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1. Introduction 

The objective of this paper is to provide an algorithm that generates real ( , )X n m  with a 

desired feasible intercorrelation matrix, ( , ),R m m  where n  stands for the number of 

observations (or sample size) and m n<  is the number of variates (or variables).  In 

simulation-oriented works, it is often required to generate a matrix of sample variates, 

( , )X n m , that characterizes a desired (feasible) intercorrelation matrix, ( , ).R m m  If each 

column (variate) of ( , )X n m  has zero mean and unit standard deviation then the 

intercorrelation matrix 
1

( , )R m m n X X
− ′= . It may well be viewed as the dispersion matrix 

of the standardized variables. One may begin with a valid intercorrelation matrix, R  

(positive semidefinite), or an invalid matrix,Q  (negative definite), whose main diagonal 

elements are unity and the rest of the elements are between –1 and 1. 

 

Being the quadratic form (see Theil, 1971, pp. 22-29), a valid product moment 

intercorrelation matrix, R , is necessarily a positive semidefinite matrix. All the successive 

principal minors of R  are non-negative (see Takayama, 1974, pp. 118-121, pp. 383-385) or 

stated differently all   the eigenvalues of R  are non-negative. Each element 
ij

r R∈  is the 

cosine of angle 
ij

θ  between the vectors .i jx and x  In practice, however, no 
i

x  is a linear 

combination of ; ; 1, 2,...,jx i j j m≠ =  (that is,  
1;

m

i j j

j j i

x x a
= ≠

= ∑ is not true for any non-

null real vector 1 2( ... )
m

a a a a ′= ). In case, one requires such a vector, it can be obtained 

by a linear combination such as 
1;

.
m

i j j

j j i

x x a
= ≠

= ∑  This case being very specific and trivial 

(and so set apart in practice), one requires to generate R, which is a positive definite matrix.  

 

2. Methods to generate random numbers 
First, let us look into the procedure that may be used to generate a single variate. Generally, 

the exercise begins with the uniformly distributed random numbers generated by some 

procedure such as the power residue method or the mid-square-bit method (see 

Krishnamurthy and Sen, 1976, pp. 302-304). Uniformly distributed random numbers may 

be transformed into x  ∼ N(0,1); 1 2{ 2ln( )}{ (2 )}x u Cos uπ= − where u1 and u2 are 

uniformly distributed independent random numbers lying between (0,1) and x  is the 

standard normal variate (see Knuth (1969), Texas Instruments Inc (1979), p. 54).  

Alternatively, one may generate N(0, 1) from uniformly distributed (0, 1)U  numbers, by 

using the Central Limit Theorem (see Gillett (1979, p. 519). However, this method is less 

accurate and time consuming than Knuth’s method. Normally distributed variate, x , may 

be used to generate Gamma distributed variate, g, since, if x  is a standard normal variate, 
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then g =
2

2x  is a Gamma variate with parameter 1 2 .  Due to the additive property of 

Gamma variates, if xi ( i =1,2,…,n)  are n independent normal variates with means mi and 

standard deviations σι  then g = 
2

2
1

( )1

2

n
i i

i i

x m

σ=

−∑ is a Gamma variate with parameter 
1

2 n
− . 

From two independent normally distributed variates x1 and x2 we may obtain a Cauchy 

distributed variate, since, if x1 and x2 are independent normal variates with means m1 and 

m2 and variances 
2

1σ  and 
2

2σ  then the variate 1 1 2 2( ) ( )c x m x m= − −  is Cauchy distributed. 

In particular, the quotient of two independent standard normal variates is Cauchy 

distributed. From two independent Gamma variates, g1 and g2 with parameters l and m 

respectively, we may obtain 1 1 1 2( )v g g g= + , which is a 1( , )l mβ distributed variate, and 

2 1 2v g g= , which is a 2 ( , )l mβ distributed variate. For these relations see Kapur and 

Saxena, 1982, pp. 292,  386, 288-289 and 427. In general, starting from uniformly 

distributed variates, we may obtain a variate with almost any kind of distribution by a 

sequence of suitable transformations. 

 

Generation of multivariate distributions with desired parameters began with Hoffman 

(1924) who proposed a method to generate two variables that satisfy a given bivariate 

correlation (coefficient). However, his method cannot be applied to generate 2m >  

variables that satisfy a given correlation matrix. Kaiser and Dichman (1962) generalized 

Hoffman’s method for 2m ≥  variables. The Kaiser-Dichman method is based on 

factorization of ( , ).R m m  It  presumes that ( , )R m m  is a positive definite matrix (that has 

all its eigenvalues positive). Moreover, it generates variables that have a multinormal 

distribution. 

 

Fleishman (1978) introduced an algorithm to generate normal or non-normal random 

numbers satisfying the first four moments (mean, variance, skewness and kurtosis). His 

method does not depend on factorization of the desired R  matrix. Tadikamalla (1980) 

proposed several methods to generate non-normally distributed random numbers. 

 

Vale and Maurelli (1983) proposed a method for generating multivariate (normally as well 

as non-normally distributed) variates with desired first four moments of each variate 

satisfying the specified intercorrelation matrix. Headrick and Sawilowski (1999) introduced 

a method that generates multivariate non-normal distributions with average values of 

intercorrelations approximating the population intercorrelations. This method, unlike that 

of Vale and Maurelli, performs well even if the distributions are heavily skewed or thick 

tailed.  Moreover, being based on Fleishman’s procedure, it does not require factorization 

of ( , ).R m m   

 

3. The case of negative definite invalid intercorrelation matrices 

It may be noted that arbitrary real symmetric matrices, say Q , that have elements 

1 1,2,...,
ii

q i m= ∀ =  and 1 1 , 1,2,..., ;ijq i j m i j− ≤ ≤ ∀ = ≠  are not the genuine 

product moment intercorrelation matrices, ,R  obtainable from some real X  although they 



 3 

may appear to be so. For example, the following three matrices appear to be genuine 

(product moment) intercorrelation matrices while they are not. 

 

1 2 3

1.00 0.70 0.00 1.00 0.90 0.10 1.00 0.60 0.13

0.70 1.00 0.80 ; 0.90 1.00 0.80 ; 0.60 1.00 0.90

0.00 0.80 1.00 0.10 0.80 1.00 0.13 0.90 1.00

Q Q Q

     
     = = =     
          

 

 

Det(Q1) = -0.13, Det(Q2) = -0.316 and Det(Q3) = -0.0465. One of the eigenvalues of each 

matrix is negative. Several such examples may be generated. We will name such matrices 

as the invalid or pseudo intercorrelation matrices or Q matrices against the R matrices that 

are necessarily positive semidefinite. 

 

Negative definite or pseudo intercorrelation matrices may enter into empirical investigation 

due to several reasons. First, the coefficients of correlation may not be computed by the 

Karl Pearson’s (product moment)  formula. They might have been obtained by Spearman’s 

formula (of rank correlation) or they could be the polychoric coefficients of correlation. 

