
Munich Personal RePEc Archive

Uncertainty aversion and equilibrium

existence in games with incomplete

information

Azrieli, Yaron and Teper, Roee

29 September 2009

Online at https://mpra.ub.uni-muenchen.de/17617/

MPRA Paper No. 17617, posted 01 Oct 2009 18:21 UTC



UNCERTAINTY AVERSION AND EQUILIBRIUM EXISTENCE IN
GAMES WITH INCOMPLETE INFORMATION∗

YARON AZRIELI† AND ROEE TEPER‡

September 29, 2009

Abstract. We consider games with incomplete information à la Harsanyi, where the

payoff of a player depends on an unknown state of nature as well as on the profile of

chosen actions. As opposed to the standard model, players’ preferences over state–

contingent utility vectors are represented by arbitrary functionals. The definitions of

Nash and Bayes equilibria naturally extend to this generalized setting. We characterize

equilibrium existence in terms of the preferences of the participating players. It turns

out that, given continuity and monotonicity of the preferences, equilibrium exists in

every game if and only if all players are averse to uncertainty (i.e., all the functionals

are quasi–concave). We further show that if the functionals are either homogeneous

or translation invariant then equilibrium existence is equivalent to concavity of the

functionals.
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1. Introduction

Since Harsanyi [16], games with incomplete information have proved to be a power-

ful tool in the analysis of strategic situations where agents are uncertain regarding the

specifics of the environment. The vast majority of applications assumes that the players

in the game share a common prior probability distribution over the state space, and that

each player is a Bayesian expected–utility maximizer with respect to (w.r.t.) this prior

(and given the strategies of his opponents). With these assumptions on players’ prefer-

ences, the appropriate solution concept for such games is the Bayes–Nash equilibrium,

either in its ex–ante or interim forms. Existence of Bayes–Nash equilibrium in every

game with incomplete information is guaranteed by a fixed–point argument.1

Starting with Ellsberg [9], a rich literature has developed showing consistent viola-

tions of the expected–utility maximization theory when decision makers are uncertain

regarding the probabilities of relevant events. In particular, agents’ preferences tend to

exhibit uncertainty aversion, which cannot be explained within the subjective expected–

utility framework. The experimental findings of Ellsberg [9] and his successors inspired

economists to develop alternative theories of decision making under uncertainty (e.g.,

Schmeidler [27] and Gilboa and Schmeidler [14]).

Roughly speaking, we interpret uncertainty as the situation where the probabilities of

some relevant events are ambiguous, and cannot be determined by the decision maker.2

Under this interpretation, uncertainty is present in many real–life game–like situations.

For instance, a firm in a Cournot oligopoly may be too uncertain regarding the demand

function to assign a probability to the event that the intercept of this function is between

the numbers a and a; an oil company bidding for the rights to drill in a new site may

not have enough information to assess the probability that the site has a capacity of

ten million barrels. Notice that the uncertainty in both these examples concerns the

probabilities of payoff relevant states of nature, and not the strategies of the opponents.

If the firms compete in the same market for a long time, each firm probably knows the

strategy of its competitors as a function of their information.

If, as in the above examples, the uncertainty is only regarding the state of nature then

the definitions of Bayes and Nash equilibria can be naturally generalized to allow for

arbitrary preferences over state–contingent utility vectors. We use the standard model of

1See Milgrom and Weber [23] for a general equilibrium existence result in games with incomplete

information.
2As opposed to risk where the probabilities of outcomes are known. See Epstein [10].
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a game with incomplete information, where each one of a finite set of players is endowed

with a partition of the state space3 that represents his information. Players’ payoffs

depend on the chosen action profile as well as on the realized state of nature. A strategy

of a player is a function from states to (possibly mixed) actions that is measurable w.r.t.

his partition. In any given state of nature, every strategy profile induces a probability

distribution over pure action profiles. The utility of a player in this state of nature is

his expected payoff according to this distribution. Thus, any strategy profile induces

a real–valued function on the state space for each of the players. We refer to such a

function as the induced utility–vector.

