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Abstract. Recent works on political competition incorporate a valence dimension into

the standard spatial model. The analysis of the game between candidates in these mod-

els is typically based on two assumptions about voters’ preferences. One is that valence

scores enter the utility function of a voter in an ‘additively separable’ way, so that

the total utility can be decomposed into the ‘ideological utility’ from the implemented

policy (based on the Euclidean distance) plus the valence of the winner. The second is

that all the voters identically perceive the platforms of the candidates and agree about

their score on the valence dimension.

The goal of this paper is to axiomatize collections of preferences that satisfy these

assumptions. Specifically, we consider the case where only the ideal point in the policy

space and the ranking over candidates are known for each voter. We characterize the

case where there are policies x1, . . . , xm for the m candidates and numbers v1, . . . , vm

representing valence scores, such that a voter with an ideal policy y ranks the candidates

according to vi − ||xi − y||2.
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2 YARON AZRIELI

1. Introduction

Since the seminal works of Hotelling [21] and Downs [14], spatial models of elections

are widely used in the political economy literature. Typically, these models identify

the policy space with a finite dimensional Euclidean space. Each potential voter in the

electorate is assumed to have an ideal point in the policy space, and his utility if a

certain policy is implemented is decreasing in the Euclidean distance between this policy

and his ideal point. Candidates then choose their platforms and each voter votes for

the candidate with the closest platform to her ideal policy. Usually, the emphasis is on

equilibrium analysis of the resulting game between candidates.

More recently, researchers incorporated a “valence” dimension to the standard model.

This additional dimension influence voters’ preferences and was shown to have an im-

portant effect on the outcome of the political game, both in theory and in empirical

studies. This additional dimension may represent any non–policy issue on which candi-

dates differ in the “score” they get from voters. Examples include charisma, experience,

past success, communication skills, etc. The difference between the valence dimension

and other dimensions (which are part of the policy space) is that all voters prefer high

valence scores to low. References to works that incorporate valence issues can be found

in the related literature section below.

Let C denote the set of candidates competing in some elections, and let the d dimen-

sional Euclidean space Rd represent the policy space. When valence issues are present,

the preferences of voters are defined over the set Rd ×C. Indeed, the utility of a poten-

tial voter depends both on the implemented policy and on the valence of the winning

candidate. Notice that we deal with a collection of preference orders, one for each voter.

In almost all the works that we are aware of, the analysis is based on two fundamental

assumptions about this collection of preferences, which we now discuss.

The first assumption concerns the preferences of individual voters. The utility function

of a voter is assumed to be ‘additively separable’ in the policy and valence dimensions.

That is, each voter has an ‘ideological’ utility function over policies and a valence index

for candidates. The utility of a voter from a pair (x, i) ∈ Rd×C can be decomposed into

the utility from the implemented policy x plus the valence index of candidate i. More

specifically, each voter is characterized by his ideal point y ∈ Rd and the valence scores
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{vi}i∈C that he gives to the various candidates. The utility he obtains from the pair

(x, i) is given by vi − ||x − y||2.1

The second key assumption usually made is that all the voters perceive in the same

way the alternatives they face. First, the voters agree on the location of the candidates

in the policy space. That is, the beliefs of all voters regarding the policy that a certain

candidate is going to implement if elected coincide. Although this seems like a rather

strong assumption, it can be justified by the claim that candidates commit to a certain

policy prior to the elections, and so this is the policy that voters anticipate will be

implemented if the candidate is elected. But voters are also supposed to agree about the

valence of each candidate. This is harder to justify, in particular since it seems reasonable

that voters with different ideological views will also have different views of the valence of

candidates. Notice that, if one allows to each potential voter to perceive the platforms

and/or valences of the candidates differently, then the model may become completely

untractable.

Obviously, it is very hard (not to say impossible) to extract the entire preferences of

each voter over pairs of a winning candidate and an implemented policy. Therefore, it is

not easy to check whether the aforementioned assumptions make sense in any particular

political campaign. Thus, it seems an important matter to identify conditions on more

easily observable data that guarantee consistency with the spatial model assumptions.

Introducing such necessary and sufficient conditions is the main result of this paper.

Specifically, we assume that, for each potential voter in the electorate, only his ideal

policy and his ranking of the candidates can be observed. While this may also seem

quite demanding, it is much more reasonable than observing the entire utility function

of the voter. We characterize the case where this data is consistent with voters having

utility functions as above. That is, we characterize the case where there are platforms

{xi}i∈C ⊆ Rd and numbers {vi}i∈C representing valence scores, such that a voter with

an ideal policy y ranks the candidates according to vi − ||xi − y||2. We emphasize that

the representation is for the collection of preference orders of all voters jointly, and not

for the preferences of a single voter.

