
Munich Personal RePEc Archive

On generating correlated random

variables with a given valid or invalid

Correlation matrix

Mishra, SK

North-Eastern Hill University, Shillong (India)

2 August 2004

Online at https://mpra.ub.uni-muenchen.de/1782/

MPRA Paper No. 1782, posted 13 Feb 2007 UTC

On generating Correlated Random Variables with a given Valid or
Invalid Correlation Matrix

SK Mishra

Dept. of Economics
NEHU, Shillong, India

1. Introduction

The objective of this paper is to provide an algorithm that generates real (,)X n m with a

desired feasible intercorrelation matrix, (,),R m m where n stands for the number of

observations (or sample size) and m n< is the number of variates (or variables). In

simulation-oriented works, it is often required to generate a matrix of sample variates,

(,)X n m , that characterizes a desired (feasible) intercorrelation matrix, (,).R m m If each

column (variate) of (,)X n m has zero mean and unit standard deviation then the

intercorrelation matrix
1

(,)R m m n X X
− ′= . It may well be viewed as the dispersion matrix

of the standardized variables. One may begin with a valid intercorrelation matrix, R

(positive semidefinite), or an invalid matrix,Q (negative definite), whose main diagonal

elements are unity and the rest of the elements are between –1 and 1.

Being the quadratic form (see Theil, 1971, pp. 22-29), a valid product moment

intercorrelation matrix, R , is necessarily a positive semidefinite matrix. All the successive

principal minors of R are non-negative (see Takayama, 1974, pp. 118-121, pp. 383-385) or

stated differently all the eigenvalues of R are non-negative. Each element
ij

r R∈ is the

cosine of angle
ij

θ between the vectors .i jx and x In practice, however, no
i

x is a linear

combination of ; ; 1, 2,...,jx i j j m≠ = (that is,
1;

m

i j j

j j i

x x a
= ≠

= ∑ is not true for any non-

null real vector 1 2(...)
m

a a a a ′=). In case, one requires such a vector, it can be obtained

by a linear combination such as
1;

.
m

i j j

j j i

x x a
= ≠

= ∑ This case being very specific and trivial

(and so set apart in practice), one requires to generate R, which is a positive definite matrix.

2. Methods to generate random numbers
First, let us look into the procedure that may be used to generate a single variate. Generally,

the exercise begins with the uniformly distributed random numbers generated by some

procedure such as the power residue method or the mid-square-bit method (see

Krishnamurthy and Sen, 1976, pp. 302-304). Uniformly distributed random numbers may

be transformed into x ∼ N(0,1); 1 2{ 2ln()}{ (2)}x u Cos uπ= − where u1 and u2 are

uniformly distributed independent random numbers lying between (0,1) and x is the

standard normal variate (see Knuth (1969), Texas Instruments Inc (1979), p. 54).

Alternatively, one may generate N(0, 1) from uniformly distributed (0, 1)U numbers, by

using the Central Limit Theorem (see Gillett (1979, p. 519). However, this method is less

accurate and time consuming than Knuth’s method. Normally distributed variate, x , may

be used to generate Gamma distributed variate, g, since, if x is a standard normal variate,

 2

then g =
2

2x is a Gamma variate with parameter 1 2 . Due to the additive property of

Gamma variates, if xi (i =1,2,…,n) are n independent normal variates with means mi and

standard deviations σι then g =
2

2
1

()1

2

n
i i

i i

x m

σ=

−∑ is a Gamma variate with parameter
1

2 n
− .

From two independent normally distributed variates x1 and x2 we may obtain a Cauchy

distributed variate, since, if x1 and x2 are independent normal variates with means m1 and

m2 and variances
2

1σ and
2

2σ then the variate 1 1 2 2() ()c x m x m= − − is Cauchy distributed.

In particular, the quotient of two independent standard normal variates is Cauchy

distributed. From two independent Gamma variates, g1 and g2 with parameters l and m

respectively, we may obtain 1 1 1 2()v g g g= + , which is a 1(,)l mβ distributed variate, and

2 1 2v g g= , which is a 2 (,)l mβ distributed variate. For these relations see Kapur and

Saxena, 1982, pp. 292, 386, 288-289 and 427. In general, starting from uniformly

distributed variates, we may obtain a variate with almost any kind of distribution by a

sequence of suitable transformations.

Generation of multivariate distributions with desired parameters began with Hoffman

(1924) who proposed a method to generate two variables that satisfy a given bivariate

correlation (coefficient). However, his method cannot be applied to generate 2m >

variables that satisfy a given correlation matrix. Kaiser and Dichman (1962) generalized

Hoffman’s method for 2m ≥ variables. The Kaiser-Dichman method is based on

factorization of (,).R m m It presumes that (,)R m m is a positive definite matrix (that has

all its eigenvalues positive). Moreover, it generates variables that have a multinormal

distribution.

Fleishman (1978) introduced an algorithm to generate normal or non-normal random

numbers satisfying the first four moments (mean, variance, skewness and kurtosis). His

method does not depend on factorization of the desired R matrix. Tadikamalla (1980)

proposed several methods to generate non-normally distributed random numbers.

Vale and Maurelli (1983) proposed a method for generating multivariate (normally as well

as non-normally distributed) variates with desired first four moments of each variate

satisfying the specified intercorrelation matrix. Headrick and Sawilowski (1999) introduced

a method that generates multivariate non-normal distributions with average values of

intercorrelations approximating the population intercorrelations. This method, unlike that

of Vale and Maurelli, performs well even if the distributions are heavily skewed or thick

tailed. Moreover, being based on Fleishman’s procedure, it does not require factorization

of (,).R m m

3. The case of negative definite invalid intercorrelation matrices

It may be noted that arbitrary real symmetric matrices, say Q , that have elements

1 1,2,...,
ii

q i m= ∀ = and 1 1 , 1,2,..., ;ijq i j m i j− ≤ ≤ ∀ = ≠ are not the genuine

product moment intercorrelation matrices, ,R obtainable from some real X although they

 3

may appear to be so. For example, the following three matrices appear to be genuine

(product moment) intercorrelation matrices while they are not.

1 2 3

1.00 0.70 0.00 1.00 0.90 0.10 1.00 0.60 0.13

0.70 1.00 0.80 ; 0.90 1.00 0.80 ; 0.60 1.00 0.90

0.00 0.80 1.00 0.10 0.80 1.00 0.13 0.90 1.00

Q Q Q

 = = =

Det(Q1) = -0.13, Det(Q2) = -0.316 and Det(Q3) = -0.0465. One of the eigenvalues of each

matrix is negative. Several such examples may be generated. We will name such matrices

as the invalid or pseudo intercorrelation matrices or Q matrices against the R matrices that

are necessarily positive semidefinite.

Negative definite or pseudo intercorrelation matrices may enter into empirical investigation

due to several reasons. First, the coefficients of correlation may not be computed by the

Karl Pearson’s (product moment) formula. They might have been obtained by Spearman’s

formula (of rank correlation) or they could be the polychoric coefficients of correlation.

