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Abstract

This paper analyses the evolution of city size distribution in the United States

throughout the twentieth century. In particular, it tests the validity of two em-

pirical regularities studied in urban economics: Zipf�s law, which postulates that

the product between rank and size of a population is constant, and Gibrat�s law

or the law of proportionate growth, according to which the growth rate of a vari-

able is independent of its initial size. To achieve this, we use parametric and

nonparametric methods. The main contribution of this work is the use of a new

database with information on all the cities (understood as incorporated places),

thus covering the entire distribution (without size restrictions). Our results en-

able us to con�rm, from a long term perspective, that Gibrat�s law holds (weakly)

and that Zipf�s law holds only if the sample is su¢ciently restricted at the top,

not for a larger sample, because city size distribution follows a lognormal when

we consider all cities.
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1 Introduction

The United States (US) became an urban nation in the second half of the nineteenth

century and the early twentieth century. During this period, the percentage of the pop-

ulation living in cities grew to over 50%, with population growth in the cities strongly

concentrated in the emerging industrial belt. As various historians show, (Kim, 2000,

2006; Kim and Margo, 2004), in the second phase of industrialization, from 1850 to

1920, factory production rose in scale, became more mechanized, and spread to numer-

ous industries and to the north-eastern region known as the manufacturing belt, where

in turn, the growing urban population was concentrated.

Industrialization and urbanization were strongly correlated in the US, although the

direction of causality is disputed (the literature suggests industrialization led urbaniza-

tion, see Kim and Margo, 2004). In any case, urbanization and industrialization went

hand-in-hand. However, in the second half of the twentieth century, this trend seems to

be reversed. The largest cities experienced a falling population in relative terms (from

1960 to 1990 the proportion of urban population representing the largest cities with

populations of more than 250,000 decreased; see Kim, 2000), there was a substantial

transition of employment from the industrial sector to services, and the in�uence of in-

dustrial employment in this period is found to be negative. For example, Glaeser et al.

(1995) �nd that in the period 1960 to 1990, population growth in cities was negatively

related to the initial share of employment in manufacturing. Their results suggest that

cities followed the fortunes of the industries to which they were exposed initially. This

negative e¤ect had been maintained during the 1990s, as Glaeser and Shapiro (2003)

observe.

Some authors provide useful historical examples of how the rise or the decline of

cities may be joined to their output. Jacobs (1970) provides anecdotal evidence about

the role played by emerging industries in city growth. Between the late-nineteenth and

mid-twentieth centuries, Rochester, New York, became the new capital of the US �lm

industry and the duplication industry, in place of New York city, and these two indus-

tries came to represent an important part of Rochester�s employment. Other typical

examples in the literature are the cases of Dalton, Georgia, which became America�s

carpet industry capital (Krugman, 1991), and the jewellery industry of Providence,

Rhode Island.

More recently, Eeckhout (2004) highlighted the contrast between cities like Detroit

and Philadelphia, which have seen a signi�cant drop in population, while at the same

time, experiencing a serious decline in their manufacturing industries; and cities in Sil-
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icon Valley that have seen higher-than-average population growth rates in the 1990s.

He argues that in the last decades, Detroit experienced a decline in population as the

manufacturing industry in the area su¤ered a severe downturn, while at the other ex-

treme, when the high-technology industry was booming, villages, towns, and cities in

the San Francisco Bay area experienced higher-than-average population growth. An-

other example is Glaeser (2005), who carries out an exhaustive survey of the evolution

of Boston and �nds that, although in 1980 Boston resembled many of the industrial

hulks dotting the northeast and Midwest and its future outlook seemed similar to that

of cities like Detroit, from 1980 to 2000, Boston was more like San Jose than Detroit.

This is because it abandoned manufacturing and specialized in high technology, �nance,

and education-industries that required skilled workers and that did extremely well over

the 1980-2000 period.

Throughout the twentieth century, there have been other economic and social events,

which have had an undisputable in�uence on city size distribution. There have been

waves of immigration (although more controlled than in earlier periods); periods of deep

economic crisis, such as the Great Depression or the high-oil-prices era of the 1970s,

and periods of prosperity, such as the post-war boom (the golden era of American

capitalism). Also, the shift of employment from the manufacturing sector to services

(by the end of the twentieth century, the percentage of employment in services reached

almost three times that of manufacturing; see Kolko, 1999), and speci�c industry cycles,

such as the decline of the Rust Belt and the rise of the Sun Belt, have impacted on city

size distribution.

All these factors have a¤ected city size distribution. As shown by Dobkins and Ioan-

nides (2000), new regions and cities have been brought into the US urban system during

the nineteenth and twentieth centuries, older regions have grown and declined, and the

spatial distribution of economic activity has undergone some remarkable changes. Fig-

ure 1 displays two maps, corresponding to the beginning and end of the century, showing

the distribution of cities (with populations of more than 10,000) and the changes that

took place during the century. Two facts stand out at �rst glance: (i) there has been

a substantial increase in the number of cities (there are more cities), and (ii) the pop-

ulation of the cities has increased (there are more large cities).

Against this background, the aim of this paper is to analyse the evolution of the city

size distribution of the United States throughout the twentieth century. In particular,

we are interested in testing the validity of two empirical regularities, well-known in

urban economics: Zipf�s law, which postulates that the product between rank and

size of a population is constant, and Gibrat�s law or the law of proportionate growth,
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according to which the growth rate of a variable is independent of its initial size. To

achieve this, we use parametric and nonparametric methods. The main contribution of

this work is the use of a new database with information on all the cities (understood as

incorporated places), thus covering the entire distribution (without size restrictions).

To our knowledge, we are the �rst to document the evolution of the size distribution of

all US cities for over a century.

These laws have already been studied for the American case with the most populous

cities or with Metropolitan Statistical Areas (MSAs). The di¤erence from earlier studies

is that here the entire size distribution is studied, not just the upper tail.