We use four conditions for the characterization. The first is that each voter preferences

over candidates are rational (complete and transitive). The second is a continuity con-

dition. The third and perhaps most important condition is convexity of the set of voters

1Notice that we take the square of the Euclidean norm (and not just the norm) as the ‘ideological’

utility function. We discuss this point in subsection 3.3.
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preferring one candidate over another. There is a close connection between convexity and

the Euclidean metric, as other metrics would typically induce non–convex sets. The last

condition requires sufficient heterogeneity in the preferences. This is a more technical

condition which is not necessary for the representation but is required for the sufficiency

part of the proof.2

We think of our result as “good news” since it shows that if voters’ preferences satisfy

a set of rather natural axioms then they are consistent with the standard spatial model

with a valence dimension.3 From a theoretical viewpoint, the result provides a possible

justification for the assumptions (discussed above) that allow to study the game between

candidates. From an empirical perspective, the axioms may help to check whether the

spatial model makes sense in any particular campaign.

1.1. Related literature. A few recent papers study questions related to the implica-

tions of assuming Euclidean preferences in spatial models. Degan and Merlo [12] ask

under what conditions the assumption that voters vote ideologically (i.e., according to

Euclidean preferences) is falsifiable, when data about the voting choices in several elec-

tions is available. Their answer is based on a relation between the dimension of the

policy space and the number of elections.4 Bogomolnaia and Laslier [8] find the exact

number of dimensions required in order to be able to represent any preference profile of I

voters over A alternatives. Knoblauch [24] provides a polynomial time algorithm to check

whether a given finite preference profile has a one–dimensional Euclidean representation.

There are also several works that study similar questions for a more general class of

preferences that include Euclidean preferences as a special case. Eguia [15] axiomatizes

preference relations over lotteries over multi–attribute objects that admit a representa-

tion by some lp norm. He also studies the case of multiple voters and characterize the

case where their preferences can be jointly represented by such a norm. Kalandrakis [22]

considers the case where a finite number of binary choices is observed, and characterizes

the case where these choices can be rationalized by a concave utility function. He further

studies the case where the rationalizing function has a bliss point.

2Nevertheless, our main result (Theorem 1) is an equivalence theorem. See Section 2 for details.
3Our conditions are not sufficient if one doesn’t allow for a valence dimension, and we do not know

how to characterize data consistent with spatial models without this additive term. See subsection 3.3.
4Some of their results generalize to the case where candidates get different valence scores from voters.

See Section 3.2 in [12].
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An important difference between our paper and all of the above is that we assume

that, for any point in the policy space, the preferences of a voter with this ideal point

over candidates are observed. All of the above papers deal with either a single preference

relation or with a finite number of relations. While observing the preferences of a con-

tinuum of voters is impossible, we note that many previous works assume a continuous

distribution of voters’ ideal points. We further discuss this point in subsection 3.1.

Papers using spatial models of elections with valence issues similar to the one studied

here are numerous in recent years. Examples include Ansolabehere and Snyder [1],

Aragones and Palfrey [2], Degan [11], Dix and Santore [13], Enelow and Hinich [16],

Gersbach [17], Groseclose [20], Kim [23] and Schofield [27] among others. These papers

study different aspects of the political competition and provide various interpretations

for the additive constant in the utility functions of the voters.

From a technical point of view, our main result is closely related to Theorem 1 in Azrieli

and Lehrer [7], who characterize categorization systems that are generated by proximity

to a set of prototypical cases. Furthermore, there is a surprisingly close connection

between the result of this paper and the characterization of a collection of preference

orders that can be represented by linear functionals.5 Such characterizations appear

in works on scoring rules (Myerson [26], Smith [28], Young [29]), case–based decision

theory (Gilboa and Schmeidler [18]), expected utility in the context of games (Gilboa

and Schmeidler [19]), relative utility (Ashkenazi and Lehrer [5]) and individual welfare

functionals (Chambers and Hayashi [10]).

Finally, the mathematical object we deal with here is known in the geometry litera-

ture as (generalized) Voronoi diagram or (generalized) Dirichlet tessellation.6 The most

relevant papers in this literature are Ash and Bolker [3], [4] and Aurenhammer [6]. The

book by Boots et al. [9] surveys applications of Voronoi diagrams in many different fields.

