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Abstract 

 

The paper studies the relationship between human capital spillovers and productivity 

using a unique longitudinal matched employer–employee dataset of Israeli 

manufacturing plants that contains individual records on all plant employees. I focus 

on the within-plant diversity of employees’ higher-education diplomas (university 

degrees). The variance decomposition shows that most knowledge diversity takes 

place within the industries. Using a semi-parametric approach, the study finds that 

hiring workers who are diversified in their specific knowledge is beneficial for plants’ 

productivity—the knowledge-diversity elasticity is about 0.2–0.25 and is robust—and 

that the benefit of knowledge diversity increase with the size of the plant. This 

suggests that for each allocation of labor in the production process it is beneficial for 

plants to diversify their skilled labor. The findings also suggest that the conventional 

way of estimating plant-level production function using Ordinary Least Squares or 

Fixed-Effects method is biased upward due to simultaneity of the inputs and the 

unobserved productivity shock. 
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1. Introduction 

The empirical literature provides extensive evidence that plants differ in the 

composition of skills and the productivity of their workers (Abowd et al., 1999; 

Dunne et al., 2002; Foster et al., 2008; Hellerstein et al., 1999; and Haltiwanger, et al., 

2007). Despite this, our understanding of how the outcomes of plants are related to the 

composition of their workers is not very satisfactory (Moretti, 2002, 2004a, 2004b; 

Mas and Moretti, 2008).  

This chapter examines human-capital spillovers in the workplace, namely the 

impact of human-capital diversity on labor productivity. In particular, I investigate 

one aspect of labor composition: the diversity of knowledge within the plant and 

human-capital spillovers. Using a unique longitudinally matched employer–employee 

dataset of Israeli manufacturing plants, I analyze the relationship between labor 

productivity and the intra-plant diversity of knowledge (also known in the literature as 

'within-plant' diversity).  

Knowledge diversity can play an essential role in human-capital spillovers at 

work. The idea is quite similar to Kremer’s (1993) O-ring theory of knowledge 

transmission by workers within a firm. Such a transmission of knowledge, however, 

depends on the workers’ complementarities. In general, if workers can draw on 

previous knowledge or information they have acquired, they may transmit these to the 

plant, thereby enhancing labor productivity. In the extreme case, if each worker is in 

possession of a distinct knowledge, it can be transmitted among themselves and, 

consequently, raise the firm’s labor productivity. At the other extreme where all 

workers are identical (posses the same knowledge), there cannot be a spillover 

because workers cannot learn anything new from their colleagues.  

Although labor diversity may enhance firms’ productivity, it is likely to be 

associated with higher costs (e.g., communication costs). Hence, variations in 

diversity among firms may reflect variations in costs or in the productivity effect of 

the diversity.  

According to Lazear (1999), diverse workers can generate productivity gains 

if three factors are present. First, they must have different skills, abilities, or 

information, thereby allowing the plant to gain from their complementarities. Second, 

their diverse skills, abilities, or information must be mutually relevant. Obviously, 

little complementarity will ensue if one worker’s skill is not relevant to another 



 4 

worker’s production. Third, to enhance productivity, workers must be able to 

communicate in order to perform the relevant collaborative tasks and engage in 

knowledge transmission. i.e., they must speak the same “professional” language.1 An 

increase in communication costs, however, may offset the gains achieved by the 

diversification of knowledge. Lazear’s argument implies that for plants to maximize 

their productivity they should be diverse in terms of skills but homogeneous in other 

respects, such as demographics, in order to minimize the costs of communication or 

what Lazear calls “cross-cultural dealing.” 

While the theory underlying the role of human-capital heterogeneity in firms’ 

performance is well developed, empirical evidence is still scanty due to the lack of 

matched employer–employee data. To address this problem, I use a unique 

longitudinally matched employer–employee dataset of Israeli manufacturing plants 

with at least five employees. The dataset covers the years 2000–2003 and includes 

detailed information on all wage-earners in each plant. In addition to copious 

information on plants and workers, the data provides university records on workers’ 

higher-education diplomas. This data gives us a unique opportunity to study human-

capital heterogeneity within and between plants and its role in the production 

function. 

The correct way to measure human-capital diversity is greatly disputed. The 

most common proxies for human capital are the educational level and the experience 

of workers within the plant. Alternatively, some new studies use earnings as the 

proxy, assuming perfect competition and payment of workers at the full value of their 

marginal productivity. Wages, however, also depend on the firm’s compensation 

policies, e.g., rent sharing, and the bargaining power of employees (Navon and 

Tojerow, 2006). Another way of measuring disparity in workers’ human capital is the 

individual fixed effect obtained as a latent variable from individual wage regressions 

(Abowd, Kramarz, and Margolis, 1999). The latent variable is calculated not only on 

the basis of observable employee characteristics but also on employee unobservable 

characteristics — informal ability— and plant fixed effects. The main disadvantage of 

this method is that the latent variable may include factors other than skills. 

This chapter measures human-capital diversity by gauging the diversity of 

knowledge among skilled workers in the plant in terms of the academic disciplines 

                                            
1 For this to occur and for human-capital spillover to take place, workers must have a shared activity. 
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(hereinafter: disciplines) in which they earned university degrees. This measure of 

human-capital diversity is important with respect to spillovers because the teamwork 

approach is widely encouraged, especially in R&D firms—hence the question of 

whether diverse skilled labor, in the sense of distinct knowledge, increases plants’ 

productivity. 

