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Abstract

We propose to discuss the efficiency of the spectral method for computing the value of Double Barrier Options.
Using this method, one may write the option price as a Fourier series, with suitable coefficients. We propose a
simple approach for its computing. One consider the general case, in which the volatility is time dependent, but it
is immediate extend our methodology also in the case of constant volatility. The advantage to write the arbitrage
price of the Double Barrier Options as Fourier series, is matter of computation complexity. The methods used
to evaluate options of this kind have a high value of computation complexity, furthermore, them have not the
capacity to manage it, while using our method, one can define, through an easy analytical report, the computation
complexity of the problem, and also one can choice its accuracy. The results obtained are compared with those
given from several authors that have used different ways to compute the price, from Monte-Carlo method to that
of Laplace transform. Our results are compatible with those obtained from Geman-Yor and Kunitomo-Ikeda, but
unlike them we are able to improve the accuracy with little effort of calculus



1 Introduction

The theoretical foundation that allow to use the spectral theory in mathematical finance is given from the class
to which belongs the Black-Scholes PDE. Because this is ever a parabolic PDE and for the the Hilbert Schmidt
theorem, its solution can be written as the sum of the eigenfunctions and it is worth noting that for the above
mentioned theorem its spectrum is discrete. So that one can write the option price as a series, whose coefficients
are straightforward integral functions. The convergence speed of our Fourier series, is very quick, if the following
condition is verified: 02/2 > I/m(T — t), but this will be clear later. Linetsky (2003) finds a series expansion
of the option price similar to our, but he follows a different approach from our. In this paper we compare the
spectral expansion of the option price with the Monte Carlo Method. We show that using the spectral expansion
is possible to define the computation complexity of the problem and thus it is possible to manage it, unlike of
Monte Carlo method.

The Barrier-Options belong to the class of Exotic Options. These usually are traded between companies and
banks and not quoted on an exchange. In this case, we usually say that them are traded in the over the counter
market. Most Exotic Options are quite complicated, and their final values depend not only on the asset price at
expiry but also on the asset price at previous times. They are determined by a part or the whole of the path of the
asset price during the life of option. These options are called path-dependent Exotic Options. Over the time, sev-
eral papers have studied the issue to evaluate the price of the Barrier Options and Double-Barrier Options; Snyder
(1969) describes down-and-out stock options as limited risk special options. Merton (1973) derives a closed-form
pricing formula for down-and-out calls. A down-and-out call is identical to a European call with the additional
provision that the contract is canceled (knocked out) if the underlying asset price hits a prespecified lower barrier
level. An up-and-out call is the same, except the contract is canceled when the underlying asset price first reaches
a prespecified upper barrier level. Down-and-out and up-and-out puts are similar modifications of European put
options. Knock-in options are complementary to the knock-out options: they pay off at expiration if and only if
the underlying asset price does reach the prespecified barrier prior to expiration. Rubinstein and Reiner (1991)
derive closed form pricing formulas for all eight types of single-barrier options. Double-barrier (double knock-out)
options are canceled (knocked out) when the underlying asset first reaches either the upper or the lower barrier.
Double-barrier options have been particularly popular in the OTC currency options markets over the past several
years, owing in part to the significant volatility of exchange rates experienced during this period. In response to
their popularity in the marketplace, there is a growing literature on double-barrier options. Kunitomo and Ikeda
(1992) derive closed-form pricing formulas expressing the prices of double-barrier knock-out calls and puts through
infinite series of normal probabilities. Geman and Yor (1996) analyze the problem by probabilistic methods and
derive closed-form expressions for the Laplace transform of the double-barrier option price in maturity. Schroder
(2000) inverts this Laplace transform analytically using the Cauchy Residue Theorem, expresses the resulting
trigonometric series in terms of Theta functions, and studies its convergence and numerical properties. Pelsser
(2000) considers several variations on the basic double-barrier knock-out options, including binary double-barrier
options (rebate paid at the first exit time from the corridor) and double-barrier knock-in options, and expresses
their pricing formulas in terms of trigonometric series.Hui (1997) prices partial double-barrier options, including
front-end and rear-end barriers. Further analysis and extensions to various versions of double-barrier contracts
traded in the marketplace are given by Douady (1998), Jamshidian (1997), Hui, Lo and Yuen (2000), Schroder
(2000), Sidenius (1998) and Zhang (1997). Rogers and Zane (1997) develop numerical methods for double-barrier
options with time-dependent barriers. Taleb (1997) discusses practical issues of trading and hedging double-
barrier options.

