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Abstract

The Boruvka’s algorithm, which computes the minimum cost spanning tree,
is used to define a rule to share the cost among the nodes (agents). We show
that this rule coincides with the folk solution, a very well-known rule of this
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1 Introduction

In this paper we study minimum cost spanning tree problems (mecstp). Consider that a
group of agents, located at different geographical places, wants some particular service
which can only be provided by a common supplier, called the source. Agents will be
served through connections which entail some cost. However, they do not care whether
they are connected directly or indirectly to the source.

There are many economic situations that can be modeled in this way. For instance,
several towns may draw power from a common power plant, and hence they may share
the cost of the distribution network. This example appears in Dutta and Kar (2004)
[14]. Bergantinos and Lorenzo (2004, 2005, 2008) [1] [2] [3] study a real situation

where villagers should pay the cost of constructing pipes from their respective houses



to a water supplier. Other examples are communication networks, such as telephone,
Internet, wireless telecommunication, or cable television.

The literature on mestp starts by defining algorithms for constructing minimum cost
spanning trees (mt). The first algorithm for finding an mt¢ was developed in Boruvka
(1926) [12]. Its purpose was an efficient electrical coverage of Bohemia. There are now
two algorithms commonly used, Kruskal’s algorithm developed in Kruskal (1956) [18]
and Prim’s algorithm developed in Prim (1957) [20]. All three are greedy algorithms
that run in polynomial time. But constructing an mt is only a part of the problem.
Another important issue is how to allocate the cost associated with the mt among the
agents. Several authors have introduced rules in mestp through some algorithms for
constructing mt. The idea is to propose rules to divide the cost among the agents in a
fair way?.

Bird (1976) [9], Dutta and Kar (2004) [14], and Bergantifios and Vidal-Puga (2007a)
[6] introduce three rules based on Prim’s algorithm. Feltkamp et al (1994a) [16] in-
troduce a rule based on Kruskal’s algorithm. The rules introduced by Bergantinos
and Vidal-Puga (2007a) [6] and Feltkamp et al (1994a) [16] coincide. A proof of this
statement can be found, for instance, in Bergantifios and Lorenzo-Freire (2008) [5]. We
call this rule the folk solution, which can be obtained in other ways. Let us mention
some of them.

A simple mestp is an mestp where the cost of each arc is either 0 or 1. Norde et al
(2004) [19] prove that each mcstp can be obtained as a linear combination of simple
mestp where all the coefficients are non-negative. Thus, we can generate a solution
from the set of simple mcstp to the set of all mestp by using the linear combination.
Branzei et al (2004) [13] and Bergantifios and Vidal-Puga (2009) [8] prove that the
folk solution can be obtained in this way. Bogomolnaia and Moulin (2008) [11] also
apply this approach to mecstp for generating several solutions.

Another way of obtaining rules in mestp is through cooperative games with trans-
ferable utility (TU games). Given an mcstp we associate a TU game. Later, we
compute a cooperative solution in the T'U game. The solution to the initial mestp is
the solution of the TU game. Bergantinios and Vidal-Puga (2007a, 2007b) [6] [7] prove
that the folk solution can be obtained in this way by applying the Shapley value to
several T'U games.

Recently, Bogomolnaia et al (2008) [10] and Dutta and Mishra (2008) [15] apply
the ideas behind the folk solution to some related problems.

Nevertheless, as far as we know, no rule has been introduced through Boruvka’s

Tn this paper we refer ro fairness as general principle to achieve, and not as a well-defined math-
ematical object.



algorithm. We do it. The idea behind this algorithm is the following. Initially the
network is empty and each agent is a single component. We sequentially add to the
network, for each connected component, the cheapest arc joining this connected com-
ponent with some agent outside it and without introducing cycles. We divide the cost
of any arc selected by Boruvka’s algorithm following three principles. First, each agent
is assigned to the arc selected by the component he belongs to. Each agent pays,
partially, the cost of the assigned arc. Second, all agents pay the same proportion of
the arc assigned. Namely, each agent i pays pc,;) where c,;) is the cost of the arc a (7)
assigned to agent 7. Third, the proportion paid, p, should be as large as possible.

We prove that the rule we introduce coincides with the folk solution. Our result
gives more support to the folk solution as it can be obtained in several ways.

In Prim the cost of any arc is paid only by one agent. Fairness is recovered by
taking the average over the set of allocations induced by the possible orders of the
agents. In Kruskal and Boruvka the cost of any arc is divided between several agents.
Fairness is obtained by dividing the cost of any arc in an equitable way.

Let us compare the definitions of the folk solution through Kruskal and Boruvka
more carefully. In Kruskal’s algorithm the mt is constructed by sequentially adding
arcs with the lowest cost and without introducing cycles. Assume that we add arc
(¢,7), which links connected components S; and S;. We divide the cost of arc (3, j)
among the agents according to the following principles. First, agents in a component
S; already connected to the source (0 € S;) pay nothing. Second, only agents who
benefit directly when adding an arc, S; U S;, could pay something. Third, all agents
in the same connected component pay the same. Fourth, the total amount paid by a
group is proportional to the new agents to whom this group is connected (agents in S;
pay proportionally to |Sj|).

