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Abstract

Currently, the commonly employed instrumental variables strategy relies on the knife-
edge assumption of perfect exogeneity for valid inference. To make reliable inferences on
the structural parameters under violations of exogeneity one must know the true correlation
between the structural error and the instruments. The main innovation in this paper is
to identify an appropriate test in this context: a joint null hypothesis of the structural
parameters with the correlation between the instruments and the structural error term.
We introduce a new endogeneity accounted test by combining the structural parameter
inference while correcting the bias associated with non-exogeneity of the instrument. To
address inference under violations of exogeneity, significant contributions have been made
in the recent literature by assuming some degree of non-exogeneity. A key advantage of
our approach over that of the previous literature is that we do not need to make any
assumptions about the degree of violation of exogeneity either as possible values or prior
distributions. In particular, our method is not a form of sensitivity analysis. Since our
test statistic is continuous and monotonic in correlation, one can conduct inference for
the structural parameters by a simple grid search over correlation values. We can make
accurate inferences on the structural parameters because of a feature of the grid search
over correlation values. One can also build joint confidence intervals for the structural
parameters and the correlation parameter by inverting the test statistic. In the inversion,
the null values of these parameters are used. We also propose a new way of testing exclusion
restrictions, even in the just identified case.

1 Introduction

Economists frequently apply instrumental variable methods to draw inferences about whether

or not a variable influences an economic outcome. For example, labor economists employ varied

∗Caner: North Carolina State University, Department of Economics, 4168 Nelson Hall, Raleigh, NC 27518
(email: mcaner@ncsu.edu). Morrill: North Carolina State University, Department of Economics, 4144 Nelson
Hall, Raleigh, NC 27695-8110 (email: melinda morrill@ncsu.edu). We thank Daron Acemoglu for his comments
and encouragement. We also thank Josh Angrist, Saraswata Chaudhuri, Eric Renault, Atsushi Inoue and seminar
participants at UNC Chapel Hill and Emory for insightful comments and suggestions. We also thank Tengying
Weng who provided research assistance.



instruments, including quarter and year of birth (Angrist and Krueger, 1991), tuition and dis-

tance to nearest college (Kane and Rouse, 1995, Card, 1993), attending reform school (Meghir

and Palene, 2005) and birth year interacted with school buildings in region of birth (Dufflo,

2001) to measure the extent to which a person’s education influences her salary and wages. In a

distinct but related literature that combines macro-economics, political economy and compar-

ative institutions, economists employ instruments including early settler mortality (Acemoglu,

Johnson and Robinson, 2001), ethnic capital (Hall and Jones, 1999), ethno-linguistic fraction-

alization (Mauro, 1995) and legal families (Djankov et al., 2003, and Acemoglu and Johnson,

2006) to determine whether or not the quality of institutions influences long term growth and

investment.

Instrumental variable (IV) methods are used to identify causal relationships by isolating

changes in an endogenous variable (or variables) that are unrelated to potential unobserved

factors. To identify a causal relationship, instruments must be exogenous; that is, they are not

related to the outcome variable after controlling for relevant explanatory variables. For example,

early settler mortality is exogenous if it is only related to long term growth through its impact on

institutions, after controlling for relevant variables such as latitude. This requirement is strong

because it means that settler mortality can only influence long term growth indirectly through

the quality of contemporary institutions. The exogeneity of early settler mortality, however, is

controversial; for example, as noted by Glaeser et al. (2004), early settler mortality could also

influence long term growth through its impact on the unobservable human capital of the early

settlers. Whether or not the exclusion restriction is perfectly satisfied is debatable for many

(and perhaps most) applications of instrumental variables.

Applied econometricians use a simple t-ratio test statistic to infer whether there is causality

among the variables analyzed using IV methods. However, the t-test gives unreliable results even

when there is a slight violation of exogeneity, as established recently in a paper by Berkowitz,

Caner and Fang (2008). As shown in Table 1, the standard t-ratio has undesirable properties

when the instrument is endogenous. The table shows the actual size of the test when the single

instrument is endogenous. Larger sample sizes exacerbate the problem. For example, with the

true correlation of 0.1 at a sample size of n = 100 the size of the test is 19.9%, while if the

sample size increases to n = 1000, the size is 88.8%. This is a massive size distortion.

In this paper, we propose a new test that modifies the t-test in a very simple way, yet

is robust to instrument validity concerns. The main innovation is the recognition that the
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appropriate test is actually a joint test of the structural parameters with the correlation between

the structural error and the instruments. Since inferences on the structural parameters depend

on this correlation, a joint null is needed. The idea of the test is to subtract the drift from

the standard t statistic. The drift depends on the value of the true correlation between the

structural error and the instrument. Since the true correlation is between -1 and 1 we can do a

grid search over all possible values of the correlation.

In one sense, we propose a test that combines structural parameter inference with a test of

violations of exogeneity. The test statistic here is useful for the just identified case as well as the

over-identified case. Furthermore, our test can be inverted to get valid confidence intervals for

the structural parameters (β0) and the correlation parameter (ρ0) by doing a joint grid search.

We record the values of the test where the null is not rejected as being in the joint confidence

interval. We should remind readers that we are not conditioning on one parameter to get

the other’s confidence interval. The joint confidence interval can be unbounded with positive

probability, so this is a valid confidence interval. The test statistic we derive has standard normal

distribution when we have only one endogenous regressor. It has χ2 limit when the number of

endogenous regressors are larger than one. So the test is asymptotically pivotal regardless of

exogeneity violations. In our most general case, the test statistic takes the minimal value of zero

when evaluated at the two-stage least squares estimate of the structural parameter and zero for

the correlation parameter. Therefore, the confidence intervals are never empty and contain the

two-stage least squares estimate and the zero correlation parameter at every significance level.

One of the key issues is the joint nature of the test. One may be concerned that this would

impede inference on the structural parameters alone. In other words, the concern is that one

could reject the true null due to usage of the wrong correlation values. In fact, this is not a

problem in our context. Since the test statistic is continuous and monotonic in correlation, we

will eventually find the true correlation and can conduct inference at that point. If the joint

null is true, then the test statistic value will be below the critical values at the true correlation.

In that case we do not reject the null and have correct inference. If the alternative is true, our

test rejects the false null regardless of correlation values, as does the standard t-test. Therefore

even though the joint null may seem to be limiting in interpreting rejection, we can still make

accurate inferences on the structural parameters.

We also introduce a new exclusion restriction test. This test is valid even when there are

only the same number of instruments as endogenous regressors. The joint null in that case is

3



no correlation and the structural parameters taking certain values. By testing several possible

grid values of the structural parameter, we have several test statistics recorded. If every test

rejects the null of no correlation with the structural parameter null value that is tested, then the

instrument cannot be exogenous. Simulations show that this has good finite sample properties

and can be used in the applied work.

We present two empirical examples that demonstrate the methods we propose. In the first,

Acemoglu and Johnson (2005) measure the effects of institutions on country-level gross do-

mestic product (GDP) using settler mortality levels as an instrument for the development of

institutions. The exclusion restriction requires that early settler mortality rates only affect

GDP through the development of institutions. According to the empirical exercise described in

Section 5, we find a region of non-rejection that is clearly bounded away from the structural

parameter equaling zero. This is a very powerful result because it demonstrates that we can still

infer that the coefficient on institutions is positive and statistically significant. Since a perfectly

exogenous instrument is very difficult (or perhaps impossible) to find, our test allows researchers

to understand the regions where the joint null fails to reject, yielding a joint confidence interval

for the correlation and structural parameters.

In addition to the Acemoglu and Johnson example, we demonstrate this method using an

example from labor economics. In Card (1995), the author argues that proximity to college

can be used as an instrument for college attendance when calculating the returns to schooling

on wages. One potential violation of exogeneity is that proximity to college is correlated with

other unobserved factors that are positively associated with high earnings, such as having well-

educated parents or having a higher quality public primary and secondary education. Although

the original estimates indicated statistical significance, we demonstrate that in this case the

confidence interval for the structural parameter is unbounded in both directions. Section 5

includes a detailed discussion of the interpretation and implication of these results.

Previous to the literature cited below, research using the instrumental variables strategy has

been conducted on the unreasonable assumption that perfect exogeneity is satisfied. Recent

work in applied econometrics has made large strides by questioning the validity of the perfect

exogeneity assumption and demonstrating the serious implications of violations of this assump-

tion. Berkowitz, Caner and Fang (2009) analyze the Anderson-Rubin test with a new resampling

scheme when there is violation of exogeneity. The main assumption in that paper is a violation

of exogeneity, but this is local to zero. In large samples perfect exogeneity is assumed. In finite

4



samples, the block size choice is important in their resampling scheme.

Other related and important papers include Nevo and Rosen (2009), where they provide

analytical bounds on structural parameters via set identification. Ashley (2009) provides a

sensitivity analysis for the instrumental variable regression based on the covariance between

the instruments and the structural error. That study shows clearly that correlation plays an

important role in inference for structural parameters. He modifies the structural equation so

that the new error is orthogonal to the existing instrument. Then he derives the limit for this

new two stage least squares estimator. A very recent paper by Guggenberger (2009) considers

the several variants of subsampling to gather information about local violation of exogeneity in

identification robust tests. He shows that even though the Anderson-Rubin test is oversized,

compared to other identification robust test the Anderson-Rubin test performs well. Caner

(2009) also considers a similar problem, and shows that Anderson-Rubin test is robust to local

violations of exogeneity in the many moments framework. In this paper we do not analyze

the Anderson-Rubin test. Rather, we focus on the standard t-test, upon which almost all

of the applied literature relies. In the future, we plan to extend our analysis to incorporate

modifications to the Anderson-Rubin test.