1.2. Organization. The next section contains the model and the main result of the

paper, as well as a result regarding the uniqueness of the representation. In Section 3 we

discuss several issues related to the model. In particular, we study the case of a finite set

of voters, discuss the importance of the valence dimension for the result, and consider

5We thank Itzhak Gilboa for pointing out this connection.
6The word ‘generalized’ is added to indicate that there is an additive constant associated with each

candidate. These objects are also called power diagrams in some places in the geometry literature.
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the special cases of three candidates and of one–dimensional policy space. All the proofs

are in Section 4.

2. Model and main result

2.1. Setup. Let C = {1, 2, . . . , m} be the set of candidates where m ≥ 2. The policy

space is taken to be Rd with7 d ≥ 2. Each potential voter is identified with her ideal

point in the policy space and we assume that, for every y ∈ Rd, there is a voter with y

as her ideal policy. Thus, the set of voters is also Rd. We will use the letters i, j, k, l to

denote candidates (elements of C) and x, y, z to denote voters or policies (points in Rd).

Our primitive is a collection of binary relations {ºy}y∈Rd over C, one for every voter

y ∈ Rd. The interpretation of i ºy j is that a voter with an ideal point y (weakly) prefers

candidate i to candidate j. As usual, for any i, j ∈ C, we let i ≻y j if and only if both

i ºy j and j �y i, and i ∼y j if and only if both i ºy j and j ºy i.

2.2. Axioms. The following properties will be used for the characterization.

(A1) Weak order: For every y ∈ Rd, ºy is complete and transitive.

(A2) Continuity: For every i, j ∈ C, the set {y ∈ Rd : i ≻y j} is open.

(A3) Convexity: For every i, j ∈ C and y, z ∈ Rd, if i ºy j (i ≻y j) and i ºz j then

i ºαy+(1−α)z j (i ≻αy+(1−α)z j) for every α ∈ (0, 1).

(A4) Heterogeneity: For every three distinct candidates {i, j, k} ⊆ C there is y ∈ Rd

such that i ≻y j ≻y k, and for every four distinct candidates {i, j, k, l} ⊆ C the sets

{y ∈ Rd : i ∼y j ∼y k} and {y ∈ Rd : i ∼y j ∼y l} are not equal.

The first property is standard. The second implies that if a voter with ideal point y

strictly prefers candidate i over j then any voter with ideal point sufficiently close to y

also prefers i over j. (A3) states that the set of voters preferring candidate i over j is

convex. Finally, (A4) requires the population of voters to be sufficiently diverse in its

preferences. Namely, for any (strict) ranking of every three candidates there should be

a voter who ranks these candidates according to that given order; and for every three

candidates there should be a voter that is indifferent between them but is not indifferent

between them and some given fourth candidate. Note that if m = 2 then (A4) is trivially

satisfied, and if m = 3 then the second part of (A4) is trivially satisfied.

7Our result does not hold in the case d = 1. We elaborate on this case in subsection 3.6.
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2.3. Main result. Before stating our result we need one more definition.

Definition 1. Let {x1, x2, . . . , xm} ⊆ Rd and {v1, v2, . . . , vm} ⊆ R. We say that the

set {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ Rd+1 is in a general position if the following two

conditions hold:

(i) For every distinct 1 ≤ i, j, k ≤ m, the vectors xi, xj, xk are affinely independent in Rd

(equivalently, xj − xi and xk − xi are linearly independent in Rd).

(ii) For every distinct 1 ≤ i, j, k, l ≤ m, the sets

{y ∈ Rd : vi − ||xi − y||2 = vj − ||xj − y||2 = vk − ||xk − y||2}

and

{y ∈ Rd : vi − ||xi − y||2 = vj − ||xj − y||2 = vl − ||xl − y||2}

are not equal.

Informally speaking, if a set of points is not in a general position then it has a ‘de-

generate structure’. We remark that if the points {(x1, v1), (x2, v2), . . . , (xm, vm)} are

independently drawn from some continuous distribution over Rd+1 then the resulting set

will be in a general position with probability 1. The precise meaning of the term general

position varies with the context in which it is used. The reader is referred to Matoušek

(2002, pp. 3-5), where this concept is discussed in greater detail.

Theorem 1. The following two statements are equivalent:

(i) The collection of binary relations {ºy}y∈Rd satisfies properties (A1) through (A4).

(ii) There are points {x1, x2, . . . , xm} ⊆ Rd and numbers {v1, v2, . . . , vm} ⊆ R such that

{(x1, v1), (x2, v2), . . . , (xm, vm)} is in a general position and, for every i, j ∈ C and every

y ∈ Rd, i ºy j if and only if vi − ||xi − y||2 ≥ vj − ||xj − y||2.