To define ex–ante equilibrium, assume that each player i is characterized by a func-

tional Ji over the space of real–valued functions over the state space. If f is such a

function then Ji(f) represents the total utility that player i derives from f .4 An ex–ante

equilibrium is then simply defined as a strategy profile such that no player i can derive

a higher utility (as measured by Ji(f), where f is the induced vector for player i) by

altering his strategy. In order to define interim equilibrium, assume that each player i

is characterized by a family of functionals {JF
i }, one for every non–empty event F . A

strategy profile constitutes an interim equilibrium if, for every player i and for every

element F in i’s information partition, the restriction to F of the induced vector for i

maximizes player i’s utility (as measured by JF
i ) given the strategies of i’s opponents.5

Since the domain of preferences over which the equilibrium concept is defined has

been extended, it is natural to study the relation between existence of equilibrium and

properties of players’ preferences. On the one hand, we would like to know what kind

of preferences guarantee equilibrium existence. On the other hand, we can take a ‘re-

vealed preferences’ viewpoint and ask what can be learned about preferences from the

observation that players have reached an equilibrium.

The main contribution of this paper (Theorem 1) demonstrates that, given that pref-

erences are continuous and monotonic, equilibrium exists in every game if and only if

the preferences of all the players are represented by quasi–concave functionals. Thus, the

3For simplicity, we restrict attention to finite state spaces. Our results can be extended to infinite

spaces at the cost of adding standard technical assumptions on the various mathematical objects.
4Note that in the original Harsanyi model, Ji(f) is the expected value of f w.r.t. the common prior.
5While it is common to consider interim–equilibria, we choose to focus on the notion of ex–ante

equilibrium. The formulation of results in the ex–ante version is significantly more tractable and reduces

notation. All the results given for the ex–ante version go through to the interim version. See Subsection

3.3 for a discussion of this point.
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above questions have simple and clear answers. Furthermore, it is well known that quasi–

concavity is the functional property that corresponds to uncertainty aversion (Schmeidler

[27]). Our result therefore establishes a strong link between a behavioral property that

is often observed and equilibrium existence.

We further study the relation between equilibrium existence and concavity. Concav-

ity is perhaps a more intuitive definition of uncertainty aversion. Obviously, concavity

implies equilibrium existence since it implies quasi–concavity. We show that the con-

verse is also true given that the functionals that represent players’ preferences are either

translation invariant (Theorem 2) or homogeneous (Theorem 3). These results sharpen

the connection between equilibrium existence and uncertainty aversion established in

Theorem 1.

1.1. An example. To illustrate the definition of equilibrium and to motivate the results

of the paper, consider the following example. There are two players i = 1, 2 and two

states {s1, s2}. The action set of player 1 is {T, B} and that of player 2 is {L,R}.

The information partitions of both players are trivial. The payoffs are described in the

diagram below, where 1 chooses a row and 2 a column.

B

T

L R

0, 1

1, 0

0, 0

0, 0

B

T

L R

0, 0

0, 0

1, 0

0, 1

s1 s2

Consider the case where both players are ‘optimistic’ in the sense that they evaluate

any utility vector according to its maximal element. That is, if f = (f(s1), f(s2)) is the

induced state–contingent utility for player i when a certain strategy profile is played, i’s

total utility is Ji(f) = max{f(s1), f(s2)} (i = 1, 2).

We claim that with these preferences of the players there is no equilibrium in this game

(since both players have trivial information partitions the ex–ante and interim versions

coincide). Indeed, assume that player 1 plays βT +(1−β)B, and 2 plays αL+(1−α)R

for some 0 ≤ α, β ≤ 1. Then the induced vector for player 1 is (αβ, (1 − α)(1 − β))

and for player 2 is ((1 − β)α, β(1 − α)). Therefore, the images of the best response

correspondences of both players consist of only pure strategies. But it is easy to see that

there is no pure equilibrium in this game and, therefore, no equilibrium exists.

1.2. Related literature. The seminal works on non expected utility preferences are

Schmeidler [27] and Gilboa and Schmeidler [14]. These papers initiated an extensive
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study of the axiomatic foundations of individual decision making under uncertainty.

The list of papers emerging from this research is too long to be written here. Typically

in this literature, players’ preferences are independent of the state of nature. In our

model this is not the case. Thus, given the strategies of their opponents, the players in

our model face a state–dependent utility decision problem (see Karni [18] for a survey).

The ideas from individual decision making were later incorporated in interactive mod-

els of non–cooperative games with complete information. The main difficulty with defin-

ing equilibrium in this case is that strategies of players and beliefs about strategies of

players are two different mathematical entities. Thus, the consistency of beliefs with

actual strategies requirement that characterizes Nash equilibrium is usually hard to de-

fine for general preferences. Mukerji and Tallon [24] provides an extensive survey of this

literature. Notice that in our model players’ beliefs about their opponents’ strategies

coincide with the truth.