Secondly, some of them might have been computed from  variables different in sample size 

(observations). Suppose 
11 12

21 22

Q Q
Q

Q Q

 
=  

 
 such that 11Q  is obtained from 1 1 1( , )X n m , 22Q  is 

obtained from 2 2 2( , )X n m : 1 2n n> , and 12 21Q Q′=  is obtained from 1 2 1 2 2 2[ ( , ), ( , )]X n m X n m , 

while 
2

1

X
X X

 
=  ∅ 

, ∅  standing for ‘information not available’. Then Q  could fail to be 

positive semidefinite. Thirdly, when the off diagonal entries in Q  are large (say  0.9 or still 

larger) in magnitude, but recorded with substantial error or approximation,  Q  may fail to 

be positive semidefinite. Fourthly, when the elements of near-singular matrices are rounded 

off (for reporting in research papers, etc.) without a due care taken to the possible effects of 

rounding off on the status of the matrices regarding the properties such as positive 

definiteness etc, the reported matrices may lose the properties that they originally have had. 

A telling example of this is the positive semidefinite matrix obtained by Higham (see 

Higham, 2002, p. 335 : the matrix was singular in the original). However, the reported 

matrix (rounded off at the fourth place after decimal) has its determinant = -2.441038E-05 

(one of the eigenvalues being –1.343337484E-05, instead of zero). Surely, a negative value 

of the determinant is due to rounding off. Lastly, in simulation, especially when Q  is an 

initial approximation to R  large in dimension, the analyst has to arbitrarily fill in the 

values of ; , 1, 2,...,ijq i j i j m≠ ∀ = . The only restraint obeyed by the analyst is that 

1
ii

q =  and 1 1 , 1, 2,..., .ij jiq q i j m− ≤ = ≤ ∀ =  Such arbitrary Q  may often fail to be 

positive semidefinite.  

 

It is required, therefore, to obtain best possible R  (positive semidefinite matrix) from Q  

(not positive semidefinite).  Higham (2002) proposed a method to obtain R̂  from Q  such 

that ˆ
F

Q R−  is the least. Here .
F

 is the Frobenius norm. The method is very general 
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and allows for weights to be assigned to different elements of the distance matrix as desired 

by the analyst according to the level of confidence put in to the accuracy or (rationally 

justified) most probable value of .
ij

q  In that case, the weighted norm of difference is 

minimized. However, for larger matrices, the method is time consuming due to the linear 

convergence of the algorithm used by Higham. Once R̂  (the nearmost R  to Q ) is 

obtained, one may go in for obtaining the variates that satisfy the R̂  matrix.  

 

Al-Subaihi (2004) proposed a modification of Kaiser-Dichman procedure to generate 

normally distributed (correlated) variates from a given non-positive definite Q , which, in 

the process, is approximated by a positive definite *R  matrix. The resulting variates satisfy 

the *R  matrix. It appears that Al-Subaihi’s meth od does not guarantee that *R  is 

sufficiently close to Q  as in the Higham procedure.  

 

We take an example from Al-Subaihi (2004, p. 11, the middle matrix). The values of 

1 1,2,3, 4,5.
ii

q i= ∀ =  The value of  12 21 13 31 0.5.q q q q= = = =  Other elements in the first 

row (as well as the first column) are all zero.  The values of the off-diagonal elements  

0.84
ij ji

q q= =  for , 2,3, 4,5 ; .i j i j= ≠   

 

Al-Subaihi generated the first matrix (call it 
*

R , given below) as an approximation to Q , 

while we have simply perturbed *R  to obtain **R . We find that the second matrix, **R , 

approximates Q  more accurately than the first matrix, 
*

R , generated by Al-Subaihi. Note 

that neither of the two matrices (
*

R  and 
**

R ) is optimally nearmost to the given Q  matrix.        

 

Al-Subaihi’s generated *R matrix  A relatively better **R  matrix 

 
1x  

2x  3x  
4x  

5x   
1x  

2x  3x  
4x  

5x  

1x  
1.0000 0.4964 0.5008 0.0011 0.0050 

 
1.0000 0.4964 0.5008 0.0007 0.0010 

2x  
0.4964 1.0000 0.8819 0.7317 0.7363 

 
0.4964 1.0000 0.8819 0.7317 0.8400 

3x  
0.5008 0.8819 1.0000 0.7272 0.7305 

 
0.5008 0.8819 1.0000 0.7272 0.8200 

4x  0.0011 0.7317 0.7272 1.0000 0.8432 
 

0.0007 0.7317 0.7272 1.0000 0.8400 

5x  0.0050 0.7363 0.7305 0.8432 1.0000 
 

0.0010 0.8400 0.8200 0.8400 1.0000 

   

 

4. Proximity measured by the maximum norm of deviations 
It is clear that instead of minimizing the Frobenius norm, one may opt for minimizing the 

maximum norm such that the 
,

ˆmax ij ij
i j

q r−  is minimum. This line of investigation may be 

useful since the minimization of the maximum norm allows for the least substitutability 

among the off-diagonal elements of the distance matrix ˆ: ; , .
ij ij ij ij

q r i jδ δ∆ ∈ ∆ = − ∀  

We accomplish this task here and for the sake of comparison present some results. As an 

exercise we first take a matrix from Higham’s (2002) paper. The resul ts are as follows. 
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Higham’s original matrix   

Higham’s  ˆ
F

R  matrix 
 

Min(max norm)  ˆ
m

R matrix 

 
1x  

2x  3x   
1x  

2x  3x   
1x  

2x  3x  

1x  1.0000 1.0000 0.0000  1.00000 0.76069 0.15731  1.00000 0.78077 0.21922 

2x  1.0000 1.0000 1.0000  0.76069 1.00000 0.76069  0.78077 1.00000 0.78077 

3x  0.0000 1.0000 1.0000  0.15731 0.76069 1.00000  0.21922 0.78077 1.00000 

 

The 
, ,

ˆmax( ) maxij ij Fij
i j i j

q rδ = −  produced by Higham’s estimated ˆ
F

R  is 0.23931 and 

, iji j
δ∑ is 1.27186. On the other hand, the  

, ,
ˆmax( ) maxij ij mij

i j i j
q rδ = −  produced by min(max 

norm)  estimated ˆ
m

R  is 0.21922 and 
, iji j

δ∑ is 1.31536.  

 

The determinants of the three matrices are : 1.0− , 9.646946582130297100096417818E-06 

and 1.281587907598576276298989319811E-05  approximately. The eigenvalues of the 

three matrices are given below. 