For Bayesian analysis on the issue of violations of exogeneity in instrumental variables, two

good sources are by Conley, Hansen, Rossi (2007) and Kray (2008). Conley, Hansen, and Rossi

(2007) consider a three way attack on the problem of violation of exogeneity. The first attempt is

to assume a support for the parameter that controls the violation and then use that assumption

to build confidence intervals for the structural parameters. This proves to be conservative. The

second approach they take is to put a prior on the parameter for the violation and then build

confidence intervals for the structural parameters. The third line of attack is fully Bayesian and

puts a prior on parameter controlling the violation of exogeneity but allows this parameter to

be independent from the structural parameters priors. Then a variant of that is to assume the

priors are dependent on each other.

The method presented in this paper take an entirely new approach to the problem of non-

exogeneity in instrumental variables estimation. To our best knowledge, our paper is the first to

analyze the correlation parameter and the structural parameters jointly. The previous literature

conditioned on the correlation parameter in one way and then conducted inference on structural

parameters. That approach is valuable, but it assumes we have some knowledge of the degree of

violation of exogeneity. In this paper we build a joint test for structural parameters and the cor-
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relation parameter. This changes the paradigm of inference in instrumental variable regression

and provides a framework that is tractable and straightforward to implement empirically.

The remaining sections of this paper are as follows. Section 2 provides a theoretical basis for

the empirical technique. In Section 3, we present an algorithm that suggests a new exogeneity

accounted test that reflects the joint nature of the null hypothesis. Section 4 presents simulation

results which justify the practicality and efficiency of our estimates. Section 5 presents the

two examples of the application of this technique in empirical research. Section 6 provides a

discussion and concludes. The proofs are included in Appendix A, and the Stata code used to

implement the test statistic is included in Appendix B.

2 The Model and Assumptions

We consider the following linear simultaneous equations model:

y = Xβ0 + u, (1)

X = Zπ0 + V, (2)

where we refer to (1) as the structural equation and (2) as the first stage equation. Here, X

represents n × k matrix, Xi is a k × 1 vector of endogenous variables, and Z is n × l matrix.

Below, Zi is l × 1 vector of instruments, l ≥ k. Also π0 is of full column rank k. The errors

ui, Vij, i = 1, · · · , n, j = 1, · · · , k are correlated. Control variables may be added to the system.

If this is the case, one can simply project them out and the analysis below follows. The variance

matrix EViV
′

i = ΣV V < ∞, and nonsingular. Eu2

i = σ2

u < ∞, and Eui = EVi = 0. Let β̂

represent the two-stage least squares (2SLS) estimate of β0, and π̂ is the least squares (LS)

estimate of π0.

Assumption 1. (i). (Violation of Exogeneity)

EZiui = C,

where C is l × 1 vector with C = (C1, · · · , Cm, · · · , Cl)
′, and each Cm 6= 0 and is finite for

m = 1, 2, · · · , l.
(ii). We also have

EZiV
′

i = 0.
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(iii). EZiX
′

i has full column rank.

Assumption 2. The following limits hold jointly when the sample size n converges to

infinity:

(i).
(
n−1

n∑

i=1

u2

i , n
−1

n∑

i=1

Viui, n
−1

n∑

i=1

ViV
′

i

)
p→ (σ2

u, ΣV u, ΣV V ),

where σ2

u, ΣV u, ΣV V are scalar, k × 1, and k × k, respectively. The scalar is positive, the vector

is nonzero and finite, and the matrix is positive definite and finite.

(ii). We have the following law of large numbers

Q̂zz = n−1

n∑

i=1

ZiZ
′

i

p→ Qzz,

where Qzz is a positive definite and finite k × k matrix.

(iii). We have the following central limit theorem
(
n−1/2

n∑

i=1

(Ziui − EZiui), n
−1/2

n∑

i=1

ZiV
′

i

)
d→ (Ψzu, ΨZV ),




ΨZu

ΨZV


 ≡ N [0, Σ ⊗ Qzz],

and

Σ =




σ2

u Σ′

V u

ΣV u ΣV V


 .

Note that Assumption 1i is the main issue of this paper. The perfect exogeneity that is used

instrumental variable analysis is a knife-edge, unrealistic assumption for applied work. Even

though the researcher is careful in selecting the “perfectly exogenous” instrument there can still

be unavoidable violations of exogeneity. There will be more discussion about that assumption

in the next section.

Another possibility is the case of near exogeneity (a local to zero violation). This is analyzed

in Berkowitz, Caner and Fang (2008) and it is shown that the t-test is affected and inference

becomes unreliable. But there is no solution that is proposed in that paper. In this paper, with

a more realistic assumption, we propose a solution to inference under Assumption 1.

Assumption 2 is basically law of large numbers and a central limit theorem. These hold

under primitive conditions, such as moment conditions on the instruments and the errors, for

these see Davidson (1994).
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3 Test Statistics

In this section we discuss and analyze Assumption 1i and based on that introduce three cases

of interest in applied work. First we cover the most widely used case of a just identified system

with one endogenous regressor and one instrument (k = l = 1). Then in our second case we

consider one endogenous variable with more than one instrument (k = 1, l ≥ k). The last case

involves the general case where we may have more than one endogenous variable and more than

one instrument (k > 1, l ≥ k).

3.1 The Just Identified Case with One Endogenous Regressor

Since we do not know the true correlation between the instrument and the structural error, and

this affects the inference for the structural parameters, we need a joint test of the structural

parameter and the correlation between the structural error (second stage error) and the instru-

ment (Zi, ui). The joint null is H0 : β = β0, ρ = ρ0, where ρ represents the correlation between

the structural error and the instrument.

We start with two issues that are related to the standard t statistic. First, the unobserved

covariance between the instruments and the structural error can be converted to a measure

involving correlation. Because the correlation is standardized so that it is bounded by -1 and

+1, we can conduct a finite grid search over potential correlation values. In that respect, assume

cov(Zi, ui) = C for all i = 1, · · · , n, where C is scalar since k = l = 1.

Notice that:

corr(Zi, ui) =
cov(Zi, ui)

σu

√
var(Zi)

.

Then,

C = σuσzzρ0, (3)

where ρ0 denotes the true unknown correlation, and varZi = σ2

zz for all i = 1, · · · , n.

The second issue is that in the regular t-test, the estimator σ̂2

u is inconsistent, which is shown

in (24) below. When we impose from the null β = β0, we have the following consistent estimate:

σ̃2

u = n−1

n∑

i=1

(yi − Xiβ0)
2 p→ Eu2

i = σ2

u.
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We propose a test statistic evaluated at true correlation (ρ0) and structural parameter (β0),

denoted as NT (β0, ρ0):

NT (β0, ρ0) =

√
n(β̂ − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
−

√
nsgn(π̂)f(z)ρ0, (4)

where sgn(π̂) is the sign of the least squares estimate π̂ in (2) for the scalar case, and

f(z) =

√√√√ σ̂2
zz

σ̂2
zz + Z̄2

,

where σ̂2

zz =
∑n

i=1
(Zi − Z̄)2/n, Z̄ =

∑n
i=1

Zi/n.

Note that we replace the unknown C by two components. First we use the consistent

estimators σ̃u and σ̂zz. Then for the correlation parameter we conduct a grid search, since

we cannot estimate it. Therefore, if we know the true correlation (i.e., ρ0), then:

Ĉ = σ̃uσ̂zzρ0

p→ C = σuσzzρ0. (5)

Of course if we do not know ρ0, this will not be consistent. In the test statistics, theorems

and the discussions below, (5) will be a good guide. An important point is to understand the

relation between ρ0 and β0. To that effect, see that by Assumption 1i and (3)

EZiui = C

EZi(yi − Xiβ0) = C

EZiyi − (EZiXi)β0 = σuσzzρo. (6)

So clearly β0, ρ0 are jointly unidentified. This also shows that β0, ρ0 are linked. We also discuss

how to build joint confidence intervals using (6) and test statistic here in subsection 3.5.

The key question is how do we obtain (4)? Why it is built in the way it is? This will be

answered rigorously in the proof of Theorem 1, but here we provide a brief sketch. Lemma A.1i

shows that bias in two-stage least squares estimate by using Assumption 1 is

(π2

0
Qzz)

−1π0C,

when we have k = l = 1. If we know C, we can then subtract the least squares estimate of the

bias from β̂ − β0 and setup the test. So set the test statistic at true C as

√
n[β̂ − β0 − (π̂2Q̂zz)

−1π̂C]

σ̃u[π̂2Q̂zz]−1/2
.
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Using (3) (5)

NT (β0, ρ0) =

√
n(β̂ − β0)

σ̃u|π̂|−1Q̂
−1/2

zz

−
√

nsgn(π̂)f(z)ρ0. (7)

Under the alternative of ρ = ρ1 6= ρ0, NT statistic is evaluated at the wrong correlation

between the instrument and the structural error, ρ1. We denote the test statistic in that case

as NT (β0, ρ1) to differentiate two cases of ρ0 (true correlation) and ρ1 (the wrong correlation

choice). In the following Theorem, we consider the case of k = 1 and l = k which is an empirically

relevant case in most applied research. We analyze the null distribution in Theorem 1i, then in

Theorem 1ii, we consider the limit of the modified test when we use the wrong correlation value.

Theorem 1. Under Assumptions 1-2, with (3),when k = 1, l = k,

(i). Under the null of H0 : β = β0, ρ = ρ0,

NT (β0, ρ0)
d→ N(0, 1).