In related literature, both Krugman (1996) and Gabaix (1999) use data frommetropol-

itan areas from the Statistical Abstract of the United States and conclude that for 1991

Pareto�s exponent is exactly equal to 1.005. This implies that Zipf�s law holds for this

speci�c year. For a dynamic analysis, Ioannides and Overman (2003) use data from

metropolitan areas from 1900 to 1990 and arrive at the conclusion that Gibrat�s law

holds in the urban growth processes and that Zipf�s law is also ful�lled approximately

well for a wide range of city sizes. However, their results suggest that local values of

Zipf�s exponent can vary considerably with the size of cities. Nevertheless, Black and

Henderson (2003) arrive at di¤erent conclusions for the same period (because they use

di¤erent metropolitan areas). Zipf�s law holds only for cities in the upper third of the

distribution, while Gibrat�s law would be rejected for any sample size. These results

highlight the extreme sensitivity of conclusions to the geographical unit chosen and to

sample size.

To close the debate, Eeckhout (2004) demonstrates that the estimated parameter

depends on the truncation point, so when he considers all the cities for the period 1990

to 2000, the city size distribution follows a lognormal rather than a Pareto distribution,

and the value of Zipf�s parameter is not 1, as earlier works concluded, but is slightly

above 1=2, and also, Gibrat�s law holds for the entire sample. The shortcoming of this

work is that this is a short term analysis, as only two decades are considered. The aim

of the present study is to generalize this analysis for all of the twentieth century and

extract long term conclusions. Section 2 presents the database, and sections 3 and 4

concern Zipf�s and Gibrat�s laws respectively. In section 5 we discuss the results and

section 6 concludes the paper.
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2 The Database

Any study that deals with issues relating to city size distribution faces the problem of

what is meant by the term �city�, as there are various ways of de�ning a city. In this

study, we identify cities as what the US Census Bureau denominates as incorporated

places. They include governmental units classi�ed under state laws as cities, towns,

boroughs, or villages.1 Alaska, Hawaii, and Puerto Rico have not been considered due

to data limitations. Our base, created from the original documents of the annual census

published by the US Census Bureau, consists of the available data of all incorporated

places without any size restriction, for each decade of the twentieth century. Eeckhout

(2004) demonstrates the importance of considering the whole sample. If the underly-

ing distribution is the lognormal distribution, then the estimate of the parameter of

the Pareto distribution is increasing in the truncation city size and decreasing in the

truncated sample population.

We also use data from Metropolitan Statistical Areas (MSAs) in order to establish

comparisons between both geographical units, and between our results and those of

other studies.2 Both units of analysis have advantages. As Glaeser and Shapiro (2003)

indicate, MSAs are multi-county units that are meant to capture labour markets. MSAs

are attractive because they are more natural economic units. Incorporated places (true

cities) are political units that lie within metropolitan areas. Moreover, some factors,

such as human capital spillovers, are thought to operate at a very local level.

Two special advantages arise from using data for incorporated places instead of

MSAs. First, the US metropolitan areas usually comprise a group of counties that

contain a central city with a population of at least 50,000 inhabitants (although this

criterion has changed over the course of the twentieth century),3 meaning that only

the largest cities are considered. Figure 2 shows empirical density functions for three

representative periods (estimated using adaptive kernels) of the MSAs and our sample of

incorporated places without size restrictions. The population is shown in relative terms

to the US urban population for the corresponding period.4 As Eeckhout (2004) shows,

the comparison makes it obvious that (i) due to the minimum population threshold

the MSAs represent only the largest cities, and (ii) that by considering only the largest

cities, the upper tail distribution, most of the cities in the distribution are excluded

1More details about data sources and de�nitions are discussed in Appendix A.
2A third option, intermediate, involves taking the urbanized areas, de�ned by the US Census Bureau

(Garmestani et al., 2008). An urbanized area comprises a central place and the urban fringe, which
includes other places.

3MSAs data sources and de�nitions are also included in Appendix A.
4US urban population according to US Census Bureau urban de�nition.
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from the study.

Second, the sample of incorporated places provides more information about one

of the basic characteristics of the distribution of American cities. As Dobkins and

Ioannides (2001) point out, the US system is characterized by the entry of new cities.

While other countries (such as European countries) have an already consolidated urban

structure and new cities are rarely created (urban growth is produced by population

increase in existing cities), in the US, urban growth has a double dimension: as well as

increases in city size, the number of cities also increases, with potentially di¤erent e¤ects

on city size distribution. Figure 1, although showing only cities of more than 10,000

inhabitants, illustrates this fact clearly by showing a large increase in the number of

cities in the twentieth century. In fact, the number of incorporated places in the sample

increased from 10,596 in 1900 to 19,296 in 2000. Table 1 presents the number of cities

for each decade, the percentage that the incorporated places in the database represent of

the total population of the US, and the descriptive statistics. A glance at the minimum

values of each decade enables us to state that absolutely all incorporated places, for

which data exist, are included, without size restrictions; even the smallest units, with

fewer than 200 inhabitants. Although their urban character is debatable, Eeckhout

(2004) suggested considering the whole distribution. In contrast, other authors impose

a minimum population threshold. In any case, incorporated places with a population

under 2,500 represent only 17.62% of the population of our sample of incorporated places

in 1900, and 5.61% in 2000 (8.27% and 3.45% in terms of the total US population in

1900 and 2000, respectively).

The sample re�ects the urbanization process that took place throughout the twenti-

eth century. Thus, the population of cities goes from less than half the total population

of the US in 1900 (46.99%) to 61.49% in 2000. From the beginning of the century to

1930 there was a rapid increase both in the number of cities and in the percentage of

the total population that they represent. This informs us of an urbanization process,

which manifests in two ways: on the one hand, already existing cities that are capable

of attracting new population (the mean value of inhabitants per city grows over time,

as can be seen in Table 1) and on the other hand, growth in the number of cities. After

this decade, growth slows and stabilizes at around 64% until the last decades (from

1970 to 2000) when it falls to 61.49%.

As Kim (2000) indicates, data for metropolitan areas provide a di¤erent picture of

US urban development than that painted above, as the percentage of population in the

MSAs grows constantly during the second half of the twentieth century, from 56.55%

in 1950 to 82.64% in 2000.
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The percentage of the total US population, which our sample of incorporated places

represents, can appear low when compared to other studies using MSAs. However, it is

similar to that of other works using cities.5 The population excluded from the sample

is what the US Census Bureau calls population not in place. Incorporated places and

census designated places (CDPs) do not exhaust the territory of the US. There is quite

a bit of territory that is not included in any recognized place. For example, there were

more than 74 million people living in a territory that was not in a place in 2000,6 26.64%

of the total US population in this year. In turn, most of this population not in a place

is rural population (61.58% in 2000).

