This problem describes a CAS where the spatial scale has been incorporated with
nonconvex dynamics which induce hysteresis and multiple steady states. Numerical
simulations using the generally accepted spatial forms and parametrization of the
shallow lake problems show that spatial patterns emerge through the optimal di¤u-
sion induced spatial instability mechanism in the neighborhood of the oligotrophic
steady state. The multiple steady state for the cooperative solution along with the
emerging of the optimal spatial patterns for the concentration of phosphorus are
shown below.

Oligotrophic, eutrophic steady states Contours of phosphorus concentration

The analysis of CAS in the spatiotemporal domain under myopic noncooperative
behavior and under cooperative behavior reveals the di¤erences between the corre-
sponding spatiotemporal paths for the state variables. These deviations suggest that
regulation is necessary to steer noncooperative paths towards cooperative paths by
internalizing spatiotemporal externalities. The problem of designing decentralized
schemes in the form of taxes or quotas for these CAS is a di¢cult task as suggested
by the attempts to regulate the OLNE in the shallow lake problem. Preliminary
results suggest that for the speci�c systems under study instruments varying among
spatial zones which partition the spatial domain, and among di¤erent time intervals,
are feasible. This is a very promising area for further studies.8

8 Instruments with spatiotemporal dimension have been studied by Goetz and Zilberman (2000),
Sanchirico and Wilen (2005).
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3.2.3 Strategic behavior, nonconvexities and spatiotemporal dynamics

The optimal control of spatiotemporal systems with nonconvexities has not, to the
author�s knowledge, advanced to the stage where strategic interactions among agents
are introduced and myopic behavior is abandoned. This calls for the formulation of
di¤erential games in spatiotemporal domains. This is an area for further research,
which hopefully might provide interesting new results. To obtain an idea about how
such a model can be formulated one can adopt the shallow lake problem again. The
problem of individual agent i; who has full property rights on site z; can be formulated
as

max
ai(t;z)

Z 1

0

e��t [B (ai (t; z))� C (x (t; z))] dzdt ; i = 1; :::n (20)

s:t:
@x (z; t)

@t
= ai (t; z) +

X

l 6=i

al (t; z)� bx (t; z) +
x2 (t; z)

1 + x2 (t; z)
+D

@2x (z; t)

@z2

x (t; 0) = x (t; L) :

In this set-up each individual acts as a planner for the site where he has full
property rights and takes into account the impact of his own action on himself and on
his own site, while ignoring his impact on others located at di¤erent spatial points.

This means that each individual treats @x2(z;t)
@z2

as a �xed parameter xe: However
actions taken at site z a¤ect state variable at site z0 through spatial di¤usion. Thus
the forward looking individual does not fully internalize spatiotemporal externalities.
This causes deviations between the noncooperative and the cooperative solution,
but most likely deviations are not spatially homogenous so that correction of the
externalities requires spatiotemporal regulation. To obtain a preliminary idea about
the characterization of the solution, we assume open loop strategies, symmetry and
set B (ai) = ln ai; C (x) = cx2: An open loop Nash equilibrium is de�ned for xe =
@2x(z;t)
@z2

; and is characterized by the optimality conditions

_�=

"

b+ ��
2x

(1 + x2)
2

#

�+ 2cx

_x= n

�
�1

�

�
� bx+

x2

1 + x2
+D

@2x

@z2

The nature of the deviations is revealed by a comparison with the optimality condi-
tions for the cooperative equilibrium given below:

_�=

"

b+ ��
2x

(1 + x2)
2

#

�+ 2ncx�D
@2�

@z2

_x= n

�
�1

�

�
� bx+

x2

1 + x2
+D

@2x

@z2
:

Closed loop information structure implies that ai = � (x (t; z)) : Handling this
problem requires solution of a nonlinear di¤erential game with nonlinear closed loop
strategies evolving in two dimensions. This suggests a challenging area for future
research.
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4 Economic-ecological systems evolving in di¤erent time scales

The interaction of fast and slow processes is an integral part of ecosystems analysis.
As Simon Levin (2000, p. 499) points out:

�Even the most basic notions of population dynamics involve recog-
nition of multiple scales. Populations introduced into new areas typically
grow exponentially on a fast time scale, before density dependence re-
stricts growth. The intrinsic rate of natural increase characterizes the
fast time scale dynamics, whereas the carrying capacity determines es-
sential features on longer time scales.�

In the analysis of coevolutionary process the conventional distinction implies a
time scale separation between population dynamics which evolve in fast time scale,
and evolution which takes place in slow time scale. In models of antagonistic coevo-
lution of species the interaction of population (or biomass) dynamics and mutation
(or trait) dynamics leads to the so-called �Red Queen cycles.�9

In economics this time separation is not apparent, especially for purely economic
variables, however when the economic system interacts with a system operating at
di¤erent time scales, time separation might be important for management purposes.
For example indications related to resistance development for genetically modi�ed
crops in agriculture, or to resistance development to antibiotics, suggest that the
slow movement of mutation might be relevant and important in certain cases for
analyzing the whole system and for developing sensible policies. Thus modelling fast-
slow systems has been associated with issues such as biological resource management,
water management, pest control (e.g. Brock and Xepapadeas 2004b, Grimsrud and
Hu¤aker 2006, Hu¤aker and Hotchkiss 2006, Crépin 2007).
Formally dynamical systems evolving in a fast - slow time framework can be

analyzed by using results from singular perturbation analysis (e.g. Wasow 1965,
Fenichel 1979). In the context of a model with two interacting state variables which
can be controlled by a vector of controls u; a dynamical system in fast-slow time can
be written as10

" _x= f (x; y;u;") (21)

_y = g (x; y;u;") :

where " is a small positive parameter. Since _x can be much larger than _y, x is the
fast variable and y is the slow variable. Thus x could be the population of a species
evolving in fast time and y could be a trait evolving in slow time. If " ! 0 then
system (21) is replaced by the algebraic-di¤erential system

0 = f (x; y;u;0) (22)

_y = g (x; y;u;0) : (23)

Assume that a smooth di¤erentiable manifold, x = m (y) exists which describes
the solution of equation (22). Then m (y) is called the slow manifold and the dy-

9A limit cycle or other non-point attractors in trait space dynamics are called �Red Queen�
races because, for example, in predator-prey systems each is evolving its trait against the other and
the traits are moving dynamically, unlike a �xed point. Red Queen cycles are observed in a slow
time scale, since trait dynamics are assumed to evolve slowly, in contrast to the population, host -
parasite, dynamics which are assumed to evolve fast.
10The presentation here is adapted from Berglund and Gentz (2003).
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namics on it are described by the reduced equation

0 = g (m (y) ; y;u;0) : (24)

If we scale time, t; by 1=" in order to de�ne fast time � = t="; the system becomes
in fast time

dx=d� = f (x; y;u;") (25)

dy=d� = "g (x; y;u;") : (26)

By taking the limit "! 0 we obtain the layer or associated system,

dx=d� = f (x; y;u;0) (27)

dy=d� = 0 (28)

where the slow variable is treated as a �xed parameter. The slow manifold x = m (y)
consists of the steady states of (27) for �xed y: Fenichel (1979) developed the analysis
of these systems in terms of invariant manifolds. From the point of view of CAS this
type of modelling is important since the interaction of fast and slow processes is an
integral part of the sudden large shifts that sometimes occur in ecosystems (Rinaldi
and Sche¤er 2000). Possible moments around a slow manifold are shown in the
�gure below, which depicts phenomena occurring as the slow variable approaches a
supercritical pitchfork bifurcation point.

An attracting slow manifold

Incorporating optimal control and strategic interactions by choosing controls u
according to economic criteria in systems characterized by fast-slow dynamics, and
extending the few attempts recently undertaken along these lines is another area of
promising new research for designing policies in di¤erent time scales.

5 Concluding remarks

This paper presents methodologies and tools for the modeling of CAS which are
essential to the economic management of ecosystems. It is suggested that adequate
modelling should include and combine among others, strategic interactions among
economic agents, nonconvexities induced by nonlinear feedbacks, separate spatial
and temporal scales and modeling of spatiotemporal dynamics, and allowance of
alternative time scales. Undoubtedly issues like spatial scaling and uncertainty which
were not tackled in this paper are also very important.
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Modelling along these lines increases to a large extent the complexity of models
and the cost of the analysis, reduces the possibilty of optaining general and analytic
results, and increases the importance of numerical simulations in acquiring insights
for the problems uder study. On the other hand however, empirical observations
suggest that linear dynamics are not an adequate representation of ecological systems
and that realism requires moving towards more complex nonlinear systems with many
CAS characteristics. Ignoring these characteristics might obscure crucial features
that we observe in reality, such as bifurcations and irreversibilities or hysteresis.
As a consequence, the design of policies that do not take CAS characteristics into
account might lead to erroneous results and undesirable states of managed economic-
ecological systems.