(ii). Under the alternative β = β0, ρ = ρ1,

NT (β0, ρ1) → ∞.

Remarks.

1. Theorem 1 shows that NT (β0, ρ0) converges to a standard normal limit if the true corre-

lation is used (i.e., ρ0) and if β = β0. Otherwise the test diverges to infinity. Since the intention

is to infer structural parameters we try a grid search over correlation values. This theorem can

help applied researchers in their efforts for inference on structural parameters. Basically, in large

samples if the null is true, then at the true correlation level we do not reject the null and all the

other values of the correlation we reject the null hypotheses. We can have a very fine grid, and

this helps us, as can be seen from Figures 1-2 in simulations.

An important issue in practice is the size distortion of the regular t-test due to the violation

of exogeneity. Our test remedies this problem. The key issue is if the null is true, and H0 : β =

β0, ρ 6= 0, can our test fail to reject the null? First of all, NT statistic at certain correlation
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values ρ 6= ρ0 can reject the true null. But since we are doing a grid search over correlation

values at ρ = ρ0 6= 0, the test will not reject the null and have the correct inference on the

structural parameters which sets β = β0. The details of the grid over correlation values and

empirics are shown further in this Remark, and Remark 2 below.

To be specific about the implementation of the test, we start with a reasonable value of the

correlation between the instrument and the structural error. For example, we can start from

-0.3. So at ρ = −0.3 if the absolute value of NT (β0, ρ0) is larger than 1.96, then we do reject

the null, and record this −0.3 as not belonging to true correlation. We repeat this with a grid

step of 0.01 in the positive direction. So say that at ρ = −0.1, the absolute value of NT (β0, ρ0)

is less than 1.96, we record the correlation of -0.1 as belonging to true correlation set. Then

we continue this process for other correlation values until maybe a reasonable upper bound is

reached in correlation values. More about the details of this grid search is examined in Remark

2 below. The size and power issues will be discussed at length in the Remarks below.

2. What if we miss the true correlation in the grid search when the null hypotheses is true?

We know that NT (β0, ρ1) → ∞, and only if we know the true correlation ρ0 we do not reject

the null if it is true. We can pinpoint where the true correlation lies by doing the grid search

over the various correlation values and reporting the ones which fail to reject H0.

Observe that the NT test is linear, continuous, and monotonic in the value of the correlation,

which is clear from (4). In other words, when we start the grid search from -1, and go toward

1, the NT test will either decrease or increase depending on −sgn(π̂). This is good news if we

miss the true correlation in our grid search when the null is true.

To illustrate this point assume that the test is -1.96 at correlation 0, and 1.96 at correlation

0.1. Since the test is monotonic and continuous in correlation (ρ), the NT statistic must be

equal to each value between -1.96 and 1.96 for some correlation, because of the Intermediate

Value Theorem. Therefore, in this example we know that the NT statistics that are evaluated

at correlations between 0.0 and 0.1 are less than the 5% critical value, hence the null will not

be rejected. So we can get the correct inference, and at the same time since the null is true, we

can understand where the true correlation lies (i.e., in this example between 0 and 0.1). The

power issue is analyzed in Remarks 6 and 7 below.

3. An important issue here is if the difference between the two-stage least squares estimate

and β0 is positive and if the sign of the true correlation is the reverse of the sign of the first stage

estimate, there is no need to be concerned about inference if we reject the null with regular t
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test, since the NT will be much larger (see that standard errors will be close since the bias is

small). The same issue is true if the difference between the two-stage least squares estimate and

β0 is negative and the sign of the correlation has the same sign of the first stage estimate then

if we reject the null with regular t, we will reject with NT as well. So violation of exogeneity

will not change the results of the inference in this case as long as σ̂u is close to σ̃u.

4. Another important point is the local analysis. Assume that β = β0 is true, and consider

what will happen to the test statistic if we use n−1/2 neighborhood of ρ0: ρ0 + d/n1/2, where

d 6= 0. In other words, we make a minor mistake in the correlation choice. To state the case

rigorously, we call this the local NT test (NTl(β0, ρ0))

NTl(β0, ρ0) =

√
n(β̂ − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
−
√

nsgn(π̂)f(z)(ρ0 + d/n1/2)

= NT (β0, ρ0) − sgn(π̂)f(z)d

d→ N(D, 1),

where we use (12), and D = −sgn(π̂)f(z)d.

So instead of N(0, 1) distribution as in NT (β0, ρ0) (where NT (β0, ρ0) assumes that we know

the true correlation level) the true distribution is again normal with variance 1, but shifted to

left or right. So this shows that there is local power when we choose the wrong correlation.

Then the question is: can we conduct inference in finite samples with such a minor violation?

We answer this question in this remark and Remark 6 below. If β = β0, then two things can

happen. First, since we use wrong critical values (i.e., N (0,1) and the truth is N(D, 1)), then

NTl(β0, ρ0) value may be not so large (compared with NT (β0, ρ0)) and still we do not reject the

null hypothesis of H0 : β = β0, ρ = ρ0. So this is recorded as non rejection in our grid search

of correlation values. In other words this may enlarge the true correlation set, and we fail to

reject the null. But this is good in the sense that the truth is β = β0, and our test still shows

that result.

The second possibility is NTl(β0, ρ0) is much larger than the N(0, 1) critical values and leads

us to reject the null at that specific correlation level (i.e., at ρ0 + d/n1/2). However, given

Remark (2) of Theorem 1, we will detect the true correlation because of monotonicity and the

intermediate value theorem, so this problem will not be relevant for inference on β = β0.

5. If the alternative is true (i.e., β1 is the true value and β0 6= β1), then clearly NT (β1, ρ0) →
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∞(when ρ = ρ0). There is power against the fixed alternatives for β at true value of the

correlation (i.e., ρ0).

As an additional fact, when H0 is false, and the true value of β is β1 and if we impose β0,

through Assumptions 1 and 2,

σ̃2

u − σ2

u

p→ a < ∞,

where a 6= 0,

a = (β1 − β0)
2(π2

0
Qzz + ΣV V ) − 2(β1 − β0)(π0C + ΣuV ).

Under the alternative the σ̃2

u is not consistent; however this does not affect the consistency of

the NT statistic when we have fixed alternatives for β.

We now conduct another local power analysis. Set β1 = β0 + c/n1/2, c 6= 0, note that then

a → 0, so σ̃2

u

p→ σ2

u.

The NT test at the true correlation

√
n(β̂ − β0)

σ̃u|π̂|−1Q̂−1
zz

−
√

nsgn(π̂)f(z)ρ0 −
√

n(β1 − β0)

σ̃u|π̂|−1Q̂−1
zz

d→ N(0, 1) − c

σu|π0|−1Q−1
zz

≡ N(c̃, 1),

where c̃ = −c|π0|Qzz/σu.

So we have local power in NT test against local alternatives to β0. This also shows through

c̃ that with strong instruments, the power will be large. Note that with strong instruments,

c̃ (a shift in the mean compared with standard normal) will be large and it will be easy to

differentiate the alternative from the null.

6. Next we consider NT (β1, ρ1) and analyze whether it is plausible to have a power loss.

Below we show that this is probable at only implausibly large correlation values when we select

strong instruments. The simulations also confirm this.

NT (β1, ρ1) =

√
n(β̂ − β1)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
−

√
nsgn(π̂)f(z)ρ1

=

√
n(β̂ − β0) −

√
n(β1 − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
−
√

nsgn(π̂)f(z)ρ0 −
√

nsgn(π̂)f(z)(ρ1 − ρ0).
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It is possible then that
√

n(β1 − β0)

σ̃u[|π̂|−1Q̂
−1/2

zz ]
∼=

√
nsgn(π̂)f(z)(ρ1 − ρ0),

where these two terms may be equal to each other and cancel each other in the test statistic.

Then NT (β1, ρ1) will not diverge to infinity but converge to a normal distribution. This may

result in failure to reject the null. Now we show that with strong instruments, this issue may

occur at only implausibly large correlation values. By analyzing the left hand side of the above,

and using Estimator of Concentration Parameter= CP : nπ̂2Q̂zz/σ̃
2

u we have that:

√
CP (β1 − β0) ∼=

√
nsgn(π̂)f(z)(ρ1 − ρ0). (8)

So if the concentration parameter is large, then the possible non-rejection of the false null

occurs at correlation values near -1 or +1. These are nearly implausible values in any given

application (given that instruments are selected carefully, not randomly). So the problem can

be avoided with large n or by using strong instruments.

7. Related to Remark 6 and Remark 2 above, we may have a non-rejection (of the null H0)

region at certain correlation values if ρ1 = ρ0 + d/
√

n, and if the alternative hypotheses is true.

This will not be a practical issue as we show. This is related to equation (8) above.

√
CP (β1 − β0) ∼= sgn(π̂)f(z)d. (9)

But this may be avoided with large n or strong instruments, where the left hand and right

hand sides will be far apart in (9).

8. Note that if we test at point β0 = β̂, ρ0 = 0, then NT takes the value of zero and never

rejects the null. We also see that there is local power at that point with nonzero correlation, to

see that

NT (β0 = β̂, ρ) = −
√

nsgn(π̂)f(z)ρ.

So NT can reject the null with moderate to large n. Also the issue of local power when we

impose β0 = β̂ + a/
√

n will be analyzed in the exclusion restriction test below.