Following Davis and Haltiwanger (1991), Kremer and Maskin (1996), and 

Dunne et al. (2002), this study examines the relationship between productivity and 

human-capital heterogeneity at the plant level. First, I conducted a variance-

decomposition analysis and found that most diversity of knowledge takes place within 

an industry. Second, I estimated a plant-level production function using a semi-

parametric dynamic approach, as proposed by Olley and Pakes (1996) and later by 

Levinsohn and Petrin (2003).2 The production-function estimates show that within-

plant knowledge diversity has a positive and significant impact on productivity. By 

distinguishing between workers with university degrees and those without degrees, I 

found that hiring workers who have diversified specific knowledge (disciplines) is 

beneficial for the plants’ productivity. 

Although empirical data on the diversity of knowledge is insufficient, recent 

international evidence based on matched employer–employee data shows that skill 

heterogeneity does have a strong positive influence on productivity. In particular, 

Lazear and Shaw (2007), summarizing the findings from nine countries on wage 

dispersion within firms, conclude that better performance is achieved when people 

with complementary skills are matched with each other within the firm. These 

findings suggest that the positive relationship between human-capital diversity and 

productivity may be applicable beyond a specific aspect of heterogeneity, and could 

be generalized to situations in which workers complement each other, i.e., when one 

worker’s skills enhance those of another in the workplace that they share. 

The rest of this chapter is organized as follows: Section 2 describes the data 

and presents the diversity index, Section 3 decomposes the variance of workers’ skills 

among and within firms, Section 4 examines the relationship between within-firm 

skill dispersion and productivity by estimating a production function that allows for 

heterogeneity of knowledge, and Section 5 presents the conclusions. 

                                            
2 In Chapter 2 of the thesis I presented the Olley and Pakes (1996) and the Levinsohn and Petrin (2003) 

method in general and implemented the first stage only. In this chapter I implement the entire method 
using a 3-stage semi-parametric estimation. 
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2. The Theoretical Framework 

The aim of the theoretical model is to quantify both the gains from and the costs of 

collaboration among diversely skilled workers within a plant. The model defines two 

types of workers in the economy: skilled (Ls) and unskilled (Lus). The skilled workers 

are diversified in the sense that they hold different academic degrees, represented by 

diversity index D. The plants also differ in the costs of diversity. 

Assuming a Cobb-Douglas production function, the plant produces its value 

added (Y) by using capital (K) and labor (Ls and Lus) as inputs, while the skilled labor 

is associated with knowledge-diversity. In this sense diversity is endogenous in the 

model, since it is assumed to be a function of the skilled workers. Following Berry 

(1971) and McVey (1972), I use the Herfindahl index as an index of knowledge 

diversity. The Herfindahl index takes into account the number of skilled employees in 

a plant (n) and their distribution across various academic disciplines: 3  the index 

decreases as both the number of disciplines and the disparity of knowledge decreases, 

and it is bounded by 0 and 1. The Herfindahl index may be written as:  
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where c(D) is the communication cost of having diversified labor—the cost of 

cross-cultural dealing—which increases with D ( i.e., C’(D)>0). I also assume that all 

skilled workers are identical in their productivity and hence in wages. 

There is no analytical solution to equation (2) with respect to n
ssus llLk ,...,,, 1 ; 

however it can easily be shown that in equilibrium plants choose a different diversity 

of knowledge according to WPc ,,,,γβ .  

                                            
3 Tables A-1 and A-2 in the appendix, show how the Herfindahl diversity index of knowledge interacts 

with the number of academic disciplines (n) and the number of skilled workers (Ls) in the plant. 
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Since all skilled workers are assumed to be identical in productivity, behavior 

and wages, plants can reach optimum diversity using different allocations of skilled 

workers. However, it can be assumed that diversity is associated with geographic 

costs or communication costs. In this case there would be a single optimum in which 

the plant will hire minorities, although they raise labor costs, as long as they increase 

total productivity. 

 

3. The Data 

The data used in this chapter is a unique, matched worker–establishment longitudinal 

panel. The panel was constructed by the Israel Central Bureau of Statistics 

(hereinafter: CBS) and combines three large scale databases: (1) the CBS 

Manufacturing and Crafts Survey, which is conducted annually and provides 

information at the establishment level on production, materials, labor, investment, and 

other plant-level characteristics; (2) Israel Tax Authority records for 2000–2003, 

which provide information on all wage-earners in plants, including age, gender, 

marital status, number of months worked each year, and wages; and (3) a record of all 

university graduates, including information on degrees, disciplines, and year of 

graduation.  

The sample of manufacturing plants was established in 2000.4 Plants may exit 

the sample due to closures, mergers and acquisitions, or administrative errors. Due to 

a confidentiality constraint that the CBS must honor in the release of matched 

employer–employee data, the matched employer–employee sample was truncated and 

includes only plants with less than 1,000 employees. 

The unit of investigation in this chapter is the plant,5 defined as an economic 

unit that engages in manufacturing activity. As a rule, a plant is located at one site and 

engages in a single economic activity. Departments of a plant that are located in 

different geographic locations or belong to different manufacturing industries are 

                                            
4 The sample for the Manufacturing and Crafts Survey is replaced from every 5-10 years in order to 

update the sample with the changes in the manufacturing sector. The last update was in 2000. 
5 This is in contrast to the previous two chapters, in which I used individual records to estimate wage 

equations. 



 8 

considered separate economic units insofar as they keep separate books of account.6 

Multi-product and multi-plant firms are divided by their economic activities on the 

basis of this classification, which was performed by the CBS. 