An important difference is that the order in which we add the arcs could be different.
Moreover, in Kruskal at each step we add an arc, which is paid completely. In Boruvka,
at each step we can add several arcs. At least one of them is paid completely but others
can be paid only partially. Above we have mentioned the four principles for dividing
the cost of an arc (i,7) following Kruskal. Principles one and three have also been
applied with Boruvka. Principle two is similar in the sense that agents outside S; U S;
pay nothing. Whereas in Kruskal all agents in S; US; when 0 ¢ S;US; pay something,
in Boruvka it is possible that agents in S; or S; pay nothing. Principle four is different.
In Boruvka all agents in .S; U S; pay the same.

The paper is organized as follows. In Section 2 we define mestp. In Section 3 we

present our results. The proof of the main result is in Appendix.



2 The minimum cost spanning tree problem

In this section we introduce minimum cost spanning tree problems and revise some
results of the literature that are relevant for this paper.

Let N = {1,2,...} be the set of all possible agents. Given N C N finite, |N|
denotes the number of elements in N.

We are interested in networks whose nodes are elements of a set Nyp = N U {0},
where N C N is finite and 0 is a special node called the source. Usually we take
N=A{1,..,|N|}.

A cost matriz C = (c;j) over NN represents the cost of a direct link between

i,jEN,
any pair of nodes. We assum]eet}:at cij = ¢j; > 0 for each 4, j € Ny and ¢;; = 0 for each
i € Ny. Since ¢;; = ¢j; we will work with undirected arcs, i.e (i, 75) = (j,1).

We denote the set of all cost matrices over N as CV. Given C, C' € CV, we say
C < C'if ¢y < ¢ for all 4, j € Nyp. We denote the set of all cost matrices over N with
all the costs different as DV, i.e. C € DN if ¢y # ¢j; when (4,7) # (4,7).

A minimum cost spanning tree problem, briefly mestp, is a pair (Ny,C') where
N C N is a finite set of agents, 0 is the source, and C' € C¥ is the cost matrix.

Given an mestp (Ny, C'), we denote the mestp induced by C'in S C N as (Sy, C).

A graph g over Ny is a subset of {(i,7) : 4,7 € No,i # j}. The elements of g are
called arcs. Given S C Ny we denote by gg the restriction of g to the elements of S,
i.e. g5 =1{(i,j) €g:14,j €S}

Given a graph g and a pair of nodes ¢ and j, a path from ¢ to j in g is a sequence of
different arcs {(in_1,in)},_, satistying (in_1,is) € g for all h € {1,2,...,1}, i = iy and
j=1i.

A tree over N is a graph t satisfying that for all 7, j € Ny there exists a unique path
from ¢ to j in g. Usually we write ¢t = {(i°,4)},. where ° represents the first agent
in the unique path in ¢ from i to 0. We denote the set of trees over N as 7".

Given an mestp (Ny,C) and a graph g, we define the cost associated with g as

¢(No,C,g) = > ¢ij. When there are no ambiguities, we write ¢ (g) or ¢ (C, g) instead
(i.)€g

of ¢ (No, C, g).

Any graph g over Ny induces a partition of Ny as follows: We say that S C Ny is a
connected component induced by g if two conditions hold. First, for any ¢, 7 € S, there
exists a path in g connecting nodes ¢ and j. Second, for each i € S and j € Ny\S,
there exist no path in g connecting nodes 7 and j. The set of connected components is
a partition of Ny, which we denote as P (N, g). Clearly, if t is a tree P (No, t) = {No}.

A minimum cost spanning tree for (Ny, C), briefly an mt, is a tree t € 7" such

that ¢ (¢) = mingezn c(g). It is well-known in the literature on mestp that there exists



an mt, even though it does not need to be unique. Given an mestp (Ny, C') we denote
by m (Ny, C) the cost associated with any mt ¢ in (Np, C).

Probably, the most famous algorithms for computing the mt associated with an
mestp are the ones introduced in Boruvka (1926) [12], Kruskal (1956) [18], and Prim
(1957) [20].

A (cost allocation) rule is a function f such that for each mestp (Ny, C'), we have
f(No,C) € RY and Y fi (No,C) = m (Np,C). As usual, f; (Ng,C) represents the
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cost assigned to agent 1.

Feltkamp et al (1994a) [16] introduce a rule based on Kruskal’s algorithm. Bergantinios
and Vidal-Puga (2007a) [6] introduce a rule based on Prim’s algorithm. Bergantinos
and Lorenzo-Freire (2008) [5] prove that both rules coincide. We call this rule the folk
solution and we denote it by ¢.