From an applied perspective, if we combine the Remarks above, if the null is true we have

a range of correlation values that do not reject the null. Under the alternative, then we may

avoid non-rejection with large samples or strong instruments or both. So in either case with

our method we can conduct inference for structural parameters with correlation values different

than 0. This is a significant improvement on the standard t test that is currently used.
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3.2 The Comparison Between the Regular t and the NT

In the regular t test statistic, we consider H0 : β = β0. In NT we consider the joint null of

H0 : β = β0, ρ = ρ0. The joint null is needed, since inference on β depends on the correlation

between the structural error and the instrument. The analysis applies to the overidentified case,

but to make the comparison easier we demonstrate this using the just identified case. The

standard t test, given (k = l = 1), is:

t =

√
n(β̂ − β0)

σ̂u|π̂|−1Q̂
−1/2

zz

,

where σ̂2

u = n−1
∑n

i=1
(yi − xiβ̂)2.

The NT at the true correlation is:

NT (β0, ρ0) =

√
n(β̂ − β0)

σ̃u|π̂|−1Q̂
−1/2

zz

−
√

nsgn(π̂)f(z)ρ0.

We refer to the test statistic evaluated at (ρ1 6= ρ0) as NT (β0, ρ1). The differences between

the regular and NT are clear from the equations above. First, as discussed above, σ̂u 6= σ̃u,

and they are asymptotically equivalent only in the case of β̂
p→ β0. The second difference is the

subtraction of the drift in the NT. The regular t specifically assumes that ρ0 = 0, the NT does

not assume that. When the null is true, β = β0 and ρ = ρ0, our test will always fail to reject.

On the other hand, if β = β1 6= β0, finding the true correlation is not important, since NT is

consistent at all correlation levels, both diverge to infinity and the test rejects.

Since the regular t test assumes ρ0 = 0, if this is not true then under the null t → ∞. This

is illustrated in the simulation in Table 1. The size distortions with the regular t test are huge,

and one can almost always reject the true null. The situation gets worse with larger sample

sizes. In the NT (β0, ρ0) test, ρ does not have to be equal to zero, the test converges to standard

normal distribution, and the test has excellent size (see Tables 2-4) at ρ0.

Then the next question is, if β = β0, what if there is a mistake in the true correlation choice

in the NT test? In large samples, there are two possibilities, with a large mistake ρ1 6= ρ0, the

NT test (NT (β0, ρ1) in that case) diverges to infinity as shown in Theorem 1ii. If we have a fine

grid search, we can catch the true correlation since NT values with the wrong correlation will

be very high, and with the true correlation the test statistic will be between the critical values

in the standard normal distribution. This point is also discussed in Remark 2 after Theorem 1.

If the correlation is local to ρ0, then the distribution is a normal distribution with drift, so we
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may reject the null or not depending on the magnitude of the drift. In the regular t ratio, if

the true correlation is not 0, but local to some other number, then again the regular t diverges

to infinity. So the regular t rejects β = β0 wrongly all the time. Only if the true correlation

is 0 and we put ρ1 = 0 + d/n1/2, then the regular t has the same distribution as NT. This is

the distribution in Remark 4 after Theorem 1, and Theorem 1 in Berkowitz, Caner, and Fang

(2008).

Next, if the null is true, what can we say about the performance of regular t and the NT in

finite samples? Here we compare them in a simulation. In Table 1, for n = 100, at 5% nominal

size at β0 = 0, regular t rejects the true null 20% at ρ0 = 0.1, and 90% at ρ0 = 0.3. In Table 4,

at β0 = 0, at true ρ0 = 0.1, NT (β0, ρ0) rejects at 5%, and at ρ0 = 0.3 NT rejects at 3%. There

is still a very large difference between two. Even if we make a mistake in the choice of true

correlation, still NT does better. For example, if we choose a correlation of 0 or 0.2, when the

truth is 0.1 the NT rejects the true null at 16-17% compared with 20% rejection of the regular

t. At true correlation of 0.3, if we make a mistake and use correlation of 0.2 or 0.4 in our test,

the NT rejects at 14-15%, where as the regular t has 90% rejection rate of β0 = 0.

Another issue is that if the regular t fails to reject the true null, is that true for the NT as

well? In large samples, regular t test chooses the correct null only when ρ0 = 0, this is true for

NT (β0, ρ0) test as well, as is clear from Theorem 1i. In small samples, with n = 100 and ρ0 = 0,

the size of NT (β0, ρ0) is 4.9% at the nominal 5% level (not shown in Tables). For standard t

test, this is 5.3% as seen in Table 1.

When β = β1 6= β0, both the standard t and the NT are consistent. The NT can have some

power losses in finite samples but the discussion in Remarks 6-7 after Theorem 1 shows that

this can be prevented through a choice of strong instruments. Clearly the performance of the

NT statistic is far superior to the standard t test statistic.

3.3 The Overidentified Case of One Endogenous Regressor

In this case, since k = 1, l ≥ k, we assume that

corr(Zim, ui) =
cov(Zim, ui)

σu

√
var(Zim)

, (10)
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for all m = 1, · · · , l. Using Assumption 1 we can rewrite (10) as, for all i = 1, · · · , n, at the true

correlation

Cm = σu

√
var(Zim)ρ0. (11)

So with (11) we assume two things in addition to the first case analyzed in section 3.1. First,

the instruments are such that cov(Zim, Zip) = 0 for all m 6= p, m = 1, · · · , l, p = 1, · · · , l, i =

1, 2, · · · , n. In other words, the instruments are not correlated with each other. In finite samples

we can handle this through simple projections as discussed in Remark 2, after Theorem 2. The

second assumption in (11) is for all instruments the true correlation between the structural error

and the instrument is the same (ρ0). This is similar to regular instrumental variable estimation,

where the claim is that the correlation between ui and Zim is the same (and 0) for all instruments.

So here we extend this assumption to nonzero correlations. Our main results hold with different

correlations, but then multiple grid searches would be required. For the many instruments case,

this may not be practical. We do not further consider that case here.

Now we construct the test statistic. Note that the former case, (k = l = 1), is a special case

of this more general formulation. The following test can be built using Lemma A.1i. The test

statistic at the true C is:

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̂′C)

σ̃u(π̂′Q̂zzπ̂)−1/2
. (12)

We can replace the infeasible test in (12) with the following by Assumption 1, (11), and

extending (5) to a vector, at true value of the correlation (ρ0),

NT (β0, ρ0) =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̂′[σ̃u

√
̂var(Z1), · · · , σ̃u

√
̂var(Zl)]

′ρ0)

σ̃u(π̂′Q̂zzπ̂)−1/2
,

where σ̃u is the square root of the estimator σ̃2

u, and ̂var(Zm) = 1

n

∑n
i=1

(Zim − Z̄m)2 where

Z̄m = n−1
∑n

i=1
Zim for m = 1, · · · , l. We can further simplify the test above as

NT (β0, ρ0) =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̃ρ0)

σ̃u(π̂′Q̂zzπ̂)−1/2
, (13)

where π̃ = π̂′[σ̃u

√
̂var(Z1), · · · , σ̃u

√
̂var(Zl)]

′ which is scalar.

Note that (12) simplifies to (4) as can be seen from (7). We test the joint null of H0 : β =

β0, ρ = ρ0.
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Theorem 2. Under Assumptions 1-2, with (11), and

(i). Under the null of H0 : β = β0, ρ = ρ0 when k = 1, l ≥ k

NT (β0, ρ0)
d→ N(0, 1).

(ii). Under alternative if β = β0, ρ = ρ1 6= ρ0, then

NT (β0, ρ1) → ∞.

Remarks.

1. Theorem 2 shows that NT (β0, ρ0) still has a standard normal distribution when k = 1, l ≥
k. In large samples at the true correlation level the test statistic does not reject the null if H0

is true. At other values of correlation the test rejects the null. In the finite samples, this case

is exactly the same as the just identified case. Choosing a fine grid with strong instruments

ensures good size and power. If we evaluate at ρ1 6= ρ0 and still do not reject H0 (when β 6= β0

is false), then, as in the just identified case, choosing strong instruments solves the problem. If

we evaluate at ρ1 6= ρ0, then our test may reject the true null for that correlation, but this is

easily fixed. Since the test is monotonic in the correlation, choosing a grid and conducting the

tests in these new correlation values, we will be able to fail to reject the true null.

2. Note that in finite samples, instruments may be correlated. So we can use the following.

Assume that we have two instruments: Zi1, Zi2, for i = 1, · · · , n. We regress (least squares) Zi1

on Zi2 and define the residual as Zi1⊥. Then we use Zi1⊥ and Zi2 in the test.

3.4 The General Case

For testing individual coefficients when k > 1 (multiple endogenous variables) and to get a

consistent estimate for σu (i.e., σ̃u) we need to impose β = β0 for all parameters. Then we have

a joint NT test for H0 : Rβ = Rβ0, ρ = ρ0, where R is a j × k matrix. This test will include all

parameters corresponding to endogenous regressors in the structural equation.

So we now introduce the NT evaluated at β0, ρ0 (true correlation). This is constructed in

the same way as before, and the proof is the same, and hence is skipped. Still we impose (11)

with Assumption 1

Cm = σu

√
varZimρ0, (14)
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for all m = 1, · · · , l, i = 1, · · · , n.

We want to test H0 : Rβ = Rβ0, ρ = ρ0. Define NT (β0, ρ0) ) as follows, by extending (5) to

a vector

NT (β0, ρ0) = n[Rβ̂ − Rβ0 − R(π̂′Q̂zzπ̂)−1π̂′[σ̃u

√
̂var(Z1), · · · , σ̃u

√
̂var(Zl)]

′ρ0]
′

× (Rσ̃2

u(π̂
′Q̂zzπ̂)−1R′)−1

× [Rβ̂ − Rβ0 − R(π̂′Q̂zzπ̂)−1π̂′[σ̃u

√
̂var(Z1), · · · , σ̃u

√
̂var(Zl)]

′ρ0].