These people living outside incorporated places are excluded from our sample, but

they are included in some MSAs, as the MSAs are multi-county units and this pop-

ulation is counted as inhabitants of the counties. MSAs cover huge geographic areas

and include a large population living in rural areas, which are not counted as places.

This explains why the percentage of total population represented by MSAs is higher

than our sample of incorporated places. However, despite the sample of incorporated

places covering a lower percentage of the total US population, the population of incor-

porated places is almost entirely urban, 94.18% in 2000, compared to 88.35% of urban

population in the MSAs.

3 Zipf�s law

The aim of this work is to study the temporal evolution of American city size distribution

during the twentieth century. For this we will use Pareto�s distribution (1896) as a

statistical approximation, also known as power law, originally used to study income

distribution. If we use s to denote the relative size of the city7 and R for its rank, a

power law links the relative size of the city and rank as follows:

R(s) = As�a, (1)

5For example, see Kim (2000) and Kim and Margo (2004), where city is de�ned as an area having
a population of greater than 2,500.

6Census 2000 data on the population in places and not in places can be found in Table 9 of PHC-3
(US Summary, part 1), available online at: http://www.census.gov/prod/cen2000/index.html

7In a long term temporal perspective of stationary equilibrium, it is necessary to use a relative
measure of size. The chosen measurement is the relative size, de�ned as: sit =

Sit
�St
=

Sit
NtP

i=1

Sit=Nt

. The

other option most used in the literature is to take the share which represents the size of the city over

the total population, Sit=
Nt
P

i=1

Sit. The results of this section are robust for the three options, size,

relative size, and share over the total, as the ratios involve only a change of scale.
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where A and a are parameters. This expression is applied to the study of very varied

phenomena, such as the distribution of the number of times di¤erent words appear in

a book, the intensity of earthquakes or the �ow of rivers. It has been used extensively

in urban economics to study city size distribution (see, for example, Eeckhout (2004)

and Ioannides and Overman (2003) for the US case). It has also been used recently to

study country size distribution (Rose, 2006; González-Val and Sanso-Navarro, 2009).

Zipf�s law is an empirical regularity, which appears when Pareto�s exponent of the

distribution is equal to the unit ( a = 1). The term was coined after a work by Zipf

(1949), which observed that the frequency of the words of any language is clearly de�ned

in statistical terms by constant values. Or, applied to our variable, when ordered from

largest to smallest, the relative size of the second city is half that of the �rst, the relative

size of the third is a third of the �rst, and so on.

3.1 Parametric analysis

The expression (1) of Pareto�s distribution is usually estimated in its logarithmic ver-

sion:

lnR = K � a ln s, (2)

where K is a constant.

It is useful to test whether Pareto�s parameter is more or less than 1 and what is

the evolution of this coe¢cient in time. The greater the coe¢cient, the more homo-

geneous are the relative city sizes. Also, a growing evolution would mean a process of

convergence in city sizes. And the opposite, the smaller the coe¢cient the less homo-

geneous are the relative city sizes, and a decreasing evolution would mean a process of

divergence in city sizes.

Equation (2) can be represented as a graph. Figure 3 shows the Zipf plots for three

periods: 1900, 1950, and 2000. The behaviour of other decades, which is not shown,

is similar. Results are shown for incorporated places and for MSAs. Data are �tted

by a power law and its exponent is estimated by using the OLS estimator. Moreover,

the top 100 data from the incorporated places are also �tted by a power law and its

exponent is estimated by using the Hill�s estimator (proposed by Gabaix and Ioannides,

2004). Also shown is the �t by lognormal distribution for the entire range based on the

maximum likelihood estimation.

If Zipf�s law were ful�lled, the points would represent a decreasing straight line with

a slope equal to minus one. This is the case for the MSAs, for which the power law
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provides a very good �t to the real behaviour of the distribution with an estimated

Pareto exponent always very close to the unit (the value one is always within the

estimation by interval). However, a non-linear and clearly concave behaviour is observed

for the incorporated places. In this case, the lognormal distribution provides the better

�t for most of the distribution, and the �t improves over time. Although the largest

cities� behaviour is similar to that of the MSAs and the rank-size relationship remains

almost linear, so that a power law is also a good description of the behaviour of the

upper tail distribution.

Table 2 shows the results of the OLS estimation8 of Pareto�s exponent. The residues

resulting from this regression usually present problems of heteroskedasticity. So, to

analyse the signi�cance of the parameters, the corrected standard error proposed by

Gabaix and Ioannides (2004) is used: GI s:e: = â � (2=N)1=2, where N is the sample

size.

The results indicate that when the entire sample is taken, Pareto�s exponent is

always less than one. Also, the estimates decrease over time when we consider all

incorporated places, which would indicate that for the entire sample (including all the

cities for each year) a divergent behaviour was produced. However, if we consider

di¤erent cross-sections of the sample we can observe di¤erent behaviours. Thus, for the

1,000 biggest cities, the exponent grows over time, so that we can state that for the

biggest cities, the trend has been convergence: they have become closer in relative size.

For the 5,000 biggest cities, the exponent remains stable, and from there the exponents

decrease in time for di¤erent sample sizes.

We also need to point out that when we consider only the cities in the upper tail

distribution the value 1 is always within the estimation by interval, �nding evidence

in favour of the ful�lment of Zipf�s law in the largest cities. Despite the lognormal

distribution gives a better �t for the entire city size distribution (as we see in Figure

3), as noted by Eeckhout (2009), for the largest cities the lognormal tail and the Pareto

tail are hard to distinguish.

There are two possible explanations for the decreasing evolution presented by the

estimated coe¢cients when we consider all the incorporated places. First, part of the

decrease is purely statistical. As Eeckhout (2004) showed in theory, if the underlying

distribution is lognormal the estimated value of Pareto�s exponent depends negatively

on the cut-o¤ point, so that, as we increase the sample size and include ever smaller

8Gabaix and Ioannides (2004) show that the Hill (Maximum Likelihood) Estimator is more e¢cient
if the underlying stochastic process is really a Pareto distribution. This is not the distribution that the
data follow, and so we use the OLS estimator. While the OLS estimate also presents some problems,
see Goldstein et al. (2004) and Nishiyama et al. (2008).
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cities, the estimated coe¢cient decreases (but not always; in principle, starting with a

small sample and going on to a slightly larger one, as for example from 100 cities to

500, the coe¢cient can grow).