We briefly discuss the definition of the folk solution through the algorithms of Prim
and Kruskal.

e Prim’s algorithm. Idea: starting from the source we construct an mt by sequen-

tially connecting agents with the lowest cost and without introducing cycles.

Bird (1976) [9] defines a rule when the mcstp has a unique mt: each agent pays

his connection cost.

When several mt exist, Dutta and Kar (2004) [14] connect the agent with the
lowest index according to a predetermined order p of the set of agents. The
allocation induced by each order p could be unfair. Fairness is recovered by

computing the average over the set of all possible orders pu.

Bergantinios and Vidal-Puga (2007a) [6] prove that the folk solution can be ob-
tained by applying the previous procedure based on Prim’s algorithm to the
irreducible problem (Ny, C*). C* is obtained from C' by reducing the cost of any
arc as much as possible without changing the total cost of connecting all agents

to the source.

e Kruskal’s algorithm. Idea: the mt is constructed by sequentially adding arcs

with the lowest cost without introducing cycles.

Feltkamp et al (1994a) [16] define the folk solution through Kruskal’s algorithm.

We now define it using the formulation given in Bergantifios et al (2008) [4].

Assume that we add arc (4, ), which links connected components S; and 5.
We divide the cost of arc (i, 7) among agents in N according with the following

principles:



1. Agents already connected to the source pay nothing (if 0 € S;, each agent
in .S; pays nothing).

2. Only agents who benefit directly when adding an arc could pay something
(agents in N\ (S; U S;) pay nothing).

3. All agents in the same connected component pay the same.

4. The total amount paid by a group is proportional to the new agents to

whom this group is connected (agents in S; pay proportionally to |S;).

Then, agent 7 pays

Bl if0 ¢ S;US,

|S:US;1S:
‘51,” if0e Sj
0 if 0 € S;.

3 A rule based on Boruvka’s algorithm

Boruvka (1926) [12] provides an algorithm for computing an m¢t. We provide a way of
sharing the cost of any arc selected by Boruvka’s algorithm. We first describe Boruvka’s
algorithm in a formal way.

Let m be an order over the set of all possible arcs. Namely

WZ{(i,j):i,jGNo,i%j}%{1,2, ..... ,(‘Z‘)}

Remember that we are taking (i,7) = (j,1) .

Boruvka’s algorithm (associated with the order ).
Step 1: Let g™ = ). Notice that P (No,¢™%) = {{0},{1},....{IN|}}.

mT,s—1

Assume we have reached Step s (s = 1,2, ...) and we have defined g
Step s: For each T € P (No, g™ ), 0 ¢ T, let (i™7, jmT) € T x (No\T) be such
that ¢;=rj=r = min{c;; : i € T, j € No\T'}. In case there is more than one possible arc,

we select the one with the lowest position in the order 7.
gﬂ',s — g7r,8—1 U {(Z-ﬂ',T7j7r,T) T eP (N(]’gms—l)} )

It is well known that if for each T € P (Ng, g™ ') the arc (:™7, ;™) is selected
through 7, then g™ is a graph with no cycles.



If P(No,g®) = {No}, then ¢g™* is a tree and the process is over. If P (Ny, g™*) #
{No}, then we go to Step s+ 1.

The process finishes in a finite number of steps. The tree obtained by this procedure
is denoted by ¢”. It is well known that for each order 7, t™ is an mt. Moreover, given an
mt t, there exists an order 7 such that ¢ coincides with ¢. It is possible that t™ = ¢™,
even if m and 7’ are different orders. For instance, if all the costs are different, t™ = ¢™
for all = and 7’.

When no confusion arises we write g%, i, ... instead of g™, i™7, .... respectively.

Remark 1. We have presented Boruvka’s algorithm in a different way. Usually,
the condition 0 ¢ T" does not appear. We have added it in order to adapt the algorithm
to our objective: to divide the cost of the mt among the agents. If 0 € T, then agents

in T do not need to be connected to more agents.
Let us apply Boruvka’s algorithm to the following examples.

Example 1. N = {1,2} and C is given by ¢y = 10, co2 = 100, and ¢;2 = 2. This

situation can be represented by Figure 1.

Figure 1: A two-node case.

Since all the costs are different, it is not necessary to specify the order 7.
1. Step 1. (i1, 1) = (1,2), and (it?, 1) = (2,1). Then, ¢' = {(1,2)}.

2. Step 2. P (No,g*) = {{0},N} and (:V, V) = (1,0).
Now ¢* = {(0,1),(1,2)} is the mt.

Example 2. Let (N, C) be the mestp given by Figure 2:

Since all the costs are different, it is not necessary to specify the order .

1. Step 1. (¢1V, 1) = (1,2), (i¥®,;) =(2,1), and (i, 8) = (3,1)
Then, ¢' = {(1,2),(1,3)}.



Figure 2: A three-node case with all costs different.