Theorem 3. Under Assumptions 1-2, with (14), and

(i). Under the joint null of Rβ = Rβ0, ρ = ρ0, we have

NT (β0, ρ0)
d→ χ2

j .

(ii). Under the alternative Rβ = Rβ0, ρ = ρ1 6= ρ0,

NT (β0, ρ1) → ∞.

Remarks.

1.When we use ρ1 (make a mistake in selection of true correlation) then NT (β0, ρ1) → ∞,

as in Theorem 1 where ρ1 is used instead of ρ0.

2. The test is consistent with a fixed alternative at β = β1 6= β0. This can be shown

easily. With a local alternative, also there is still power if we are at true correlation. When we

use correlation values different than the true correlation ρ1 6= ρ0, then it is possible to fail to

reject the false null. However, as shown in Remarks 6-7 in the just identified case, using strong

instruments solves the problem.

3. Note that with β = β0 and using a correlation value local to ρ0, the test is distributed

as noncentral χ2 in large samples. So the issue is can we still make the correct inference about

β = β0? As explained before, with a fine grid the NT will fail to reject at certain correlation

values of the joint null of Rβ = Rβ0, ρ = ρ0.
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3.5 Confidence Intervals

Theorems in the previous sections provide us with a way of building joint confidence interval

for β0, ρ0. In the multivariate endogenous variables case, start by testing the null of H0 : β =

β0, ρ = ρ0. Then by special case of Theorem 3i (i.e. R = Ik, where Ik is the identity matrix

of dimension k, so the limit in Theorem 3i is χ2

k), we invert the test NT (β0, ρ0), and get the

joint confidence interval. So {(β0, ρ0) : NT (β0, ρ0) ≤ χ2

k,α} is an asymptotically valid 100 (1- α)

confidence set, where χ2

k,α represents the 100 α critical value of the χ2

k distribution.

This also means that the test NT is inverted jointly on a grid search over β0, ρ0 values. To

warn the applied researchers, we do not have a grid only on ρ0 and then use each value of ρ0

to find a confidence interval for β0 based on β̂ and standard errors. Rather, the grid search is

joint over (β0, ρ0) values. Our test is asymptotically pivotal, and the joint confidence sets show

that β0 can be unbounded with positive probability (if we have not normalized covariances as

correlations in Assumption 1, we could have C’s unbounded in the joint confidence set as well).

This can be seen from section 3 of Dufour (1997). So the confidence intervals are valid based

on inverting the NT statistic. We illustrate the construction of the joint confidence intervals in

two empirical examples in Section 5.

Note that related to Remark 8 in the section above (β̂, 0) pair is clearly inside the joint

confidence interval. This shows that there is a power problem in the test at that specific value.

3.6 Test for Exclusion Restriction

In this part of the paper, we propose a test for the exclusion restriction which can even be used

in the just identified case. This is basically testing the null of H0 : β = β0, ρ = 0. So we benefit

from NT (β0, 0) where R = Ik. The test is

NT (β0, 0) =
n(β̂ − β0)

′(π̂′Q̂zzπ̂)(β̂ − β0)

σ̃2
u

.

The next Corollary derives the limit, and the following discussion shows how to implement

the test to get a meaningful answer from the test for exclusion restrictions.
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Corollary 1. Under Assumptions 1-2, with (14), and under the joint null of β = β0, ρ = 0,

we have

NT (β0, 0)
d→ χ2

k.

Remarks.

1. The proof is a subcase of Theorem 3, and hence it is skipped.

2. The implementation is as follows. First setup a plausible grid values for β0, a compact

interval of [β0l, β0u], where β0l, β0u represent the lower and upper bound of plausible β0 values.

With these values we test NT (β0, 0). If for all plausible values the test rejects the null, then the

instruments are not exogenous.

3. Note that this test is even valid for k = l, which is the just identified case. To our

knowledge this is the first test statistic to do so in the literature.

4. The intuition of the test is such that by keeping ρ0 = 0, and changing β0 values in the

test, we assume if the model is true, we find such β0 and ρ0 = 0, so the null will not be rejected.

But if the instruments are not exogenous, the test will be rejected at all grid values for β0.

5. Regular t and Wald tests for testing only β = β0 are very similar in form, the difference

being the σ̃2

u. Previous literature such as Berkowitz, Caner and Fang (2008) already found that

even with a minor violation of exogeneity, the distributions change and there is a drift which

depends on the correlation between the instrument and the error. So in one sense, we are

benefiting from that idea here. Instead of fixing β0 to be tested once, we test over grid values

of β0. If all of them reject the null then the instruments are not exogenous.

6. Note that the test at two stage least squares estimate (i.e. when we impose β0 = β̂) will

never reject the null. So there is a power problem at that point. But we also see that when we

have β0 = β̂ + a/
√

n, where a is a vector of non zero-constants

NT (β0, 0) =
a′(π̂′Q̂zzπ̂)a

σ̃2
u

.

Then there will be local power with strong instruments, since the Concentration Parameter

estimate is nπ̂′Q̂zzπ̂/σ̃2

u.
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4 Simulation

In this part of the paper we conduct simulations to answer the following questions. First,

can we verify the results of Theorem 1? Namely, can we see that NT (β0, ρ0)
d→ N(0, 1), and

NT (β0, ρ1) → ∞ in large samples? The second issue is the finite sample behavior of the test

statistic NT (β0, ρ0). In the finite samples given a grid search (it may be a very fine grid search,

with very small steps in a given empirical application), does the smallest rejection level still

correspond to NT (β0, ρ0)?. The third question is related to power of the test. Is there a power

loss at certain grid points as discussed after Theorem 1? If there is, can we also see that they

are near extreme correlation values for a given application? If this power loss occurs away from

[-0.3, 0.3] range of correlations, then that power loss may not be important as it will not arise in

practice with reasonably chosen instruments. We generate the data with one instrument (l = 1),

one endogenous regressor (k = 1) and no control variables.

yi = Xiβ0 + ui, (15)

Xi = Ziπ0 + Vi, (16)

where β0 = 0 , i = 1, · · · , n, and π0 = 2. The structural error ui, the first stage error Vi,

and the instrument are iid. These are generated from the same joint normal distribution with

N(0, Λ), where

Λ =




1 cov(Zi, ui) 0

cov(Zi, ui) 1 cov(Vi, ui)

0 cov(ui, Vi) 1




,

since varZi = 1, varui = 1, cov(Zi, ui) is also the correlation between Zi, ui. This is denoted

as ρ0 in the other sections. The covariance between Vi, ui is set at 0.5. Since the variances are

set at 1, the true correlation between the structural error and the instrument varies among -0.5,

-0.3, -0.1, 0.1, 0.3, 0.5. The grid step is 0.1 for the tables. For the graphs the true correlation

is set at -0.1 and the grid step is 0.01.1 The sample sizes in the tables are n = 100, 200, 1000.

The iteration number is 10000. For the size exercise, we report the percentage of rejections at

5% critical values from the standard normal distribution (-1.96, +1.96).

Table 2 provides the size of NT (β0, ρ0) and the rejection rate of the true null H0 : β = 0, ρ =

ρ0 for NT (β0, ρ1) (tests evaluated at ρ1 6= ρ0) at n = 1000. In Table 2, ρ0 represents the true

1The results look very similar when the true correlation is set at 0.25 or 0.52.
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correlation between the structural error (ui) and the instrument (Zi). The first column is the

grid values of the correlation “Grid”. When the grid value is equal to ρ0 then the size of the test

should be 5% at that level ideally. Otherwise if the grid value of the correlation is not equivalent

to ρ0 then the rejection rate of the test should be near 100% according to Theorem 1ii. We

see that the results in Table 2 confirm Theorem 1. Namely, the size of the NT (β0, ρ0) test is

at the 1-5% level (i.e., at ρ0 = −0.5, NT (β0, ρ0) is the one that corresponds to Grid = −0.5).

Otherwise when Grid = ρ1 6= ρ0 the test is NT (β0, ρ1). When we look at the NT (β0, ρ1) test the

rejection rate is 88-100% at the 5% nominal level. So if we have a grid search of the correlation,

then only at the true value we will get the 5% rejection at nominal levels, otherwise we almost

always reject the null. In that sense, we can differentiate the true correlation by looking at the

absolute value of the NT statistic. If the absolute value of the test is less than 1.96 then the

test fails to reject and the correlation that is used belongs to true correlation set.

To see how reliable this is in finite samples, we conduct the same exercise with n = 100, n =

200 observations. In Tables 3 - 4 we see that NT (β0, ρ0) test achieves 1-5% size at 5% nominal

level. This confirms that even in the finite samples the asymptotic approximation is very good.

Table 3 shows the size of the test for NT (β0, ρ0) and the rejection rate of the true null for

NT (β0, ρ1) at n = 200. For example, at true correlation of ρ0 = −0.1, the NT (β0, ρ0) has the

size of 4.5%, and NT (β0, ρ1) (which imposes ρ1 = −0.2) has the the rejection rate of 29.6%

when the true null is β = 0, ρ = −0.1. But still there is substantial rejection rate difference

between NT (β0, ρ1) and NT (β0, ρ0) tests. At n = 100 in Table 4, NT (β0, ρ0) still has the

smallest rejection rate. Tables 3-4 support our claim in Remarks 2 and 4 (in the just identified

case) of the existence of a region of non-rejection of the true null when the null of β = 0, ρ = ρ0

is true. This region is around the true correlation value. We also report size results with a much

finer grid of 0.01, these are shown in Figures 1 and 2, and verify Theorem 1.