The point xi is the policy to be implemented if candidate i wins the elections and vi

is the score of i on the valence dimension (1 ≤ i ≤ m). Note that voters have common

beliefs/views regarding the sets {x1, x2, . . . , xm} and {v1, v2, . . . , vm}.

2.4. Uniqueness. Examining the proof of Theorem 1, one can see that the platforms

and valences derived from the properties (A1)-(A4) are not unique. However, we do have

the following connection between any two representations of the voters’ preferences.

Proposition 1. Assume {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ Rd+1 represent the prefer-

ences {ºy}y∈Rd as in Theorem 1. Then {(x′
1, v

′
1), (x

′
2, v

′
2), . . . , (x

′
m, v′

m)} ⊆ Rd+1 also
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represent {ºy}y∈Rd if and only if there is a positive number α > 0 and a vector β ∈ Rd

such that x′
i = αxi + β for every 1 ≤ i ≤ m, and such that the equation8

v′
i − αvi = v′

j − αvj + α(1 − α)(||xj||
2 − ||xi||

2) + 2αβ · (xi − xj)(1)

holds for every i, j ∈ C. In particular, if xi = x′
i for 1 ≤ i ≤ m (i.e., α = 1 and β = 0)

then there is some γ ∈ R such that v′
i = vi + γ for 1 ≤ i ≤ m.

This result can be interpreted as follows. We may rescale and change the origin of

the policy space to get different sets of platforms that induce the same preferences.

But once the unit of measurement and the origin are fixed the platforms are uniquely

determined by the preferences. Moreover, once platforms are fixed, the relative valences

of the various candidates (the differences vi − vj) are also unique.

3. Discussion and further results

3.1. Finite set of voters. From a practical point of view, it would be more interesting

to find the testable implications of the spatial model assumptions for the preferences of

a finite number of voters. The axiom (A3) implies that a finite sample of observations

of voters’ ideal points and rankings must have the property that the convex hulls of

the ideal points of voters who prefer candidate i over j and those preferring j over i

are disjoint, in order for it to be consistent with the spatial model. (A1) also gives an

obvious necessary condition. The axioms (A2) and (A4) are not relevant for a finite

sample.

As for sufficiency, it is tempting to try to prove a similar representation result to

that of Theorem 1 for the case of a finite sample of voters. Of course, (A3) should

be modified to require disjointness of convex hulls of sets of ideal points of voters with

opposite preferences.9

For the case of two candidates, it is easy to see that (the modified) (A3) is sufficient

for a representation. However, if there are at least three candidates this is no longer true.

We demonstrate the problem with the following example. Let d = 2, C = {1, 2, 3} and

fix some ǫ > 0. The set of voters, denoted Y , consists of six voters with the ideal points

Y = {y1 = (ǫ, ǫ), y2 = (−ǫ,−ǫ), y3 = (−ǫ,−4), y4 = (ǫ,−4), y5 = (4, ǫ), y6 = (4,−ǫ)}.

8For two vectors z, w ∈ Rd we denote by z · w =
∑

d

i=1
ziwi the standard inner product in Rd.

9Assume for simplicity that only strict preferences are allowed.
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The preferences of these six voters are as follows. Voters {y2, y3} prefer candidate 1

over candidate 2 (the rest of the voters prefer candidate 2 over candidate 1). Voters

{y1, y2, y3, y5} prefer candidate 1 over candidate 3, and voters {y1, y5} prefer candidate

2 over candidate 3. Figure 1 illustrates the location of the voters’ ideal points in the

policy space and their rankings.

It is easy to check that the above condition of disjointness of the convex hulls is

satisfied. However, we claim that these preferences are not consistent with a spatial

model. Indeed, assume to the contrary that there are {(x1, v1), (x2, v2), (x3, v3)} that

represent these preferences as in Theorem 1. The locations of the points y1, y2, y3, y4

and the preferences of these voters imply that the line {y ∈ R2 : v1 − ||y − x1||
2 =

v2 − ||y − x2||
2} should be close to both points (0, 0) and (0,−4). Similarly, the line

{y ∈ R2 : v1 − ||y − x1||
2 = v3 − ||y − x3||

2} should be close to both points (4, 0) and

(0,−4), and the line {y ∈ R2 : v2 − ||y − x2||
2 = v3 − ||y − x3||

2} should be close to

both points (0, 0) and (4, 0).

Now, for sufficiently small ǫ, it must be the case that the point ȳ = (1,−1) is in the

triangle generated by these three lines. It means that at this point we must have

v1 − ||ȳ − x1||
2 < v2 − ||ȳ − x2||

2 < v3 − ||ȳ − x3||
2 < v1 − ||ȳ − x1||

2,

a contradiction. If there was a voter with ideal point ȳ and transitive preferences over

candidates this could not have been happening. The characterization in the case of a

finite voter’s set remains unresolved.