2. Step 2. P (No,g*) = {{0},N} and (:V, ;") = (1,0).
Now g% = {(0,1),(1,2),(1,3)} is the mt.

We now introduce a rule in mestp based on Boruvka’s algorithm. Our first idea is
the following. At each step, each connected component select an arc. The cost of each
selected arc is divided equally among all agents belonging to the components selecting

this arc. Let us clarify it in Example 1.
Example 1.

1. Step 1. Connected components {1} and {2} select (1,2). Thus, ¢15 is divided

equally between agents 1 and 2.

2. Step 2. Connected component {1,2} selects (0,1). Thus, cg; is divided equally

between agents 1 and 2.
Finally, each agent ¢ € N pays, %612 + %cm = 6.

Example 2 shows that we must elaborate more our previous idea in order to get a

rule.
Example 2.

1. Step 1. Connected components {1} and {2} select (1,2) whereas {3} selects
(1,3). Arc (1,2) should be paid by agents 1 and 2. But, what happens with
(1,3)?

Assume that cy3 is paid by agent 3.



2. Step 2. The component N selects (0,1). We consider two ways of sharing the
cost of (0,1).

(a)

We divide the cost equally among all agents, which is the way to proceed
following the general idea we are applying. Thus, agents 1 and 2 pay %Clz +
%001 and agent 3 pays c13 + %001.

Let (Ny, C*) be the mestp where ¢f; = 6 + 3¢,¢f, = 6 + 4e, c§3 = 6 + be,
5o =6, ¢§3 = 6+¢, and ¢§; = 6+2¢. Applying the previous idea to (Ny, C°)
we obtain that agents 1 and 2 pay around 5 whereas agent 3 pays around 8.
Thus, the quasi-symmetric problem (Np, C¢) has an asymmetric solution.
Since, we are trying to get a fair rule, this procedure does not seem to be a

good idea.

Any mt has |N| arcs and |N| agents. Since the cost of each arc should be
divided among the |N| agents, it seems reasonable to require that the sum
of the proportions of the costs of the mt that each agent pays should be 1.

In case (a) the sum of these proportions for agents 1 and 2 is % + % =2

6
whereas for agent 3 is 1 + % = %.
If we want to make these proportions equal among them, then ¢y, should be
paid between agents 1 and 2 because agent 3 has already paid the cost of
arc (1,3) at Step 1. Thus, agents 1 and 2 pay %Clz + %001 and agent 3 pays
C13-

Let (No, C¢) be the mestp where ¢, = 20, ¢§, = 20+¢, ¢§3 = 20+2¢, ¢, = 6,
53 = 6+ ¢, and ¢§; = 6 + 2¢. Applying the previous idea to (Np, C*) we
obtain that agents 1 and 2 pay around 13 whereas agent 3 pays around 6.
Again, the quasi-symmetric problem (Ny, C®) has an asymmetric solution.
Since, we are trying to get a fair rule, this procedure does not seem to be a

good idea.

Remark 2. Feltkamp, Tijs, and Muto (1994b) [17] introduce a rule called the

Decentralized Rule in D¥. This rule is defined using the ideas of 2 (b).

In both cases, (a) and (b), we do not find a fair rule. The problem is motivated

because, in Step 1, ¢35 is only paid by agent 3. Thus, we have decided to change the
way in which we divide c;3. We follow the ”same proportion” approach. We require
that all agents must pay the same proportion of the arc they are selecting. Thus,
it could be possible that some arcs are only paid partially. In this case, we focus

on "paid connected components”, namely agents who are connected through arcs paid

9



completely, instead of connected components, and we apply the ideas mentioned above.

Let us clarify this procedure in Example 2.
1. Connected components {1} and {2} select (1,2) whereas {3} selects (1,3).

(a) Arc (1,2) should be paid by agents 1 and 2 and arc (1, 3) by agent 3. Thus,

the proportion paid is p = % Notice that if p > %, then agents 1 and 2 pay

more than the cost or arc (1,2).
Agents 1 and 2 pay %012 and agent 3 pays %Clg.
(b) Now there are two paid connected components {1,2} and {3} . Arc (1,3)

joins both components but only half of the cost was paid.

{1,2} selects (1,3) and {3} selects (1,3), as before. Thus, agents 1, 2, and
3, pay the same proportion of the cost of arc (1,3) not paid yet.

Agents 1, 2, and 3 pay %013.
2. The component N selects (0,1).

(a) The cost of arc (0,1) is divided equally among all agents in the component.

Agents 1, 2, and 3 pay %cm.

Finally, agents 1 and 2 pay %clg+ éc_13+ %cm whereas agent 3 pays %013 + é013+ %601.
Notice that at each step, each agent pays the same proportion of the cost of an arc.

The arc each agent pays depends on his position on the matrix C.