 

Eigenvalues of Higham’s original matrix , his estimated ˆ
F

R matrix and Min(max norm)  ˆ
m

R matrix 

Eigenvalues 
1λ  2λ  3λ  

Higham’s original matrix  2.4142135623731 1.0000 -4.1421356237309E-01 

Higham’s estimated R̂ matrix 2.1573046934710 8.4269E-01 5.3065290382026E-06 

Min(max norm)  R̂ matrix 2.2192126035928 0.78078 7.3964071641482E-06 

Note: Higham’s estimated matrix (see Higham, 200 2,  p. 335)  has turned negative definite. We  perturbed it 

slightly on the fifth place after decimal to make it a positive definite matrix. 

 

Then we take a matrix from Al-Subaihi’s (2004) paper. The values of 

1 1,2,3, 4,5.
ii

q i= ∀ =  The value of  12 21 13 31 0.5.q q q q= = = =  Other elements in the first 

row (as well as the first column) are all zero.  The values of the off-diagonal elements  

0.84ij jiq q= =  for , 2,3, 4,5 ; .i j i j= ≠  The results are presented below. The first of the 

two matrices presented below is obtained by Al-Subaihi, while the second is obtained by us 

by minimizing the maximum norm  of ∆̂ . 

 

Al-Subaihi’s generated 
*

R matrix  Ours min(max norm)  ˆ
m

R matrix 

 
1x  

2x  3x  
4x  

5x   
1x  

2x  3x  
4x  

5x  

1x  
1.0000 0.4964 0.5008 0.0011 0.0050 

 
1.000000 0.477630 0.477630 0.018118 0.018118 

2x  
0.4964 1.0000 0.8819 0.7317 0.7363 

 
0.477630 1.000000 0.862370 0.817630 0.817630 

3x  
0.5008 0.8819 1.0000 0.7272 0.7305 

 
0.477630 0.862370 1.000000 0.817630 0.817630 

4x  
0.0011 0.7317 0.7272 1.0000 0.8432 

 
0.018118 0.817630 0.817630 1.000000 0.862370 

5x  
0.0050 0.7363 0.7305 0.8432 1.0000 

 
0.018118 0.817630 0.817630 0.862370 1.000000 
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The Erhardt-Schmidt (or Frobenius) norm 
*

F
∆ of * * * * *

: ; , ,ij ij ij ijq r i jδ δ∆ ∈ ∆ = − ∀  

where 
* *

ijr R∈ (Al-Subaihi’s generated positive semidefinite mat rix) and 
ij

q Q∈  (the 

negative definite matrix from which *R  is generated) is 0.313057 against 0.096539, which 

is the  ˆ
F

∆  of ˆˆ : ij
δ∆  ˆˆ ˆ; ,ij ij ijq r i jδ∈ ∆ = − ∀ , while ˆ

îjr R∈ , the positive semidefinite 

matrix nearmost to Q  in the min(max norm) sense. The corresponding maximum norms  

*

m
∆ and ˆ

m
∆  are 0.564 and 0.11185 respectively.  

 

∆  matrix from Al-Subaihi’s 
*

R matrix  ∆  matrix from min(max norm)  ˆ
m

R matrix 

0 0.0036 0.0008 0.0011 0.0050  0 0.022370 0.022370 0.018118 0.018118 

0.0036 0 0.0419 0.1083 0.1037  0.022370 0 0.022370 0.022370 0.022370 

0.0008 0.0419 0 0.1128 0.1095  0.022370 0.022370 0 0.022370 0.022370 

0.0011 0.1083 0.1128 0 0.0032  0.018118 0.022370 0.022370 0 0.022370 

0.0050 0.1037 0.1095 0.0032 0  0.018118 0.022370 0.022370 0.022370 0 

 

The *

, ,
max( ) max

ij ij ij
i j i j

q rδ = −  produced by Al-Subaihi’s *R  is 0.1128 and 
, iji j

δ∑ is 0.9798. 

The 
, ,

ˆmax( ) max
ij ij mij

i j i j
q rδ = −  produced by ˆ

m
R  is 0.02237 and 

, iji j
δ∑ is 0.430392. Thus, 

ˆ
m

R  is an undubitably better approximation than *R .  This shows that the *R  matrix 

generated from Q  by Al-Subaihi is only sub-optimally close to Q . 

 

Thus we have two alternative methods to obtain the nearmost positive semidefinite 

matrices from the given negative definite matrix, Q , the one proposed by Higham that 

minimizes ˆ
F

∆ and the other proposed by us in this paper that minimizes ˆ
m

∆ .  Use of 

either norm has its own justification. The min(max norm) does not allow any element  

îj i j
r

≠
∈ R̂  to deviate too much from its corresponding  

ij
q , while the min(Frobenius norm) 

may permit excessive deviation of a few elements if so required to bring other element of 

R̂  closer to their counterpart elements (of Q ). However, to disallow any element  

îj i j
r

≠
∈ R̂  to deviate too much from its corresponding  

ij
q  amounts to place a high degree 

of confidence on the elements of Q . 

 

5. The Algorithms 
I. The first algorithm that generates the nearmost positive definite intercorrelation matrix 

from a given (fed by the user) negative definite invalid symmetric intercorrelation 

matrix, ,Q  runs as follows: 

1. Let 0Q  be the given invalid intercorrelation matrix. Set 0.Q Q=  

2. Find all eigenvalues ( L ) and and eigenvectors (V ) from .Q  Each column of V  has unit 

Euclidean length. 

3. Replace all negative values in L  (a diagonal matrix) by zero. 
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4. Generate m uniformly distributed random numbers (0,1)U  and add them to the diagonal 

elements of L  matrix. Normalize L such that its trace is equal to m . 

5. By random walk method of optimization find the best possible L  that characterizes trace 

= m ,  positive determinant and therefore positive definite R̂  = V LV′  closest to 0.Q  

Closeness is defined in terms of the maximum norm ˆ
m

∆ = 0
ˆ

m
Q R− . 

6. Check if all ˆ
îi

r R∈  are approximately unity. It would depend on tolerance level chosen.  

If not, replace them by unity. Consider it as Q  and go to step 2,  else stop.  

 

II. The second algorithm that generates ( , )X n m  from a valid (positive definite) inter-

correlation matrix runs in the following steps: 

 

1. Generate ( , )Y n m from a random number generator that yields Y ∼ (0,1).U  

2. Standardize Y  such that its each column has zero mean and unit standard deviation. Call 

this standardized Y by a new name, say 
*
.Y  

3. Compute intercorrelation matrix S  from 
*
.Y  

4. Compute all eigenvalues ( D ) and the associated eigenvectors (V ) of .S  Here D  is a 

diagonal matrix and V is an orthogonal matrix. Moreover, each column of V  has a 

unit length (Euclidean norm). 

5. Compute 
*

( )Z Y V= . Now ( , )Z n m is column-wise orthogonal. 

6. Standardize ( , )Z n m  such that each one of its columns has zero mean and unit standard 

deviation. This ( , )Z n m  will be used at step 10. 

7. Choose an intercorrelation matrix, ( , )R m m . This is the intercorrelation matrix that is 

induced into .Z  In choosing R  one must be cautious to see that it should not 

violate the properties of an intercorrelation matrix described earlier. None of its 

eigenvalues should be negative. This is done in the next step. 