An especially relevant reference of the above literature is Crawford [7] who defined the

notion of “equilibrium in beliefs”. According to this solution concept every player uses

just pure strategies, but players may believe that other players are mixing. To moti-

vate this definition, Crawford constructs a simple example of equilibrium non–existence

whenever preferences of players over distributions over pure action profiles are strictly

quasi–convex. His example is similar to the one in the previous subsection. However,

he did not attempt to provide a characterization of equilibrium existence, and the given

example can not be easily generalized to prove such a characterization.

There are a few references that study ambiguity and, in particular, ambiguity aversion

in games with incomplete information. Epstein and Wang [11] generalize the construc-

tion of a universal type space to a class of preferences that can accommodate uncertainty

aversion. Kajii and Ui [17] study two different notions of equilibrium in games with in-

complete information where players have maxmin preferences. One of these equilibrium

concepts is a generalization of Crawford’s “equilibrium in beliefs” for games with incom-

plete information. The other, called “mixed equilibrium”, is a special case of the interim

version of our equilibrium. Finally, Bade [3] considers incomplete information extensions

à la Aumann [2] of normal–form games. However, her results are confined to the case

where payoffs are state–independent.

On the more applicative side, Salo and Weber [26], Lo [20], Bose et al. [5] and Levin

and Ozdenoren [19] study auctions with uncertainty averse bidders. Bade [4] shows
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existence of equilibrium in a political game where parties are uncertain regarding the

distribution of voters.

1.3. Organization. We proceed as follows. Section 2 formally defines the class of games

with incomplete information that we consider and the notion of ex–ante equilibrium.

In Section 3 we state and prove the main results, which relate uncertainty aversion

to equilibrium existence. Interim equilibrium is defined and discussed in this section

as well. In Section 4 we deal with some additional aspects of equilibrium existence.

Namely, Subsection 4.1 discusses the implications of our results to familiar functional

forms often appearing in the literature, and Subsection 4.2 hints to the relation between

players’ common preferences and symmetric equilibria of symmetric games. We conclude

in Section 5.

2. Ex–ante equilibrium

An environment is a tuple (S, N, J = {Ji}i∈N). The first component S = {s1, s2, . . . , sm}

is a non–empty finite set of states of nature (the state space). We assume m ≥ 2 through-

out. A utility–vector (vector, for short) is any function that maps S to R. We will usually

use the letters f, g to denote vectors. Addition of vectors and multiplication of vectors

by scalars are performed pointwise. We can therefore identify the space of all vectors

with the linear space R
m. The constant vector f in which f(s) = c for every s ∈ S

will be denoted by c. N = {1, 2, . . . , n}, where n ≥ 2, is the set of players. For each

i ∈ N , the functional Ji : R
m → R represents player i’s preferences over vectors. The

environment is fixed throughout the analysis.

Throughout the paper we maintain two mild assumptions on players preferences:

Continuity (C): For every player i, Ji is continuous over R
m .

Monotonicity (M): For every player i and for every two vectors f, g, if f(s) ≥

g(s) (f(s) > g(s)) for every s ∈ S then Ji(f) ≥ Ji(g) (Ji(f) > Ji(g)).

A normal–form game with incomplete information (game, for short) is defined by

G = ({Fi}i∈N , {Ai}i∈N , {ui}i∈N). For each i ∈ N , Fi is player i’s information partition –

a partition of S, and Ai is the finite non–empty set of actions6 of i. Denote by A = ×i∈NAi

6Here we assume that each player has the same set of actions in all states of nature. Our results can

easily be extended to the case where the action set of a player vary across S as long as it is constant at

each element of that player’s information partition.
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the set of all action profiles with typical element a = (a1, ..., an). The utility function of

player i ∈ N is ui : S ×A → R. The set of all games (in a fixed environment) is denoted

by Γ.

Let G ∈ Γ and fix i ∈ N . A strategy for player i is an Fi–measurable function7

σi : S → ∆(Ai). The set of all strategies for player i is denoted Σi, and the set of all

strategy profiles is Σ = ×i∈NΣi with typical element σ = (σ1, . . . , σn). The probability

with which player i plays the action ai ∈ Ai in state s ∈ S according to σi is denoted

σi(s, ai). As usual, σ−i denotes the strategy profile of players other than i in which each

player j 6= i plays as in σ.