3.2. Euclidean preferences. Our model does not presume any specific kind of pref-

erences of the voters over the policy space. The primitive only consists of a collection

of preferences over candidates indexed by points in Rd. The Euclidean preferences are

derived from the axioms.

Another approach would be to assume from the start that voters’ preferences over

policies are given by the Euclidean distance from their ideal point, and that valence scores

are additively separable. In other words, one could test only the second assumption of

the spatial model, that the subjective views of voters regarding the implemented policies

and valences of the candidates are identical. In this case the model would consist of sets

{xi(y)}i∈C ⊆ Rd and {vi(y)}i∈C ⊆ R for every y ∈ Rd. It is easy to see that one can

obtain a similar result to that of Theorem 1 in this case.

The Euclidean norm is intimately related to the convexity axiom (A3). Other norms

(such as the ‘sup–norm’ or the ‘city–block metric’) typically induce non–convex sets. A
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thorough study of the relation between convexity and the Euclidean norm, as well as of

the kind of preferences induced by other norms is beyond the scope of this paper.

3.3. The valence dimension. The utility function of a voter with an ideal point y

that we derive in Theorem 1 is of the form vi − ||xi − y||2. Thus, we use the square

of the Euclidean norm (and not just the norm) as the ‘ideological’ utility function. If

instead voters’ preferences are represented by the utility function vi − ||xi − y|| then

the induced sets of supporters of candidates may not be convex. For instance, let x1 =

(0, 0), x2 = (1, 0), v1 = 0, and v2 = 1. Then voters with ideal points y = (0, 1) and

y′ = (0,−1) strictly prefer candidate 2 over candidate 1. However, a voter with an ideal

point y′′ = y+y′

2
= (0, 0) is indifferent between the candidates. Thus, using the square of

the norm is a consequence of the convexity axiom (A3).

Using the square of the norm is natural also due to the following reason. We would

like to think of the valence dimension as equally important to the policy dimensions.

Recall that we think of the valence dimension as a dimension on which all voters agree

that more is better. An alternative way to put this is to say that the ideal point of every

voter is +∞ along this dimension. For the sake of the argument, assume that we replace

+∞ by a large enough constant M . Then the utility of a voter if candidate i wins should

be measured according to the distance between his ideal point (y,M) and the the point

(xi, vi). This implies that we should add the valence score to the square of the norm of

the difference in the policy space and not to the norm.

Theorem 1 is not true if we require all candidates to have the same score (zero, w.l.o.g.)

on the valence dimension. The reader is referred to Azrieli and Lehrer (2007, Example

6.2) for an example. Thus, more restrictions must be imposed on preferences in order to

allow a representation of the utility in the form −||xi − y||2. Finding natural additional

axioms that distinguish this case from the more general one studied in this paper is an

interesting direction for future research.

3.4. The cases m = 2 and m = 3. In contrast to the claim of the previous subsection,

if there are only two or three candidates then it is possible to represent the voters’

preferences without resorting to valences. The case m = 2 is trivial since one only needs

to choose the platforms x1 and x2 in equal distance from the hyperplane separating the

voters that prefer candidate 1 from those preferring candidate 2. In the case m = 3 we

state this fact as a proposition.
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Proposition 2. Assume m = 3. The preferences {ºy}y∈Rd satisfy properties (A1)

through (A4) if and only if there are x1, x2, x3 ∈ Rd in a general position such that

i ºy j if and only if ||xi − y||2 ≤ ||xj − y||2.

3.5. Observing just the first best. Theorem 1 requires that we observe the entire

ranking of each voter over C. It might be hard to extract this information from voters. A

more plausible assumption is that only the most preferred candidate(s) is (are) observed

for each voter. A possible way to formalize this is to assume that the primitive is a

function f : Rd → 2C , with the interpretation that f(y) ⊆ C is the set of candidates

which voter y prefers the most. We do not know how to get a similar result to that of

Theorem 1 in this case when the dimension of the policy space is d ≥ 2. However, it

turns out that when d = 1 a simple characterization is possible (see the next subsection).

3.6. The case d = 1. If the policy space is one dimensional (as is the case in many

papers) then Theorem 1 is no longer true, even if appropriately modified. The reason for

this failure is that the set of voters who are indifferent between some three candidates is

typically empty. This set plays a major role in the proof of the main result. Nevertheless,

we can get a representation similar to that of Theorem 1 if we assume that only the most

preferred candidates are observed for each voter (as in the previous subsection). We will

use the following properties for the characterization.