We now explain, in an informal way, how to compute this rule ("), summarizing
the ideas explained above. Initially all agents are isolated. At Step s — 1 agents are
partitioned into paid connected components. We describe Step s. Each one of these
components select a non paid arc following Boruvka’s algorithm. The cost of the arcs

selected at Step s is divided according with the following principles:

e Each agent pays a proportion, p, of the cost of the arc selected by the component

he belongs to.

e This proportion is equal for all players, not only inside each component, but
across components..

e The proportion paid should be as large as possible. Namely, if each agent pays
p’ > p, then there exists an arc such that the amount paid by the agents assigned

to this arc is larger than the cost of the arc.

10



Let m be some order of the arcs Ny, C' a cost matrix, and ¢™ (or simply t) the arc
selected following Boruvka’s algorithm associated with 7. We now define 3" formally.
Step 0. We define:

oa T =1 for all i € N.

In general, a;", or simply af, denotes the arc in ¢ that agent 7 pays partially in

Step s.

° p0,7r — 0

In general, p®™, or simply p®, denotes the proportion of the cost of the arc that
each agent pays in Step s.

o g?]’.” =0 for all (z,7) € t.
In general, g;;", or simply gf;, denotes the proportion of the cost of arc (i, j)

already paid in Step s. Namely, of; = > p"
r=0

o A% (1) =
In general, A>™, or simply A®, denotes the set of non-completely paid arcs in Step
s. Thus, A* = {(i,j) € t: 05 <1} . We denote A" = t\A* = {(i,5) € t : o =1}.

o f"=0forallic N.
In general, f", or simply f7, denotes the cost that agent ¢ pays in Step s. Thus,
fis = pscaf-

Assume that we have defined Step r for all r < s. We now define Step s. For
simplicity, we omit reference to the order .

Given a connected component 7' € P (NO,ZSA) , 0 ¢ T, we select the arc (iT, jT)
as in Boruvka’s algorithm. Namely, c;rj7 = min{c; :i € T,j € No\T} and for all
i € T, j' € No\T such that ¢y = min{c;; : i € T,j € N\T'}, 7 (i7,57) < 7 (¢, ).
It is obvious that (i, j7) € t. Moreover, if component T selected (7, j7) in Step s — 1
and (iT, jT) was not completely paid at the beginning of Step s (( T T) e A1),
component 7" also selects ( ) J ) in Step s.

GivenkeT e P (Ng,Zkl) , we define aj, = (ZT T) That is, each agent will pay
the cost of the arc selected by Boruvka’s algorithm for the component he belongs to.

For each arc (i,7) € A*~', let Nj; = {k € N : aj = (i,7)} be the set of agents that
will pay the cost of arc (7, ). We deﬁne



Notice that, assuming that all agents must pay the same proportion of the cost the
arc, p° is the maximum proportion that agents can pay in Step s.

For each (i,7) € A*™!, we define 0;; = gf;l + {ij{ps . Thus, g; < 1 for each
(4,5) € A*~'. Moreover, there exists at least one (i,) € A*~" such that ¢f; = 1. Thus,
A* ¢ A1 and A ¢ A°. That is, there are more arcs paid completely.

This process finishes when A” = ¢. Since a; €t for all agent ¢ and all Step s, and

1 ¢ A°, this process finishes in a finite number of steps (at most |[N|), say 7.

”
Moreover, it is not difficult to check that > p® = 1.
s=1

Definition 1. Given an order 7 of the set of arcs and a cost matrix C, we define

the Boruvka’s rule induced by the order 7 as

v
Bi (No, C) = fo for each 7 € .

s=1

We now compute 5 in Example 2 following this procedure.

Example 2. We have seen that, since all the cost of the arcs are different, ¢" =
{(0,1),(1,2),(1,3)} for all w. Thus,

Step s=0 s=1 s=2 s=3 TOTAL
a3 0 (1,2) (2,3) (0,1)
as 0 (1,2) (2,3) (0,1)
as 0 (2,3) (2,3) (0,1)
y o0 % % L
o1 0 0 0 1
01 0 1
g 0 ! 1
4 0 2 1 4 7
5 0 2 1 4 7
3 0 3 1 4 8
ATt {(0,1),(2,3)} {(0,1)} 0
T 0 {12} {(L2).23)) ¢

We now see an example when the order m matters.
Example 3. Let (Ny, C) be the mestp represented by Figure 3.

In this example we need to specify the order. There exist two possibilities.

12



Figure 3: A three-node case with equal costs.

1. Let 7 be an order in which 7 (1,3) < 7 (0,1). If we formally compute 5" , we

realize that it is very similar to the one in Example 2. The only difference is the

following:
Step s=0 s=1 s=2 s=3 TOTAL
o 0 2 2 4 8
> 0 2 2 4 8
o7 0 6 2 4 12

3

2. Let ©’ be an order in which 7’/ (0,1) < 7’ (1,3). We formally compute 5" .
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Notice that in this case the process finishes in two stages. Moreover Step 2 of
7' is completely unrelated with stages 2 and 3 of m (agents pay different arcs, at

each stage the proportion is different, ....).