Secondly, some of them might have been computed from variables different in sample size

(observations). Suppose
11 12

21 22

Q Q
Q

Q Q

=

 such that 11Q is obtained from 1 1 1(,)X n m , 22Q is

obtained from 2 2 2(,)X n m : 1 2n n> , and 12 21Q Q′= is obtained from 1 2 1 2 2 2[(,), (,)]X n m X n m ,

while
2

1

X
X X

= ∅

, ∅ standing for ‘information not available’. Then Q could fail to be

positive semidefinite. Thirdly, when the off diagonal entries in Q are large (say 0.9 or still

larger) in magnitude, but recorded with substantial error or approximation, Q may fail to

be positive semidefinite. Fourthly, when the elements of near-singular matrices are rounded

off (for reporting in research papers, etc.) without a due care taken to the possible effects of

rounding off on the status of the matrices regarding the properties such as positive

definiteness etc, the reported matrices may lose the properties that they originally have had.

A telling example of this is the positive semidefinite matrix obtained by Higham (see

Higham, 2002, p. 335 : the matrix was singular in the original). However, the reported

matrix (rounded off at the fourth place after decimal) has its determinant = -2.441038E-05

(one of the eigenvalues being –1.343337484E-05, instead of zero). Surely, a negative value

of the determinant is due to rounding off. Lastly, in simulation, especially when Q is an

initial approximation to R large in dimension, the analyst has to arbitrarily fill in the

values of ; , 1, 2,...,ijq i j i j m≠ ∀ = . The only restraint obeyed by the analyst is that

1
ii

q = and 1 1 , 1, 2,..., .ij jiq q i j m− ≤ = ≤ ∀ = Such arbitrary Q may often fail to be

positive semidefinite.

It is required, therefore, to obtain best possible R (positive semidefinite matrix) from Q

(not positive semidefinite). Higham (2002) proposed a method to obtain R̂ from Q such

that ˆ
F

Q R− is the least. Here .
F

 is the Frobenius norm. The method is very general

 4

and allows for weights to be assigned to different elements of the distance matrix as desired

by the analyst according to the level of confidence put in to the accuracy or (rationally

justified) most probable value of .
ij

q In that case, the weighted norm of difference is

minimized. However, for larger matrices, the method is time consuming due to the linear

convergence of the algorithm used by Higham. Once R̂ (the nearmost R to Q) is

obtained, one may go in for obtaining the variates that satisfy the R̂ matrix.

Al-Subaihi (2004) proposed a modification of Kaiser-Dichman procedure to generate

normally distributed (correlated) variates from a given non-positive definite Q , which, in

the process, is approximated by a positive definite *R matrix. The resulting variates satisfy

the *R matrix. It appears that Al-Subaihi’s meth od does not guarantee that *R is

sufficiently close to Q as in the Higham procedure.

We take an example from Al-Subaihi (2004, p. 11, the middle matrix). The values of

1 1,2,3, 4,5.
ii

q i= ∀ = The value of 12 21 13 31 0.5.q q q q= = = = Other elements in the first

row (as well as the first column) are all zero. The values of the off-diagonal elements

0.84
ij ji

q q= = for , 2,3, 4,5 ; .i j i j= ≠

Al-Subaihi generated the first matrix (call it
*

R , given below) as an approximation to Q ,

while we have simply perturbed *R to obtain **R . We find that the second matrix, **R ,

approximates Q more accurately than the first matrix,
*

R , generated by Al-Subaihi. Note

that neither of the two matrices (
*

R and
**

R) is optimally nearmost to the given Q matrix.

Al-Subaihi’s generated *R matrix A relatively better **R matrix

1x

2x 3x
4x

5x
1x

2x 3x
4x

5x

1x
1.0000 0.4964 0.5008 0.0011 0.0050

1.0000 0.4964 0.5008 0.0007 0.0010

2x
0.4964 1.0000 0.8819 0.7317 0.7363

0.4964 1.0000 0.8819 0.7317 0.8400

3x
0.5008 0.8819 1.0000 0.7272 0.7305

0.5008 0.8819 1.0000 0.7272 0.8200

4x 0.0011 0.7317 0.7272 1.0000 0.8432

0.0007 0.7317 0.7272 1.0000 0.8400

5x 0.0050 0.7363 0.7305 0.8432 1.0000

0.0010 0.8400 0.8200 0.8400 1.0000

4. Proximity measured by the maximum norm of deviations
It is clear that instead of minimizing the Frobenius norm, one may opt for minimizing the

maximum norm such that the
,

ˆmax ij ij
i j

q r− is minimum. This line of investigation may be

useful since the minimization of the maximum norm allows for the least substitutability

among the off-diagonal elements of the distance matrix ˆ: ; , .
ij ij ij ij

q r i jδ δ∆ ∈ ∆ = − ∀

We accomplish this task here and for the sake of comparison present some results. As an

exercise we first take a matrix from Higham’s (2002) paper. The resul ts are as follows.

 5

Higham’s original matrix

Higham’s ˆ
F

R matrix

Min(max norm) ˆ
m

R matrix

1x

2x 3x
1x

2x 3x
1x

2x 3x

1x 1.0000 1.0000 0.0000 1.00000 0.76069 0.15731 1.00000 0.78077 0.21922

2x 1.0000 1.0000 1.0000 0.76069 1.00000 0.76069 0.78077 1.00000 0.78077

3x 0.0000 1.0000 1.0000 0.15731 0.76069 1.00000 0.21922 0.78077 1.00000

The
, ,

ˆmax() maxij ij Fij
i j i j

q rδ = − produced by Higham’s estimated ˆ
F

R is 0.23931 and

, iji j
δ∑ is 1.27186. On the other hand, the

, ,
ˆmax() maxij ij mij

i j i j
q rδ = − produced by min(max

norm) estimated ˆ
m

R is 0.21922 and
, iji j

δ∑ is 1.31536.

The determinants of the three matrices are : 1.0− , 9.646946582130297100096417818E-06

and 1.281587907598576276298989319811E-05 approximately. The eigenvalues of the

three matrices are given below.

Eigenvalues of Higham’s original matrix , his estimated ˆ
F

R matrix and Min(max norm) ˆ
m

R matrix

Eigenvalues
1λ 2λ 3λ

Higham’s original matrix 2.4142135623731 1.0000 -4.1421356237309E-01

Higham’s estimated R̂ matrix 2.1573046934710 8.4269E-01 5.3065290382026E-06

Min(max norm) R̂ matrix 2.2192126035928 0.78078 7.3964071641482E-06

Note: Higham’s estimated matrix (see Higham, 200 2, p. 335) has turned negative definite. We perturbed it

slightly on the fifth place after decimal to make it a positive definite matrix.