To estimate a plant-level production function, one needs a way of measuring 

capital. I adopted the capital-services measure proposed by Griliches and Regev 

(1995) and calculated by Haim Regev of the CBS (Regev, 2006). The concept 

measured is capital flow rather than capital stock. Flow is measured by converting 

owned fixed-capital stock into an estimate of implicit rental costs, and adding rental 

costs for rented/leased assets. Fortunately, the Manufacturing and Crafts Survey 

presents data on yearly capital rental payments. Annual capital services for each 

establishment were calculated on the basis of the cost of equipment and the building 

rental, and the estimated depreciation and interest on net capital stock.7 Initial capital 

services for the year 2000 were calculated on the basis of historical data for 1995–

1999. 

 

3.1. Description of the Data  

The matched employer-employee panel (hereinafter: EEP) includes 3,150 spells of 

plant–year observations for the years 2000–2003 in 834 plants with five or more 

employees. The dataset also includes 380,000 observations on all wage-earners in the 

plants. Due to lack of data on capital services in 98 plants, I restricted the sample to 

736 manufacturing plants. Of these, 546 (74 percent) appear in the data for four 

years—the entire period—and another 84 (11 percent) appear for three years. Twenty-

four plants (3 percent of the entire sample) entered the Manufacturing and Crafts 

Survey during the sample period and 196 plants (26 percent of the entire sample) 

exited the survey during this time. The final sample contains 309,570 observations on 

all wage earners in the plants. 

 

Table 1 reports the characteristics of the workers for the entire sample and for 

the skilled workers only. The average gross monthly income in constant 2000 prices is 

                                            
6 Considerations relating to the method of recording plant activity in books of account are determined by 

the tax laws and not by the CBS. In practice, a plant that has its administrative offices in a different 
location (for marketing, sales, or other purpose) usually records both activities in its books of 
account. Furthermore, in measuring human-capital heterogeneity I omitted workers who completed 
degrees in disciplines that are irrelevant to the production process. 

7 Regev (2006) estimates this at 5 percent. 
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NIS 8,948 and the average worker is about 39 years old. Almost 30 percent of 

observations in the sample pertain to females. I divided the workers into two 

categories: skilled and unskilled. Skilled workers are defined as workers who appear 

in the records8 of Israeli universities, while unskilled workers are those who do not 

appear. According to the university records, about 8 percent of manufacturing 

employees hold an Israeli academic degree. The skilled workers in the sample, as 

defined above, are younger and more likely to be female than the unskilled workers.  

 

Table 1: Workers’ Characteristics 

  
Sample 

 

Thereof:  
skilled workers 

a
 

    Mean S.D.  Mean S.D. 

Monthly wage (NIS, year 2000)   8,948 10,581  16,867 18,361 
Age  39.2 12.1  32.4 6.1 
Proportion of males  70.9   66.4  
Proportion with higher education  8.2     
Thereof:       
 Engineering    37.5 
 Exact sciences    13.1 
 Natural sciences    9.9 
     
Full-time workers (percent)  97.8  97.7 
     

No. of observations   309,570  25,270 
a. Employees holding an Israeli university degree. 

 

The most common academic disciplines studied are engineering (38 percent of skilled 

workers), business administration (22 percent), and the exact sciences (13 percent) 

(Table 2). The exact-sciences discipline encompasses three major sub-disciplines: 

mathematics, statistics, and computer sciences. The popularity of computer-science 

degrees among skilled labor in the sample is high—about 8 percent—while almost no 

skilled workers in the sample hold degrees in statistics. The natural-sciences 

discipline encompasses five major sub-disciplines that are evenly distributed, 

although degrees in geography, geology, oceanography, and space studies are not 

popular among skilled workers. The engineering discipline also encompasses five 

major sub-disciplines: civil engineering (0.7 percent of skilled workers), mechanical 

                                            
8 The records of the universities include data on graduates of the seven universities in Israel that award 

bachelors, masters, and doctoral degrees, as well as occupational certification. The records do not 
include data on graduates of the Open University of Israel, colleges, and universities abroad. 
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engineering (7.5 percent), electronic engineering (12.8 percent), chemical engineering 

(4.1 percent), and industrial and management engineering (12.4 percent). In those few 

plants that are fully diversified (and employ more than five engineers), industrial and 

management engineers are always present. 

The diversity of degrees in the sample is narrow: 80 percent of skilled workers 

hold bachelors degrees and 17 percent have masters degrees. This finding strongly 

resembles previous findings about the skill composition of Israel’s manufacturing 

sector (Navon, 2006). 

 

Table 2: Distribution of Disciplines Studied 
 

Discipline Observations Percent 

Humanities and general studies 2,036 8.1 

Medical studies 436 1.7 

Social sciences: 7,484 29.6 
 Business administration 5,673 22.4 
 Economics 1,452 5.7 
 Law 359 1.4 
Exact sciences: 3,321 13.1 
 Computer sciences 2,041 8.1 
 Mathematics 1,055 4.2 
 Statistics 225 0.9 
Natural sciences: 2,510 9.9 
 Chemistry 735 2.9 
 Physics 645 2.6 
 Biology 629 2.5 
 Agriculture 342 1.4 
 Geography, geology, oceanography, and 
space 159 0.6 
Engineering: 9,483 37.5 
 Electronic engineering 3,238 12.8 
 Industrial and management engineering 3,155 12.5 
 Mechanical engineering 1,874 7.4 
 Chemical engineering 1,040 4.1 
 Civil engineering 176 0.7 
Total: 25,270 100 

 

Since the study focuses on the diversity of skilled workers across various study 

disciplines, I define a “technological” discipline as any academic discipline in the 

exact sciences, the natural sciences, and engineering. By doing this, I omit all holders 

of degrees in the humanities and the social sciences on the assumption that these 

disciplines are not applicable to the production process. My definition also omits 
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graduates in business administration—even though they may influence production 

decisions more than anyone else—because there are no data on their positions in the 

plants and their previous degrees. In the sample, more than 61 percent of skilled 

workers have a technological degree: 38 percent in engineering, 13 percent in the 

exact sciences, and 10 percent in the natural sciences.  