Every strategy profile σ in a game G induces a vector for each one of the players. For-

mally, the induced vector of player i is f
(σ)
i where f

(σ)
i (s) =

∑

a∈A

(

∏

j∈N σj(s, aj)
)

ui(s, a)

for every s ∈ S. We can now define our notion of ex–ante equilibrium.

Definition 1. Let G ∈ Γ. A strategy profile σ ∈ Σ is an ex–ante J–equilibrium of G if,

for every i ∈ N and for every σ′
i ∈ Σi, Ji(f

(σ)
i ) ≥ Ji(f

(σ′

i
,σ−i)

i ).

3. Main results

3.1. Equilibrium existence and uncertainty aversion. Uncertainty aversion has

been a focus of the decision theory literature in the last two decades. Schmeidler’s [27]

seminal definition of uncertainty aversion8 states that if the acts f, g satisfy f º g, then

for any α ∈ (0, 1), αf + (1 − α)g º g. This axiom translates into quasi–concavity of

the preferences representing functional (see Cerreia et al. [6] and Hanany and Klibanoff

[15]).

Uncertainty Aversion (UA): Ji is quasi–concave for every player i. That is, Ji(αf +

(1 − α)g) ≥ min{Ji(f), Ji(g)} for every two vectors f, g and α ∈ (0, 1).

While the (UA) is relevant to the preferences of each decision maker separately, the

next property reflects the interactive flavor of our model.

Equilibrium Existence (EE): There exists an ex–ante J–equilibrium in every game

G ∈ Γ.

7For a finite set X, ∆(X) is the set of all probability measures over X.
8While this is the most commonly used definition of uncertainty aversion, there are alternative defi-

nitions in the literature such as those of Epstein [10] and Ghirardato and Marinacci [13].
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We can now state our main result.

Theorem 1. (UA) is equivalent to (EE).

Proof. We start with the following lemma.

Lemma 1. If Ji is not quasi–concave then there are vectors f, g such that Ji(f) = Ji(g)

and Ji(αf + (1 − α)g) < Ji(f) for every α ∈ (0, 1).

Proof. If Ji is not quasi–concave then there are vectors f ′, g′ and α0 ∈ (0, 1) such that

Ji(f
′) = Ji(g

′) and Ji(α0f
′ + (1 − α0)g

′) < Ji(f
′). By (C), the set B := {β ∈ [0, 1] :

Ji(βf ′+(1−β)g′) ≤ Ji(f
′)} is compact and contains an interval around α0. Let β1 be the

minimal element of B which is larger than α0 and satisfies Ji(βf ′ + (1 − β)g′) = Ji(f
′).

Similarly, let β2 be the maximal element of B which is smaller than α0 and satisfies

Ji(βf ′ + (1 − β)g′) = Ji(f
′). Define f = β1f

′ + (1 − β1)g
′ and g = β2f

′ + (1 − β2)g
′.

Then Ji(f) = Ji(g) and Ji(αf + (1 − α)g) < Ji(f) for every α ∈ (0, 1). ¤

(EE) =⇒ (UA)

Assume to the contrary that (EE) is satisfied, and that there is i ∈ N such that Ji is

not quasi–concave. Consider the following game G ∈ Γ. The information partitions of

all the players are trivial. The action set of player i is Ai = {T, B} and the action set of

some arbitrary player j 6= i is Aj = {L,R}. Each one of the other players (if there are

any) has only one action and, therefore, these players have no influence on the outcome

of the game.

The payoff function for player j is given by

uj(s, ai, aj) =























1; ai = T, aj = L,

1; ai = B, aj = R,

0; ai = T, aj = R,

0; ai = B, aj = L.

Let f, g be as in Lemma 1. For every 0 < δ < 1
2

define the intervals

X(δ) = {αf + (1 − α)g : α ∈ [0.5 − δ, 0.5 + δ]}

Y (δ) = {αf + (1 − α)g : α ∈ [0, δ]}

Z(δ) = {αf + (1 − α)g : α ∈ [1 − δ, 1]}.