8. Compute all eigenvalues (say, L ) of R and the associated vectors (say E ). If any of the 

eigenvalues are negative, change the R  matrix since no intercorrelation matrix, by 

necessity, can have negative eigenvalues (if X is real). In that case, go to step 7. 

9. Standardize E  to obtain W such that each of its column has a squared (Euclidean) norm 

equal to the eigenvalue associated with it. Let 2 1/ 2

1

{( ) / }
m

j ij j

i

k e L
=

= ∑  then 

/ ; , 1,2,..., .ij ij jw e k i j m= =  This   guarantees that 2

1

1,2,..., .
m

ij j

i

w L j m
=

= ∀ =∑  

10. Compute .X ZW=   

11. Standardize X such that each of its column has zero mean and unit standard deviation. 

 

6. FORTRAN Computer Programs 
We provide here the source codes of the computer programs that implement the algorithms 

given above. The first main program (PROG1) checks if the Q  matrix fed by the user is not 

a negative definite matrix. If Q  is not a positive definite matrix, it is best approximated by 

a positive definite matrix, R̂ . It is stored in a file named by the user.  PROG1 invokes two 
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subroutine and one function subprograms. The second main program (PROG2) reads a 

valid intercorrelation matrix (may be the output of PROG1) and generates ( , ).X n m  PROG2 

invokes three subroutine and one function subprograms. The function that generates 

random numbers and the subroutine that finds eigenvalues are common to both (PROG1 

and PROG2). While compiling PROG2 it should be linked to the subroutine EIGEN and 

function RAND. Some procedures in the computer program (especially, the one that 

computes eigenvalues and eigenvectors) have been adapted from Krishnamurthy and Sen 

(1976), pp. 242-247. These source codes may easily be translated into any other computer 

language such as Pascal, C
++

 or even BASIC, if needed. Some languages may not have a 

provision to perform double precision arithmetic. In that case, single precision arithmetic 

may be used. The results would be sufficiently accurate for the desired purpose. In its 

present FORTRAN codes, the programs may be compiled by any suitable FORTRAN 

compiler. We have compiled the programs by Microsoft FORTRAN Compiler. 

 

7. Inputs to the Computer Programs 
When these programs are run, they ask for the following parameters (and inputs). Although 

they have been sufficiently explained in the program queries, they are explained here. 

 

PROG1 : Before running the program, the Q  matrix should be stored in some file. This can 

be done by some text editor such as EDIT.COM (a DOS program of MICROSOFT). The 

name of this file is, say inputfile. When the program runs, it asks for the value of m (order 

of the matrix) and the inputfile name (in which Q  is stored). The file name should be in 

single quotes ‘inputfile‘. Then it asks for the seed to generate random number: With this 

seed the uniformly distributed random numbers lying between (0, 1) = U(n,m) are 

generated. This number should lie between –32767 and 32767, zero excluded. This is a 

suitable number for most personal computers. 

 

The program runs and if Q  is not negative definite, it terminates. If so, the inputfile  and 

the outputfile of PROG1  are identical. If Q is negative definite, the program obtains R̂  and  

asks for the outputfile name to store it. The file name should be in single quotes 

‘outputfile‘. This outputfile  then is used by PROG2  as its inputfile. 

 

PROG1 should be run once more on its own output file to ensure that the resulting matrix is 

positive semidefinite. This is required because the output file stores correlation matrix with 

rounded off elements.  Since the output matrix is almost always near-singular, rounding off 

may often make it negative definite. Note that a negative definite correlation matrix, Q , is 

a problematic and pathological case. It has to be handled with care and patience.  

 

PROG2 : If the original  Q  fed by the user was already valid, the inputfile of PROG1 is 

also the inputfile of PROG2. Otherwise, the outputfile of PROG1 is the inputfile of PROG2. 

When PROG2 runs, it asks for the following inputs. 

 

1. Have you stored the intercorrelation matrix, etc. Yes is the answer. 

2. What are N and M ?  

3. Feed non-zero scalar, etc : Feed 1 or any other non-zero number. 
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4. Seed to generate random number: With this seed the uniformly distributed random 

numbers lying between (0, 1) = U(n,m) are generated. This number should lie 

between –32767 and 32767, zero excluded.  

5. File in which correlation matrix is stored : As explained before, if the original  Q  fed by 

the user was already valid, the inputfile of PROG1 is also the inputfile here. 

Otherwise, the outputfile of PROG1 is the inputfile here. 

6. Output file in which the generated X(n,m) characterizing intercorrelation matrix R will 

be stored : the output file name in single quotes ‘ outputfile‘ is fed. 

7. On termination the program stores the results X(n,m) in the outputfile. It also stores the 

computed R matrix there, which may be different from the desired matrix R only 

slightly (may be at the 9
th

 or the 10
th

 place onwards after decimal).  

 

Presently, in the codes given here, maximum N is 100 (=NL) and the maximum M is 10 

(=ML). These parameters can be increased. Accordingly, dimensions in the program may 

be changed before compilation. 

 

8. Fields of Application 
In Monte Carlo experiments that evaluate performance of competing estimators of 

regression coefficients (or evaluates the efficacy of a method of estimation of parameters) 

under severe multicollinearity conditions, we require to generate X(n,m) that are highly 

multicollinear across the variables. The author (see Mishra, 2004) generated highly 

multicollinear X(n,m) variables to test the performance of Maximum Entropy Leuven  

estimators vis-à-vis the OLS estimator of β  in the model .y X uβ= +  To generate X(n,m), 

a slightly different algorithm (than the one presented here) was used. Filzmoser and Croux 

(2002) generated highly multicollinear 1 2[ | ]Z X X= by first generating 1X ∼ (0, )N Σ and 

then obtaining 2 1X X= + ∆ where ∆ ∼ (0, 0.001)N . This procedure yielded 1 2[ | ]Z X X=  

highly correlated across 1 2.X and X  In his paper Paris (2001) dealt with multicollinear 

regressors but he did not explain how multicollinearity was induced into X(n,m). He (see 

Paris, 2001, p. 4) wrote: “X was drawn from a uniform U[-1.7, 2.0] … each component of 

the disturbance vector u was drawn from a normal distribution N[1, 5].” 

 

Sometimes two variables Y and Z are each cointegrated with another variable X, but Y and 

Z do not appear to be cointegrated with each other, although, intuitively, one would expect 

that they should be cointegrated with each other and the transitivity property would be 

exhibited. By carrying out a Monte Carlo simulation, Ferré (2004) showed that even though 

the two variables were in fact cointegrated, the test for cointegration was not able to pick 

this up due to the interplay of the error terms of the relationships between the variables. By 

using the algorithm presented here, several such examples may be generated for 

experiments and further investigation. We present here two intercorrelation matrices which 

can be used (as inputs to the program given here) to generate X(n,m) that would show 

intransitivity of cointegration. 