Then we take a matrix from Al-Subaihi’s (2004) paper. The values of

1 1,2,3, 4,5.
ii

q i= ∀ = The value of 12 21 13 31 0.5.q q q q= = = = Other elements in the first

row (as well as the first column) are all zero. The values of the off-diagonal elements

0.84ij jiq q= = for , 2,3, 4,5 ; .i j i j= ≠ The results are presented below. The first of the

two matrices presented below is obtained by Al-Subaihi, while the second is obtained by us

by minimizing the maximum norm of ∆̂ .

Al-Subaihi’s generated
*

R matrix Ours min(max norm) ˆ
m

R matrix

1x

2x 3x
4x

5x
1x

2x 3x
4x

5x

1x
1.0000 0.4964 0.5008 0.0011 0.0050

1.000000 0.477630 0.477630 0.018118 0.018118

2x
0.4964 1.0000 0.8819 0.7317 0.7363

0.477630 1.000000 0.862370 0.817630 0.817630

3x
0.5008 0.8819 1.0000 0.7272 0.7305

0.477630 0.862370 1.000000 0.817630 0.817630

4x
0.0011 0.7317 0.7272 1.0000 0.8432

0.018118 0.817630 0.817630 1.000000 0.862370

5x
0.0050 0.7363 0.7305 0.8432 1.0000

0.018118 0.817630 0.817630 0.862370 1.000000

 6

The Erhardt-Schmidt (or Frobenius) norm
*

F
∆ of * * * * *

: ; , ,ij ij ij ijq r i jδ δ∆ ∈ ∆ = − ∀

where
* *

ijr R∈ (Al-Subaihi’s generated positive semidefinite mat rix) and
ij

q Q∈ (the

negative definite matrix from which *R is generated) is 0.313057 against 0.096539, which

is the ˆ
F

∆ of ˆˆ : ij
δ∆ ˆˆ ˆ; ,ij ij ijq r i jδ∈ ∆ = − ∀ , while ˆ

îjr R∈ , the positive semidefinite

matrix nearmost to Q in the min(max norm) sense. The corresponding maximum norms

*

m
∆ and ˆ

m
∆ are 0.564 and 0.11185 respectively.

∆ matrix from Al-Subaihi’s
*

R matrix ∆ matrix from min(max norm) ˆ
m

R matrix

0 0.0036 0.0008 0.0011 0.0050 0 0.022370 0.022370 0.018118 0.018118

0.0036 0 0.0419 0.1083 0.1037 0.022370 0 0.022370 0.022370 0.022370

0.0008 0.0419 0 0.1128 0.1095 0.022370 0.022370 0 0.022370 0.022370

0.0011 0.1083 0.1128 0 0.0032 0.018118 0.022370 0.022370 0 0.022370

0.0050 0.1037 0.1095 0.0032 0 0.018118 0.022370 0.022370 0.022370 0

The *

, ,
max() max

ij ij ij
i j i j

q rδ = − produced by Al-Subaihi’s *R is 0.1128 and
, iji j

δ∑ is 0.9798.

The
, ,

ˆmax() max
ij ij mij

i j i j
q rδ = − produced by ˆ

m
R is 0.02237 and

, iji j
δ∑ is 0.430392. Thus,

ˆ
m

R is an undubitably better approximation than *R . This shows that the *R matrix

generated from Q by Al-Subaihi is only sub-optimally close to Q .

Thus we have two alternative methods to obtain the nearmost positive semidefinite

matrices from the given negative definite matrix, Q , the one proposed by Higham that

minimizes ˆ
F

∆ and the other proposed by us in this paper that minimizes ˆ
m

∆ . Use of

either norm has its own justification. The min(max norm) does not allow any element

îj i j
r

≠
∈ R̂ to deviate too much from its corresponding

ij
q , while the min(Frobenius norm)

may permit excessive deviation of a few elements if so required to bring other element of

R̂ closer to their counterpart elements (of Q). However, to disallow any element

îj i j
r

≠
∈ R̂ to deviate too much from its corresponding

ij
q amounts to place a high degree

of confidence on the elements of Q .

5. The Algorithms
I. The first algorithm that generates the nearmost positive definite intercorrelation matrix

from a given (fed by the user) negative definite invalid symmetric intercorrelation

matrix, ,Q runs as follows:

1. Let 0Q be the given invalid intercorrelation matrix. Set 0.Q Q=

2. Find all eigenvalues (L) and and eigenvectors (V) from .Q Each column of V has unit

Euclidean length.

3. Replace all negative values in L (a diagonal matrix) by zero.

 7

4. Generate m uniformly distributed random numbers (0,1)U and add them to the diagonal

elements of L matrix. Normalize L such that its trace is equal to m .

5. By random walk method of optimization find the best possible L that characterizes trace

= m , positive determinant and therefore positive definite R̂ = V LV′ closest to 0.Q

Closeness is defined in terms of the maximum norm ˆ
m

∆ = 0
ˆ

m
Q R− .

6. Check if all ˆ
îi

r R∈ are approximately unity. It would depend on tolerance level chosen.

If not, replace them by unity. Consider it as Q and go to step 2, else stop.

II. The second algorithm that generates (,)X n m from a valid (positive definite) inter-

correlation matrix runs in the following steps:

1. Generate (,)Y n m from a random number generator that yields Y ∼ (0,1).U

2. Standardize Y such that its each column has zero mean and unit standard deviation. Call

this standardized Y by a new name, say
*
.Y

3. Compute intercorrelation matrix S from
*
.Y

4. Compute all eigenvalues (D) and the associated eigenvectors (V) of .S Here D is a

diagonal matrix and V is an orthogonal matrix. Moreover, each column of V has a

unit length (Euclidean norm).

5. Compute
*

()Z Y V= . Now (,)Z n m is column-wise orthogonal.

6. Standardize (,)Z n m such that each one of its columns has zero mean and unit standard

deviation. This (,)Z n m will be used at step 10.

7. Choose an intercorrelation matrix, (,)R m m . This is the intercorrelation matrix that is

induced into .Z In choosing R one must be cautious to see that it should not

violate the properties of an intercorrelation matrix described earlier. None of its

eigenvalues should be negative. This is done in the next step.

8. Compute all eigenvalues (say, L) of R and the associated vectors (say E). If any of the

eigenvalues are negative, change the R matrix since no intercorrelation matrix, by

necessity, can have negative eigenvalues (if X is real). In that case, go to step 7.