Let s(δ) = max{Ji(h) : h ∈ X(δ)}, t(δ) = min{Ji(h) : h ∈ Y (δ)} and r(δ) = min{Ji(h) :

h ∈ Z(δ)}. By (C), there is δ∗ > 0 small enough such that both s(δ∗) < t(δ∗) and
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s(δ∗) < r(δ∗). Define f ′ = δ∗g + (1 − δ∗)f and g′ = δ∗f + (1 − δ∗)g. Let the payoff

function to player i be given by

ui(s, ai, aj) =























f ′(s); ai = T, aj = L,

g′(s); ai = B, aj = R,

f(s); ai = T, aj = R,

g(s); ai = B, aj = L.

Thus, the resulting bimatrix game in state s ∈ S is given by the following diagram,

where i is the rows player and j the columns player:

B

T

L R

g(s), 0

f ′(s), 1

g′(s), 1

f(s), 0

The following sequence of claims proves that G has no ex–ante J–equilibrium.

Claim 1. The strategy 1
2
T + 1

2
B is never a best response for player i.

Proof. Fix any strategy αL + (1 − α)R (0 ≤ α ≤ 1) for player j. If player i plays
1
2
T + 1

2
B then the induced vector for him is 1

2
αf ′ + 1

2
(1 − α)f + 1

2
αg + 1

2
(1 − α)g′ =

(

1
2

+ δ∗

2
− αδ∗

)

f +
(

1
2
− δ∗

2
+ αδ∗

)

g ∈ X(δ∗). On the other hand, if i plays B his induced

vector is in Y (δ∗). By construction, the latter gives i a higher payoff than the former. ¤

Claim 2. There is no equilibrium in which player j plays a mixed strategy.

Proof. By the previous claim, there cannot be an equilibrium where player i mixes with

equal probabilities between his two strategies. For any other strategy of player i, (M)

implies that the best response for player j is (only) in pure strategies. ¤

Claim 3. If j plays a pure strategy then player i has a unique best response which is a

pure strategy.

Proof. This is a straightforward consequence of the construction. ¤

Claim 4. There is no equilibrium in pure strategies.

Proof. Easy to check. ¤

The Combination of these claims proves that no equilibrium exists in G.

(UA) =⇒ (EE)
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Existence of ex–ante equilibrium is guaranteed by the following argument. Since this

is a standard argument, we only provide the outline of the proof and omit the details.

For every i ∈ N , define BRi : Σ−i → Σi to be player i’s best response correspondence.

Quasi–concavity of Ji guarantees that BRi is convex valued. Continuity of Ji implies

that BRi is upper semi–continuous and that it has compact values. (EE) is, therefore,

a consequence of Brouwer’s fixed point theorem. ¤

3.2. Equilibrium existence and concavity. There are many instances in the litera-

ture where uncertainty aversion is represented by concavity rather than quasi–concavity

of the functional. This is no coincidence since, to quote Schmeidler [27], “Intuitively, un-

certainty aversion means that “smoothing” or averaging utility distributions makes the

decision maker better off . . . Concavity captures best the heuristic meaning of uncertainty

aversion”. We thus define

Concavity (CON): Ji is concave for every player i.

The purpose of this subsection is to show that (EE) and (CON) are equivalent given

that the functionals have some additional natural properties. Obviously, if the functionals

of all the players are concave then (by Theorem 1) equilibrium exists in every game. Thus,

the difficulty is to prove the converse, that (EE) implies (CON).

The following standard properties will be used for the results. In each of them we

mean that the relevant property holds for every Ji ∈ J.

Translation Invariance (TI): For every vector f and a constant vector c, Ji(f + c) =

Ji(f) + c.

Homogeneity (H): For every vector f and for every α ≥ 0, Ji(αf) = αJi(f).

The first result of this section uses the (TI) property.

Theorem 2. If (TI) is satisfied then (CON) is equivalent to (EE).

Proof. We only prove that (EE) implies (CON), since the other direction follows from

Theorem 1. By repeating the argument of Lemma 1, if Ji is not concave then it is

possible to find vectors f, g such that Ji(αf + (1 − α)g) < αJi(f) + (1 − α)Ji(g) for

every α ∈ (0, 1). Fix such f, g and choose a number M > 0 large enough such that both

Ji(f + M) > Ji(g) and Ji(g + M) > Ji(f). Existence of such a number is guaranteed by

(TI).
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Consider the game G ∈ Γ with payoffs as in the diagram below (like in the proof of

Theorem 1, all the information partitions are trivial and there are only two players with

more than one action. Player i chooses T or B and j chooses L or R).