 

In the matrix given below, 1 5( , )r x x is zero while other elements are large enough to exhibit 

cointegration. If this matrix is used to generate X(n,m) for n howsoever large (say 500 or 

so), we will obtain an example to show a lack of transitivity relation in cointegration. 



 10 

Another intercorrelation matrix with elements : 11 22 33 1.00r r r= = = , 12 21 0.60r r= = , 

13 31 0.00r r= = , 23 32 0.55r r= =  will produce a similar instance. Many such examples may 

be generated.  

 

          Intercorrelation Matrix of X Showing Intransitivity of Cointegration 
Variables X1 X2 X3 X4 X5 

X1 1.00 0.61 0.52 0.58 0.00 
X2 0.61 1.00 0.62 0.65 0.50 
X3 0.52 0.62 1.00 0.64 0.61 
X4 0.58 0.65 0.64 1.00 0.76 
X5 0.00 0.50 0.61 0.76 1.00 

  
 

Finally, experiments that directly or indirectly use multivariate analysis methods (such as  

Principal components analysis,  Canonical correlation analysis, Factor analysis or Cluster 

analysis; see Kendall and Stuart, 1968) as a  procedure  may require X(n,m) with a desired 

R matrix. In such experiments our algorithms may be useful. 

 

9. Limitations and possibilities of  improvement 
Although theoretically there are no snags in minimizing the maximum norm of deviation of 

R̂  from ,Q  our algorithm has clearly two weaknesses, (1) it fails if at any stage of iteration 

the intermediate R̂  turns out to be extremely near-singular, and, for some pathological 

cases of ,Q  PROG1 may not converge; and (2) the random walk method is a very crude and 

slow method of optimization. It is easy to preclude extreme near-singularity of R̂ at any 

intermediate stage. But it would be a further research work to replace the random walk 

method of optimization by some more efficient method such as the Genetic Algorithm (see 

Holland, 1975;  Goldberg, 1989; Wright, 1991).  
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C     -------------- PROG1 to generate R from Q ------------ 

C     RANDOM WALK METHOD TO FIND Min(max norm) Nearest Positive  

C     Semidefinite Marix from a given Non-positive definite matrix 

C     --------------------------------------------------------------       

      INTEGER *2 IU,IV 

      DOUBLE PRECISION A(10),R(10),AR(10),XO(10,10),AA(10) 

      DOUBLE PRECISION V(10,10),W(10,10),P(10),D,RH(10,10) 

      DOUBLE PRECISION SUML,LAMBDA,EPS,F,VO,VR,VOO,RAND,CN   

      DOUBLE PRECISION RNORM 

      DIMENSION MM(10) 

      CHARACTER *11 OFIL,IFIL 

C     PARAMETERS ----- MAY BE CHANGED ---------------------       

C     EPS=ITERATIVE ACCURACY: EPSL=MAIN DIAGONAL ACCURACY       

C     NITR=NO. OF TRIALS FOR RANDOM WALK SEARCH   

C     ITMAX=MAX NO. OF ITERATION FOR CONVERGENCE 

      EPS= 0.00001 

      EPSL=0.00001 

      NITR=10 

      ITMAX=100  

C     -------------------------------------------------- 

      WRITE(*,*)'FEED M and INPUT FILE NAME' 

      WRITE(*,*)'(M is the order of the input square matrix' 

      WRITE(*,*)'INPUT FILE NAME in single quotes)' 

      READ(*,*) M,IFIL 

      OPEN(7,FILE=IFIL) 

      DO 1 I=1,M 

      READ(7,*)(XO(I,J),J=1,M) 

    1 CONTINUE 

      CLOSE(7) 

      WRITE(*,*)'FEED SEED TO GENERATE RANDOM NUMBERS' 

      WRITE(*,*)'(SEED lies between -32767 AND 32767, avoid zero)'  

      READ(*,*) IU 

      WRITE(*,*)'OUTPUT FILE ? ' 

      READ(*,*) OFIL  

      VOO=10.0**10  

      LTRY=0 

      ICO=1 

      CALL CONS(XO,P,M,ICO)  

      WRITE(*,*)'EIGEN VALUES OF THE ORIGINAL MATRIX XO ARE :' 

      WRITE(*,*)(P(I),I=1,M) 

      PAUSE 'STRIKE ENTER TO PROCEED' 

      DO 70 I=1,M 

      IF(P(I).LT.0.0) GOTO 90 

   70 CONTINUE 

      WRITE(*,*)'ALL EIGEN VALUES ARE NON-NEGATIVE' 

      STOP 

C     ======================================================== 

   90 WRITE(*,*)'SOME EIGEN VALUES ARE NEGATIVE'    

      WRITE(*,*)'THE R MATRIX AT THIS STAGE IS : ' 

      OPEN(8,FILE=OFIL, STATUS='NEW') 

      DO 789 I=1,M 

      P(I)=1.0 

  789 WRITE(8,89)(RH(I,J),J=1,M) 

      CLOSE(8) 

      DO 788 I=1,M 
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  788 WRITE(*,89)(RH(I,J),J=1,M) 

      ITEST=0 

C     PAUSE 'STRIKE ENTER TO PROCEED' 

      F=0.0 

      DO 71 I=1,M 

      IF(P(I).LE.0.0) P(I)=RAND(IU,IV) 

      F=F+P(I) 

   71 CONTINUE 

      DO 72 I=1,M  

      P(I)=DABS(P(I)/F*M) 

   72 CONTINUE 

      WRITE(*,*)'EIGEN VALUES ARE FORCED TO BE ALL POSITIVE' 

      SUML=0.0 

      DO 78 I=1,M 

      SUML=SUML+P(I) 

   78 CONTINUE 

C     WRITE(*,*)(P(I),I=1,M),' SUM = ',SUML 

      DO 999 IIT=1,NITR 

      LAMBDA=20.0 

C     Initialisation of decision variables 

      DO 7 I=1,M 

    7 A(I)=DABS(P(I)) 

      ICO=2 

      CALL CONS(RH,P,M,ICO)  

C     --------------- FUNCTION EVALUATION --------------------- 

      F=0.0 

      DO 11 I=1,M 

      DO 11 J=1,M 

      D=DABS(XO(I,J)-RH(I,J)) 

      IF(D.GT.F) F=D 

   11 CONTINUE 

      VO=F 

C     --------------------------------------------------------- 

      IT=0 

  200 IT=IT+1 

      IF(IT.GT.1000) THEN 

      WRITE(*,*)'NO CONVERGENCE IN 1000 ITERATIONS' 

      GOTO 1000 

      ENDIF 

      LAMBDA=LAMBDA/2.0 

      IMP=0 

      DO 100 II=1,ITMAX 

C     GENERATE M UNIFORMLY DISTRIBUTED RANDOM NUMBERS (-1,1) 

  150 DO 2 I=1,M 

      R(I)=2.0*(RAND(IU,IV)-0.5) 