References

[1] Basar, T. and G.J. Olsder (1982), Dynamic Non-Cooperative Game Theory, New
York: Academic Press.

[2] Berglund, N. and B. Gentz (2003) Geometric singular perturbation theory for
stochastic di¤erential equations, Journal of Di¤erential Equations, 191, 1-54.

[3] Brock, W.A. and D. Starrett (2003), Managing systems with non-convex positive
feedback, Environmental & Resource Economics 26, 575-602.

[4] Brock, W. and A. Xepapadeas (2004a), Management of interacting species: reg-
ulation under nonlinearities and hysteresis, Resource and Energy Economics,
26(2), 137-156.

[5] Brock, W. and A. Xepapadeas (2004b), Ecosystem Management in Mod-
els of Antagonistic Species Coevolution, DIVERSITAS Discussion Paper,
http://ideas.repec.org/p/crt/wpaper/0503.html.

[6] Brock, W. and A. Xepapadeas (2008a), Di¤usion-induced instability and pattern
formation in in�nite horizon recursive optimal control, Journal of Economic
Dynamics and Control, 32, 2745-2787.

[7] Brock, W. and A. Xepapadeas (2008b), Pattern Formation, Spatial Externalities
and Regulation in Coupled Economic-Ecological Systems, Available at SSRN:
http://ssrn.com/abstract=1144071.

[8] Carpenter, S.R. (2003), Regime Shifts in Lake Ecosystems: Pattern and Varia-
tion, International Ecology Institute, Germany.

[9] Carpenter, S.R., W.A. Brock and J. Hansen (1999), Ecological and social dynam-
ics in simple models of ecosystem management, Conservation Ecology, [online],
URL:http://www.consecol.org/Journal/vol3/iss2/art4.

[10] Carpenter, S.R. and K.L. Cottingham (1997), Resilience and restoration of lakes,
Conservation Ecology, 1, 2.

[11] Crépin, A.-S. (2007), Using fast and slow processes to manage resources with
thresholds, Environmental & Resource Economics 36, 191�213.

[12] Crépin, A.-S. and T. Lindahl (2008), Grazing Games, Beijer Discussion paper,
211-2008, http://www.beijer.kva.se/discussions.asp.

[13] Dasgupta, P. and K.-G. Mäler (Eds) (2003), The economics of non-convex
ecosystems, Special Issue, Environmental & Resource Economics, 26.

[14] Fenichel, N. (1979), Geometric singular perturbation theory for ordinary di¤er-
ential equations, Journal of Di¤erential Equations, 31, 53�98.

[15] Genieys, S., V. Volpert and P. Auger (2006), Pattern and Waves for a Model in
Population Dynamics with Nonlocal Consumption of Resources, Mathematical
Modelling of Natural Phenomena, 1 (1): Population dynamics pp. 65-82.

[16] Goetz, R. and D. Zilberman (2000), The dynamics of spatial pollution: The case
of phosphorus runo¤ from agricultural land, Journal of Economic Dynamics and

13



Control, 24, 143-163.
[17] Grimsrud, K. and R. Hu¤aker (2006), Solving multidimensional bioeconomic

problems with singular-perturbation reduction methods: Application to man-
aging pest resistance to pesticidal crops, Journal of Environmental Economics
and Management, 51, 336�353.

[18] Hu¤aker, R. and R. Hotchkiss (2006), Economic dynamics of reservoir sedimen-
tation management: Optimal control with singularly perturbed equations of
motion, Journal of Economic Dynamics & Control, 30, 2553�2575.

[19] Janssen, M.A. (ed.) (2002), Complexity and Ecosystem Management: the Theory
and Practice of Multi-Agent Systems, Edward Elgar Publishing: Cheltenham.