B

T

L R

g(s) + M, 0

f(s), 1

g(s), 1

f(s) + M, 0

Assume that player j plays the strategy αL + (1 − α)R for some α ∈ [0, 1] . By (TI)

and the construction of f, g, it cannot be that f − g is constant since in that case Ji is

linear on the interval [f, g]. It follows that αf + (1−α)(f + M) 6= α(g + M) + (1−α)g,

so every two different strategies of player i induce different vectors for him. If player

i plays βT + (1 − β)B (where 0 < β < 1) then the induced vector for i is given by

βf + (1 − β)g + [α(1 − β) + β(1 − α)]M . Using (TI) and the construction of f, g we

obtain

Ji (βf + (1 − β)g + [α(1 − β) + β(1 − α)]M) =

Ji (βf + (1 − β)g) + [α(1 − β) + β(1 − α)]M <

βJi(f) + (1 − β)Ji(g) + [α(1 − β) + β(1 − α)]M =

βJi(αf + (1 − α)(f + M)) + (1 − β)Ji(α(g + M) + (1 − α)g ≤

max{Ji(αf + (1 − α)(f + M)), Ji(α(g + M) + (1 − α)g)}.

It follows that, no matter what the strategy of player j is, a (strictly) best response for

player i is a pure strategy. But if i plays a pure strategy then the best response for player

j is also a pure strategy. Since it is easy to see that there is no pure strategy equilibrium

in G the proof is complete.

¤

Our next aim is to obtain a similar result to that of Theorem 2 when (TI) is replaced

by (H). However, to achieve this we must restrict attention to the class of games G ∈ Γ

with non–negative payoffs and, correspondingly, to functionals with9
R

m
+ as a domain.

Theorem 3. Assume that each Ji is defined only over R
m
+ and consider the class of all

games in Γ with non–negative payoffs. If (H) is satisfied then (CON) is equivalent to

(EE).

9
R

m
+ is the set of all non–negative utility vectors.
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Proof. We only prove that (EE) implies (CON). Assume that Ji is not concave. Then it

is possible to find f, g like in the proof of Theorem 2. Moreover, by C, we can find such

f, g in the interior of R
m
+ .

We now construct a game G with non–negative payoffs and with no equilibrium. The

information partitions and the action sets are the same as in the proof of Theorem 2.

The payoffs are given in the diagram below.

B

T

L R

g(s), 0

0, 1

0, 1

f(s), 0

Notice that (H) and (M) when combined imply that each Ji is strictly positive on

the interior of R
m
+ . Since f(s), g(s) > 0 for every s, Ji(f), Ji(g) > 0. This implies that

there is no pure equilibrium. (H) and the construction of f, g imply that f, g are linearly

independent. Thus, if player j plays the strategy αL + (1 − α)R for some α ∈ [0, 1],

player i’s induced vector when he plays T is different from the induced vector when he

plays B.

If i plays βT + (1 − β)B (where 0 < β < 1) then the induced vector for i is given by

α(1 − β)g + β(1 − α)f . Defining γ = α(1 − β) + β(1 − α) > 0 and using (H) and the

construction of f, g we get

Ji (α(1 − β)g + β(1 − α)f) = γJi

(

α(1 − β)

γ
g +

β(1 − α)

γ
f

)

<

α(1 − β)Ji(g) + β(1 − α)Ji(f) = (1 − β)Ji(αg) + βJi((1 − α)f) ≤

max {Ji(αg), Ji((1 − α)f)} .

It follows that, no matter what is the strategy of player j, a (strictly) best response for

player i is a pure strategy. But if i plays a pure strategy then the best response for player

j is also a pure strategy. This implies that G has no ex–ante J–equilibrium.

¤

Remark 1. Theorem 3 is not true without the restriction of the domain to the non–

negative orthant. Indeed, let m = 2 and Ji(f) = max{f(s1) + f(s2), 2(f(s1) + f(s2))}

for every i ∈ N . Then each Ji is homogenous, (strictly) monotone, continuous, quasi–

concave but not concave. Thus, (EE) is satisfied while (CON) is not.

Remark 2. Theorems 2 and 3 show that, under the additional assumptions of (TI) or

(H), concavity is equivalent to the seemingly weaker condition of quasi–concavity. For the
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case of homogeneity, a direct proof of this fact is already well known (see Rader [25], page

98 Theorem 6, and Shephard [28], page 31 Proposition 7). For the case of translation

invariance, we are not aware of a similar result in the literature.