Tables 5-8, report the percentage of the rejections when true β is not equal to zero. We

have the same number of iterations as the size exercise, and the same critical values are used.

The true values of β0 = −2,−1, 1, 2, and we test H0 : β = 0, ρ = ρ0, and n = 100, 1000. The

results confirm the remarks after Theorem 1. Namely, the power of NT is very good at almost

all the relevant correlation levels for applications. Even at alternate correlation values (using

ρ1 = Grid 6= ρ0), the power is still very good in the range of the correlation values of [-0.3, 0.3].

There are certain power losses around highly implausible correlation levels, but, as can be seen,

with large sample size this problem is less important. We also experiment with increasing the
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concentration parameter estimate by putting π = 5, and this gives much better power results.

We also experiment with β0 = −0.5,−0.3, 0.3, 0.5, the results are very similar even in this close

neighborhood of 0. These are not reported.

The applied researcher may use this method for a grid of correlations, ρ, between [-0.3, 0.3]

for NT test. If one finds a region of non-rejection of the null, then this is also the confidence

interval. If the grid search shows only rejection of the null, then the alternative is true. This

test is a significant improvement to the regular t, which does not test the joint null and falsely

rejects when ρ 6= 0.

In this simulation section, we also have size and power results for the exclusion restriction

that is introduced. We test the joint null of H0 : β = β0, ρ = 0. We use the setup (15)(16),

with the same covariance structure Λ. For the size part of the test we set β0 = 0, ρ0 = 0, and

we evaluate NT (0, 0). If the test is larger than the 5% crtical value of χ2

1
the we reject the null.

There are 10000 iterations used. The sample size varies between 100, 200, 300, 1000. We record

the percentage of the rejections of the true null. The results are in Table 9. It is clear that at all

sample sizes the size is very good, and very close to 5%. So the exclusion restriction test has no

size issue. The next issue is the power of the test. For this we propose two power tables. In this

exercise (Table 10) the true model is β0 = 0, ρ0 6= 0. However, the test imposes β = 0, ρ = 0. In

this power exercise, ρ0 = −0.5,−0.3,−0.1, 0.1, 0.3, 0.5. Again we record percentage of rejection

of the null. This is done at 5% level for χ2

1
distribution. We observe two things. If we have the

correlation as -0.3 or 0.3, the test has very good power regardless of the sample size (87-100%).

But if ρ0 = 0.1, the exclusion restriction test has 16% power at n = 100. With n = 1000, the

power increases to 88%. So large samples make a big difference if the true correlation is nonzero

but close to zero. In the second power Table (Table 11), the true null is ρ0 = 0, but β0 6= 0.

And still we impose β = 0, ρ = 0. The results are similar to the Table 10. The power declines at

n = 100 when the structural parameter is nonzero but close to the zero, but with large samples,

we can reject the null with probability one.

5 Implementation and Empirical Examples

The next step is to calculate NT (β0, ρ0) by iterating over potential values in a nested loop.

To accomplish this, one calculates the test statistics over “reasonable” values of the correlation

grid. Note that this could be the entire interval [-1, 1], but, as discussed above, we restrict our
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attention here to the range [-0.3, 0.3]. From the simulation results we find the statistic suffers

from a loss of power at the extreme values of correlation. Since most instruments are carefully

chosen, [-0.3, 0.3] is a reasonable range in practice. The range of β0 to test depends on the

economic environment that dictates reasonable effect sizes and also what inferences the applied

researcher chooses to draw.

If our interest centers on significance testing, then testing H0 : β0 = 0, ρ = ρ0 is a reasonable

choice. In that case, if the applied researcher finds that the absolute value of NT drops below

1.96 in absolute value within a reasonable range of correlation values, then we fail to reject the

null. On the other hand, if the researcher finds that the NT yields rejection at all reasonable

levels of the grid, we can confidently reject the null and interpret the structural coefficient as

being non-zero.

5.1 Empirical Examples

We apply our technique to two empirical examples. First, we replicate the results from Acemoglu

and Johnson (2005), hereafter AJ. As discussed in the introduction, the main results in AJ utilize

early settler mortality to instrument for institutions when measuring the effect of institutions

on economic growth as measured by GDP per capita. For our study, we have obtained the

data used by AJ on 64 countries. In this discussion we focus on Table 2 of AJ which provides

estimates for the just identified case of one instrument and one endogenous variable. In Table 2,

Panel C, Column (3) of AJ, the two-stage least squares estimate of the effect of the constraint

on executive power on GDP per capita is 0.756 with a standard error of 0.146. This coefficient

is interpreted as highly statistically significant under standard inference.

Figure 3 presents a graphical depiction of the NT for reasonable grid values. The black

region indicates combinations of β0, ρ0 that cannot be rejected. This region can be interpreted

as a confidence interval for the joint values of β0, ρ0. Notice that within the range [-0.30, +0.30]

NT indicates rejection for β0 = 0. The regions of non-rejection are bounded away from β0 = 0

and demonstrate that, in fact, β0 > 0. Note that even if ρ0 6= 0 we can still infer that β0 > 0.

Because the region of non-rejection includes ρ0 = 0, the exclusion restriction test indicates that

the we cannot reject perfect exogeneity in this example.

Next we consider David Card’s 1995 paper using proximity to a college as an instrument for
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educational attainment.2 This paper finds much larger returns to education relative to previous

work. As in AJ, the instrumental variable in Card (1995) may not be completely exogenous,

leading to biased results.

Figure 4 presents a graphical depiction of the NT for small correlation values near the

origin. Again, the black region indicates combinations of β0, ρ0 that cannot be rejected. Note

that in this case, the region of non-rejection is unbounded both above and below. Therefore,

the confidence interval for β must include all possible values and no inference can be drawn.

Notice again that the origin (β0 = 0, ρ0 = 0) is not part of the non-rejected region. In fact,

NT (0, 0) = 2.33. Under naive testing, this test statistic could be erroneously interpreted as

indicating β 6= 0. But, as the figure demonstrates, when considering the joint null it is clear

that without also considering ρ one could draw incorrect inferences from rejection at β0 = 0.

We see here that there is not enough information to identify β and we cannot reject that ρ is

in the interval [−.1, .1]. The exclusion restriction test again indicates that for some values of β0

one cannot reject that ρ0 = 0. Therefore, we cannot reject that the instrument is valid.

6 Discussion and Conclusion

In this paper we tackle one of the most important problems in applied econometrics, the violation

of the exclusion restriction in instrumental variables (IV) estimation. We recognize that to infer

anything about the structural parameters, one must know the correlation between the error

and the instruments. Regular inference techniques assume that this correlation is zero. In any

application this is a strong and likely incorrect assumption. We propose a joint test of structural

parameters together with the correlation parameter. Since the correlation cannot be estimated

in the test statistic that we develop, we conduct a grid search. This test corrects the bias in the

two stage least squares estimators. Also we show that joint confidence intervals for β0, ρ0 can

be built by inverting this test statistic.

In future research, we want to extend these results to other contexts such as nonlinear GMM

and possibly identification robust tests.

2The data set used in Card (1995) is available on David Card’s website at:

http://emlab.berkeley.edu/users/card/data sets.html (accessed May 19, 2009).
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Figure 1: Simulation results for N=100 when the correlation is -0.1

Figure 2: Simulation results for N=1000 when the correlation is -0.1
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Figure 3: Example Using Acemoglu and Johnson (2005)

Figure 4: Example Using Card (1995)
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Table 1: Size (5% level), Standard t test

ρ0 = −0.5 −0.3 −0.1 0 0.1 0.3 0.5

n = 1000 100.0 100.0 87.9 5.3 88.8 100.0 100.0
n = 200 100.0 99.0 26.9 5.3 32.9 99.2 100.0
n = 100 100.0 85.2 15.4 5.3 19.9 89.6 99.9

Note: ρ0 represents the true correlation between the single instrument and the error (second
stage equation). The first column header is true correlation, all the other column headers are
specific true correlation values.

Table 2: Rejection Rate of The Null β0 = 0, ρ = ρ0, NT (β0, ρ0), NT (β0, ρ1) n = 1000

Grid ρ0 = −0.5 ρ0 = −0.3 ρ0 = −0.1 ρ0 = 0.1 ρ0 = 0.3 ρ0 = 0.5

-1 100.0 100.0 100.0 100.0 100.0 100.0
-0.9 100.0 100.0 100.0 100.0 100.0 100.0
-0.8 100.0 100.0 100.0 100.0 100.0 100.0
-0.7 100.0 100.0 100.0 100.0 100.0 100.0
-0.6 94.7 100.0 100.0 100.0 100.0 100.0
-0.5 0.8 100.0 100.0 100.0 100.0 100.0
-0.4 94.1 90.8 100.0 100.0 100.0 100.0
-0.3 100.0 3.7 100.0 100.0 100.0 100.0
-0.2 100.0 90.0 88.7 100.0 100.0 100.0
-0.1 100.0 100.0 4.8 100.0 100.0 100.0
0.0 100.0 100.0 88.7 88.1 100.0 100.0
0.1 100.0 100.0 100.0 4.9 100.0 100.0
0.2 100.0 100.0 100.0 88.2 90.4 100.0
0.3 100.0 100.0 100.0 100.0 3.1 100.0
0.4 100.0 100.0 100.0 100.0 91.4 94.4
0.5 100.0 100.0 100.0 100.0 100.0 0.9
0.6 100.0 100.0 100.0 100.0 100.0 95.1
0.7 100.0 100.0 100.0 100.0 100.0 100.0
0.8 100.0 100.0 100.0 100.0 100.0 100.0
0.9 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Grid represents the grid correlation values that we put into the NT tests. When Grid = ρ0,
the we have NT (β0, ρ0) test, otherwise the tests are NT (β0, ρ1). The critical values are -1.96,
+1.96. We set π0 = 2. For example, in column 2, ρ0 = −0.5, when Grid = −0.5, the test is
called NT (β0, ρ0), otherwise the tests are called NT (β0, ρ1).
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Table 3: Rejection Rate of The Null β0 = 0, ρ = ρ0, NT (β0, ρ0), NT (β0, ρ1) n = 200