    2 CONTINUE 

C     NORMALISE THE RANDOM NUMBERS       

      RNORM=0.0 

      DO 3 I=1,M 

      RNORM=RNORM+R(I)**2 

    3 CONTINUE 

      RNORM=DSQRT(RNORM) 

      IF(RNORM.GT.1.0) GOTO 150 

      DO 4 I=1,M 

      R(I)=R(I)/RNORM 

    4 CONTINUE 

C     ADD RANDOM NUMBERS TIMES LAMBDA TO A VECTOR 
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      DO 5 I=1,M 

      AR(I)=A(I)+LAMBDA*R(I) 

      AR(I)=DABS(AR(I)) 

    5 CONTINUE 

C     --------------- FUNCTION EVALUATION --------------------- 

      CN=0.0 

      DO 73 I=1,M  

      CN=CN+AR(I) 

   73 CONTINUE 

      SUML=0.0 

      DO 74 I=1,M 

      AR(I)=AR(I)/CN*M 

      SUML=SUML+AR(I) 

   74 CONTINUE 

C     WRITE(*,*) 'SUML = ',SUML 

      ICO=2 

      CALL CONS(RH,AR,M,ICO)  

      F=0.0 

      DO 13 I=1,M 

      DO 13 J=1,M 

      D=DABS(XO(I,J)-RH(I,J)) 

      IF(D.GT.F) F=D 

   13 CONTINUE 

      VR=F 

C     ---------------------------------------------------------  

      IF(VR.LT.VO) THEN 

      VO=VR 

      DO 6 I=1,M 

      A(I)=AR(I) 

    6 CONTINUE 

      IMP=1 

      ENDIF 

  100 CONTINUE 

      IF((IMP.EQ.0).OR.(LAMBDA.GT.EPS)) GOTO 200 

 1000 CONTINUE 

      IF(VOO.GT.VO) THEN 

      VOO=VO 

      DO 998 I=1,M 

      AA(I)=A(I) 

  998 CONTINUE 

      ENDIF 

  999 CONTINUE 

      DO 997 I=1,M 

      A(I)=AA(I) 

  997 CONTINUE 

      VO=VOO 

      SUML=0.0 

      DO 77 I=1,M 

      SUML=SUML+A(I) 

   77 CONTINUE 

      WRITE(*,*)'SMALLEST MAX DEVIATE = ',VO 

      WRITE(*,*)' ' 

      WRITE(*,*)' TRIAL NUMBER = ',LTRY  

      WRITE(*,*)' ' 

      DO 152 I=1,M 

      IF(DABS(RH(I,I)-1.00).GT.EPSL) THEN 

      RH(I,I)=1.0 
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      ITEST=1 

      ENDIF 

  152 CONTINUE 

      IF(ITEST.EQ.1) THEN 

      CALL CONS(RH,AR,M,1)   

      LTRY=LTRY+1 

      VOO=10.0**10  

      GOTO 90 

      ENDIF 

      Write(*,*)' ------------ Convergence achieved ---------' 

      write(*,*)' ' 

      WRITE(*,*)' NAME THE OUTPUT FILE TO STORE THE RESULT' 

      WRITE(*,*)' (OUTPUT FILE NAME IN SINGLE QUOTES)' 

      WRITE(*,*)'ESTIMATED MATRIX' 

      OPEN(8,FILE=OFIL, STATUS='NEW')    

      DO 75 I=1,M 

      RH(I,I)=1.00 

      WRITE(*,89)(RH(I,J),J=1,M)  

      WRITE(8,89)(RH(I,J),J=1,M) 

   75 CONTINUE 

      CLOSE(8) 

   89 FORMAT(1X,6D13.5) 

      WRITE(*,*)'RESULTING MATRIX STORED IN FILE = ',OFIL  

      WRITE(*,*)’RUN THIS PROGRAM ONCE MORE ON ITS OWN OUTPUT FILE’ 

      WRITE(*,*)’UNTIL IT SAYS ALL EIGENVALUES ARE NON-NEGATIVE’ 

      END 

C     ---------------------------------------------------       

      SUBROUTINE CONS(A,P,M,ICO) 

C     Constructs Matrix from its eigenvectors and values       

      DOUBLE PRECISION A(10,10),B(10,10),V(10,10),W(10,10),P(10),F   

      DIMENSION MM(10) 

      IF(ICO.GT.1) GOTO 100 

      NN=1 

 1000 NADJUST=0 

      DO 10 I=1,M 

      DO 10 J=1,M 

      B(I,J)=A(I,J) 

   10 CONTINUE 

      CALL EIGEN(A,M,NN,V,W,P,MM)  

C     ==================================================== 

C     NORMALIZATION OF EIGEN VECTORS TO UNITY       

      DO 50 I=1,M 

      P(I)=A(I,I) 

      F=0.0 

      DO 51 J=1,M 

   51 F=F+V(J,I)*V(J,I) 

      F=DSQRT(F) 

      DO 52 J=1,M 

   52 V(J,I)=V(J,I)/F 

   50 CONTINUE 

      DO 11 I=1,M 

      DO 11 J=1,M 

      A(I,J)=B(I,J) 

   11 CONTINUE 

      RETURN 

C     ===================================================== 

  100 DO 34 J=1,M 
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      DO 341 JJ=1,M 

  341 W(J,JJ)=0.0 

      W(J,J)=P(J) 

   34 CONTINUE 

      DO 35 J=1,M 

      DO 35 JJ=1,M 

      A(J,JJ)=0.0 

      DO 35 I=1,M 

      A(J,JJ)=A(J,JJ)+V(J,I)*W(I,JJ) 

   35 CONTINUE    

      DO 36 J=1,M 

      DO 36 JJ=1,M 

      W(J,JJ)=0.0 

      DO 36 I=1,M 

      W(J,JJ)=W(J,JJ)+A(J,I)*V(JJ,I) 

   36 CONTINUE    

      DO 361 I=1,M 

      DO 361 J=1,M 

      A(I,J)=W(I,J) 

  361 CONTINUE 

C     WRITE(*,*)'NOW A IS V*L*VT MATRIX'  

C     NORMALIZED V (EIGEN VECTORS) ARE UNDISTURBED         

      RETURN 

      END 

C     ----------------------------------------------------       

      SUBROUTINE EIGEN(A,N,NN,V,W,P,MM) 

C     Computes eigenvalues and vectors of a real symmetrix matrix       

      DOUBLE PRECISION A(10,10),V(10,10),W(10,10),P(10)   

      DOUBLE PRECISION PMAX,EPLN,TAN,SIN,COS,AI,TT,TA,TB 

      DIMENSION MM(10) 