3.3. Interim equilibrium. While our main results are stated for the ex–ante version of

the equilibrium, it is possible to obtain similar results in the interim version as well. In

order to define interim equilibrium we first need to revise the notion of an environment.

An interim environment is a tuple
(

S,N, J = {JF
i }i∈N,F⊆S

)

. The first two components

S and N are as described in Section 2. Given an event F ⊆ S, an F–vector is any

function from F to R. Once F is fixed we identify the space of all F–vectors with the

linear space R
|F |. For each i ∈ N and F ⊆ S, the functional JF

i : R
|F | → R represents

player i’s preferences over F–vectors.

Given such an environment, a game with incomplete information, a strategy, a strategy

profile and an induced vector (over S) are defined as in Section 2. Given a vector f over

S and an event F ⊆ S, we denote by f |F the F–vector which is the restriction of f to

F .

Definition 2. Let G ∈ Γ. A strategy profile σ ∈ Σ is an interim J–equilibrium of G if,

for every i ∈ N , every F ∈ Fi, and for every σ′
i ∈ Σi, JF

i (f
(σ)
i |F ) ≥ JF

i (f
(σ′

i
,σ−i)

i |F ).

Note that when considering the notion of interim environment, the analogous definition

of an ex–ante J–equilibrium in a game G is a strategy profile σ, such that for every i ∈ N

and for every σ′
i ∈ Σi, JS

i (f
(σ)
i ) ≥ JS

i (f
(σ′

i
,σ−i)

i ). In this revised model, the properties

presented in Section 3 can be reformulated as possible properties of JS
i (instead of Ji),

resulting with the analogs to Theorems 1, 2 and 3.

In order to characterize interim J–equilibrium existence, we need to adapt the prop-

erties presented in Section 3 to suit the interim environment. By “adapt” we mean that

each relevant property holds for every JF
i . Once this is done, one can prove analogue

results to Theorems 1, 2 and 3. Since such an exercise provides no additional insights

we omit the details.

4. Further aspects of equilibrium existence
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4.1. Special functional forms. In this section we apply the results of Section 3 to a va-

riety10 of families of representing functionals, when considered in a strategic environment

as discussed above.

Gilboa and Schmeidler [14] axiomatize preference orders that are determined by the

minimal expected–utility w.r.t. some convex and compact set of priors. Given a set of

probability measures Pi ⊆ ∆(S), we say that Ji represents maxmin preferences w.r.t.

Pi if11 Ji(f) = minp∈Pi
p · f for every vector f . The following is a consequence of the

Gilboa–Schmeidler axiomatization (see in particular Lemma 3.5 in [14]) when combined

with Theorem 3 (or with Theorem 2). It can be seen as an alternative characterization

of maxmin preferences in a multi–player environment.

Corollary 1. The functionals {Ji}i∈N satisfy (H), (M), (TI) and (EE) if and only if

there is a family of sets {Pi}i∈N , where Pi ⊆ ∆(S) is convex and compact for each i,

such that Ji represents maxmin preferences w.r.t. Pi. Moreover, each set Pi is uniquely

determined by Ji.

Maccheroni et al. [21] axiomatize variational preferences, which generalize the model

of maxmin preferences. The functional form of a variational preference is Ji(f) =

minp∈∆(S)

(

p · f + c(p)
)

, where c : ∆(S) → [0,∞] is a grounded12 convex and lower–

semicontinuous functional. A consequence of the axiomatization of Maccheroni et al.

along with Theorem 2 is the following.

Corollary 2. The functionals {Ji}i∈N satisfy (M), (TI) and (EE) if and only if every

Ji represents a variational preference.

Remark 3. Similar functional forms to the maxmin and variational preferences appear

in the risk assessment literature (see Artzner et al. [1], Delbaen [8], and Föllmer and

Schied [12]).

Choquet integral preferences (Schmeidler [27]) are often used as an alternative to

expected–utility maximization. It is well known that the Choquet integral w.r.t. any

10The representing functionals discussed below are merely a partial list of those appearing in the

literature of axiomatic decision theory.
11If p ∈ ∆(S) and f ∈ R

m is a vector then p · f =
∫

S
fdp denotes the expected value of f according

to the probability measure p.
12A function c is grounded if its infimum over the domain is zero.
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capacity13 v satisfies the (C), (M), (H) and (TI) properties. If v is convex (v(E)+v(F ) ≤

v(E ∪ F ) + v(E ∩ F ) for every two events E,F ⊆ S) then the Choquet integral w.r.t.

v is a concave functional. Moreover, it coincides with the maxmin functional w.r.t. the

core14 of v.