 

Table 3: Distribution of Skilled Labor by Industry (Percent) 
 

# 
Two-digit industry 

(Division) 
Engineering 

Natural 

sciences 

Exact 

sciences 

Business 

administration 

All 

others 

23–24 
Chemicals and refined 
petroleum 

13.7 46.3 1.9 16.7 24.0 

25 
Plastic and rubber 
products 

2.3 0.6 0.6 3.3 3.6 

26 
Non-metallic mineral 
products 

1.6 0.4 0.7 5.0 5.1 

27 Basic metal 0.9 0.7 0.2 2.1 1.5 
28 Metal products 4.7 1.1 0.9 6.1 7.6 
29 Machinery and equipment 7.5 6.7 6.4 5.8 5.7 

31 
Electric motors and 
electric distribution 
apparatus 

5.1 2.0 3.2 5.2 4.6 

32 Electronic components 10.3 5.7 6.0 6.5 6.5 

33 
Electronic communication 
equipment 

21.1 9.8 46.2 22.2 16.5 

34 
Industrial equipment for 
control and supervision 

28.5 25.8 32.2 21.2 18.7 

35 
Transport equipment incl. 
medical and scientific 
equipment 

2.9 0.4 1.2 2.0 1.6 

36 Furniture 0.7 0.1 0.0 1.0 1.4 

38 
Jewelry, goldsmiths' and 
silversmiths' articles 

0.4 0.0 0.1 2.2 1.4 

39 Manufacturing n.e.c. 0.4 0.5 0.3 0.8 1.8 
B Total Manufacturing 100 100 100 100 100 

 

The distribution of skilled workers across industries is not uniform: skilled labor is 

more likely to be found in the 24 and 32–34 two-digit industries, the most technology-

intensive manufacturing industries (Table 3). 

Table 4 presents a condensed statistical picture of plant characteristics for the 

entire sample and for a sub-sample of plants that employ at least three skilled 

workers. In the entire sample, the average plant employs about 120 workers, of whom 

almost 8 percent have Israeli academic degrees. Reflecting the aforementioned CBS 

confidentiality constraint, the smallest plant in the sample employs only five workers 
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and the largest 974.9 Some 64 percent of the plant-year observations were of plants 

with less than 100 employees (Figure 1, Table 3). The yearly attrition rate in the 

sample is about 8 percent, resembling the CBS reports from the annual Register of 

Businesses.  

Table 4 also presents condensed statistics on plants that employ at least three 

skilled workers who hold academic degrees in a technological discipline. These are 

the most interesting plants with respect to spillovers of knowledge among workers. 

Although these plants account for only 45 percent of the sample, they are dramatically 

different from the average plant: their wage bill and capital stock is almost as twice 

the average and their share of skilled workers—10.3 percent—far surpasses that in the 

population at large (Table 3).  

 

Figure 1: Distribution of Plants by number of employees 
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9
�This is due to the definitions used in the Manufacturing and Crafts Survey and the CBS’ restrictions on 

the sample. 
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Table 4: Plants’ Characteristics 

 

 

Sample 

 

Thereof: at least 

three skilled 

workers 

       Mean S.D. 

Value added  21.72 51.21  40.67 70.9 
Capital stock  25.13 110.73  49.14 160.3 
Wage bill   14.66 28.74  27.13 36.6 
       
Employees  119.5 161.9  203.1 203.3 
 Unskilled  109.8 144.4  182.2 180.2 
 Skilled  9.7 33.3  20.9 47.8 
       

Distribution of plants by number of employees 
(percent)    
0–10  13.9  3.1 
11–25  19.6  7.6 
26–50  16.9  11.6 
51–100  21.5  25.1 
100–200  15.9  27.7 
200+  12.2  ���� 
       
No. of observations  2,582  1,167 

 

3.2. Diversity 

Calculated across all thirteen technological disciplines as defined, the average 

Herfindahl index for knowledge diversity is 0.37 and its range is 0–0.87.10 About 17 

percent of the plants are not diversified at all, i.e., their skilled workers have 

technological degrees in only one discipline. Using two different specifications—the 

ten and the six most common disciplines—we obtain similar results with hardly any 

loss of observations.  

 The definition of the diversity index may be sensitive to the number of groups 

– the technological disciplines. For that I compare the diversity index for the thirteen 

technological disciplines with five other definitions. The Herfindahl index for the 

thirteen technological disciplines may be calculated for 1,170 plant-year spells (45 

percent of the sample). Restricting the index by using only the ten most common 

disciplines elicit similar results as the benchmark index, however, it reduces the 

available data to 1,130 observations, respectively. The diversity index that use only 

                                            
10 According to the Herfindahl index, the widest diversity that a plant can attain using the thirteen 

technological disciplines and assuming an even distribution, is 0.92. 
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the six most common disciplines reduce the sample by another 15 percent and it 

obtains a different distribution (Table 5). As one may expect, the diversity index of 

that uses engineering graduates only is the most diversified. 