Grid ρ0 = −0.5 ρ0 = −0.3 ρ0 = −0.1 ρ0 = 0.1 ρ0 = 0.3 ρ0 = 0.5

-1 100.0 100.0 100.0 100.0 100.0 100.0
-0.9 100.0 100.0 100.0 100.0 100.0 100.0
-0.8 100.0 100.0 100.0 100.0 100.0 100.0
-0.7 88.8 100.0 100.0 100.0 100.0 100.0
-0.6 24.0 100.0 100.0 100.0 100.0 100.0
-0.5 1.1 83.4 100.0 100.0 100.0 100.0
-0.4 22.7 27.0 99.0 100.0 100.0 100.0
-0.3 86.5 3.1 80.9 100.0 100.0 100.0
-0.2 100.0 26.4 28.9 98.9 100.0 100.0
-0.1 100.0 82.8 4.9 80.7 100.0 100.0
0.0 100.0 100.0 29.5 28.0 100.0 100.0
0.1 100.0 100.0 80.8 4.5 82.1 100.0
0.2 100.0 100.0 98.8 29.1 27.5 100.0
0.3 100.0 100.0 100.0 81.4 3.0 86.2
0.4 100.0 100.0 100.0 100.0 27.8 22.4
0.5 100.0 100.0 100.0 100.0 83.4 1.0
0.6 100.0 100.0 100.0 100.0 100.0 24.3
0.7 100.0 100.0 100.0 100.0 100.0 89.2
0.8 100.0 100.0 100.0 100.0 100.0 100.0
0.9 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Grid represents the grid correlation values that we put into the NT tests. When Grid = ρ0,
the we have NT (β0, ρ0) test, otherwise the tests are NT (β0, ρ1). The critical values are -1.96,
+1.96. We set π = 2. For example, in column 2, ρ0 = −0.5, when Grid = −0.5, the test is
called NT (β0, ρ0), otherwise the tests are called NT (β0, ρ1).
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Table 4: Rejection Rate of The Null β0 = 0, ρ = ρ0, NT (β0, ρ0), NT (β0, ρ1) n = 100

Grid ρ0 = −0.5 ρ0 = −0.3 ρ0 = −0.1 ρ0 = 0.1 ρ0 = 0.3 ρ0 = 0.5

-1 100.0 100.0 100.0 100.0 100.0 100.0
-0.9 100.0 100.0 100.0 100.0 100.0 100.0
-0.8 93.5 100.0 100.0 100.0 100.0 100.0
-0.7 52.8 100.0 100.0 100.0 100.0 100.0
-0.6 11.2 88.5 100.0 100.0 100.0 100.0
-0.5 1.0 51.5 98.3 100.0 100.0 100.0
-0.4 8.1 15.8 85.7 100.0 100.0 100.0
-0.3 51.7 2.7 51.9 97.9 100.0 100.0
-0.2 90.3 13.6 16.6 85.1 100.0 100.0
-0.1 100.0 52.1 4.5 51.6 98.5 100.0
0.0 100.0 87.0 16.5 16.2 86.6 100.0
0.1 100.0 98.5 51.3 4.6 52.4 100.0
0.2 100.0 100.0 85.4 16.8 13.8 90.1
0.3 100.0 100.0 97.9 51.2 2.9 51.7
0.4 100.0 100.0 100.0 85.7 14.9 8.1
0.5 100.0 100.0 100.0 98.4 52.2 1.2
0.6 100.0 100.0 100.0 100.0 88.4 11.7
0.7 100.0 100.0 100.0 100.0 100.0 52.5
0.8 100.0 100.0 100.0 100.0 100.0 93.7
0.9 100.0 100.0 100.0 100.0 100.0 100.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Grid represents the grid correlation values that we put into the NT tests. When Grid = ρ0,
the we have NT (β0, ρ0) test, otherwise the tests are NT (β0, ρ1). The critical values are -1.96,
+1.96. We set π = 2. For example, in column 2, ρ0 = −0.5, when Grid = −0.5, the test is
called NT (β0, ρ0), otherwise the tests are called NT (β0, ρ1).
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Table 5: Rejection percentage of H0 : β = 0, ρ0 = 0.1, NT (β, ρ0), NT (β, ρ1)

n = 1000 n = 100
Grid β0 = −2 β0 = −1 β0 = 1 β0 = 2 β0 = −2 β0 = −1 β0 = 1 β0 = 2

-1 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0
-0.9 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0
-0.8 0.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0
-0.7 79.2 100.0 100.0 100.0 79.2 24.9 100.0 100.0
-0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.5 100.0 100.0 100.0 100.0 100.0 100.0 94.7 100.0
0.6 100.0 100.0 100.0 100.0 100.0 100.0 25.1 90.1
0.7 100.0 100.0 76.6 100.0 100.0 100.0 0.0 0.7
0.8 100.0 100.0 0.8 0.5 100.0 100.0 0.1 0.0
0.9 100.0 100.0 100.0 41.1 100.0 100.0 7.2 0.1
1.0 100.0 100.0 100.0 100.0 100.0 100.0 81.3 14.4

Note: Grid represents the grid correlation values that we put into the NT tests. When ρ0 = Grid,
then we have NT (β, ρ0) test, otherwise the tests are NT (β, ρ1). The critical values are -1.96,
+1.96. We set π0 = 2. Here NT (β, ρ0) is when ρ0 = Grid = 0.1.
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Table 6: Rejection percentage of H0 : β = 0, ρ0 = −0.1, NT (β, ρ0), NT (β, ρ1)

n = 1000 n = 100
Grid β0 = −2 β0 = −1 β0 = 1 β0 = 2 β0 = −2 β0 = −1 β0 = 1 β0 = 2

-1 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0
-0.9 0.0 0.0 100.0 100.0 0.0 74.3 100.0 100.0
-0.8 0.0 100.0 100.0 100.0 0.0 13.3 100.0 100.0
-0.7 89.5 100.0 100.0 100.0 90.3 0.5 100.0 100.0
-0.6 100.0 100.0 100.0 100.0 100.0 0.3 100.0 100.0
-0.5 100.0 100.0 100.0 100.0 100.0 31.2 100.0 100.0
-0.4 100.0 100.0 100.0 100.0 100.0 89.5 100.0 100.0
-0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.5 100.0 100.0 100.0 100.0 100.0 100.0 80.7 100.0
0.6 100.0 100.0 100.0 100.0 100.0 100.0 7.7 80.2
0.7 100.0 100.0 5.4 100.0 100.0 100.0 0.0 0.2
0.8 100.0 100.0 45.9 0.0 100.0 100.0 0.6 0.0
0.9 100.0 100.0 100.0 86.0 100.0 100.0 24.3 0.1
1.0 100.0 100.0 100.0 100.0 100.0 100.0 95.3 26.8

Note: Grid represents the grid correlation values that we put into the NT tests. When ρ0 = Grid,
then we have NT (β, ρ0) test, otherwise the tests are NT (β, ρ1). The critical values are -1.96,
+1.96. We set π0 = 2. Here NT (β, ρ0) is when ρ0 = Grid = −0.1.
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Table 7: Rejection percentage of H0 : β = 0, ρ0 = 0.3,NT (β, ρ0), NT (β, ρ1)

n = 1000 n = 100
Grid β0 = −2 β0 = −1 β0 = 1 β0 = 2 β0 = −2 β0 = −1 β0 = 1 β0 = 2

-1 100.0 100.0 100.0 100.0 0.0 1.3 100.0 100.0
-0.9 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0
-0.8 100.0 90.1 100.0 100.0 0.0 0.0 100.0 100.0
-0.7 100.0 100.0 100.0 100.0 6.7 9.9 100.0 100.0
-0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.6 100.0 100.0 100.0 100.0 100.0 100.0 55.1 95.7
0.7 100.0 100.0 100.0 100.0 100.0 100.0 0.0 2.5
0.8 100.0 100.0 0.0 3.1 100.0 100.0 0.0 0.0
0.9 100.0 100.0 100.0 41.8 100.0 100.0 1.0 0.0
1.0 100.0 100.0 100.0 100.0 100.0 100.0 53.4 6.8

Note: Grid represents the grid correlation values that we put into the NT tests. When ρ0 = Grid,
then we have NT (β, ρ0) test, otherwise the tests are NT (β, ρ1). The critical values are -1.96,
+1.96. We set π0 = 2. Here NT (β, ρ0) is when ρ0 = Grid = 0.3.
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Table 8: Rejection percentage of H0 : β = 0, ρ0 = −0.3 , NT (β, ρ0), NT (β, ρ1)

n = 1000 n = 100
Grid β0 = −2 β0 = −1 β0 = 1 β0 = 2 β0 = −2 β0 = −1 β0 = 1 β0 = 2

-1 98.6 100.0 100.0 100.0 0.0 0.0 100.0 100.0
-0.9 0.0 0.0 100.0 100.0 0.0 0.0 100.0 100.0
-0.8 100.0 100.0 100.0 100.0 0.0 0.0 100.0 100.0
-0.7 100.0 100.0 100.0 100.0 96.5 91.8 100.0 100.0
-0.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
-0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
0.4 100.0 100.0 100.0 100.0 100.0 100.0 97.2 100.0
0.5 100.0 100.0 100.0 100.0 100.0 100.0 56.4 100.0
0.6 100.0 100.0 100.0 100.0 100.0 100.0 1.5 67.3
0.7 100.0 100.0 0.0 100.0 100.0 100.0 0.1 0.0
0.8 100.0 100.0 98.3 0.0 100.0 100.0 3.7 0.0
0.9 100.0 100.0 100.0 98.9 100.0 100.0 50.1 0.4
1.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 40.7

Note: Grid represents the grid correlation values that we put into the NT tests. When Grid = ρ0,
then we have NT (β, ρ0) test, otherwise the tests are NT (β, ρ1). The critical values are -1.96,
+1.96. π0 = 2. Here NT (β, ρ0) is when Grid = ρ0 = −0.3.