However, if v is not convex then the Choquet integral w.r.t. v is not a concave func-

tional. In this case, Theorem 2 implies that, if one of the players has Choquet preferences

w.r.t. a non–convex capacity, then there is a game G with no equilibrium. Note that

in the example presented in the introduction both players’ preferences are represented

by the Choquet integral w.r.t. the capacity that assigns 1 to every non–empty set of

states. This capacity is non–convex, and indeed, the proposed game has no equilibrium.

This example can be easily generalized to provide a constructive proof of ex–ante equi-

librium non–existence whenever one of the players has Choquet preferences w.r.t. some

non–convex capacity.

4.2. Symmetry and common preferences. A natural question in our multi–agent en-

vironment is what characterizes the case where different players have similar preferences?

We say that agents i and j have common preferences if for every f, g, Ji(f) ≥ Ji(g) if

and only if Jj(f) ≥ Jj(g). What seems to be a natural candidate for the characterization

of common preferences is existence of symmetric equilibria in symmetric games.

Fix two players i, j ∈ N . For a given action profile a in some game G ∈ Γ with

Ai = Aj, we denote aij the action profile in which players i and j exchange their actions

while any other player plays the same as in a. That is, a
ij
i = aj, a

ij
j = ai and a

ij
k = ak for

every k ∈ N \ {i, j}. A game G ∈ Γ is ij–symmetric if Fi = Fj, Ai = Aj, and for every

s ∈ S and a ∈ A, ui(s, a) = uj(s, a
ij) and uk(s, a) = uk(s, a

ij) for every player k 6= i, j.

We now state an additional property.

ij–Symmetric Equilibrium (ij -SE): If G is ij–symmetric then there is an ex–ante

J–equilibrium σ in G such that σi = σj.

When players i and j have common preferences it is a standard exercise to show that

(ij − SE) is satisfied. The question is therefore whether the converse holds as well.

13A capacity is a set function v : 2S → R satisfying v(∅) = 0, v(S) = 1 and v(E) ≤ v(F ) whenever

E ⊆ F .
14The core of a capacity v is the set of probability measures p over S satisfying p(E) ≥ v(E) for every

event E.
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In consumer theory, Mas–Collel [22] studies the relation between common preferences

over consumption bundles and common demand correspondences. He assumes standard

continuity, monotonicity and quasi–concavity of preferences, and shows that under an

additional mild lipschitzian condition, preferences are the same if and only if they induce

the same demand correspondences.

Assuming Mas–Collel’s lipschitz condition, if the preferences of players i and j are

not common, then the induced demand functions are different. It means that we can

find a budget set such that the players will choose differently from this set. Thus,

when preferences satisfying the lipschitzian condition are distinct, one can construct a

game where the pure actions of each of the two players give the extreme points of this

budget set (independently of the actions of the other player). In this case there will be

no symmetric equilibrium. Therefore, under the mild lipschitzian condition, (ij − SE)

implies common preferences.

Mas-Collel further constructs an example, where two distinct preferences, not having

the lipschitzian property, induce the same demand correspondences. This example im-

plies that there is no hope to deal with the general case using the previous method of

proof, and one should take into account more general games. We leave this issue open.

5. Conclusion

The paper extends the definitions of Nash and Bayes equilibria in games with incom-

plete information to the case where players perceived ambiguity is not necessarily through

a unique prior. Rather, player’s preferences are represented by general functionals over

state–contingent utility vectors. The main result of this paper shows that such equilibria

exist in every game if and only if all players are averse to uncertainty; that is, all pref-

erences representing functionals are quasi–concave. With the additional properties of

homogeneity or translation invariance, equilibrium existence in every game is equivalent

to concavity of the functionals. While these results are not surprising from a mathe-

matical point of view, they provide an interesting link between the attitude of agents

to uncertainty over the state of nature and the existence of self–enforcing agreements in

interactive situations.

In our view, the more interesting implication is that equilibrium existence requires

uncertainty aversion. While there are many works that deal with sufficient conditions

(on preferences) for equilibrium existence, we are not aware of any work that asked the



UNCERTAINTY AVERSION AND EQUILIBRIUM EXISTENCE 17

converse question: What can be learned on preferences from the existence of equilib-

rium? Our results show that equilibrium existence may have important and meaningful

implications on preferences.
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