Secondly, part of this divergence would be explained by the appearance of new cities

that enter with very small relative sizes. This second statement implies that (i) cities

entering the sample present a relative size lower than the other cities in the sample (on

average), and (ii) that greater inequality in the distribution is produced.

Figure 4 shows the empirical density functions of the new entrants (normalized by

the average size of the cohort of the entire distribution) in 1910 (the �rst period of our

sample in which new cities appear) and 2000. New entrant cities are those incorporated

places that appear in the sample after the �rst period, 1900. We observe that the

estimated density function for the new cities appears to the left of the function for the

whole sample, indicating that the new cities enter with smaller relative sizes. However,

this di¤erence is greater in the �rst period, 1910, than in 2000. This is because most

cities entering the sample do so in the �rst decades of the century, in the period 1900

to 1930 (Table 1), so that for 2000, after several decades, their size has become closer

to that of all cities in the sample.

We have also run the two-sample Wilcoxon rank-sum test,9 rejecting, in both peri-

ods, the null hypothesis that both samples (new entrants and all cities) are the same.

The test also enables us to accept the null hypothesis that the relative size of incorpo-

rated places of the whole sample is greater than that of the new cities10 in both periods.

The fact that the sample corresponding to the whole distribution is located to the right

and that the di¤erence between both density functions is signi�cant, indicates that, on

average, cities enter the sample with a lower relative size.

Regarding the degree of evenness or unevenness of the distribution, Table 3 presents

the Gini coe¢cients for di¤erent sample sizes. The Gini coe¢cients have the advantage

of not imposing a speci�c size distribution (Pareto for rank-size coe¢cients). It is in-

teresting to note that the coe¢cients group for the largest cities decreases over time,

indicating a convergent behaviour in these subgroups of the upper tail distribution; yet

9The two-sample Wilcoxon rank-sum test is a nonparametric test for assessing whether two samples
of observations come from the same distribution. The null hypothesis is that the two samples are drawn
from a single population, and therefore that their probability distributions are equal. Wilcoxon�s test
has the advantage of being appropriate for any sample size.
10Wilcoxon rank-sum test results:

Prob{All cities empirical density function in 1910 > New entrants empirical density function in 1910}=
0.654
Prob{All cities empirical density function in 2000 > New entrants empirical density function in 2000}=
0.559.
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for the whole sample (including the cities entering the sample in each decade) the coef-

�cient goes from 0.822 in 1900 to 0.851 in 2000. This indicates that the evolution of the

whole distribution is divergent: inequality among the relative sizes of the incorporated

places has increased.

However, the evolution of the Gini coe¢cient is not monotonous. There are periods

in which the distance between the relative sizes of incorporated places increases (1900-

1930, 1940-1950, 1980-2000), and other periods in which the unevenness of distribution

is reduced (1930-1940, 1960-1980). While it is beyond the scope of this paper to estimate

the speci�c determinants of these changes in size distribution (unfortunately we only

have data on the population of the cities), we can note some possible causes, taking

into account the historical context.

Table 1 shows how the beginning of the century (1900-1930) is characterized by a

marked increase in the number of cities (which enter the size distribution with lower

average relative sizes than the rest of the sample) and in the percentage of the urban

population which they represent; to this can now be added a rapid increase in uneven-

ness in city distribution. This is the period that Kim (2000) calls �the era of industrial

cities�, in which urban growth went hand-in-hand with industrialization (particularly

in the manufacturing belt), ending in 1920, a few years before the Great Depression

(1929-1941). During this decade of economic crisis (1930-1940) both the number of cities

and the percentage of population they represent remain stable (Table 1). Additionally,

the Gini coe¢cient indicates that unevenness in the distribution is reduced, suggesting

that there is some redistribution of the population among the cities. Unevenness also

decreased from 1960 to 1980, a period in which the percentage of population in cities

peaked at almost 65%, coinciding with the end of the post-war boom and the oil supply

shocks of 1973 and 1979. From then, until the last decades of the century (1980-2000),

unevenness within the size distribution again increased, although only slightly.

It is notable that if we consider the group of largest cities (the upper tail) the

behaviour is the opposite, as the trend, especially during the second half of the century,

is clearly convergent; it brought the relative sizes of the largest cities closer together.

This convergence coincides in time with a loss of importance for the largest cities. As

Kim (2000) points out, in the second half of the twentieth century, urban development

in the US was characterized by a decrease in the percentage of the urban population

represented by the largest cities, as from 1960 to 1990 the percentage of population in

the cities of 250,000 inhabitants or more decreased from 22% to 17.8%.
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3.2 Nonparametric analysis

As it has been proven that a power law does not give a good �t for the entire sample

of incorporated places, the question is, what distribution best �ts the data? For this,

we estimate the empirical distribution of the data using an adaptive kernel.

Figure 5 shows the results for three representative decades (the di¤erence from Fig-

ure 2 is that now, the population of incorporated places is represented in relative size).

It is observed that, starting in 1900, from a very leptokurtic distribution with much den-

sity concentrated in the mean value of the distribution, the distribution loses kurtosis

and concentration decreases until it reaches a distribution very similar to lognormal,11

which it maintains until 2000. This evolution can also be seen in the graph on the right

of Figure 5, which shows the empirical cumulative density functions estimated for 1900

and for 2000. It can be observed that in the year 2000, probability accumulates much

more slowly than in 1900, which indicates a change to a less concentrated distribution.

Additionally, as the concentration of the distribution decreases, unevenness increases

(the same result obtained in the parametric analysis of the section above); the loss of

kurtosis of the centre of the distribution means that the tails gain weight.

4 Gibrat�s law

The above section shows what we consider to be a snapshot of the distribution of

American cities during the twentieth century. For di¤erent decades we obtained the

graphic representation of the distribution and the estimated coe¢cients of Pareto�s

exponent for di¤erent sample sizes, which enabled us to conclude if there had been

important variations in the distribution, or if concentration had increased or decreased.