(B1) For every i ∈ C, the set {y ∈ R : f(y) = {i}} is not empty and open.

(B2) For every i ∈ C and y, z ∈ R, if i ∈ f(y) ({i} = f(y)) and i ∈ f(z) then

i ∈ f(αy + (1 − α)z) ({i} = f(αy + (1 − α)z)) for every α ∈ (0, 1).

Before stating the result, we need a definition analogue to Definition 1.

Definition 2. The set {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ R2 is well-ordered if there is a

permutation π : C → C such that the following two conditions hold:

(i) xπ(1) < xπ(2) < . . . < xπ(m).

(ii) aπ(1)π(2) < aπ(2)π(3) < . . . < aπ(m−1)π(m) where aπ(i)π(i+1) =
x2

π(i)
−x2

π(i+1)
+vπ(i+1)−vπ(i)

2(xπ(i)−xπ(i+1))
for

i = 1, 2, . . . , m − 1.

Proposition 3. The correspondence f : R → 2C satisfies properties (B1) and (B2) if

and only if there is a well-ordered set {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ R2 such that

f(y) = argmax{vi − (xi − y)2 : i ∈ C}.
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4. Proofs

4.1. Proof of Theorem 1. The proof of Theorem 1 is similar to the proof of the main

result in Azrieli and Lehrer (2007). We therefore provide an outline of the proof and

only detail those steps that did not appear in that paper.

A simple but important observation is that, for any xi 6= xj ∈ Rd and vi, vj ∈ R, the

set {y ∈ Rd : vi−||xi−y||2 = vj −||xj −y||2} is an affine subspace of dimension d−1 (a

hyperplane), perpendicular to the direction xi−xj. Indeed, a simple computation shows

that this set can be rewritten as {y ∈ Rd : y · (xi − xj) = 1
2
(vj − vi + ||xi||

2 − ||xj||
2)}.

Similarly, the set {y ∈ Rd : vi − ||xi − y||2 > vj − ||xj − y||2} is an open half space in

Rd (given that xi 6= xj).

(ii) implies (i):

Fix the sets {x1, x2, . . . , xm} ⊆ Rd and {v1, v2, . . . , vm} ⊆ R. Property (A1) is ob-

viously satisfied. Denote Aij = {y ∈ Rd : vi − ||xi − y||2 = vj − ||xj − y||2} and

Bij = {y ∈ Rd : vi − ||xi − y||2 > vj − ||xj − y||2}. By property (i) of Definition 1,

xi 6= xj for every i 6= j ∈ C. Thus, each Bij is open and convex and each Aij is the

boundary of the closed half space Bij ∪ Aij. This shows that properties (A2) and (A3)

are satisfied.

Property (A4) is satisfied because the set {(x1, v1), (x2, v2), . . . , (xm, vm)} is in a general

position. Indeed, take any distinct i, j, k ∈ C. We need to show that there is some y

with i ≻y j ≻y k. If this was not true then it must be that Bij and Bjk do not intersect.

But this can only happen if xi−xj and xj −xk are linearly dependent, a contradiction to

the assumption of general position (property (i)). Finally, take any distinct i, j, k, l ∈ C.

By the general position assumption (property (ii)) we have that Bij ∩Bjk and Bij ∩Bjl

are not equal. This proves that (A4) is satisfied. ¤

(i) implies (ii):

The proof is constructive. We first find the platforms x1, x2, . . . , xm of the candi-

dates, and then construct the valences v1, v2, . . . , vm. We need however to state some

preliminary claims. The proofs of all these claims can be found in Azrieli and Lehrer

(2007).

Claim 1. For every ordered pair (i, j) of distinct candidates there is a non-zero vector

sij ∈ Rd and a number cij ∈ R such that {y ∈ Rd : i ºy j} = {y ∈ Rd : sij · y ≤ cij}.
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Moreover, these vectors and numbers can be chosen such that sji = −sij and cji = −cij

for every (i, j).

Fix a collection {sij, cij}i,j∈C as in Claim 1 until the end of the proof.

Claim 2. (A4) implies that, for every i, j, k ∈ C, the vectors sij and sik are linearly

independent.

Claim 3. For every i, j, k ∈ C, the vectors sij, sik and sjk are not linearly independent.

For t, s ∈ Rd, denote by R(t, s) the ray that starts at t and continues in the direction of

s. That is R(t, s) = {t + αs : α ≥ 0}.