9. Standardize E to obtain W such that each of its column has a squared (Euclidean) norm

equal to the eigenvalue associated with it. Let 2 1/ 2

1

{() / }
m

j ij j

i

k e L
=

= ∑ then

/ ; , 1,2,..., .ij ij jw e k i j m= = This guarantees that 2

1

1,2,..., .
m

ij j

i

w L j m
=

= ∀ =∑

10. Compute .X ZW=

11. Standardize X such that each of its column has zero mean and unit standard deviation.

6. FORTRAN Computer Programs
We provide here the source codes of the computer programs that implement the algorithms

given above. The first main program (PROG1) checks if the Q matrix fed by the user is not

a negative definite matrix. If Q is not a positive definite matrix, it is best approximated by

a positive definite matrix, R̂ . It is stored in a file named by the user. PROG1 invokes two

 8

subroutine and one function subprograms. The second main program (PROG2) reads a

valid intercorrelation matrix (may be the output of PROG1) and generates (,).X n m PROG2

invokes three subroutine and one function subprograms. The function that generates

random numbers and the subroutine that finds eigenvalues are common to both (PROG1

and PROG2). While compiling PROG2 it should be linked to the subroutine EIGEN and

function RAND. Some procedures in the computer program (especially, the one that

computes eigenvalues and eigenvectors) have been adapted from Krishnamurthy and Sen

(1976), pp. 242-247. These source codes may easily be translated into any other computer

language such as Pascal, C
++

 or even BASIC, if needed. Some languages may not have a

provision to perform double precision arithmetic. In that case, single precision arithmetic

may be used. The results would be sufficiently accurate for the desired purpose. In its

present FORTRAN codes, the programs may be compiled by any suitable FORTRAN

compiler. We have compiled the programs by Microsoft FORTRAN Compiler.

7. Inputs to the Computer Programs
When these programs are run, they ask for the following parameters (and inputs). Although

they have been sufficiently explained in the program queries, they are explained here.

PROG1 : Before running the program, the Q matrix should be stored in some file. This can

be done by some text editor such as EDIT.COM (a DOS program of MICROSOFT). The

name of this file is, say inputfile. When the program runs, it asks for the value of m (order

of the matrix) and the inputfile name (in which Q is stored). The file name should be in

single quotes ‘inputfile‘. Then it asks for the seed to generate random number: With this

seed the uniformly distributed random numbers lying between (0, 1) = U(n,m) are

generated. This number should lie between –32767 and 32767, zero excluded. This is a

suitable number for most personal computers.

The program runs and if Q is not negative definite, it terminates. If so, the inputfile and

the outputfile of PROG1 are identical. If Q is negative definite, the program obtains R̂ and

asks for the outputfile name to store it. The file name should be in single quotes

‘outputfile‘. This outputfile then is used by PROG2 as its inputfile.

PROG1 should be run once more on its own output file to ensure that the resulting matrix is

positive semidefinite. This is required because the output file stores correlation matrix with

rounded off elements. Since the output matrix is almost always near-singular, rounding off

may often make it negative definite. Note that a negative definite correlation matrix, Q , is

a problematic and pathological case. It has to be handled with care and patience.

PROG2 : If the original Q fed by the user was already valid, the inputfile of PROG1 is

also the inputfile of PROG2. Otherwise, the outputfile of PROG1 is the inputfile of PROG2.

When PROG2 runs, it asks for the following inputs.

1. Have you stored the intercorrelation matrix, etc. Yes is the answer.

2. What are N and M ?

3. Feed non-zero scalar, etc : Feed 1 or any other non-zero number.

 9

4. Seed to generate random number: With this seed the uniformly distributed random

numbers lying between (0, 1) = U(n,m) are generated. This number should lie

between –32767 and 32767, zero excluded.

5. File in which correlation matrix is stored : As explained before, if the original Q fed by

the user was already valid, the inputfile of PROG1 is also the inputfile here.

Otherwise, the outputfile of PROG1 is the inputfile here.

6. Output file in which the generated X(n,m) characterizing intercorrelation matrix R will

be stored : the output file name in single quotes ‘ outputfile‘ is fed.

7. On termination the program stores the results X(n,m) in the outputfile. It also stores the

computed R matrix there, which may be different from the desired matrix R only

slightly (may be at the 9
th

 or the 10
th

 place onwards after decimal).

Presently, in the codes given here, maximum N is 100 (=NL) and the maximum M is 10

(=ML). These parameters can be increased. Accordingly, dimensions in the program may

be changed before compilation.

8. Fields of Application
In Monte Carlo experiments that evaluate performance of competing estimators of

regression coefficients (or evaluates the efficacy of a method of estimation of parameters)

under severe multicollinearity conditions, we require to generate X(n,m) that are highly

multicollinear across the variables. The author (see Mishra, 2004) generated highly

multicollinear X(n,m) variables to test the performance of Maximum Entropy Leuven

estimators vis-à-vis the OLS estimator of β in the model .y X uβ= + To generate X(n,m),

a slightly different algorithm (than the one presented here) was used. Filzmoser and Croux

(2002) generated highly multicollinear 1 2[|]Z X X= by first generating 1X ∼ (0,)N Σ and

then obtaining 2 1X X= + ∆ where ∆ ∼ (0, 0.001)N . This procedure yielded 1 2[|]Z X X=

highly correlated across 1 2.X and X In his paper Paris (2001) dealt with multicollinear

regressors but he did not explain how multicollinearity was induced into X(n,m). He (see

Paris, 2001, p. 4) wrote: “X was drawn from a uniform U[-1.7, 2.0] … each component of

the disturbance vector u was drawn from a normal distribution N[1, 5].”

Sometimes two variables Y and Z are each cointegrated with another variable X, but Y and

Z do not appear to be cointegrated with each other, although, intuitively, one would expect

that they should be cointegrated with each other and the transitivity property would be

exhibited. By carrying out a Monte Carlo simulation, Ferré (2004) showed that even though

the two variables were in fact cointegrated, the test for cointegration was not able to pick

this up due to the interplay of the error terms of the relationships between the variables. By

using the algorithm presented here, several such examples may be generated for

experiments and further investigation. We present here two intercorrelation matrices which

can be used (as inputs to the program given here) to generate X(n,m) that would show

intransitivity of cointegration.

In the matrix given below, 1 5(,)r x x is zero while other elements are large enough to exhibit

cointegration. If this matrix is used to generate X(n,m) for n howsoever large (say 500 or

so), we will obtain an example to show a lack of transitivity relation in cointegration.

 10

Another intercorrelation matrix with elements : 11 22 33 1.00r r r= = = , 12 21 0.60r r= = ,

13 31 0.00r r= = , 23 32 0.55r r= = will produce a similar instance. Many such examples may

be generated.

 Intercorrelation Matrix of X Showing Intransitivity of Cointegration
Variables X1 X2 X3 X4 X5

X1 1.00 0.61 0.52 0.58 0.00
X2 0.61 1.00 0.62 0.65 0.50
X3 0.52 0.62 1.00 0.64 0.61
X4 0.58 0.65 0.64 1.00 0.76
X5 0.00 0.50 0.61 0.76 1.00

Finally, experiments that directly or indirectly use multivariate analysis methods (such as

Principal components analysis, Canonical correlation analysis, Factor analysis or Cluster

analysis; see Kendall and Stuart, 1968) as a procedure may require X(n,m) with a desired

R matrix. In such experiments our algorithms may be useful.