However, a more rigorous dynamic analysis demands that we work with growth rates.

We are particularly interested in seeing if there is ful�lment of Gibrat�s law or the law

of proportionate growth, which postulates that the growth of a variable is independent

of its initial size; Gibrat (1931) observed that the size distribution (measured by sales

or the number of employees) of �rms tends to be lognormal, and his explanation was

that the growth process of �rms could be multiplicative and independent of the size of

the �rm.

In the �eld of urban economics, Gibrat�s Law, especially since the 1990s, has given

rise to numerous empirical studies contrasting its validity for city size distributions,

11The results (not shown) of the Wilcoxon rank-sum test indicate that for a 1% con�dence level, the
null hypothesis of lognormality would only be rejected in 1920 and 1930.
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arriving at a majority consensus, though not absolute, that it holds in the long term.

It is useful to test this over the entire twentieth century, from a long term perspective

with our sample of all incorporated places.

4.1 Parametric analysis

The parametric approach consists of estimating growth regressions, which relate the

growth rate with initial size (the ever popular �-convergence in economic growth lit-

erature). We take two speci�cations; in one, growth depends on the initial relative

size, while in the other the exogenous variable is a mean of the relative size of the two

periods:

Speci�cation I:
st+1
st

= C + b �
st + st+1

2
, (3)

Speci�cation II:
st+1
st

= C + b � st, (4)

where C is a constant. Note that the variable is the relative size, so we are checking

relative or e¤ective growth, not gross growth. This means that the population of a city

may have grown, but if others cities have grown more, the average rises and thus, it has

shrunk, in terms of relative size. This can be seen from the decomposition of the ratio

sit+1=sit:

sit+1
sit

=

Sit+1
�Sit+1
Sit
�Sit

=

Sit+1
Nt+1P

i=1

Sit+1=Nt+1

Sit
NtP

i=1

Sit=Nt

=
Sit+1
Sit

�

Nt
P

i=1

Sit

Nt+1
P

i=1

Sit+1

�
Nt+1
Nt

.

This means that relative growth can be produced not only by the increase in population

of the city; it also happens if the number of cities rises or the total population of all

the cities decreases.

Table 4 shows the results of the OLS estimates, decade by decade, and for a pool

of the observations of the whole century. The conclusion is that the parameter b̂ is

not signi�cant for any period with either of the speci�cations, which adds evidence

in favour of Gibrat�s law and the independence of growth in relationship to relative

size. The only exception is the period 1980 to 1990, where the estimated coe¢cients

are signi�cant and positive (although very close to zero), which would indicate that a

positive relationship existed between growth and size, with the largest cities gaining the

most population. This is the period of least growth in urban population of the entire
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twentieth century, about 2.06 % (Table 5), and the second lowest decade of growth of

the total population in the history of the United States, at 9.8%.12.

4.2 Nonparametric analysis

The earlier results con�rm that Gibrat�s law holds. However, Quah (1993) points out the

problems of regressions towards the mean, which are so usual in studies of economic

growth, and proposes using nonparametric methods, speci�cally, transition matrices.

We will use the methodology followed by Ioannides and Overman (2003) and Eeckhout

(2004). It consists of taking the following speci�cation:

gi = m (si) + �i, (5)

where gi is the normalized growth rate
13 (subtracting the mean and dividing by the

standard deviation) and si is the logarithm of relative size, and instead of making

suppositions about the functional relationship of m and supposing a linear relationship,

as in equations (3) and (4), m̂ (s) is estimated as a local average around point s and

is smoothed using a kernel, which is a symmetrical, weighted, and continuous function

around s.

In order to analyse the entire period 1890 to 2000, all the growth rates are taken

between consecutive periods. And the Nadaraya-Watson method is used, exactly as it

appears in Härdle (1990), based on the following expression14:

m̂ (s) =

n�1
n
P

i=1

Kh (s� si) gi

n�1
n
P

i=1

Kh (s� si)
, (6)

whereKh denotes the dependence of the kernel K (in this case an Epanechnikov) on the

bandwidth h (0.5). Starting from this calculated mean m̂ (s), the variance of the growth

12Source: http://www.census.gov/population/censusdata/table-4.pdf
13Taking normalized growth rates will mean that the choice of the unit of measurement, size, size

relative to the average, or share of the total, is indi¤erent, as it means only a change of scale; the
results regarding growth are robust; see Appendix B.
14The calculation was done with the KERNREG2 Stata module, developed by Nicholas J. Cox ,

Isaias H. Salgado-Ugarte, Makoto Shimizu and Toru Taniuchi, and available online at:
http://ideas.repec.org/c/boc/bocode/s372601.html
This programme is based on the algorithm described by Härdle (1990) in Chapter 5.
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rate gi is also estimated, again applying the Nadaraya-Watson estimator starting from:

�̂2 (s) =

n�1
n
P

i=1

Kh (s� si) (gi � m̂ (s))
2

n�1
n
P

i=1

Kh (s� si)
. (7)

The estimator is very sensitive, both in mean and in variance, to atypical values.

Thus, the growth rate, both in mean and in variance, of the smallest cities usually

has much higher values than for the rest. If we examine the smallest 5% of cities,

the di¤erences are even greater.15 This is logical; we are considering cities of under

200 inhabitants, where the smallest increase in population is very large in percentage

terms. For example, the value which distorts the mean and the variance in 1940 to

1950 is Pine Lake (De Kalb, Georgia), which goes from 2 inhabitants in 1940 to 566 in

1950. However, we need not consider such extreme changes; any city with fewer than

50 inhabitants that sees some population growth, increases a great deal in percentage

terms. Thus, we decided to eliminate this 5% of the smallest distribution observations,

as they are characterized by very high dispersion in mean and in variance, and they

distort the results. This is not a great loss in terms of representativeness of the sample,

as the size of the last city excluded is under 180 inhabitants.

Gibrat�s law implies that growth is independent of size in mean and in variance.

As growth rates are normalized, if Gibrat�s law were strictly ful�lled and growth were

independent of size, the estimated kernel would be a straight line on the zero value.

Values di¤erent to zero involve deviations from the mean. And variance would also

be a straight line, supposing that variance does not depend on the size of the variable

analysed.