C     ------------ INITIALISATION -------------------------       

      DO 50 I=1,N 

      DO 51 J=1,N 

      V(I,J)=0.0 

   51 W(I,J)=0.0 

      P(I)=0.0 

   50 CONTINUE 

      PMAX=0 

      EPLN=0 

      TAN=0 

      SIN=0 

      COS=0 

      AI=0 

      TT=0 

      EPLN=1.0D-310 

C     ------------------------------------------------------ 

      IF(NN.NE.0) THEN 

        DO 3 I=1,N 

        DO 3 J=1,N  

        V(I,J)=0.0 

        IF(I.EQ.J) V(I,J)=1.0 

    3   CONTINUE 

      ENDIF 

    2 NR=0 

    5 MI=N-1 

      DO 6 I=1,MI 

      P(I)=0.0 
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      MJ=I+1 

      DO 6 J=MJ,N 

      IF(P(I).GT.DABS(A(I,J))) GO TO 6  

        P(I)=DABS(A(I,J)) 

        MM(I)=J 

    6 CONTINUE 

    7 DO 8 I=1,MI  

      IF(I.LE.1) GOTO 10 

      IF(PMAX.GT.P(I)) GOTO 8 

   10 PMAX=P(I) 

      IP=I 

      JP=MM(I) 

    8 CONTINUE 

      IF (PMAX.LE.EPLN) THEN  

      GO TO 12 

      ENDIF 

      NR=NR+1 

   13 TA=2.0*A(IP,JP) 

      TB=(DABS(A(IP,IP)-A(JP,JP))+ 

     1DSQRT((A(IP,IP)-A(JP,JP))**2+4.0*A(IP,JP)**2)) 

         TAN=TA/TB   

      IF(A(IP,IP).LT.A(JP,JP)) TAN=-TAN 

   14 COS=1.0/DSQRT(1.0+TAN**2) 

      SIN=TAN*COS 

      AI=A(IP,IP) 

      A(IP,IP)=(COS**2)*(AI+TAN*(2.0*A(IP,JP)+TAN*A(JP,JP))) 

      A(JP,JP)=(COS**2)*(A(JP,JP)-TAN*(2.0*A(IP,JP)-TAN*AI)) 

      A(IP,JP)=0.0 

      IF(A(IP,IP).GE.A(JP,JP)) GO TO 15 

      TT=A(IP,IP) 

      A(IP,IP)=A(JP,JP) 

      A(JP,JP)=TT 

      IF(SIN.GE.0) GO TO 16 

      TT=COS 

      GO TO 17 

   16 TT=-COS 

   17 COS=DABS(SIN) 

      SIN=TT 

   15 DO 18 I=1,MI 

      IF(I-IP) 19, 18, 20 

   20 IF(I.EQ.JP)GO TO 18 

   19 IF(MM(I).EQ.IP) GO TO 21 

      IF(MM(I).NE.JP) GO TO 18 

   21 K=MM(I) 

      TT=A(I,K) 

      A(I,K)=0.0 

      MJ=I+1 

      P(I)=0.0 

      DO 22 J=MJ,N 

      IF(P(I).GT.DABS(A(I,J))) GO TO 22 

      P(I)=DABS(A(I,J)) 

      MM(I)=J 

   22 CONTINUE 

      A(I,K)=TT 

   18 CONTINUE 

      P(IP)=0.0 

      P(JP)=0.0 
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      DO 23 I=1,N 

      IF(I-IP) 24, 23, 25 

   24 TT=A(I,IP) 

      A(I,IP)=COS*TT+SIN*A(I,JP) 

      IF(P(I).GE.DABS(A(I,IP))) GO TO 26 

      P(I)=DABS(A(I,IP)) 

      MM(I)=IP 

   26 A(I,JP)=-SIN*TT+COS*A(I,JP) 

      IF(P(I).GE.DABS(A(I,JP))) GO TO 23 

   30 P(I)=DABS(A(I,JP))   

      MM(I)=JP 

      GO TO 23 

   25 IF(I.LT.JP) GO TO 27 

      IF(I.GT.JP) GO TO 28 

      IF(I.EQ.JP) GO TO 23 

   27 TT=A(IP,I) 

      A(IP,I)=COS*TT+SIN*A(I,JP) 

      IF(P(IP).GE.DABS(A(IP,I))) GO TO 29 

      P(IP)=DABS(A(IP,I)) 

      MM(IP)=I 

   29 A(I,JP)=-TT*SIN+COS*A(I,JP) 

      IF(P(I).GE.DABS(A(I,JP))) GO TO 23 

      GO TO 30 

   28 TT=A(IP,I) 

      A(IP,I)=TT*COS+SIN*A(JP,I) 

      IF(P(IP).GE.DABS(A(IP,I))) GO TO 31 

      P(IP)=DABS(A(IP,I)) 

      MM(IP)=I 

   31 A(JP,I)=-TT*SIN+COS*A(JP,I) 

      IF(P(JP).GE.DABS(A(JP,I))) GO TO 23 

      P(JP)=DABS(A(JP,I)) 

      MM(JP)=I 

   23 CONTINUE 

      IF(NN.EQ.0) GOTO 7  

      DO 32 I=1,N 

      TT=V(I,IP) 

      V(I,IP)=TT*COS+SIN*V(I,JP) 

      V(I,JP)=-TT*SIN+COS*V(I,JP) 

   32 CONTINUE 

      GO TO 7 

   12 RETURN    

      END 

C     ---------------------------------------------------------------- 

      FUNCTION RAND(IU,IV)  

C     Generates Rectangular (0,1) Random Numbers 

      DOUBLE PRECISION RAND 

      INTEGER *2 IU,IV 

      IV=IU*259 

      IF(IV.GE.0) GOTO 2 

      IV=IV+32767+1 

   2  RAND=IV 

      IU=IV 

      RAND=RAND*0.3051851E-04 

      RETURN 

      END     
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C     ----- PROG2 : Main Program to generate X from R ------ 

      COMMON ML,NL,FC,FCO 

      DOUBLE PRECISION X(100,10),SCALE 

      CHARACTER *15 FC,FCO 

      INTEGER *2 IU,IV 

C     ------------------------------------------------------------ 

C     NL AND ML ARE THE HIGHEST PERMISSIBLE DIMENSION LIMITS TO       

C     X(NL,ML) MATRICES. OTHER MATRICES HAVE COMPATIBLE DIMENSIONS 

C     CHANGE THEM IF REQUIRED AND PERMISSIBLE BY MEMORY LIMITS. 

      NL=100 

      ML=10 

C     ------------------------------------------------------------       

      WRITE(*,*)'HAVE YOU STORED THE CORRELATION MATRIX, R ? IF NOT'  

      WRITE(*,*)'STORE IT IN AN ASCII FILE. THEN RUN THE PROGRAM' 

      WRITE(*,*)'IF NO THEN FEED ZERO (0).IF YES FEED ANY OTHER NUMBER' 

      READ(*,*) NY 

      IF(NY.EQ.0) THEN 

      WRITE(*,*)'SO, STORE R MATRIX FIRST THEN RUN THE PROGRAM' 

      STOP 

      ENDIF 

C     ------------------------------------------------------------- 

      WRITE(*,*)'WHAT ARE N AND M ? '  

      WRITE(*,*)'(N = NO. OF OBSERVATIONS, M = NO. OF VARIABLES)' 

      READ(*,*) N,M 

      WRITE(*,*)'NON-ZERO SCALAR TO SCALE UP THE X VARIABLES ?' 