9. Limitations and possibilities of improvement
Although theoretically there are no snags in minimizing the maximum norm of deviation of

R̂ from ,Q our algorithm has clearly two weaknesses, (1) it fails if at any stage of iteration

the intermediate R̂ turns out to be extremely near-singular, and, for some pathological

cases of ,Q PROG1 may not converge; and (2) the random walk method is a very crude and

slow method of optimization. It is easy to preclude extreme near-singularity of R̂ at any

intermediate stage. But it would be a further research work to replace the random walk

method of optimization by some more efficient method such as the Genetic Algorithm (see

Holland, 1975; Goldberg, 1989; Wright, 1991).

References

Al-Subaihi, AA (2004). “Simulating Correlated Multivariate Pseudorandom Numbers”, At

www.jstatsoft.org/counter.php?id=85& url=v09/i04/paper.pdf&ct=1 Searched by

http://www.google.com on 28
th

 July, 2004.

Ferré, M (2004). “The Johansen Test and the Transitivity Property”, Economics Bulletin,

Vol. 3 (27), pp. 1-7.

Filzmoser, P and C Croux (2002). “A Projection Algorithm for Regression with

Collinearity”, in K Jajuga, A Sokolowski, and HH Bock (eds), Classification,

Clustering, and Data Analysis, Springer-Verlag, Berlin, pp. 227-234.

Fleishman, A (1978). “A Method for Simulating Non-Normal Distributions”,

Psychometrica, 43(4), pp. 521-532.

Gillett, BE (1979). Introduction to Operations Research. Tata McGraw Hill, New Delhi.

Goldberg, DE (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning, Addison Wesley, Reading, Mass.

 11

Headrick TC and SS Sawilowski (1999). “Simulating Correlated Multivariate Non -

normal Distributions extending the Fleishman Power Method”, Psychometrica,

64(1), pp. 25-35.

Higham, NJ (2002). “Computing the Nearest Correlation Matrix – A Problem from

Finance”, IMA Journal of Numerical Analysis, 22, pp. 329-343.

Hoffman, PJ (1924). “Generating Variables with Arbitrary Parameters”, Psychometrica,

24, pp. 265-267.

Holland, J (1975). Adaptation in Natural and Artificial Systems, Univ. of Michigan Press,

Ann Arbor, USA.

Kaiser, HF and K Dichman (1962). “Sample and Population Score Matrices and Sample

Correlation Matrices from an Arbitrary Population Correlation Matrix”,

Psychometrica, 27(2), pp. 179-182.

Kapur, J N and H C Saxena (1982). Mathematical Statistics. S Chand & Co. New Delhi.

Kendall, MG and A Stuart (1968). The Advanced Theory of Statistics, Vol. 3. Charles

Griffin & Co. London.

Knuth, DE (1969). The Art of Computer Programming. Addison Wesley, London.

Krishnamurthy, EV and SK Sen (1976). Computer-Based Numerical Algorithms,

Affiliated East-West Press, New Delhi.

Mishra, SK (2004). “Multicollinearity and Modular Maximum Entropy Leuven

Estimator”, Social Science Research Network at http://ssrn.com/author=353253

Paris, Q (2001). “Multicollinearity and Maximum Entropy Estimators”, Economics

Bulletin, Vol. 3 (11), pp. 1-9.

Takayama, A (1974). Mathematical Economics, The Dryden Press, Illinois.

Texas Instruments Inc (1979). TI Programmable 58C/59 Master Library, Texas

Instruments Inc. Texas.

Tadikamalla, PR (1980). “On Simulating Non -normal Distributions”, Psychometrica,

45(2), pp. 273-279.

Theil, H (1971). Principles of Econometrics, Wiley, New York.

Vale, CD and VA Maurelli (1983). “Simulating Multivariate Nonnormal Distributions ”,

Psychometrica, 48(3), pp. 465-471.

Wright, AH (1991). “Genetic Algorithms for Real Parameter Optimization”, in GJE

Rawlings (ed) Foundations of Genetic Algorithms, Morgam Kauffmann

Publishers, San Mateo, CA, pp. 205-218.

 12

C -------------- PROG1 to generate R from Q ------------

C RANDOM WALK METHOD TO FIND Min(max norm) Nearest Positive

C Semidefinite Marix from a given Non-positive definite matrix

C --

 INTEGER *2 IU,IV

 DOUBLE PRECISION A(10),R(10),AR(10),XO(10,10),AA(10)

 DOUBLE PRECISION V(10,10),W(10,10),P(10),D,RH(10,10)

 DOUBLE PRECISION SUML,LAMBDA,EPS,F,VO,VR,VOO,RAND,CN

 DOUBLE PRECISION RNORM

 DIMENSION MM(10)

 CHARACTER *11 OFIL,IFIL

C PARAMETERS ----- MAY BE CHANGED ---------------------

C EPS=ITERATIVE ACCURACY: EPSL=MAIN DIAGONAL ACCURACY

C NITR=NO. OF TRIALS FOR RANDOM WALK SEARCH

C ITMAX=MAX NO. OF ITERATION FOR CONVERGENCE

 EPS= 0.00001

 EPSL=0.00001

 NITR=10

 ITMAX=100

C --

 WRITE(*,*)'FEED M and INPUT FILE NAME'

 WRITE(*,*)'(M is the order of the input square matrix'

 WRITE(*,*)'INPUT FILE NAME in single quotes)'

 READ(*,*) M,IFIL

 OPEN(7,FILE=IFIL)

 DO 1 I=1,M

 READ(7,*)(XO(I,J),J=1,M)

 1 CONTINUE

 CLOSE(7)

 WRITE(*,*)'FEED SEED TO GENERATE RANDOM NUMBERS'

 WRITE(*,*)'(SEED lies between -32767 AND 32767, avoid zero)'

 READ(*,*) IU

 WRITE(*,*)'OUTPUT FILE ? '

 READ(*,*) OFIL

 VOO=10.0**10

 LTRY=0

 ICO=1

 CALL CONS(XO,P,M,ICO)

 WRITE(*,*)'EIGEN VALUES OF THE ORIGINAL MATRIX XO ARE :'

 WRITE(*,*)(P(I),I=1,M)

 PAUSE 'STRIKE ENTER TO PROCEED'

 DO 70 I=1,M

 IF(P(I).LT.0.0) GOTO 90

 70 CONTINUE

 WRITE(*,*)'ALL EIGEN VALUES ARE NON-NEGATIVE'

 STOP

C ==

 90 WRITE(*,*)'SOME EIGEN VALUES ARE NEGATIVE'

 WRITE(*,*)'THE R MATRIX AT THIS STAGE IS : '

 OPEN(8,FILE=OFIL, STATUS='NEW')

 DO 789 I=1,M

 P(I)=1.0

 789 WRITE(8,89)(RH(I,J),J=1,M)

 CLOSE(8)

 DO 788 I=1,M

 13

 788 WRITE(*,89)(RH(I,J),J=1,M)

 ITEST=0

C PAUSE 'STRIKE ENTER TO PROCEED'