Figure 6, shows the estimated kernels of growth and the variance of growth for all

the twentieth century (a pool of 162,403 observations). Bootstrapped 95% con�dence

bands, calculated using 500 random samples with replacement, are also displayed. It is

noticeable that the estimation of growth is nearly a straight line around zero, meaning

that on average, we can accept that during the whole period, growth was independent of

size and Gibrat�s law holds. Regarding variance, even if the smallest 5% of observations

are eliminated, the smallest cities present greater variance than the rest of the sample.

However, it should be noted that starting from the zero value (in a logarithmic scale,

this corresponds to a city relative size equal to 1, i.e., cities of a size that is equal

to the contemporaneous mean), variance stabilizes, becoming much more homogenous,

15The speci�c values are available from the author on request.
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indicating that the variance of growth is independent of size for cities with a population

equal to or greater than the mean (a little over 3,000 inhabitants at the beginning of

the century and almost 9,000 at the end).

Our results, obtained with our sample of all incorporated places without any size

restriction, are similar to those obtained by Ioannides and Overman (2003), with their

database of MSAs.16 The main di¤erence stems from the estimation of variance, much

higher in our sample of incorporated places for the smallest cities. The estimated

kernels show that while average growth appears to be independent of size, variance in

growth seems to depend negatively on size: the smallest cities present a variance that

is clearly higher than the rest. This points to Gibrat�s Law holding weakly (growth

is proportionate on average, but not in variance). This possibility has already been

considered theoretically, both by Gabaix (1999), who examines the case in which cities

grow randomly with expected growth rates and standard deviations that depend on

their sizes, and by Córdoba (2008), who introduces a parsimonious generalization of

Gibrat�s law that allows size to a¤ect the variance of the growth process but not its

mean.

5 Discussion

There is debate concerning the laws governing the size distribution. The debate has

converged recently (explaining for example that a Pareto upper tail of the distribution

can be reconciled with a lognormal distribution for the entire sample; see Eeckhout,

2009), and our results clearly contribute to making that point. In addition, given the

novelty of the early data, our work also establishes the robustness of the �ndings.

Speci�cally, our database of all incorporated places enables us to con�rm, from a

long term perspective that:

(1) Gibrat�s law holds (weakly). Growth is proportionate on average but not in

variance. Although the variance of growth is independent of size for cities with a

population equal to or greater than the contemporary mean, the smallest cities present

a variance clearly higher than the rest.

(2) Proportionate growth implies a lognormal distribution (Gibrat, 1931; Kalecki,

1945; Eeckhout, 2004). City size distribution follows a lognormal when we consider all

cities without any size restriction.

(3) Zipf�s law holds only if the sample is su¢ciently restricted at the top, not for a

16See Ioannides and Overman (2003), Figure 2.
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larger sample. For the largest cities the lognormal tail and the Pareto tail are hard to

distinguish.

(4) The incorporation of new cities to the sample, together with other social and

economic factors, throughout the twentieth century, leads to rising unevenness in city

size distribution. These new cities appear with a smaller relative size (on average) than

the rest of the cities in the sample.

Underlying these empirical regularities are the changes that city size distribution

has undergone during the twentieth century. For example, in terms of actual cities

(incorporated places), what does it mean that the rank-size rule does not hold when

we consider the whole size distribution, but Gibrat�s law does hold? The size distribu-

tion being lognormal is a statistical consequence of the proportionate growth process.

In turn, growth being proportionate imposes a high degree of persistence in city size

distribution, although this does not mean that distribution remains static. In section 3

we have obtained the conclusion that, in the twentieth century, the level of unevenness

in the distribution increased, something that we associated with the appearance of new

cities with smaller relative sizes (on average) than the rest of the sample, but which

undoubtedly relates to city growth rates. How does this result relate to proportionate

growth?

Proportionate growth does not mean that all cities grow the same way. The evolution

over time of city growth rates (and of the total population) depends on the historical

and social context. Table 5, shows both the mean growth rates for the whole period (gp),

calculated from gross growth rates, de�ned as git =
Sit�Sit�1
Sit�1

, where Sit is the population

of the city i in the year t, and the annual mean growth rates (ga), which are calculated

from the mean growth rates for the whole period applying that (1 + ga)
10 = (1 + gp).

It can be observed that indeed, the �rst decades of the century saw strong growth rates

for city sizes, as well as a marked increase, both in the number of cities (which entered

the size distribution with average relative sizes below the rest of the sample) and in

unevenness within the distribution. However, this period of growth came to an end in

1920-1930. Between 1940 and 1980, the high growth rates seem to recover, and then fall

in the last two decades. The two periods of lowest growth, 1930-1940 and 1980-1990,

coincide with the two periods of lowest growth of the total population in US history,

7.3% and 9.8%, respectively, and are very close to two profound economic crises (the

Great Depression and the second oil supply shock in 1979).

If we disaggregate these growth rates we �nd interesting di¤erences according to

period. As pointed out by Gabaix and Ioannides (2004), the casual impression of the

authors is that in some decades, large cities grow faster than small cities, but in other
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decades, small cities grow faster. This would suggest that Gibrat�s law for means holds

only as a long-run average (with periods in which urban growth may be convergent or

divergent). Figure 7, shows growth rates by distribution quartiles, which corroborate

this assertion. Despite Gibrat�s law holding over the long term when considering all

the twentieth century, we can �nd di¤erentiated behaviour in each decade. When

distinguishing the growth rates of groups, we see how periods in which the cities with

most growth are the largest incorporated places (1910-1930, 1940-1970, 1980-2000) are

interspersed with others in which the very small communities of the distribution take the

lead (1900-1910, 1930-1940, 1970-1980). It is notable that in periods of high economic

growth, the largest cities are the ones that gain most in population, while in periods of

crisis the smallest cities are the ones that grow most.17 In contrast, the medium-sized

incorporated places, the cities in the two middle quartiles of the distribution (Q2 and

Q3), present a much more stable evolution, with growth rates very close to each other

and to the total average for the period.

6 Conclusion

In this paper we have analysed the evolution of US city size distribution using data

for all US cities (understood as incorporated places) for over a century. Our results

enable us to con�rm, from a long term perspective, that Gibrat�s law holds (weakly;

growth is proportionate on average but not in variance, as the smallest cities present a

clearly higher variance). Additionally, Zipf�s law holds only if the sample is su¢ciently

restricted at the top, not for a larger sample, because city size distribution follows a

lognormal when we consider all cities with no size restriction.