      WRITE(*,*)'(NOT NECESSARY. FEED 1 OR ANY OTHER NON-ZERO NUMBER'   

      READ(*,*) SCALE 

      WRITE(*,*)'FEED A NON-ZERO SEED TO GENERATE RANDOM VARIABLE ?' 

      WRITE(*,*)'(SEED MUST LIE BETWEEN -32767 AND 32767 AND NOT ZERO)' 

      READ(*,*) IU 

      WRITE(*,*)'FILE IN WHICH CORRELATION MATRIX IS STORED ?' 

      WRITE(*,*)'FEED THE FILE NAME IN THE SINGLE QUOTES' 

      READ(*,*) FC 

      WRITE(*,*)'FILE IN WHICH OUTPUT X WILL BE STORED ?' 

      WRITE(*,*)'FEED THE FILE NAME IN THE SINGLE QUOTES' 

      READ(*,*) FCO 

      OPEN(9,FILE=FCO,STATUS='NEW')   

      CALL GENX(X,N,M,IU,IV,SCALE) 

      CLOSE(9) 

      END 

C     -------------------------------------------------------------- 

C 

      SUBROUTINE GENX(X,N,M,IU,IV,SCALE)  

      COMMON ML,NL,FC,FCO  

      DOUBLE PRECISION A(10,10),V(10,10),W(10,10),P(10),R(10)   

      DOUBLE PRECISION X(NL,ML),Z(100,10),SUML,RAND,SCALE 

      DIMENSION MM(10) 

      CHARACTER *15 FC,FCO 

      INTEGER *2 IU,IV 

C     WRITE(*,*)'ENTERS GENX' 

C     ----------------- PARAMETERS --------------------------------       

      NN=1 

      NSTD=1 

C     -------------------------------------------------------------       

      DO 1 I=1,N 

      DO 1 J=1,M 

      X(I,J)=RAND(IU,IV)*SCALE 
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    1 CONTINUE   

      CALL CORR(X,N,M,A,NSTD) 

      CALL EIGEN(A,M,NN,V,W,P,MM)  

C      WRITE(*,*)'RETURNS FROM EIGEN' 

C      PAUSE 

      DO 301 I=1,N 

      DO 301 J=1,M 

      Z(I,J)=0.0 

      DO 301 K=1,M 

      Z(I,J)=Z(I,J)+X(I,K)*V(K,J) 

  301 CONTINUE 

C     ---------------------------------------------------- 

      CALL CORR(Z,N,M,A,NSTD) 

      OPEN(8,FILE=FC) 

      DO 302 I=1,M 

      READ(8,*) (A(I,J),J=1,M) 

  302 CONTINUE 

      CLOSE(8) 

      CALL EIGEN(A,M,NN,V,W,P,MM)  

C      WRITE(*,*)'RETURNS FROM EIGEN' 

C     ----------------------------------------------------       

      DO 60 I=1,M 

      R(I)=A(I,I) 

   60 CONTINUE 

      WRITE(*,*)'EIGENVALUES = ',(R(I),I=1,M) 

      DO 64 I=1,M 

      IF(R(I).LE.0.0) THEN 

      WRITE(*,*)'SOME OF THE EIGENVALUES ARE NOT POSITIVE'  

      WRITE(*,*)'PROGRAM TERMINATED. FEED DIFFERENT R MATRIX' 

      STOP 

      ENDIF 

   64 CONTINUE    

      DO 62 J=1,M  

      P(J)=0.0 

      DO 61 I=1,M 

      P(J)=P(J)+V(I,J)**2 

   61 CONTINUE 

      P(J)=DSQRT(P(J)/R(J))    

   62 CONTINUE    

      DO 63 J=1,M 

      DO 63 I=1,M 

      W(I,J)=V(I,J)/P(J) 

   63 CONTINUE 

      DO 304 I=1,N 

      DO 304 J=1,M 

      X(I,J)=0.0 

      DO 304 K=1,M 

      X(I,J)=X(I,J)+Z(I,K)*W(J,K) 

  304 CONTINUE 

      WRITE(9,*)'GENERATED X(N,M) MATRIX' 

      DO 305 I=1,N 

      WRITE(9,310)(X(I,J),J=1,M) 

  305 CONTINUE 

      WRITE(9,*)'COMPUTED INTER-CORRELATION MATRIX' 

      CALL CORR(X,N,M,A,NSTD)    

      DO 306 I=1,M 

      WRITE(9,310)(A(I,J),J=1,M) 
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  306 CONTINUE 

  310 FORMAT(1X,5D15.7)     

      RETURN 

      END 

C     ---------------------------------------------------------------- 

      SUBROUTINE CORR(X,N,M,A,NSTD)  

      COMMON ML,NL,FC,FCO  

      DOUBLE PRECISION X(NL,ML),A(10,10),AV(10),SD(10) 

      CHARACTER *15 FC,FCO 

      NSQR=N*N 

      DO 1 J=1,M 

      DO 2 JJ=J,M 

      A(J,JJ)=0.0 

      DO 2 I=1,N 

    2 A(J,JJ)=A(J,JJ)+X(I,J)*X(I,JJ) 

      DO 21 JJ=J,M 

      A(JJ,J)=A(J,JJ) 

   21 CONTINUE 

    1 CONTINUE 

      DO 3 J=1,M 

      AV(J)=0.0 

      DO 3 I=1,N 

    3 AV(J)=AV(J)+X(I,J) 

      DO 4 J=1,M 

      DO 5 JJ=1,M 

      A(J,JJ)=(N*A(J,JJ)-AV(J)*AV(JJ))/NSQR 

    5 CONTINUE 

    4 CONTINUE 

      DO 6 J=1,M 

      AV(J)=AV(J)/N 

      SD(J)=DSQRT(A(J,J)) 

    6 CONTINUE 

      DO 7 J=1,M 

      DO 7 JJ=1,M 

      A(J,JJ)=A(J,JJ)/(SD(J)*SD(JJ)) 

    7 CONTINUE   

      IF(NSTD.NE.0) THEN 

      DO 8 I=1,N 

      DO 8 J=1,M 

      X(I,J)=(X(I,J)-AV(J))/SD(J) 

    8 CONTINUE 

      ENDIF 

   10 FORMAT(6D12.4)    

      WRITE(*,*)'CORRELATION MATRIX --------------------------' 

      DO 22 I=1,M 

      WRITE(*,10)(A(I,J),J=1,M) 

   22 CONTINUE 

      WRITE(*,*)'---------------------------------------------'  

C      PAUSE 

      RETURN 

      END 

 

 