All the rules defined through Prim’s algorithm, namely Bird (1976) [9], Dutta and
Kar (2004) [14], and Bergantinos and Vidal-Puga (2007a) [6], depend on the order in
which the arcs are selected. Two different orders can produce different allocations.
Thus, these authors define a rule simply by taking the average over the allocation
induced by the different orders. Feltkamp et al (1994a) [16] introduce a rule using
Kruskal’s algorithm. For each order in which the arcs are selected, they propose an
allocation. Even though, this allocation could depend on the order, they prove that,
it is actually independent. Thus, they define the rule as the allocation generated by
each order. We believe that this fact makes the definition more interesting.

We have generated an allocation for each order of the arcs following Boruvka’s
algorithm. Even though this allocation could depend on the order, we prove that
it is independent (as in Feltkamp et al (1994a) [16]). Moreover we prove that this
allocation coincides with the folk solution ¢. All these statements are proved in the

following theorem.

Theorem 1. For each order 7, 8" coincides with .

Proof. See Appendix.

Let us compare the definitions of the folk solution through Kruskal and Boruvka.
An important difference is that the order in which we add the arcs could be different.
Moreover, in Kruskal at each step we add an arc, which is paid completely. In Boruvka,
at each step we can add several arcs. At least one of them is paid completely but others
could be paid only partially. Above we have mentioned the four principles to divide
the cost of an arc (i, j) following Kruskal. We see which of those principles are applied

with Boruvka.

1. It is similar. In Boruvka agents already connected to the source, through com-

pletely paid arcs, pay nothing.

2. The same principle applies in the sense that agents outside S; U S; pay nothing.
Whereas in Kruskal all agents in S; U S; pay something (when 0 ¢ S; U S;), in
Boruvka it is possible that agents in S; or S; pay nothing.

3. It is the same.

4. It is different. In Boruvka all agents in S; U S; pay the same.
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4 Appendix

We prove Theorem 1.

We first introduce some properties of rules in mestp. Let f be a rule.

Separability (SEP) For all mestp (Np,C') and all S C N satisfying m (No, C) =
m (S, C) +m ((N\S),,C), we have

£: (S0, C) if i € S

fi(N0>C):{ fi (N\S),,C) ifie N\S.

Equal Sharing of Extra Costs (ESEC) Let (Np,C) and (N, C’) be two mcstp.
Let co,cy > 0. Assuming co; = ¢o and ¢f; = ¢ for all i € N, ¢y < ¢, and
cij = cj; < co for all i, j € N, we have

¢y — Co

- (No, C") = f; (N, C

for all 1 € N.

Continuity (CON) For all N, f is a continuous function on C.

Independence of Irrelevant Trees (IIT) Let (Ny, C) and (No, C') be two mcstp.
Assuming ¢ be a mt in both (No, C') and (No, C"), and ¢ = c; for all (4,7) € t,

we have

f(No, C) = f(No,C").

Bergantinos and Vidal-Puga (2007) prove that ¢ satisfies SEP, ESEC, CON, and
IIT. We will use this result throughout the proof.

Let 7 be any order of the arcs in Ny, C' a cost matrix, and ¢* = {(i°,7)},_y the
mt in (Np, C) obtained through Boruvka’s algorithm. We will prove that 5™ (Ny, C) =
¢ (No, C).

We proceed by induction on the number of agents. For |[N| = 1, the result is clear.
Assume that the result holds for less than |N| agents. We now prove it for | V| agents.

We first prove that it is enough to prove that the result holds for matrices in DY,

the set of matrices where all costs are different.

Lemma 1. Given an order , if 37 (Ny,C) = o (Ny,C) for all C € DV, then
B (No, C) = ¢ (Ny, C) for all C € CV.
Proof of Lemma 1. Notice that DV is a dense subset of CV. Let C € CM\D¥ and

t™ the tree obtained through Boruvka’s algorithm. We can find a sequence of matrices
{C™}*_, such that
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1. C™ ¢ DN for all m,

2. t™ is an mt in C™ for all m,

3. if ¢y = ¢ and w (4,4) < 7 (4,5'), then ¢y < cJy, for all m, and
4. C™ approaches C' as m increases.

Under conditions 2 and 3 when we compute 5" (N, C) and 5™ (N, C™), we have
that for any m: v (No,C) = v (No,C™); ai" (No, C) = a;™ (No,C™) for any i € N
and any s = 0,...,7(No,C); p>™ (No,C) = p*>™ (Ng, C™) for any s = 0, ...,y (No,C);
0" (No,C) = 03" (No,C™) for any (4,j) € t™ and any s = 0,...,7(No,C); and
A®™ (Ny, C) = A>T (Np, C™) for any s =0, ...,y (Ny,C) .