2 The Black-Scholes Equation and its Transformation into
the Canonical form of Parabolic PDE

In order to write the Black-Scholes equation let us make the following assumptions: the borrowing interest rate
and the lending interest rate are equal to 7, short selling is permitted, the assets and options are divisible, and
there is no transaction cost. Therefore, we can conclude that the absence of arbitrage opportunities is equivalent to
have the portfolios of assets, with same return rate r, equals to that of risk-free bond. Let f denote the value of an
option that depends on the value of the underlying asset X and time ¢, i.e f = f(X,t), where ¢ € [0,7] . This last
can be considered as the value of a whole portfolio of various options, for simplicity, we can think to a simple call or
put. Assume that in a time step dt, the underlying asset pays out a dividend ¢X (¢)dt, where g is the dividend yield:

we suppose that X (t) satisfies a geometrical Brownian Motion in which the parameters r, ¢, o are time dependent:

dX(t) = pX (t)dt + o(t) X (£)dW (1)



We require f to have at least one ¢ derivative and two X.

At this point we construct a self financing portfolio consisting of one option and a number a(t) of the underlying
asset and a number G(t) of the bonds. The value of this portfolio is:

f(X,t) = a(t)X(t) + B(t)B(t) ©)
considering the quantities «, 3, g, r time dependent, we omit to write this, hence we have:
BB(t) = f(X,t) — aX(t) 3)

Besides, the owner of the portfolio receives ¢Xdt for every asset held, the gain for the owner of the portfolio
during the time dt is:

df = adX + pBrB(t)dt + agXdt (4)

Now, we can match the equation (6) with the equation (8) and choosing
of
- 2 5

o=-3 (5)
Thus we have the Black-Scholes equation, with the final condition (or contract condition at maturity date):

Of 1 5.y 20f of

- 4+ - X4 —= t)—qt)X—— —rt)f=0 6

S P OX L () - )X % —r(0)f ©)

F(X,T) = £((X(T) - K),0)"

At this point we can introduce same transformations by which we reduce the Black-Scholes equations into the
heat equation and this because, Green’s function of the heat equation has an analytical expression.

The transformation that changes the Black-Scholes equation into a heat equation(Canonical form of parabolic
PDE) is known, infact in literature exists more methods to do it. We have choused the following transformation
of variables to turn the equation (6) into a heat equation

Y =inX + /tT (r(s) —q(s) — 202(5)) ds (7)

T
T= %/i o2 (s)ds (8)

FX,t) = e S s pry, 7 9)

Substituting the relations (8) (9) (10) in the equation of the Black-Scholes (6), this last assumes the canonical
form of PDE of the parabolic kind:

OF 8°F
or Y2
Y € [0,00,) T€1[0,T7],
F(Y,0) = £(e¥ ™) — )

The last transformations of variables that turn the equation of the Black-Scholes (6) into a heat equation, is true
also when the volatility and the interest rate are some constants:

(10)

Y:lnX—i-(T—q—%JQ) (T —1) (11)
T = %UQ(Tft) (12)
f(x,t)y=e "T-DF(Y,T) (13)

We want to remark that the transformation to convert the Black-Scholes equation into heat equation is not unique.



3 Pricing Double Barrier Options

The value of a Knock-out down and out Call or Put options is given by the solution of the Black-Scholes equation
with boundary conditions. In order to grant the existence and the uniqueness of the solution, it is necessary to
define the boundary condition and the initial condition. Also we require that when the value of the underlying
asset hits the two barriers, lower and upper, the option is cancelled; being the Black-Scholes equation a type
of equation for backward induction, we are interested at the value of f in the time T, and this is true because
t € [0,T], where K is the strike price:

2
A 2P OX L+ (rl0) — )X 5% () =0 (4
X e[L H];  te[0,T]

F(Lt) =0; f(H,t)=0
FX,T) = £(X(T) = K),0) (1« x (1)< Hr:te[0,17)

Substituting the relations (8)-(10) in the equation of the Black-Scholes (14), this last assumes the canonical form
of PDE of the parabolic kind:
OF _ 9*F
or  oy?

1T,
Y € [A, B] TE 0,5/ o?(s)ds| ,
0
F(A,7)=0 F(B,T)=0,
F(Y,0) = £ ™ML - k) A<y <Bitelo,1]

where A(t) = (InL + [ 0(s)ds), B(t) = (In H + [, 0(s)ds) and 0(t) = (r(t) — q(t) — 302(t)).