Claim 4. If x1, x2 ∈ Rd satisfy x2−x1 = αs12 for some α > 0 then, for every 3 ≤ i ≤ m,

the rays R(x1, s1i) and R(x2, s2i) intersect .

We are now in the position to construct the sets {x1, x2, . . . , xm} and {v1, v2, . . . , vm}.

The point x1 is chosen arbitrarily. Next, define x2 = x1 + α12s12, where α12 > 0 is

arbitrary. For every 3 ≤ i ≤ m, define xi to be the unique point of intersection (by

Claim 4) of the rays R(x1, s1i) and R(x2, s2i). A key point in the proof is that, when

{x1, x2, . . . , xm} are defined in this way, then, for every 1 ≤ i, j ≤ m, xj − xi = αijsij

for some αij > 0. This fact follows from Proposition 1 (page 26) in Azrieli and Lehrer

(2007). Finally, choose v1 arbitrarily and define vi = v1 − ||x1||
2 + ||xi||

2 − 2α1ic1i for

every 2 ≤ i ≤ m.

It is useful to note that αijsij = α1js1j − α1is1i for every 3 ≤ i, j ≤ m. Indeed, the

left–hand side of the equality is xj −xi while the right–hand side is (xj −x1)− (xi −x1).

This implies also that αijcij = α1jc1j − α1ic1i. To see this, take y ∈ Rd such that 1 ∼y i

and 1 ∼y j (the existence of such y is guaranteed by Claim 2). Transitivity implies that

i ∼y j. So y · s1i = c1i, y · s1j = c1j and y · sij = cij. Multiplying these equalities by

α1i, α1j and αij correspondingly, and subtracting the first from the second we get the

above equality.

To complete the proof we need to check that the set {(x1, v1), (x2, v2), . . . , (xm, vm)}

is in a general position and that, for every i, j ∈ C and y ∈ Rd, i ºy j if and only if
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vi − ||xi − y||2 ≥ vj − ||xj − y||2. For the latter we have

i ºy j ⇐⇒ sij · y ≤ cij ⇐⇒ (xj − xi) · y ≤ αijcij ⇐⇒ (xj − xi) · y ≤ α1jc1j − α1ic1i

⇐⇒ (xj − xi) · y ≤
1

2

(

v1 − vj + ||xj||
2 − ||x1||

2
)

−
1

2

(

v1 − vi + ||xi||
2 − ||x1||

2
)

⇐⇒ (xj − xi) · y ≤
1

2

(

vi − vj + ||xj||
2 − ||xi||

2
)

⇐⇒ vi − ||xi − y||2 ≥ vj − ||xj − y||2.

For the former, the vectors xi, xj, xk are affinely independent since xj − xi = αijsij and

xk −xi = αiksik, and these are linearly independent vectors by Claim 2. Finally, the sets

{y ∈ Rd : i ∼y j ∼y k} and {y ∈ Rd : i ∼y j ∼y l} are not equal by (A4). This proves

that {(x1, v1), (x2, v2), . . . , (xm, vm)} is in a general position. ¤

4.2. Proof of Proposition 1. First, it is easy to check that if there are α > 0 and

β ∈ Rd such that x′
i = αxi + β for 1 ≤ i ≤ m, and in addition equation (1) is satisfied

then {(x1, v1), (x2, v2), . . . , (xm, vm)} and {(x′
1, v

′
1), (x

′
2, v

′
2), . . . , (x

′
m, v′

m)} represent the

same preferences.

Now, assume that {(x1, v1), (x2, v2), . . . , (xm, vm)} and {(x′
1, v

′
1), (x

′
2, v

′
2), . . . , (x

′
m, v′

m)}

represent the same preferences {ºy}y∈Rd . It follows from the proof of Theorem 1 that for

every i, j ∈ C there is a positive number, say tij > 0, such that xj−xi = tij(x
′
j−x′

i) (with

the convention tij = −tji). Fix some three candidates i, j, k ∈ C. Sum up the equalities

xj − xi = tij(x
′
j − x′

i), xi − xk = tki(x
′
i − x′

k), xk − xj = tjk(x
′
k − x′

j) and rearrange the

terms to obtain (x′
i −x′

j)(tki − tij)+(x′
k −x′

j)(tjk − tki) = 0. But the vectors x′
i, x

′
j, x

′
k are

affinely independent so tki− tij = tjk− tki = 0. It follows that tij = tki = tjk, so there is a

number α > 0 such that xj−xi = α(x′
j−x′

i) for every i, j ∈ C. Now, define β = x1−αx′
1.