 F=0.0

 DO 71 I=1,M

 IF(P(I).LE.0.0) P(I)=RAND(IU,IV)

 F=F+P(I)

 71 CONTINUE

 DO 72 I=1,M

 P(I)=DABS(P(I)/F*M)

 72 CONTINUE

 WRITE(*,*)'EIGEN VALUES ARE FORCED TO BE ALL POSITIVE'

 SUML=0.0

 DO 78 I=1,M

 SUML=SUML+P(I)

 78 CONTINUE

C WRITE(*,*)(P(I),I=1,M),' SUM = ',SUML

 DO 999 IIT=1,NITR

 LAMBDA=20.0

C Initialisation of decision variables

 DO 7 I=1,M

 7 A(I)=DABS(P(I))

 ICO=2

 CALL CONS(RH,P,M,ICO)

C --------------- FUNCTION EVALUATION ---------------------

 F=0.0

 DO 11 I=1,M

 DO 11 J=1,M

 D=DABS(XO(I,J)-RH(I,J))

 IF(D.GT.F) F=D

 11 CONTINUE

 VO=F

C ---

 IT=0

 200 IT=IT+1

 IF(IT.GT.1000) THEN

 WRITE(*,*)'NO CONVERGENCE IN 1000 ITERATIONS'

 GOTO 1000

 ENDIF

 LAMBDA=LAMBDA/2.0

 IMP=0

 DO 100 II=1,ITMAX

C GENERATE M UNIFORMLY DISTRIBUTED RANDOM NUMBERS (-1,1)

 150 DO 2 I=1,M

 R(I)=2.0*(RAND(IU,IV)-0.5)

 2 CONTINUE

C NORMALISE THE RANDOM NUMBERS

 RNORM=0.0

 DO 3 I=1,M

 RNORM=RNORM+R(I)**2

 3 CONTINUE

 RNORM=DSQRT(RNORM)

 IF(RNORM.GT.1.0) GOTO 150

 DO 4 I=1,M

 R(I)=R(I)/RNORM

 4 CONTINUE

C ADD RANDOM NUMBERS TIMES LAMBDA TO A VECTOR

 14

 DO 5 I=1,M

 AR(I)=A(I)+LAMBDA*R(I)

 AR(I)=DABS(AR(I))

 5 CONTINUE

C --------------- FUNCTION EVALUATION ---------------------

 CN=0.0

 DO 73 I=1,M

 CN=CN+AR(I)

 73 CONTINUE

 SUML=0.0

 DO 74 I=1,M

 AR(I)=AR(I)/CN*M

 SUML=SUML+AR(I)

 74 CONTINUE

C WRITE(*,*) 'SUML = ',SUML

 ICO=2

 CALL CONS(RH,AR,M,ICO)

 F=0.0

 DO 13 I=1,M

 DO 13 J=1,M

 D=DABS(XO(I,J)-RH(I,J))

 IF(D.GT.F) F=D

 13 CONTINUE

 VR=F

C ---

 IF(VR.LT.VO) THEN

 VO=VR

 DO 6 I=1,M

 A(I)=AR(I)

 6 CONTINUE

 IMP=1

 ENDIF

 100 CONTINUE

 IF((IMP.EQ.0).OR.(LAMBDA.GT.EPS)) GOTO 200

 1000 CONTINUE

 IF(VOO.GT.VO) THEN

 VOO=VO

 DO 998 I=1,M

 AA(I)=A(I)

 998 CONTINUE

 ENDIF

 999 CONTINUE

 DO 997 I=1,M

 A(I)=AA(I)

 997 CONTINUE

 VO=VOO

 SUML=0.0

 DO 77 I=1,M

 SUML=SUML+A(I)

 77 CONTINUE

 WRITE(*,*)'SMALLEST MAX DEVIATE = ',VO

 WRITE(*,*)' '

 WRITE(*,*)' TRIAL NUMBER = ',LTRY

 WRITE(*,*)' '

 DO 152 I=1,M

 IF(DABS(RH(I,I)-1.00).GT.EPSL) THEN

 RH(I,I)=1.0

 15

 ITEST=1

 ENDIF

 152 CONTINUE

 IF(ITEST.EQ.1) THEN

 CALL CONS(RH,AR,M,1)

 LTRY=LTRY+1

 VOO=10.0**10

 GOTO 90

 ENDIF

 Write(*,*)' ------------ Convergence achieved ---------'

 write(*,*)' '

 WRITE(*,*)' NAME THE OUTPUT FILE TO STORE THE RESULT'

 WRITE(*,*)' (OUTPUT FILE NAME IN SINGLE QUOTES)'

 WRITE(*,*)'ESTIMATED MATRIX'

 OPEN(8,FILE=OFIL, STATUS='NEW')

 DO 75 I=1,M

 RH(I,I)=1.00

 WRITE(*,89)(RH(I,J),J=1,M)

 WRITE(8,89)(RH(I,J),J=1,M)

 75 CONTINUE

 CLOSE(8)

 89 FORMAT(1X,6D13.5)

 WRITE(*,*)'RESULTING MATRIX STORED IN FILE = ',OFIL

 WRITE(*,*)’RUN THIS PROGRAM ONCE MORE ON ITS OWN OUTPUT FILE’

 WRITE(*,*)’UNTIL IT SAYS ALL EIGENVALUES ARE NON-NEGATIVE’

 END

C ---

 SUBROUTINE CONS(A,P,M,ICO)

C Constructs Matrix from its eigenvectors and values

 DOUBLE PRECISION A(10,10),B(10,10),V(10,10),W(10,10),P(10),F

 DIMENSION MM(10)

 IF(ICO.GT.1) GOTO 100

 NN=1

 1000 NADJUST=0

 DO 10 I=1,M

 DO 10 J=1,M

 B(I,J)=A(I,J)

 10 CONTINUE

 CALL EIGEN(A,M,NN,V,W,P,MM)

C ==

C NORMALIZATION OF EIGEN VECTORS TO UNITY

 DO 50 I=1,M

 P(I)=A(I,I)

 F=0.0

 DO 51 J=1,M

 51 F=F+V(J,I)*V(J,I)

 F=DSQRT(F)

 DO 52 J=1,M

 52 V(J,I)=V(J,I)/F

 50 CONTINUE

 DO 11 I=1,M

 DO 11 J=1,M

 A(I,J)=B(I,J)

 11 CONTINUE

 RETURN

C ===

 100 DO 34 J=1,M

 16

 DO 341 JJ=1,M

 341 W(J,JJ)=0.0

 W(J,J)=P(J)

 34 CONTINUE

 DO 35 J=1,M

 DO 35 JJ=1,M

 A(J,JJ)=0.0

 DO 35 I=1,M

 A(J,JJ)=A(J,JJ)+V(J,I)*W(I,JJ)