Let ¢ € N. Thus, for each m

7(N07Cm)
By (No,C™) = Y p*(No, C™) g omy

s=1
7(No,C)

= ) P (No,O)wy0
s=1

Now,
¥(No,0O)
Ai_rgoﬁ? (No, C™) = Z p* (No, C) Cas(vo,0) = B7 (No, C) .
s=1

Since (No, C™) € DN, BI (Ng, C™) = ¢, (Ng, C™) . Since ¢ satisfies CON,

lim G7 (No,C™) = lim ¢; (No, C™) = ; (No,C') . B

m—0o0

Hence, we prove the result assuming that C' € DV. Then, t* = t* and 3" (N, C) =
5" (No, C) for any pair of orders m and 7’. Thus, it is enough to prove that 5" (Ny, C) =
¢ (N, C) for some order 7.

Let m be an order and t = ¢™. Let N° = {i € N:4° =0} and (j° ;) the most

expensive arc in t. We consider several cases:

Case 1. |[N° > 2. For any i € NV, let F* be the set of agents j € N such that (0, )
is in the unique path in ¢ from j to 0. Then, {F i}ie yo is a partition of N satisfying
that > m (Fj,C) =m(No,C) and tp; is a tree in (Fg, C) for all s € N°.

i€ENO

Since ¢ satisfies SEP, for all i € N° and k € F*, we have @, (Ny,C) = ¢, (Fi, C).
We just need to prove (3 (No, C) = (7 (Fi, C) for all i € NY and k € F* and apply the

induction hypothesis.
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We need to prove that for each i € N, the cost of the arcs in tp: is paid only by
the agents in F. Suppose not. Then, there exist i € N° and k € F* such that & selects
in step s+ 1 an arc azﬂ = (iT,jT) € t\tpg for some T' € P (NO,ZS) with k € T. Let s
be the first stage in which we can find such i € N° and k € F'. Thus, aj 7" = (7, j7)
for all [ € T. Since (iT, jT) ¢ tpi, we deduce that the arcs in ¢z, have been paid in
Step s, namely, tr, C A°. By definition, all agents in 7" are connected through arcs
in t. Thus, t7, is a tree in Tp. Since in tg, there are exactly |T'| arcs, the cost of the
arcs in tr, is paid only by agents in T' (s is the first stage in which an agent k € F" is

paying an arc outside ¢ F&-), and each agent pays the same proportion p" at each step r,
we deduce that »_ p" = 1. This means that the procedure is already finished in Step
r=1

s. Hence, there is no Step s + 1, which is a contradiction. H

Case 2. |NY =1 and j° # 0 (the most expensive arc does not connect to the
source). Let F' be the set of agents i € N such that arc (3°,7) is in the unique path in
t from i to 0. Let F' = N\ F. Notice that F' # () and F # () because j € F and j° € F.

We first prove that agents in F only pay the cost of the arcs in tF,- Suppose not.
Then, there exists k € F such that azﬂ = (4, 7) for some step s. Let s be the first
stage where this happens. Let T € P (NO,ZS) with k € T. Thus, ai™' = (5°,4) for
all i € T. Since cjo; > ¢y for all (i,4') € t, and t5, is a tree in Fo, we deduce that

T = F and tF, C A°. Since there are exactly }F‘ arcs in ¢z , and all the agents pay

the same proportion p” at each Step r, we deduce that > p” = 1. This means that
r=1
the procedure is already finished in Step s. Hence, there is no Step s + 1, which is a

contradiction.

Similarly, we can prove that agents in I only pay the cost of arcs in tpg;oy.

Take the matrix C’ € DV defined as ¢; = ¢joj, Cjo; = coj, and ¢ = ¢ otherwise.
It is clear, following the above reasoning, that 8" (N, C) = " (Ng, C").

Since t is the unique mt in (N, C), t' = (t\ {(5°,7)}) U {(0,4)} is the unique mt
in (Ny,C"). Thus, €’ is in Case 1. Hence, 5" (Ny, C") = ¢ (Ny, C").

Take now the matrix C” € CV defined as ¢fj; = ¢jo; and ¢j; = ¢; otherwise. It is
straightforward to check that both ¢ and ¢’ are mt in C”. Since ¢ satisfies I1T,

¢<N070/) = SO(N()vC”) = ¢<N07C) .

Case 3. |[N°| =1 and j° = 0. Let (k° k) € t\ {(0,)} be the most expensive arc
in ¢\ {(0,7)}. Under our hypothesis, k° # 0.
We define a new matrix ¢’ € CV from C by reducing the cost of the arcs in

0,7)}._y to the same cost as arc (k°, k). Namely, for each i,l € N, ¢}, = cpox, and
iEN 07
¢y = ¢y. Of course C' ¢ DV.
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We consider an order 7 such that for each i,7',i" € N, w (¢/,i") < 7 (0,7) . Namely,
the arcs {(0,4)},. 5 are the last according with 7. Moreover, 7 (0, j) < 7 (0, k) < 7 (0, 7)
for all i € N\ {j,k}.