[20] Kossioris, G., M. Plexoysakis, A. Xepapadeas, A. de Zeeuw, and K.-G. Mäler
(2008), Feedback Nash equilibria for non-linear di¤erential games in pollution
control, Journal of Economic Dynamics and Control, 32, 1312�1331.

[21] Kossioris, G., M. Plexoysakis, A. Xepapadeas, and A. de Zeeuw (2009), Eco-
nomic Management of Ecosystems with Thresholds, 3rd ALEAR Conference,
Costa Rica.

[22] Levin, S.A. (1998), Ecosystems and the biosphere as complex adaptive systems,
Ecosystems, 1, 431�436.

[23] Levin, S.A. (1999a), Fragile Dominion: Complexity and the Commons, Perseus
Books, Reading, MA.

[24] Levin, S.A. (1999b), Towards a science of ecological management, Conservation
Ecology 3(2): 6. [online] URL: http://www.consecol.org/vol3/iss2/art6.

[25] Levin, S. (2000), Multiple scales and the maintenance of biodiversity, Ecosys-
tems, 3, 498�506.

[26] Lucas, R.E. (2001), Externalities and cities, Review of Economic Dynamics, 4,
245�274.

[27] Lucas, R. E., and E. Rossi-Hansberg (2002), On the internal structure of cities,
Econometrica, 70(4), 1445�1476.

[28] Ludwig, D., D. Jones, and C. Holling (1978), Qualitative analysis of insect
outbreak systems: the spruce budworm and forest, Journal of Animal Ecology,
47, 315-332.

[29] Ludwig D., B. Walker, and C.S. Holling (1997), Sustainabil-
ity, stability, and resilience, Conservation Ecology, [online] URL:
http://www.consecol.org/vol1/iss1/art7/.

[30] Mahon, R., P. McConney, and R.N. Roy (2008), Governing �sheries as complex
adaptive systems, Marine Policy, 32, 104�112.

[31] Mäler, K.-G., A. Xepapadeas, and A. de Zeeuw (2003), The economics of shallow
lakes, Environmental & Resource Economics, 26, 603-624.

[32] Murray, J. (2003), Mathematical Biology, Third Edition, Springer, Berlin.
[33] Quah, D. (2002), Spatial agglomeration dynamics, AEA Papers and Proceedings,

92, 247�252.
[34] Rinaldi, S. and M. Sche¤er (2000), Geometric analysis of ecological models with

slow and fast processes, Ecosystems, 3, 507�521.
[35] Sanchirico, J. and J. Wilen (1999), Bioeconomics of spatial exploitation in a

patchy environment, Journal of Environmental Economics and Management,
37(2), 129-150.

[36] Sanchirico, J. and J. Wilen (2005), Optimal spatial management of renewable
resources: Matching policy scope to ecosystem scale, Journal of Environmental
Economics and Management, 50, 23-46.

[37] Sche¤er, M. (1997), Ecology of Shallow Lakes, Chapman and Hall, New York.
[38] Scholes, R.J. and S. Archer (1997), Tree-grass interactions in savannas, Annual

14



Review of Ecology and Systematics, 28, 517-44.
[39] Scholes, R.J. and B.H. Walker (1993), An African Savanna: Synthesis of the

Nylsvley Study, Cambridge University Press, Cambridge.
[40] Smith, M., J. Sanchirico and J. Wilen (2009), The economics of spatial-dynamic

processes: Applications to renewable resources, Journal of Environmental Eco-
nomics and Management, 57, 104�121.

[41] Turing, A. (1952), The chemical basis of morphogenesis, Philosophical Transac-
tions of the Royal Society London, 237, 37-72.

[42] Wagener, F.O.O. (2003), Skiba points and heteroclinic bifurcations, with appli-
cations to the shallow lake system, Journal of Economic Dynamics and Control,
27, 1533-1561.

[43] Walker, B.H., D. Ludwig, C.S. Holling, and R.M. Peterman (1981), Stability of
semiarid savanna grazing systems, Journal of Ecology, 69, 473-498.

[44] Wasow, W. (1965), Asymptotic Expansions for Ordinary Di¤erential Equations,
Dover Phoenix Editions, N.Y.

[45] Wilen, J. (2007), Economics of spatial dynamic processes, American Journal of
Agricultural Economics, 89, 1134�1144.

15