 35 CONTINUE

 DO 36 J=1,M

 DO 36 JJ=1,M

 W(J,JJ)=0.0

 DO 36 I=1,M

 W(J,JJ)=W(J,JJ)+A(J,I)*V(JJ,I)

 36 CONTINUE

 DO 361 I=1,M

 DO 361 J=1,M

 A(I,J)=W(I,J)

 361 CONTINUE

C WRITE(*,*)'NOW A IS V*L*VT MATRIX'

C NORMALIZED V (EIGEN VECTORS) ARE UNDISTURBED

 RETURN

 END

C --

 SUBROUTINE EIGEN(A,N,NN,V,W,P,MM)

C Computes eigenvalues and vectors of a real symmetrix matrix

 DOUBLE PRECISION A(10,10),V(10,10),W(10,10),P(10)

 DOUBLE PRECISION PMAX,EPLN,TAN,SIN,COS,AI,TT,TA,TB

 DIMENSION MM(10)

C ------------ INITIALISATION -------------------------

 DO 50 I=1,N

 DO 51 J=1,N

 V(I,J)=0.0

 51 W(I,J)=0.0

 P(I)=0.0

 50 CONTINUE

 PMAX=0

 EPLN=0

 TAN=0

 SIN=0

 COS=0

 AI=0

 TT=0

 EPLN=1.0D-310

C --

 IF(NN.NE.0) THEN

 DO 3 I=1,N

 DO 3 J=1,N

 V(I,J)=0.0

 IF(I.EQ.J) V(I,J)=1.0

 3 CONTINUE

 ENDIF

 2 NR=0

 5 MI=N-1

 DO 6 I=1,MI

 P(I)=0.0

 17

 MJ=I+1

 DO 6 J=MJ,N

 IF(P(I).GT.DABS(A(I,J))) GO TO 6

 P(I)=DABS(A(I,J))

 MM(I)=J

 6 CONTINUE

 7 DO 8 I=1,MI

 IF(I.LE.1) GOTO 10

 IF(PMAX.GT.P(I)) GOTO 8

 10 PMAX=P(I)

 IP=I

 JP=MM(I)

 8 CONTINUE

 IF (PMAX.LE.EPLN) THEN

 GO TO 12

 ENDIF

 NR=NR+1

 13 TA=2.0*A(IP,JP)

 TB=(DABS(A(IP,IP)-A(JP,JP))+

 1DSQRT((A(IP,IP)-A(JP,JP))**2+4.0*A(IP,JP)**2))

 TAN=TA/TB

 IF(A(IP,IP).LT.A(JP,JP)) TAN=-TAN

 14 COS=1.0/DSQRT(1.0+TAN**2)

 SIN=TAN*COS

 AI=A(IP,IP)

 A(IP,IP)=(COS**2)*(AI+TAN*(2.0*A(IP,JP)+TAN*A(JP,JP)))

 A(JP,JP)=(COS**2)*(A(JP,JP)-TAN*(2.0*A(IP,JP)-TAN*AI))

 A(IP,JP)=0.0

 IF(A(IP,IP).GE.A(JP,JP)) GO TO 15

 TT=A(IP,IP)

 A(IP,IP)=A(JP,JP)

 A(JP,JP)=TT

 IF(SIN.GE.0) GO TO 16

 TT=COS

 GO TO 17

 16 TT=-COS

 17 COS=DABS(SIN)

 SIN=TT

 15 DO 18 I=1,MI

 IF(I-IP) 19, 18, 20

 20 IF(I.EQ.JP)GO TO 18

 19 IF(MM(I).EQ.IP) GO TO 21

 IF(MM(I).NE.JP) GO TO 18

 21 K=MM(I)

 TT=A(I,K)

 A(I,K)=0.0

 MJ=I+1

 P(I)=0.0

 DO 22 J=MJ,N

 IF(P(I).GT.DABS(A(I,J))) GO TO 22

 P(I)=DABS(A(I,J))

 MM(I)=J

 22 CONTINUE

 A(I,K)=TT

 18 CONTINUE

 P(IP)=0.0

 P(JP)=0.0

 18

 DO 23 I=1,N

 IF(I-IP) 24, 23, 25

 24 TT=A(I,IP)

 A(I,IP)=COS*TT+SIN*A(I,JP)

 IF(P(I).GE.DABS(A(I,IP))) GO TO 26

 P(I)=DABS(A(I,IP))

 MM(I)=IP

 26 A(I,JP)=-SIN*TT+COS*A(I,JP)

 IF(P(I).GE.DABS(A(I,JP))) GO TO 23

 30 P(I)=DABS(A(I,JP))

 MM(I)=JP

 GO TO 23

 25 IF(I.LT.JP) GO TO 27

 IF(I.GT.JP) GO TO 28

 IF(I.EQ.JP) GO TO 23

 27 TT=A(IP,I)

 A(IP,I)=COS*TT+SIN*A(I,JP)

 IF(P(IP).GE.DABS(A(IP,I))) GO TO 29

 P(IP)=DABS(A(IP,I))

 MM(IP)=I

 29 A(I,JP)=-TT*SIN+COS*A(I,JP)

 IF(P(I).GE.DABS(A(I,JP))) GO TO 23

 GO TO 30

 28 TT=A(IP,I)

 A(IP,I)=TT*COS+SIN*A(JP,I)

 IF(P(IP).GE.DABS(A(IP,I))) GO TO 31

 P(IP)=DABS(A(IP,I))

 MM(IP)=I

 31 A(JP,I)=-TT*SIN+COS*A(JP,I)

 IF(P(JP).GE.DABS(A(JP,I))) GO TO 23

 P(JP)=DABS(A(JP,I))

 MM(JP)=I

 23 CONTINUE

 IF(NN.EQ.0) GOTO 7

 DO 32 I=1,N

 TT=V(I,IP)

 V(I,IP)=TT*COS+SIN*V(I,JP)

 V(I,JP)=-TT*SIN+COS*V(I,JP)

 32 CONTINUE

 GO TO 7

 12 RETURN

 END

C --

 FUNCTION RAND(IU,IV)

C Generates Rectangular (0,1) Random Numbers

 DOUBLE PRECISION RAND

 INTEGER *2 IU,IV

 IV=IU*259

 IF(IV.GE.0) GOTO 2

 IV=IV+32767+1

 2 RAND=IV

 IU=IV

 RAND=RAND*0.3051851E-04

 RETURN

 END

 19

C ----- PROG2 : Main Program to generate X from R ------

 COMMON ML,NL,FC,FCO

 DOUBLE PRECISION X(100,10),SCALE

 CHARACTER *15 FC,FCO

 INTEGER *2 IU,IV

C --

C NL AND ML ARE THE HIGHEST PERMISSIBLE DIMENSION LIMITS TO

C X(NL,ML) MATRICES. OTHER MATRICES HAVE COMPATIBLE DIMENSIONS

C CHANGE THEM IF REQUIRED AND PERMISSIBLE BY MEMORY LIMITS.