 

Table 5: Diversity Indices 

Diversity index  Mean S.D. Min Max 

Thereof: 
zero 

diversity 

(percent) 

13 disciplines (herf_13) 0.37 0.31 0 0.87 17.1 
10 disciplines (herf_10) 0.36 0.30 0 0.86 16.9 
6 disciplines(herf_6) 0.27 0.28 0 0.80 18.2 
Exact sciences 0.21 0.24 0 0.67 7.7 
Natural sciences 0.23 0.27 0 0.75 9.2 
Engineering 0.37 0.36 0 1.00 16.0 

 

An important issue is the relationship between diversity and plant size, particularly in 

terms of skilled workers. One might expect the Herfindahl diversity indices of small 

plants to be close to zero and anticipate a positive correlation between skilled labor 

and diversity. Figure 2 illustrates the relationship between size and diversity: as 

expected, there is a positive correlation between size (number of employees) and 

diversity. However, it is weak at 0.54 overall (Figure 2) and is much lower among 

diversified plants (those that have positive diversity), at 0.29. This surprising result 

may be explained by noting that small plants tend to focus on a single product 

whereas large plants turn out several products and may use different technologies. 

Since the Herfindahl diversity index uses only 6–13 academic disciplines, diversity is 

bounded. 
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Figure 2: Distribution of the Diversity Index by Plant Size 
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4. Analysis of Variance 

As we see in Table 5, the total diversity of knowledge in the sample is very volatile. 

The standard error is about 0.30—almost as large as the mean. The relatively extreme 

variation of the diversity index suggests a potential problem, namely, that the 

diversity of knowledge in the sample may originate in differences in technologies 

used in the different industries rather than in differences among plants within an 

industry. 

To determine the source of the variation in the diversity index, I performed a 

variance decomposition exercise for knowledge diversity using a nested ANOVA. 

The total diversity of knowledge in the labor force may be decomposed into three 

components: between industries, among plants within an industry, and within the 

plants—due to yearly change in labor force diversity. The nested ANOVA, 

decomposing the variance of the knowledge-diversity index among these three 

components, leads to the conclusion that most of the variation originates within an 
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industry, while only 20 percent stems from variation among industries (Table 6). 

Moreover, 18 percent of the total variation can be traced to variation within plants. 

The large within-industry variation in knowledge diversity is robust. Conducting 

the variance decomposition severalty each year reveals a similar result as the nested 

ANOVA: 75 to 82 percent of the total variation originates from within an industry.  

These findings somewhat contradict those of Davis and Haltiwanger (1991), 

Kremer and Maskin (1996), and Dunne et al. (2000), who found a significant upward 

trend of segregation among plants and determined that within-plant variation accounts 

for 40–50 percent of the total. The difference may be explained by the short time 

duration of my sample. 

Although only a small portion of the total variation in knowledge diversity stems 

from variation among industries, the production-function estimates use dummy 

variables for the two-digit industries to control for differences in technologies. 

 

Table 6: ANOVA of Knowledge-Diversity
 a 

Source  
Partial 

SS Df MS 
F-

statistics 

Year=2000 (Obs. = 338)     
 Between industries 8.4 13 0.6 7.9* 
 Within industry 26.3 324 0.1  
     
Year=2001 (Obs. = 298)     
 Between industries 6.7 13 0.5 7.1* 
 Within industry 20.6 284 0.1  
     
Year=2002 (Obs. = 269)     
 Between industries 5.3 13 0.4 5.4* 
 Within industry 19.4 255 0.1  
     
Year=2003 (Obs. = 262)     
 Between industries 4.7 13 0.4 4.4* 
 Within industry 20.5 248 0.1  
     
Years 2000-2003 (Obs. = 

1129)     
 Between industries 18.1 13 1.4 7.7* 
 Within industry 65.0 366 0.2 8.4* 
Within plants (residual) 15.9 749 0.0  
a. Analysis of variance using nested ANOVA. Plants assumed to be nested in industries. 
 In all regressions, the dependent variable is the diversity index of the ten most common technological 

disciplines (Herf_10).  
* = significance at 1% level. 
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5. The Empirical Model 

In this section I present the method used to estimate the plant production function. 

Following the theoretical model mentioned above, the plant produces its value added 

(Y) using a Cobb-Douglas production function and by using capital (K) labor (Ls and 

Lus) as inputs. The skilled workers are diversified in their knowledge with a diversity 

function (D). By transforming the production function into a logarithm, we allow the 

econometric model to correspond to a linear estimation. Henceforth, lower-case letters 

will represent logs (equation 1): 

 

(3)    
itit

s
its

us
itusitkitit uDllky +++++= γβββα  

 

Estimating Equation (3) by the ordinary-least-squares (OLS) method raises two 

conceptual concerns: the assumption of labor homogeneity expressed in the typical 

denotation in variable l of total plant employees or hours worked, and the problem of 

simultaneity of inputs and unobserved productivity in the error term.  

 

5.1. Simultaneity 

The simultaneity problem arises because at least part of the error term in the 

regression includes plant productivity. Since productivity is observed by firm 

managers, the firm can change its inputs decisions. In particular, it allows firms to 

adjust the labor and diversity inputs. However, labor productivity may not correlate 

with capital stock, which is quasi-fixed. Usually, this will result in a downward bias 

of the capital coefficient and, possibly, an upward bias of the labor coefficients.  

The simultaneity problem is sometimes referred to as an omitted-variable bias 

(OVB), because the endogeneity of inputs and the error term originate in the omission 

of the unobserved productivity term from the regression.  