For every 2 ≤ i ≤ m we have x1 − xi = α(x′
1 − x′

i) or xi − αx′
i = x1 − αx′

1 = β. That is,

x′
i = αxi + β for every 1 ≤ i ≤ m.

Finally, we must have 1
2
(vi − vj + ||xj||

2 − ||xi||
2) = 1

2

(

v′
i − v′

j + ||x′
j||

2 − ||x′
i||

2
)

for

every i, j ∈ C. Substituting αxi + β for x′
i and αxj + β for x′

j and rearranging we obtain

equation (1). In particular, if x′
i = xi and x′

j = xj then v′
i − vi = v′

j − vj. Define

γ = v′
1 − v1. It follows that v′

i = vi + γ for every 1 ≤ i ≤ m. ¤

4.3. Proof of Proposition 2. The if part follows from Theorem 1, so we only need

to prove the only if part. By Theorem 1, there are (x1, v1), (x2, v2), (x3, v3) in a general

position that represent the preferences. It follows that the vectors x1 − x2 and x1 − x3

are linearly independent. Therefore, there is β ∈ Rd that solves the two equations



AXIOMATIZATION OF SPATIAL MODELS 15

β · (x1−x2) = v2−v1

2
and β · (x1−x3) = v3−v1

2
. Notice that the same vector β must satisfy

also β · (x2 − x3) = v3−v2

2
. Define x′

i = xi + β for i = 1, 2, 3.

By Proposition 1, the set {(x′
1, v

′
1), (x

′
2, v

′
2), (x

′
3, v

′
3)} represent the same preferences as

{(x1, v1), (x2, v2), (x3, v3)} if the equation v′
i − v′

j = vi − vj + 2β · (xi − xj) is satisfied for

every i, j ∈ C. By construction, the vector β satisfies β ·(xi−xj) =
vj−vi

2
for every i, j. It

follows that v′
1 = v′

2 = v′
3 = 0 solve the above equations. That is, {(x′

1, 0), (x′
2, 0), (x′

3, 0)}

represent the preferences {ºy}y∈Rd . ¤

4.4. Proof of Proposition 3. Assume first that the correspondence f can be repre-

sented as in the proposition. We can assume w.l.o.g. that π is the identity, so x1 < x2 <

. . . < xm and a12 < a23 < . . . < a(m−1)m. It is also convenient to denote a01 = −∞

and am(m+1) = +∞. Now, for every 1 ≤ i ≤ m − 1, a simple computation shows that

vi − (xi − y)2 ≥ vi+1 − (xi+1 − y)2 if and only if y ≤ ai(i+1) (the same equivalence

holds when the weak inequalities are replaced by strict ones). It follows that candidate

i (1 ≤ i ≤ m) is the unique maximizer of {vj − (xj − y)2 : j ∈ C} if and only if

y ∈ (a(i−1)i, ai(i+1)) and that i is a maximizer (not necessarily unique) of this expression

if and only if y ∈ [a(i−1)i, ai(i+1)]. This shows that f satisfies properties (B1) and (B2).

Conversely, assume that f satisfies (B1) and (B2). These properties imply that there

is a permutation of the candidates, w.l.o.g. the identity, and a sequence of numbers

a12 < a23 < . . . < a(m−1)m such that f(y) = {i} if and only if y ∈ (a(i−1)i, ai(i+1)) and

f(y) = {i, i + 1} if and only if y = ai(i+1) for 1 ≤ i ≤ m.

Take any set of points x1 < x2 < . . . < xm. Define v1 = 0 and, for every 1 ≤ i ≤ m−1,

let vi+1 = 2ai(i+1)(xi−xi+1)−x2
i +x2

i+1+vi. Rearranging, this gives ai(i+1) =
x2

i−x2
i+1+vi+1−vi

2(xi−xi+1)

for i = 1, 2, . . . , m−1. Thus, the set {(x1, v1), (x2, v2), . . . , (xm, vm)} ⊆ R2 is well-ordered.

Finally, we need to check that f(y) = argmax{vi− (xi−y)2 : i ∈ C}. This is true since

i ∈ f(y) ⇐⇒ y ∈ [a(i−1)i, ai(i+1)] ⇐⇒
x2

i−1 − x2
i + vi − vi−1

2(xi − xi+1)
≤ y ≤

x2
i − x2

i+1 + vi+1 − vi

2(xi−1 − xi)

⇐⇒ vi − (y − xi)
2 ≥ vi−1 − (y − xi−1)

2
and vi − (y − xi)

2 ≥ vi+1 − (y − xi+1)
2

⇐⇒ vi − (y − xi)
2 ≥ vj − (y − xj)

2
for all j 6= i.

¤
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