 NL=100

 ML=10

C --

 WRITE(*,*)'HAVE YOU STORED THE CORRELATION MATRIX, R ? IF NOT'

 WRITE(*,*)'STORE IT IN AN ASCII FILE. THEN RUN THE PROGRAM'

 WRITE(*,*)'IF NO THEN FEED ZERO (0).IF YES FEED ANY OTHER NUMBER'

 READ(*,*) NY

 IF(NY.EQ.0) THEN

 WRITE(*,*)'SO, STORE R MATRIX FIRST THEN RUN THE PROGRAM'

 STOP

 ENDIF

C ---

 WRITE(*,*)'WHAT ARE N AND M ? '

 WRITE(*,*)'(N = NO. OF OBSERVATIONS, M = NO. OF VARIABLES)'

 READ(*,*) N,M

 WRITE(*,*)'NON-ZERO SCALAR TO SCALE UP THE X VARIABLES ?'

 WRITE(*,*)'(NOT NECESSARY. FEED 1 OR ANY OTHER NON-ZERO NUMBER'

 READ(*,*) SCALE

 WRITE(*,*)'FEED A NON-ZERO SEED TO GENERATE RANDOM VARIABLE ?'

 WRITE(*,*)'(SEED MUST LIE BETWEEN -32767 AND 32767 AND NOT ZERO)'

 READ(*,*) IU

 WRITE(*,*)'FILE IN WHICH CORRELATION MATRIX IS STORED ?'

 WRITE(*,*)'FEED THE FILE NAME IN THE SINGLE QUOTES'

 READ(*,*) FC

 WRITE(*,*)'FILE IN WHICH OUTPUT X WILL BE STORED ?'

 WRITE(*,*)'FEED THE FILE NAME IN THE SINGLE QUOTES'

 READ(*,*) FCO

 OPEN(9,FILE=FCO,STATUS='NEW')

 CALL GENX(X,N,M,IU,IV,SCALE)

 CLOSE(9)

 END

C --

C

 SUBROUTINE GENX(X,N,M,IU,IV,SCALE)

 COMMON ML,NL,FC,FCO

 DOUBLE PRECISION A(10,10),V(10,10),W(10,10),P(10),R(10)

 DOUBLE PRECISION X(NL,ML),Z(100,10),SUML,RAND,SCALE

 DIMENSION MM(10)

 CHARACTER *15 FC,FCO

 INTEGER *2 IU,IV

C WRITE(*,*)'ENTERS GENX'

C ----------------- PARAMETERS --------------------------------

 NN=1

 NSTD=1

C ---

 DO 1 I=1,N

 DO 1 J=1,M

 X(I,J)=RAND(IU,IV)*SCALE

 20

 1 CONTINUE

 CALL CORR(X,N,M,A,NSTD)

 CALL EIGEN(A,M,NN,V,W,P,MM)

C WRITE(*,*)'RETURNS FROM EIGEN'

C PAUSE

 DO 301 I=1,N

 DO 301 J=1,M

 Z(I,J)=0.0

 DO 301 K=1,M

 Z(I,J)=Z(I,J)+X(I,K)*V(K,J)

 301 CONTINUE

C --

 CALL CORR(Z,N,M,A,NSTD)

 OPEN(8,FILE=FC)

 DO 302 I=1,M

 READ(8,*) (A(I,J),J=1,M)

 302 CONTINUE

 CLOSE(8)

 CALL EIGEN(A,M,NN,V,W,P,MM)

C WRITE(*,*)'RETURNS FROM EIGEN'

C --

 DO 60 I=1,M

 R(I)=A(I,I)

 60 CONTINUE

 WRITE(*,*)'EIGENVALUES = ',(R(I),I=1,M)

 DO 64 I=1,M

 IF(R(I).LE.0.0) THEN

 WRITE(*,*)'SOME OF THE EIGENVALUES ARE NOT POSITIVE'

 WRITE(*,*)'PROGRAM TERMINATED. FEED DIFFERENT R MATRIX'

 STOP

 ENDIF

 64 CONTINUE

 DO 62 J=1,M

 P(J)=0.0

 DO 61 I=1,M

 P(J)=P(J)+V(I,J)**2

 61 CONTINUE

 P(J)=DSQRT(P(J)/R(J))

 62 CONTINUE

 DO 63 J=1,M

 DO 63 I=1,M

 W(I,J)=V(I,J)/P(J)

 63 CONTINUE

 DO 304 I=1,N

 DO 304 J=1,M

 X(I,J)=0.0

 DO 304 K=1,M

 X(I,J)=X(I,J)+Z(I,K)*W(J,K)

 304 CONTINUE

 WRITE(9,*)'GENERATED X(N,M) MATRIX'

 DO 305 I=1,N

 WRITE(9,310)(X(I,J),J=1,M)

 305 CONTINUE

 WRITE(9,*)'COMPUTED INTER-CORRELATION MATRIX'

 CALL CORR(X,N,M,A,NSTD)

 DO 306 I=1,M

 WRITE(9,310)(A(I,J),J=1,M)

 21

 306 CONTINUE

 310 FORMAT(1X,5D15.7)

 RETURN

 END

C --

 SUBROUTINE CORR(X,N,M,A,NSTD)

 COMMON ML,NL,FC,FCO

 DOUBLE PRECISION X(NL,ML),A(10,10),AV(10),SD(10)

 CHARACTER *15 FC,FCO

 NSQR=N*N

 DO 1 J=1,M

 DO 2 JJ=J,M

 A(J,JJ)=0.0

 DO 2 I=1,N

 2 A(J,JJ)=A(J,JJ)+X(I,J)*X(I,JJ)

 DO 21 JJ=J,M

 A(JJ,J)=A(J,JJ)

 21 CONTINUE

 1 CONTINUE

 DO 3 J=1,M

 AV(J)=0.0

 DO 3 I=1,N

 3 AV(J)=AV(J)+X(I,J)

 DO 4 J=1,M

 DO 5 JJ=1,M

 A(J,JJ)=(N*A(J,JJ)-AV(J)*AV(JJ))/NSQR

 5 CONTINUE

 4 CONTINUE

 DO 6 J=1,M

 AV(J)=AV(J)/N

 SD(J)=DSQRT(A(J,J))

 6 CONTINUE

 DO 7 J=1,M

 DO 7 JJ=1,M

 A(J,JJ)=A(J,JJ)/(SD(J)*SD(JJ))

 7 CONTINUE

 IF(NSTD.NE.0) THEN

 DO 8 I=1,N

 DO 8 J=1,M

 X(I,J)=(X(I,J)-AV(J))/SD(J)

 8 CONTINUE

 ENDIF

 10 FORMAT(6D12.4)

 WRITE(*,*)'CORRELATION MATRIX --------------------------'

 DO 22 I=1,M

 WRITE(*,10)(A(I,J),J=1,M)

 22 CONTINUE

 WRITE(*,*)'---'

C PAUSE

 RETURN

 END