The problem of simultaneity bias in production function has been understood in 

the literature at least since Marschak and Andrews (1944), although satisfying 

solutions to this problem were not presented until 1995, when Olley and Pakes 

suggested an estimation algorithm that takes into account the relationship between 

productivity on the one hand and both input demand and survival on the other. They 
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separated the error term from the production function ( itu ) and reduced it to two 

components: a true unobserved shock to production, itη , and a productivity 

component, itω , which is known to the firm manager and is therefore taken into 

account in periodic decisions on inputs. Neither component is observed by the 

econometrician. itω  may reflect technological or managerial differences among 

plants. Since the firm manager knows about these differences before making input 

decisions, these decisions probably depend on itω . As a result, capital, labor, and the 

level of labor diversity are endogenous in the production function. The production 

function may be written as follows: 

 

(4)    
ititit

s
its

us
itusitkitit Dllky ηωγβββα ++++++=   

 
Estimating Equation (4) using least squares results in a bias in the coefficients of 

l, D and k due to the positive correlation between plant productivity and inputs. 

The current state-of-the-art solution to the OVB problem was introduced by Olley 

and Pakes (1996, hereinafter: OP) as an alternative to the fixed-effect regression. OP 

developed a consistent semi-parametric estimator that solves the simultaneity problem 

by using the plant’s investment decision as a proxy for unobserved productivity 

shocks, under the assumption of imperfect competition (Erickson and Pakes, 1995). In 

the OP model, the unobserved productivity term is derived, in the context of a 

dynamic model, as a function of investment and capital stock and is calculated as a 

semi-parametric function of these two variables. Once this is done, Equation (2) may 

be estimated for observations in which investment is non-zero.  

While OP forfeit 8 percent of their observations by restricting observations to 

those with non-zero investment, other datasets (such as the current one) may lose a 

much larger fraction of observations and, in some cases, the majority of observations, 

for this reason. The OP procedure establishes a simple link between the estimation 

strategy and economic theory, mainly because intermediates are not typically state 

variables. 

In the Chilean manufacturing dataset used by Levinsohn and Petrin (2003 

(hereinafter: LP), over 50 percent of the observations have zero investment. To 

overcome this limitation, LP suggested using intermediates instead of investment in 
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the estimation of plant productivity. Since many intermediates are almost always non-

zero, this circumvents the data-truncation problem generated by zero-investment 

spells. Insofar as adjustment costs are large, intermediate inputs may confer another 

benefit: if it is cheaper to adjust intermediate input, it may respond better to the 

productivity component than to investment.  

Under moderating assumptions about plant productivity and technology, LP show 

that the demand function increases monotonically in itω . As a result, a higher value of 

itω  today will induce a higher investment today even if it comes too late to affect 

current capital stock. This allows the intermediate demand function to be inverted, so 

that itω  may be written as a function of kit and mit: 

 

(5)       ),( itititit mkωω =  

 

Following OP, LP assume that productivity is governed by a first-order Markov 

process: 

 

(6)    tttt ξωωω +Ε=
−

]|[
1  

 

where tξ  is uncorrelated with kit (but is correlated with lit). Under the LP assumptions, 

one can write the production function as: 

 

(7)      ititititit
s
its

us
itusit mkDlly ηφγββ ++++= ),(  

 

and 

 

(8)             ),(),( 0 ititititkititit mkkmk ωββφ ++=  

 

By substituting a third-degree polynomial function to approximate kit and mit 

instead of ),( ititit mkφ , one may consistently estimate the parameters of the value-

added equation using OLS. Equation (5) elicits an estimate of γββ ˆ,ˆ,ˆ
sus  and an 

estimate of itφ̂ . 
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The second stage of the LP routine identifies the kβ̂  coefficient. This is done by 

computing the estimated value of itφ̂  by using the difference between the value added 

and the vector of the corresponding values above ( Dlly sssusus βγββ ˆˆˆˆ −−− ). For any 

prediction of k
*β , one may compute a prediction for the productivity term for all 

periods t using: itkitit k
*ˆˆ βφω −= . 

Using these values, a consistent non-parametric approximation of ]|[
1−

Ε tt ωω  

may be calculated using a third-degree polynomial regression of the productivity term 

and the productivity in period t-1. This elicits a consistent estimate of kβ̂ . 

It is important to note that if we are interested in estimating the coefficients of 

labor and diversity, it is not necessary to perform the entire OP or LP routines. 

However, since there are many zero-investment spells in the data used in this study 

and since I’m interesting in comparing the results to previous results for Israel, I 

perform the entire OP procedure and produce an unbiased estimator for capital as well 

as for labor and diversity. 

The LP model is more complex to program than the OP procedure. However, a 

user-friendly Stata program called levpet, which applies production-function 

estimations using the LP technique, is available (Levinsohn, Petrin, and Poi, 2003).  

 

5.2. Estimation Results 

This section presents the results of the econometric analysis. In all estimations, the 

dependent variable is value added at the plant level. Discrete-year dummies and two-

digit industry fixed effects are also used.  