Table 9: Size (5% level), The Exclusion Restrictions Test (β0 = 0, ρ0 = 0)

n = 100 n = 200 n = 300 n = 1000

4.6 5.0 4.9 5.0

Note: We impose β0 = 0, ρ0 = 0 in the test, and compare with 5% critical values of χ2

1
. The

number of iterations are 10000.
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Table 10: Power of the Exclusion Restriction Test (True Model: β0 = 0, ρ = ρ0)

ρ0 = −0.5 −0.3 −0.1 0.1 0.3 0.5

n = 100 100.0 87.0 16.5 16.2 86.6 100.0
n = 200 100.0 100.0 29.5 28.0 100.0 100.0
n = 1000 100.0 100.0 88.7 88.1 100.0 100.0

Note: We impose β0 = 0, ρ = 0, and the true model is β0 = 0, ρ0 6= 0. The details are given in
the note to Table 9.

Table 11: Power of the Exclusion Restriction Test (True Model: β = β0, ρ = 0)

β0 = −2 −1 −0.2 0.2 1 2

n = 100 100.0 100.0 57.8 42.8 99.9 100.0
n = 200 100.0 100.0 86.5 71.5 100.0 100.0
n = 1000 100.0 100.0 100.0 100.0 100.0 100.0

Note: We impose β = 0, ρ = 0, and the true model is β0 6= 0, ρ0 = 0. The details are given in
the note to Table 9.
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Appendix A: Proofs

Before the proof of the main Theorem, we need the following result that will help us in

understanding the main result. This holds for both the simple case just identified case, k = l = 1,

and the overidentified case k = 1, l > k.

Lemma A.1.Under Assumptions 1-2, and under the null hypotheses of H0 : β = β0, ρ = ρ0,

(i).

β̂ − β0

p→ [π′

0
Qzzπ0]

−1[π′

0
C] 6= 0.

(ii).

σ̂2

u

p→ σ2

u − 2Cπ(π′

0
C + ΣV u) + C2

π(π′

0
Qzzπ0 + ΣV V ).

(iii).

t2sls → ∞,

where t2sls represents the regular two stage least squares based t-test.

Proof of Lemma A.1. We analyze a system with k = 1, and multiple instruments (l ≥ k).

First we show that β̂ is inconsistent given Assumption 1.

β̂ − β0 =



(

X ′Z

n

)(
Z ′Z

n

)−1
(

Z ′X

n

)

−1


(

X ′Z

n

)(
Z ′Z

n

)−1
(

Z ′u

n

)
 . (17)

See that by first stage equation and Assumption 2

Z ′X

n
=

Z ′Z

n
π0 +

Z ′V

n
p→ Qzzπ0. (18)

n−1

n∑

i=1

Ziui
p→ EZiui = C < ∞, (19)

where note the transformation in (5). Use (18)(19) in (17) to have

β̂ − β0

p→ [π′

0
Qzzπ0]

−1[π′

0
C] 6= 0, (20)

as long as C 6= 0. Next we show that σ̂2

u is not a consistent estimator for σ2

u. First

n−1

n∑

i=1

(yi − x′

iβ̂)2 = n−1

n∑

i=1

(ui − (xi(β̂ − β0))
2

= n−1

n∑

i=1

u2

i − 2(β̂ − β0)n
−1

n∑

i=1

xiui

+ (β̂ − β0)
2n−1

n∑

i=1

x2

i . (21)
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See that from (20), set Cπ = [π′

0
Qzzπ0]

−1[π′

0
C], by Assumption 2i, Assumption 1, and using

the first stage equation

X ′u

n
=

π′

0
Z ′u

n
+

V ′u

n
p→ π′

0
C + ΣV u, (22)

X ′X

n
=

π′

0
Z ′Zπ0

n
+

2π′

0
Z ′V

n
+

V ′V

n
p→ π′

0
Qzzπ0 + ΣV V . (23)

Use (20)(22)(23) in (21)

σ̂2

u

p→ σ2

u − 2Cπ(π′

0
C + ΣV u) + C2

π(π′

0
Qzzπ0 + ΣV V ) < ∞. (24)

So the last two terms are nonzero (unless they cancel each other in special empirical cases). We

cannot use σ̂2

u as a consistent estimator. Next we show that under Assumption 1, the t-test for

H0 : β = β0, ρ = ρ0

t2sls =

√
n(β̂ − β0)

σ̂u(X ′PZX)−1/2
→ ∞,

by (17)(20)(24). Q.E.D.

Proof of Theorem 1. The proof is a subcase of the proof of Theorem 2, since that proof is

for k = 1, l ≥ k.

Proof of Theorem 2. This proof is for k = 1, l ≥ k, and hence covers the cases of

k = l = 1, and k = 1, l > k. Now we show that NT test converges in distribution to standard

normal distribution. In that respect, we first try to understand the numerator of the new test

statistic. See that

n1/2(β̂ − β0) =



(

X ′Z

n

)(
Z ′Z

n

)−1
(

Z ′X

n

)

−1

×
(

X ′Z

n

)(
Z ′Z

n

)−1
(

1

n1/2

n∑

i=1

(Ziui − EZiui) + n1/2EZiui

)

= {


(

X ′Z

n

)(
Z ′Z

n

)−1
(

Z ′X

n

)

−1 (

X ′Z

n

)(
Z ′Z

n

)−1
(

1

n1/2

n∑

i=1

(Ziui − EZiui)

)
}

+ {


(

X ′Z

n

)(
Z ′Z

n

)−1
(

Z ′X

n

)

−1 (

X ′Z

n

)(
Z ′Z

n

)−1 √
nC}

= A1 + A2, (25)

40



where A1, A2 represent the first and the second terms with curly bracket expressions. By using

Assumption 2, (18)

A1

d→ N(0, σ2

u(π
′

0
Qzzπ0)

−1). (26)

Then by (18) and Assumptions 1, 2ii

A2 → ∞.

So we definitely have to subtract A2 from
√

n(β̂−β0) term. But the real issue is the handling

of C. So we handle that by the arguments in the main text. Given (18)(25)(26) we have

NT (β0, ρ0) =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̂′C)

σ̃u(π̂′Q̂zzπ̂)−1/2

d→ N(0, 1). (27)

Equivalently via (12)(13), by writing the NT test in (27) as

NT (β0, ρ0) =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̃ρ0)

σ̃u(π̂′Q̂zzπ̂)−1/2
.

So under the joint null of β = β0, ρ = ρ0, then

NT (β0, ρ0)
d→ N(0, 1),

as shown above.

If we had used ρ1 6= ρ0 in our grid search

NT (β0, ρ1) =

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̃ρ1)

σ̃u(π̂′Q̂zzπ̂)−1/2

=

√
n(β̂ − β0 − (π̂′Q̂zzπ̂)−1π̃ρ0)

σ̃u(π̂′Q̂zzπ̂)−1/2

+

√
n(π̂′Q̂zzπ̂)−1π̃(ρ0 − ρ1)

σ̃u(π̂′Q̂zzπ̂)−1/2

= NT (β0, ρ0) +
(π̂′Q̂zzπ̂)−1π̃n1/2(ρ0 − ρ1)

σ̃u(π̂′Q̂zzπ̂)−1/2

→ ∞. (28)

Note that the second term on the right hand side of the above equation diverges to infinity since
√

n(ρ1 − ρ0) → ∞. Q.E.D.
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Appendix B: Stata Code

In this code, x is the endogenous variable of interest, y is the dependent variable, and z is
the instrument. For simplicity, let ‘covars’ be a local macro for all exogenous covariates.

% ivreg y (x = z) ‘covars’

% scalar b2sls = _b[x]

% scalar N = e(N)

% reg x ‘covars’

% predict xresid, resid

% reg y ‘covars’

% predict yresid, resid

% reg z ‘covars’

% predict zresid, resid

% reg xresid yresd

% scalar phihat = _b[zresid]

% egen qzz = sum(zresid^2/N)

Choose a value of the structural parameter to test or do a grid search:

% forvalues b0 = -10(.01)10{

% egen ssyresid = total((yresid - xresid*b0)^2)

% scalar sigmatilda2 = 1/(N-1)*ssyresid;

% scalar sigmatilda = sqrt(sigmatilda2);

Choose a correlation equal to some value ‘corr’ or do a grid search:

% forvalues rho0 = -1(.01)1{

% scalar neat = N^(1/2)*(b2sls-‘b0’)/(sigmatilda*(abs(phihat)^(-1)*(ssz/N)&(-1/2)))

- sqrt(N)*‘rho0’*sign(phihat)

% }
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