Underlying these empirical regularities are the changes which city size distribution

has undergone during the twentieth century. Behind the long term trend represented

by Gibrat�s law, we �nd that periods in which the cities with most growth are the

largest incorporated places alternate with others in which the very small communities

of the distribution take the lead. In addition, the unevenness of the distribution has

increased over the century, especially the �rst decades in which a large number of new

cities appear with a smaller relative size (on average) than the rest. In contrast, the last

decades are characterized by stability in the number of cities and the percentage of the

US total population they represent, indicating a shift to a stable city size distribution

and a more consolidated urban landscape.

17The role of small cities has received little attention in the literature. One exception is Partridge
et al. (2008).
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Appendix A: Data de�nitions and sources

Cities, 1900-2000

In the same way as Eeckhout (2004), we identify cities as what the US Census Bureau

denominates as places. This generic denomination, since the 2000 census, includes all

incorporated and unincorporated places.

The US Census Bureau uses the generic term incorporated place to refer to a type

of governmental unit incorporated under state law as a city, a town (except the New

England states, New York, and Wisconsin), a borough (except in Alaska and New York

city), or a village and having legally prescribed limits, powers, and functions. On the

other hand, there are unincorporated places (which were renamed Census Designated

Places, CDPs, in 1980), which designate a statistical entity, de�ned for each decennial

census, according to Census Bureau guidelines, comprising a densely settled concentra-

tion of population that is not within an incorporated place, but is locally identi�ed by

a name. Evidently, the geographical boundaries of unincorporated places may change if

settlements move, so that the same unincorporated place may have di¤erent boundaries

in a di¤erent census. They are the statistical counterpart of the incorporated places.

The di¤erence between them, in most cases, is merely political and/or administrative.

Thus, for example, due to a state law of Hawaii, there are no incorporated places; they

are all unincorporated.

The unincorporated places began to be accounted for from 1950. The US Census

Bureau established size restrictions for their inclusion (except in 2000, when they were

all counted). Although the overall criterion is usually that they have over a thousand

inhabitants, there are di¤erences in each decade. However, these settlements did exist

earlier, so their inclusion presents a problem of inconsistency in the sample. As a result,

we decided to exclude unincorporated places from the sample, in order to carry out a

long term analysis of the twentieth century with a homogenous sample. Also, their

elimination is not quantitatively important; in fact there were 1,430 unincorporated

places in 1950, representing 2.36% of the total population of the US, which, by 2000,

would increase to 5,366 places and 11.27%.

Our base, created from the original documents of the annual census published by

the US Census Bureau, consists of the available data of all incorporated places without

any size restriction, for each decade of the twentieth century. While the data of only

the last two decades are computerized (US Bureau of the Census, County and City

Data Book, Washington DC), the data corresponding to other decades is available in
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the original documents (US Bureau of the Census, Census of Population, Washington

DC). We have created our database from these.

Source: http://www.census.gov/prod/www/abs/decennial/

MSAs, 1900, 1950 and 2000

The de�nition of a metropolitan area is from the O¢ce of Management and Budget

(OMB), based on data provided by the US Census Bureau. Standard de�nitions of

metropolitan areas were �rst issued in 1949 by the then Bureau of the Budget (pre-

decessor of OMB), under the designation �standard metropolitan area� (SMA). The

term was changed to �standard metropolitan statistical area� (SMSA) in 1959, and to

�metropolitan statistical area� (MSA) in 1983. The term �metropolitan area� (MA)

was adopted in 1990 and referred collectively to metropolitan statistical areas (MSAs),

consolidated metropolitan statistical areas (CMSAs), and primary metropolitan statis-

tical areas (PMSAs). Finally, the term �core based statistical area� (CBSA) became

e¤ective in 2000 and refers collectively to metropolitan and micropolitan statistical

areas.

Without entering into each de�nition (these can be consulted at http://fact�nder.census.gov

- American FactFinder Help), what interests us is the basic criterion used to de�ne a

MSA, as CMSAs and PMSAs are still MSAs, which ful�l certain conditions. Thus,

according to the OMB de�nition, quali�cation as an MSA requires the presence of a

city with 50,000 or more inhabitants, or the presence of an urbanized area and a total

population of at least 100,000 (75,000 in New England) � an urbanized area, accord-

ing to the Census Bureau, consists of a central place(s) and adjacent territory with a

general population density of at least 1,000 people per square mile of land area that

together have a minimum residential population of at least 50,000 people. However,

this criterion has changed over the course of the twentieth century. Thus, the original

criterion of 1950 only required a city of 50,000 inhabitants.

For the years 1900 and 1950 we use the data of Bogue�s Standard Metropolitan Areas

(1953). He took the de�nitions of SMAs for 1950 and reconstructed the population

of these areas for the period 1900 to 1940. The problem is that applying the 1950

de�nitions to 1900 means that some of these SMAs are much smaller than the minimum

threshold of 50,000 inhabitants. For this reason, for 1900, we exclude all SMAs that do

not reach this minimum threshold, reducing the sample size of 162 SMAs in 1950 to

112 in 1900.

For the year 2000, we take the data of the Metropolitan Statistical Areas corre-

sponding to the 2000 census of the US Census Bureau, available at:
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http://www.census.gov/population/cen2000/phc-t29/tab03a.xls.