It is clear that in analogous way we can write the price of a Knock-in Option, but here we have chosen to study
only the case of a Knock-Out. One can prove (see the appendix), that the solution of equation (15) is given by
hereafter theorem:

(15)

Pricing Theorem In Black Scholes framework the arbitrage-price, of a Knock-out Call Double Barrier
Options, is given by relation:

WL .
f(X,1) =/0 dge™ It ("L — K)Tljay<e<B(t):tefo, T G(X, &, 1)
In(H/L) ”
=/0 dee™ e 4 (L — K) I aey<e< B(1)eelo,T]

2 N L s L N 0T ¢ In(X/L)
[ — (In(H/L)2 2 Jt i [ S— i R —
nan 2 ¢ " sin T (m(H/L)) sinn (m(H/L))

n=-—oo

(16)

for every underlying asset value X, € [L, H]; where H is the upper barrier and L is the lower barrier.

4 Numerical Implementation and Computation Complex-
1ty
In order to compute the price of a Knock-out Call Double Barrier option in three different settings of volatil-
ity, interest rate and level of Barriers, we compare our results with the prices obtained through Monte-Carlo
simulations and with the prices given in Kunitomo and Ikeda (1992). The standard deviation is computed on
a sample of 200 evaluations, each evaluation being performed on 5000 Monte-Carlo paths. Moreover, these two
prices are within one standard deviation of the Monte-Carlo method. The Monte-Carlo method must be run
using very small step sizes and many paths to be sure that the barriers are not touched. The consequence is
that the Fourier expansion requires two orders of magnitude less operations than the Monte-Carlo method and
one than the Laplace transform method used from Geman and Yor (1996)(e.g., to do it, using a standard Pc or
Mac, it is necessary a fraction of a second ). As a comparison, in the case of Asian options, Geman-Eydeland

(1995) obtain a standard deviation as low as 0.001 for a sample of 50 evaluations, each of them being performed
on 500 Monte-Carlo paths. It is in the context of delta hedging that the spectral expansion of the Asian option



obtained in linetsky (2002) proves definitely superior, both theoretically and computationally. A final manner to
illustrate this point is to show that, as expected, the sensitivity of the option price to the step size in Monte-Carlo
simulations becomes extremely high when the time remaining to maturity is short and the strike price near to
one of the two barriers H or L

Remark

The method of computing of the arbitrage price of the double barrier options, through ”Fourier expansion”, is
very efficient. Infact it’s possible compile an easy algorithm, in order to have the the correct value of Double-
Barrier Options and all this summing few eigenfunctions, not more of then. It is amazing to see the speed by
which the our expansion converges at the price. In the methods in which are used the Monte Carlo Simulations
is necessary compute about five thousand integrals to have the price. The difference between the two methods is
clear, exists a difference of two orders. Therefore the technique that we propose, following the articles of Linet-
sky(2002), is more efficient than that proposed by Pelsser(1997) and Geman Yor (1996). The advantage of our
method is that makes decrease the computation complexity. The computational complexity theory is a branch of
the theory of computation in computer science that investigates the problems related to the resources required to
run algorithms, and the inherent difficulty in providing algorithms that are efficient for both general and specific
computational problems. The our idea is to evaluate the price of Barrier-Options and Double-Barrier Options
like the weighted sum of the eigenfunctions of the Black-Scholes differential operator, where the coefficients ¢y,
are the weights. these last are integrals, the whose value is given in numerical way

2 In(H/L) I3
cn = 7/ d¢(e L — K)tsinnr — 17)
In(H/L) Jo In 7
and the price is given by following relation:
2
X too f( nr ) 1 [ 0% (s)ds In(X/L
FX,t) = e jtT r(s)ds Z e In % 2 Jt |:Cn sin nw (%)} s (18)

n=-—oo

2
2 T 2
#};) L o%(s)ds

Let us note that e < 2 decreases quickly. Thus, choosing a small number, ¢, and define n(e) as

hereafter:
2
1 T
exp | — n7Ir{ 7/ o2(s)ds| =e. (19)
lnf 2 J¢
Hence, we have
2
nm 2 1
= In (7) (20)
T b
m(%2)) e \e

n(e) = %m (%) \/LT;(S)dS In (%) (21)

Thus, now, we can study the computation complexity of our problem, we define

nI 2
0y, = o (W) ST P @)ds (22)
so that we have
(nx \2 T2 9 In(H/L)
ap = e (wmcHzy)” Je (3)437/ dé(ef L — K) ¥ sinnm L (23)
In(H/L) Jo InH/L)

the value of the integral is a function of n and it results to be
In(H/L) In(H/L)
/ d¢(efL — K)T sinnn (;) :/ d¢(e L — K) sinna (;)
0 In(H/L) In(K/L) In(H/L)
2.2 _
_ (—1)"+1K( n?m?(In(H/L) — nm) )
LIn(H/L)[(In H/L)2 + (nm)?]