Table 7, reporting the preliminary results of the plant-level production function 

on the basis of 736 plants, confirms previous studies about the Israeli manufacturing 

sector (Bergman, Fuss and Regev, 1991 and 1999; Bergman and Marom, 1999 and 

2005; and Lach, 1999). The first two columns report the results of the OLS method, 

while the remainder of the panel reports the LP and the OP semi-parametric dynamic 

programming approach that controls for the simultaneity problem. As expected, the 

OP regression omits more than 34 percent of the sample (1,648 observations in 

Column 5) as against a minor loss of observations using the LP method (2,340 

observations in Column 3). Moreover, adding the diversity index as a state variable in 
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the regression, the difference between LP and OP in the number of observations is 

greater (Columns 4 and 6). The knowledge-diversity index used in all regressions is 

the Herfindahl index for the ten most common technological disciplines.  

The estimation found that knowledge-diversity has a positive effect on plant 

productivity. Using OLS, the elasticity of knowledge-diversity is 0.3� (Column 1). 

However, the use of the diversity index reduces the sample size because only 51 

percent of plants in the sample have a diversity index. As mentioned above, the 

challenge to the econometric analysis is that the inputs in plant-level estimations are 

choice variables that may correlate with unobservable productivity shocks. Solving 

the simultaneity problem lowers elasticity to 0.31 and 0.2 when the LP method and 

the OP method, respectively, are used. As expected, the use of both methods, LP and 

OP, reduces the coefficients of labor and capital. 

 

Table 7: Estimation Output 
 

  OLS  LP  OP 

Variable [1] [2]  [3] [4]  [5] [6] 

         
Ln(labor) 0.88** 0.84**  0.69** 0.76**  0.43** 0.44** 
 (0.0�) (0.0�)  (0.0�) (0.0�)  0.06 0.06 
         
Ln(capital) 0.2	** 0.19**  0.19** 0.14**  0.13** 0.11* 
 (0.02) (0.03)  (0.0�) (0.03)  (0.01) (0.04) 
         
Diversity .. 0.3�**  .. 0.3
*  .. 0.20* 
  (0.	�)   (0.1�)   (0.09) 
         
R

2
 0.�� 0.77  — —  — — 

Observations (N) 1,08� 1,08�  2,340 1,06	  
���
 ��� 
Notes: The dependent variable in all estimations is log value added at the plant level. Diversity is measured using 

the Herfindahl index for the ten most common technological disciplines. All regressions include discrete-
year dummies for 2001–2003, 13 two-digit industry dummies, and interactions between the year dummies 
and the two-digit industry dummies. Estimated standard errors are shown in parentheses.  
* Denotes significance at the 5% level. ** Denotes significance at the 1% level. 

 
 

An important criticism of the previous regressions is that they assume the 

homogeneity of labor and ignore the relationship between the proportion of skilled 

workers and knowledge diversity. Table 8 reports the estimation results in a way that 

differentiates between skilled and unskilled labor. The estimation finds a positive 

impact of knowledge diversity on labor productivity. Moreover, the elasticity of 

diversity is robust at about 0.2 in all three estimation techniques.  
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Table 8: Skilled and Unskilled Labor 

 

P  OLS  LP  OP 
Variable [1] [2]  [3] [4]  [5] [6] 
         
Ln(skilled) 0.20** 0.17**  0.19** 0.13**  0.09** 0.03 
 (0.02) (0.04)  (0.04) (0.04)  (0.02) (0.03) 
         
Ln(unskilled) 0.72** 0.71**  0.53** 0.65**  0.52** 0.61** 
 (0.03) (0.05)  (0.05) (0.05)  (0.05) (0.05) 
         
Ln(capital) 0.13** 0.19**  0.17** 0.14**  0.24** 0.13* 
 (0.02) (0.02)  (0.05) (0.03)  (0.01) (0.02) 
         
Diversity .. 0.19  .. 0.19*  .. 0.21* 
  (0.12)   (0.09)   (0.10) 
         
R

2 0.76 0.77  - -  - - 
Observations 1,087 1,087  1,502 1,060  1,498 1,057 

Notes: The dependent variable in all estimations is log value added at the plant level. Diversity is measured using 
the Herfindahl index for the ten most common technological disciplines. All regressions include discrete-
year dummies for 2001–2003, 13 two-digit industry dummies, and interactions between the year dummies 
and the two-digit industry dummies. Estimated standard errors are shown in parentheses.  
* Denotes significance at the 5% level. ** Denotes significance at the 1% level. 

 
 

The interpretation of the knowledge-diversity elasticity is not straightforward. 

Although diversity is measured not by the number of workers but as a percentage, it 

depends on the size of the plant and the number of complementary disciplines that its 

workers studied (See Diagrams A1, A2, A3 in the appendix). On the one hand, a plant 

can increase diversity by one percentage point by changing the number of skilled 

workers, changing the number of disciplines, or even changing both together; but, on 

the other, each change may result in different costs that are unique for the plant.11 For 

example, assume that two plants employ only exact-science workers.12 One plant has 

two workers (say, a mathematician and a statistician) and the other employs twenty 

workers (ten of whom are mathematicians and another ten are statisticians). Both have 

a 0.5 diversity index. Thus, replacing one statistician with a mathematician at the 

smaller plant will lower the diversity index to zero, thereby reducing labor 

productivity by 10 percent (0.5*0.2). Similarly, the diversity index of the larger plant 

will decrease by 0.005 and its productivity will decrease by only 0.1 percent. In 
                                            

11 The unique costs of knowledge diversity can arise from relative wages or simply from the geographic 
location of the plant. 

12 I assume for this comparison that both plants are identical in all aspects except for labor and capital, 
i.e., both produce the same product and use the same technology.  
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contrast, replacing one statistician with a different exact-science worker who is not a 

mathematician will not change labor productivity at the first plant but will boost 

productivity at the second plant by 0.9 percent (See Diagram A4 in the appendix). 