Appendix B: Normalized growth rates and the di¤erent mea-
surements of city size

When growth rates are normalized, subtracting the mean and dividing by the stan-

dard deviation, the choice of measurement of size (size, relative size, or share of the

total) makes no di¤erence, as it means only a change of scale.
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And also taking the share of the total, Sit=
Nt
P
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Table 1: Size of the Database and Descriptive Statistics
Year Cities % of the total US population Mean Standard Deviation Minimum Maximum
1900 10,596 46.99% 3,376.04 42,323.896 7 3,437,202
1910 14,135 54.90% 3,560.92 49,351.239 4 4,766,883
1920 15,481 58.62% 4,014.81 56,781.645 3 5,620,048
1930 16,475 62.69% 4,642.02 67,853.648 1 6,930,446
1940 16,729 63.75% 4,975.67 71,299.371 1 7,454,995
1950 17,113 63.48% 5,613.42 76,064.402 1 7,891,957
1960 18,051 64.51% 6,408.75 74,737.618 1 7,781,984
1970 18,488 64.51% 7,094.29 75,319.588 3 7,894,862
1980 18,923 61.78% 7,395.64 69,167.914 2 7,071,639
1990 19,120 61.33% 7,977.63 71,873.911 2 7,322,564
2000 19,296 61.49% 8,968.44 78,014.749 1 8,008,278

Note: Excluding Alaska, Hawaii and Puerto Rico
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Table 2: Pareto coefficients estimated by decade
Truncation point 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

100 1.050 1.086 1.095 1.101 1.095 1.096 1.167 1.201 1.271 1.313 1.320
(0.148) (0.153) (0.154) (0.155) (0.154) (0.154) (0.165) (0.169) (0.179) (0.185) (0.186)

500 1.063 1.060 1.047 1.062 1.088 1.101 1.198 1.233 1.278 1.315 1.341
(0.067) (0.067) (0.066) (0.067) (0.068) (0.069) (0.075) (0.078) (0.08) (0.083) (0.085)

1,000 1.034 1.060 1.022 1.030 1.065 1.078 1.190 1.211 1.265 1.293 1.319
(0.046) (0.047) (0.045) (0.046) (0.047) (0.048) (0.053) (0.054) (0.056) (0.058) (0.059)

5,000 0.967 0.978 0.954 0.924 0.941 0.939 0.947 0.949 0.975 0.962 0.963
(0.019) (0.019) (0.019) (0.018) (0.018) (0.018) (0.018) (0.018) (0.019) (0.019) (0.019)

10,000 0.831 0.889 0.884 0.845 0.839 0.828 0.797 0.793 0.806 0.784 0.773
(0.011) (0.012) (0.012) (0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

14,000 0.770 0.810 0.785 0.773 0.752 0.716 0.709 0.719 0.695 0.683
(0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.008) (0.008) (0.008) (0.008)

15,000 0.776 0.763 0.752 0.729 0.695 0.687 0.697 0.673 0.661
(0.009) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.007)

16,000 0.732 0.724 0.702 0.673 0.665 0.675 0.651 0.639
(0.008) (0.008) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

16,700 0.683 0.676 0.656 0.647 0.658 0.634 0.623
(0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

17,100 0.642 0.644 0.636 0.648 0.624 0.613
(0.007) (0.007) (0.007) (0.007) (0.006) (0.006)

18,100 0.599 0.600 0.617 0.595 0.585
(0.006) (0.006) (0.006) (0.006) (0.006)

18,400 0.580 0.605 0.584 0.575
(0.006) (0.006) (0.006) (0.006)

18,900 0.572 0.560 0.555
(0.005) (0.005) (0.006)

19,100 0.542 0.545
(0.005) (0.005)

19,200 0.537
(0.005)

Note: (GI s.e.) Gabaix-Ioannides (2004) corrected standard error. All coe¢cients are signi�cantly di¤erent from zero at the 0.05 level.
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Table 3: Incorporated places (relative size) Gini�s coefficients

Year Top 100 Top 500 Top 5000 All

1900 0.598 0.669 0.768 0.822

1910 0.583 0.668 0.767 0.833

1920 0.575 0.663 0.771 0.844

1930 0.576 0.656 0.776 0.859

1940 0.578 0.648 0.760 0.855

1950 0.567 0.637 0.754 0.858

1960 0.527 0.589 0.717 0.855

1970 0.509 0.568 0.708 0.854

1980 0.488 0.544 0.685 0.844

1990 0.474 0.527 0.683 0.850

2000 0.473 0.516 0.674 0.851
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Table 4: Estimated coefficients of parametric growth regressions
Speci�cation I Speci�cation II

Initial year Final year N b̂ (s.e.) b̂ (s.e.)

1890 1900 7,531 8.28E-04 7.17E-04 3.68E-04 9.72E-04

1900 1910 10,502 4.43E-04 4.51E-04 6.62E-04 4.02E-04

1910 1920 13,578 4.83E-04 3.50E-04 2.40E-04 3.64E-04

1920 1930 15,310 3.14E-04 3.75E-04 5.86E-04 3.63E-04

1930 1940 16,211 -1.03E-04 2.42E-04 -1.54E-04 2.40E-04

1940 1950 16,420 1.73E-04 1.13E-03 1.37E-05 1.13E-03

1950 1960 17,075 6.26E-04 6.66E-04 -1.38E-04 6.16E-04

1960 1970 17,832 2.17E-04 7.29E-04 -3.46E-04 7.01E-04

1970 1980 18,321 -7.22E-04 6.94E-04 -1.11E-03 6.49E-04

1980 1990 18,991 1.07E-03* 3.38E-04 7.05E-04* 3.35E-04

1990 2000 19,179 3.78E-04 4.13E-04 2.58E-05 4.20E-04

Pool Pool 170,950 3.43E-04 1.91E-04 3.81E-05 1.88E-04

Note: * Signi�cant coe¢cients for a con�dence level of 95%
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Table 5: Average growth rates of the sample
Period N Period mean Annual mean

1890-1900 7,531 31.52% 2.78%

1900-1910 10,502 30.53% 2.70%

1910-1920 13,578 19.08% 1.76%

1920-1930 15,310 14.99% 1.41%

1930-1940 16,211 10.47% 1.00%

1940-1950 16,420 16.25% 1.52%

1950-1960 17,075 20.77% 1.91%

1960-1970 17,832 17.29% 1.61%

1970-1980 18,321 19.13% 1.77%

1980-1990 18,991 2.06% 0.20%

1990-2000 19,179 12.44% 1.18%
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Figure 1: US Cities by Population Size.
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Figure 2: Adaptive Kernels of the Share of US Urban Population (ln scale) by Incorporated Places or MSAs.
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Figure 3: Rank-Size Plots (ln scale).
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Figure 4: Empirical Density Functions of the New Entrants.
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Figure 5: Empirical Density and Cumulative Density Functions (ln scale).
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Figure 6: Kernel Estimates (bandwidth 0.5), (US, 1900-2000), 162,403 observations.
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Figure 7: Decennial Growth Rates by Quartiles.
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