thus we have

en = (~1)" K (L

2n?72(In(H/L) — nm) )
(in H/1)2 [(in H/L)? + (nm)?]



and

. — (—1)"+1 ( 2n?7m2(In(H/L) — nr) ) e_(%f ST o2 (s)ds
" L(ln H/L)2 [(In H/L)? + (nm)?]

we can increase an with by, in other words a, < by,

bn = (-1)"K <2n7ﬂ> 67(1“&7@’)2 JiF o (s)ds
L(n H/L)?

2

m) ftT o?(s)ds > 1.

bn, converge very quickly and are sufficient to compute only three terms, to have an accurate solution , indeed it
results by ~ 1071, by ~ 1074, b3 ~ 1076, by ~ 1079, If unfortunately the above condition is not verified, it is
sufficient to sum more coefficients than before, to obtain the option price. At this point we can state that the
computation complexity of our problem is at least ”10” (but it can be different, it depends from the accuracy),
i.e, the number of operation necessary to calculate the price: in fact, a PC must compute three coefficients an,
at these, it must multiplied the relative eigenfunctions and thus it must do the sum of all. Let us observe, that
greater is the lifetime of the options, smaller is the value of the number n(e). Hence fixed € like the accuracy of the
problem, we can compute in approximate way the value of f(X,t) using the partial sum of n(e) eigenfunctions.
Therefore, the contribution of the present paper is that to offer the analytical formula, by which is possible
manage the accuracy, choosing the number of eigenfunctions necessary to obtain the accuracy wanted. All this,
starting from a different point of view respect to that offered by Linetsky(2003). In fact we obtain similar results
to that of Linesky, but making different considerations upon the process to use for underlying asset. In this work,
we have wanted use a Markov process, to evaluate the price of a path-dependent option, while in Linetsky the
process considered is no a Markov process and it is more correct, but for suitable values of volatility and of width
of barriers, our hypothesis does work. The results obtained are shown in the tables shown in the last page, in
which one can read the price of double knock-out call option at behavior of n*, number of eigenfunctions used.
Our results can be compared with those obtained from Geman Yor(1996) and Kunitomo Ikeda(1992).

so that if the following report is true (

5 Conclusions

In this article, we have shown a simple and easy-to-use method for pricing Double Barrier Options. This ap-
proach is also able to provide the price of the Double-Barrier Options for values very tight of the bounds upper
and lower in which can be efficiently further improved in a systematic manner by means increasing the number
of eigenfunctions to use in the approximation scheme. Also we have shown that if the volatility verifies the
condition ¢2/2 > 1/7(T — t), the number of eigenfunctions necessary to have a good price are very small. In
order to name a few of most the important articles on this problem, we indicate: H. Geman and M. Yor(1996),
and A. Pelsser(1997), V.Linetsky and D. Davydov(2002). The main goal of the present work is to study the
computation complexity of algorithm, offering an explicit formula for it. This result is very important because
often is used the Monte Carlo method or Laplace transform method to evaluate options of this kind, and for
this former method there is no possible to manage the computation complexity because it is impossible to write
an analytical formula that shows the its computation complexity. Therefore, given the power of this method, it
is straightforward to generalize the approach to more complicated situations, because it is a general method to
solve Black-Scholes equations with boundary conditions with constant parameters and time dependent parameters.



Appendix

Green’s Function of Heat Equation with Boundary Conditions

Let be given the PDE in canonical form of the parabolic kind of the second order, with following boundary
conditions:

or _or
ar  9Y?

T
Y € [A, B] e [0,T], T= %/ o2 (s)ds;
0

F(A,7)=0 F(B,7)=0,
F(Y,0) = ¢(e¥) = (¥ — k)

(24)

we can use the separable variable method and we rewrite the function F(Y, ) as the product between U(Y') and
W (), in this way the PDE (24) becomes a system of two ODE in which one is a linear differential equation of
the first order respect to t, and the remainder is a Sturm-Liouville problem of the second order:

U)W (1) _ 9*U(Y)W ()

or Y2 (25)

thus we have
Uy) ang(r) = W(T)% (26)
1 OW(r) 1 92U(Y) (27)

W(r) or  U(Y) oye2

Therefore the left hand side depends only of the variable ¢ and the right hand side depends only of the variable
Y'; then we can match the left hand side and the right hand side equal to a constant:

1 dw(r) _

W(r) dr d (28)
1 dPUy)

Uy) dy2 - (29)

note that we have choused like constant —\?, because it makes bounded the function F(Y, 7). Solving the above
system of ODE, we have:

W(r) = W(0)e T (30)
2UY) B
v T XNU(Y) =0. (31)

The equation (24) is solved and its solution is done from equation (30). The equation (31) plus the boundary
conditions is a Sturm-Liouville problem, the which solution is offered hereafter:

d2U(Y) B
et XNU({Y)=0 Y €A B (32)

U(A) =0, U(B) = 0;
In order to change the interval of the definition and thus to simplify the computation, we introduce the subsequent
variable:

Y=n+A = n=Y-A
Hence, we have U(Y) = U(n+ L) = X(n), where n € [0,]] and | = B — A,
dU(Y)  dR dPU(Y) d?r

dy ~ dnp’ dy? dn?’
The equation (32) is now defined in the interval [0, []

d*R(n)
dn?
R(0)=0, R()=0;

+AWRM) =0  nelo]



The solution of the equation is given by following relation:

—+oo

N(n) = Z [cnsinnlﬂ]. (33)

n=—oo

where o is equal to zero for the boundary condition RX(0) = 0. At this point, after we have substituted the

variable Y with 7, thus F(Y,7) = F(n,7) and we can write the solution of the heat equation (24) as follows:

oF _0°F

= — 34
or on? (34)
_ 1 (T
nel0,q] rel0,T], T:§/ o?(s)ds;
0
F(,7)=0  F(,7)=0,
F(n,0) = (") = (&™) — k)t
Remembering that F(n, ) = R(n)W (7), hence we have:
o= 35 G [eosin (")) )
k) l ’
n=—oo
and this is true if and only
1
Ccn = %/ de(ef T4 — K)tsin (nTﬂé) (36)
0
— = nny2 [2 [ nmé nmn
F(n,7)= Z e (PF)°r {7/0 de(eST4 — K)tsin (T) sin (T):| , (37)
n=—oo
— ! 2 I nx)2 nmwé nmn
F(n,T) :/0 dg(et A — K) | T S e () sin (T) sin <T> . (38)

n=-—oo

In order to simplify the above relation we introduce the Green’s function:

+oo 5
G(n, &) = 2 Z e~ (7)) 7 gin (nTﬂf) sin (@) ) n,§ €[0,1]

so that we may write, in very elegant way, the solution of the parabolic PDE in canonical form of the second
order, as follows:

l
F(n,7) = /0 dE(eEHA — )G, €). (39)

and using the Poisson’s transform, we can write the Green’s function in the form of the difference between two
normal distributions:

+oo oni)2 2
2nl +£42nl 10
1 Z (n 54+T ) e ( 547_ ) ( )
v n=-—oo



Table 1: B.S. price S(0) = 2, (T’ —t) = lyear

o | r | k | X, T-t)
02]002| 2 | 0.0892
05(005| 2 | 02179
0.5 [ 0.05 | 1.75 | 0.2765

Table 2: Fourier price S(0) =2, (T —t) = lyear

*

o r k H| L |fx T-t)|n
0.2 | 0.02 2 25| 1.5 0.0413 5}
05 | 0.05| 2 3 | 1,5| 0.0377 3
0.51005 |17 | 3 1 0.0776 3

Table 3: Laplace transform price S(0) = 2, (T —t) = lyear

o r k H | L | {X, T-t)
0.2 | 0.02 2 25|15 0.0687
05005 | 2 3 | 15| 0.2.090
05005 |17 | 3 1 0.2384



Table 4: Geman-Yor price S(0) =2, (T'—t) = lyear

o | r | k | H|L|{X Tt
02]002| 2 [25]|15]| 00411
05[005| 2 | 3 |15] 00178
05005175 3 | 1 | 00762

Table 5: Kunitomo-Ikeda price S(0) = 2, (T —¢) = lyear

o r k H | L | {X, T-t)
0.2 | 0.02 2 2.5 | 1.5 | 0.04109
051005 | 2 3 | 1.5 | 0.01786
051005 | 1.75 | 3 1 0.07617

Table 6: Monte Carlo price (st, dev. 0.003) S(0) =2, (T —t) = lyear

o r k H | L | {X, T-t)
0.2 | 0.02 2 25|15 0.0425
05005 | 2 3 | 1.5 | 0.0191
05005 |17 | 3 1 0.0772
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