 

Finally, I examine how the elasticity of knowledge diversity changes in response to 

changes in the specifications of the model. Since the diversity of knowledge correlates 

with the number of skilled workers (size), I estimated the model used in Table 8 on a 

panel of 289 plants that employ 100–1000 workers. The plants in this truncated panel 

are easily comparable; they are large enough to employ a skill-diversified labor force. 

The results again illustrate a positive and significant relationship between knowledge 

diversity and productivity. The outcomes of all three methods used (OLS, LP, and LP) 

result in the same elasticity of diversity - 0.25 (Table A-1 in the appendix).  

Another issue of concern is that about 17 percent of the plant-year spells are of 

non-diversified plants, i.e., that employ only one specific type of skilled labor. One 

may argue that these plants use a different production function, i.e., that they 

specialize and behave differently from positively diversified plants. To examine this 

issue, I estimated the model used in Table 8 for plants that have strictly positive 

diversity indices. Here, the elasticity of knowledge diversity was much greater than in 

the previous findings: 0.6 – 0.67 (Table A-2 in the appendix).  

 

6. Concluding Remarks 

This study analyzed the effect of knowledge diversity on within-plant human-capital 

spillovers by using a unique longitudinal matched employer–employee dataset of 

Israeli manufacturing plants. The analysis was motivated by the strong 

encouragement that has been given to the teamwork approach, especially in high-tech 

firms, which raises the question of whether diversely skilled labor, in the sense of 

distinct knowledge, increases productivity. 

Initially, I conducted a variance-decomposition exercise, which showed that most 

knowledge diversity takes place between and not within plants. Within-plant variation 

accounts for only 18 percent of the total. 

Secondly, I found that hiring workers who possess diversified specific knowledge 

(a university degree) is beneficial for the plants’ productivity. I estimated a Cobb-

Douglas production function using a semi-parametric dynamic programming 
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approach, as proposed by Olley and Pakes (1996) and later by Levinsohn and Petrin 

(2003). The plant-level production-function estimates show that knowledge diversity 

within the plant has a positive and robust impact on productivity: the elasticity is 

about 0.2. Furthermore, the benefit of knowledge diversification corresponds [is 

proportional] to the size of the plant (skilled labor), and ranges as high as 0.25 for 

plants that have at least 100 workers. The study does not offer a straightforward way 

of interpreting the estimation results, since the results depend on the costs of diversity 

within the plant. However, the study does suggest that plants would find it beneficial 

to diversify their skilled labor. 
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Appendix 

Diagram A-1: Maximum diversity in the number of academic disciplines within the 

plant 
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Diagram A-2: Maximum Diversity and the number of skilled workers (Ls) 
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Diagram A3: The impact of divierisifng knowledge on plant diversity
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Table A-1: Large Plants (100–1000 Employees) 

  OLS  LP  OP 

Variable [1] [2]  [3] [4]  [5] [6] 

         
Ln(skilled) 0.22** 0.18**  0.19** 0.14**  0.16** 0.13** 
 (0.03) (0.04)  (0.03) (0.04)  (0.05 (0.05) 
         
Ln(unskilled) 0.48** 0.59**  0.42** 0.52**  0.30** 0.35** 
 (0.06) (0.06)  (0.06) (0.06)  (0.07 (0.07) 
         
Ln(capital) 0.23** 0.19**  0.16** 0.15**  0.20** 0.12** 
 (0.03) (0.03)  (0.03) (0.04)  (0.06) (0.04) 
         
Diversity .. 0.25*  .. 0.25*  .. 0.25* 
  (0.12)   (0.12)   (0.11) 
         
R

2 0.63 0.64  — —  — — 
Observations 1,089 852  1,077 842  1,073 839 
Notes: The dependent variable in all estimations is log value added at the plant level. Diversity is measured using 

the Herfindahl index for the ten most common technological disciplines. All regressions include discrete-
year dummies for 2001–2003, 13 two-digit industry dummies, and interactions between the year dummies 
and the two-digit industry dummies. Estimated standard errors are shown in parentheses.  
* Denotes significance at the 5% level. ** Denotes significance at the 1% level. 

 

 

Table A-2: Diversified Plants only (0<Herfindahl<1) 

  OLS  LP  OP 

Variable [1] [2]  [3] [4]  [5] [6] 

         
Ln(skilled) 0.20** 0.17**  0.16** 0.13**  0.23** 0.16** 
 (0.03) (0.04)  (0.05) (0.04)  (0.03) (0.03) 
         
Ln(unskilled) 0.66** 0.65**  0.57** 0.56**  0.54** 0.54** 
 (0.04) (0.04)  (0.07) (0.07)  (0.04) (0.04) 
         
Ln(capital) 0.21** 0.21**  0.20** 0.21**  0.15** 0.22** 

 (0.02) (0.02)  (0.04) (0.05)  (0.02) (0.02) 
         

Diversity .. 0.60*  .. 0.67  .. 0.65* 
  (0.26)   (0.35)   (0.25) 
         

R
2 0.65 0.66  — —  — — 

Observations 652 652  652 652  652 652 
Notes: The dependent variable in all estimations is log value added at the plant level. Diversity is measured using 

the Herfindahl index for the ten most common technological disciplines. All regressions include discrete-
year dummies for 2001–2003, 13 two-digit industry dummies, and interactions between the year dummies 
and the two-digit industry dummies. Estimated standard errors are shown in parentheses.  
* Denotes significance at the 5% level, ** Denotes significance at the 1% level. 

 

 