We now proceed by a series of claims:

Claim 1: (7 (N, C) = I (Ny, C') + COT;{CO’C for all i € N.

Proof of Claim 1. When computing 57 (N, C') and 57 (Ny, C'), we realize:
o " (N(), C/) =17 (No, C) =1t.

e Both procedures coincide until step v —1 where all the arcs in ¢\ {(0,7)} are com-
pletely paid in both procedures and (0, 7) is not paid at all. Namely, A (No,C) =
—y—1,7 . —1,7 —L,m
AT (No, €)=\ {(0,)} and g3 "™ (No, C) = 037 "™ (No, C) = 0.

Thus, f" (No,C) = f7" (No,C") for all i € N and all s =1, ...,y — 1.
e In Step 7, all the players choose arc (0, j) . Namely, a;™ (N, C) = a;"™ (No,C") =

(0,7) for alli € N. Hence, the cost of arc (0, j) is shared equally among all agents.
— 1

Namely, p? = -

Thus, for all i € N, f"" (No, C) = % and f" (Ny, C) = ;-

e 7 (No,C) =7 (No, ) =

e Now, for all : € N,

ﬁw (N C) — 3~ (Na. C' o T s, N JSES 8,7 /
7 0, ) /87,( 0, ) - Z f 07 Z fz (NO?C)
s=1
] __: i
IN| [N V]

We consider an order 7’ such that for each i,4',i¢" € N, 7' (0,7) < 7’ (i,i") . Namely,
the arcs {(0,4)},. are the first according with 7. Moreover, ' (0,j) < 7'(0,k) <
7' (0,4) for all i € N\ {j, k}.

Claim 2. 6™ (N,,C") = 67 (No, C") .

Proof of Claim 2. Since the mestp is the same we omit (N, C”) from the notation.

Let G be the set of agents i € N such that arc (k% k) is in the unique path in ¢
from i to 0. Let G = N \ G. Notice that G # () and G # ) because k € G and k° € G.

We prove that 37 = 7 for all i € G. The case i € G can be proved in a similar
way and we omit it.

We know that ¢™ = ¢. Because of the definition of 3™ there exist 7! and r? such that
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1. From Step 1 to Step 7' agents in G select arcs in tg, namely a;" € tg for all
s=1,..,r" and all i € G.

All arcs in tg have been paid completely in Step r!, namely tg C Z”l’“.
2. From Step r' +1 to Step r? all agents in G select arc (k°, k) , namely af = (k°, k)
forall s=7r'+1,...,72 and all i € N.
All arcs in tg U {(k° k)} have been paid completely in Step r?, namely tg U
_7’2 ™
{(F° k) cA ™.

3. Hence, a;?’ﬂ' = (0;j) for all 2 [ N and ,y7r — 7,2 + 1.

It is easy to see that t™ = (£\ {(k°, k)})U{(0, k)} . Because of the definition of 5™,

1. From Step 1 to Step 7! agents in G select arcs in tg, namely af’”l € tg for all
s=1,...,rand all i € G.

Moreover, af’”, =a" and p>™ = p>™ forall s =1,...,7" and all i € G.
_7’1 ™
All arcs in tg have been paid completely in Step r', namely to C A .

2. From Step 7' + 1 to Step 4™ all agents in G select arc (0, k) , namely a3 = (0, k)
forall s=r"+1,..,7™ and all i € N.

Let ¢ € G. Then,

7‘1 7‘2

T s, s,/ T )

gy = E PP e + E PPTCpem +p Carmom
s=1 s=ri41

7’1 7’1
= E ps’”casmqt 1—2 > | cpor.
s=1 s=1

Moreover,

!
rl ol
' s, s,
ﬁi - p7 & s,/ + p7 & s,m!
- a; a;
sS—

s=rl41

rl

rl
= Zps’ﬂ—ca?ﬂr + (1 - Zps,w> CiO0f - |
s=1

s=1

Claim 3. 5™ (N,, C") = ¢ (Ny, C").
Proof of Claim 3. The proof is analogous to the proof of Case 1 and hence we
omit it.
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Claim 4: ¢, (No, C) = ¢, (Ny, C") + % for all i € N.
Proof of Claim 4. Let C” € CV defined as ¢}, = co; and ¢}j = ¢ for all i,] € N.

Since ¢ satisfies ESEC, or all ©+ € N,

Pi (N07 C”) =¥ (N07 C,) + %
Since t is an mt in (Ny, C") and (Ny, C') and ¢ satisfies 1T, ¢ (No, C") = ¢ (No, C).
]
We now prove that 8" (Ny, C') = ¢ (N, C) in Case 3. For all i € N

7 (N, €) 2 57 (N, €) 4 =it

Claim 2 ! , Coj — Cgog
=07 (No,C") + ———
[N

Claim 3 ’ Coj — Cgok
=" (No, ") + ————
V]

Claim 4

= ¥ (N07C)
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