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Abstract

This paper discusses two longstanding questions in growth econometrics which involve multiple

hypothesis testing. In cross sectional GDP growth regressions many variables are simultane-

ously tested for significance. Similarly, when investigating pairwise convergence of output for

n countries, n(n − 1)/2 tests are performed. We propose to control the false discovery rate

(FDR) so as not to erroneously declare variables significant in these multiple testing situations

only because of the large number of tests performed. Doing so, we provide a simple new way to

robustly select variables in economic growth models. We find that few other variables beyond

the initial GDP level are needed to explain growth. We also show that convergence of per

capita output using a time series definition with the necessary condition of no unit root in the

log per-capita output gap of two economies does not appear to hold.
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1 Introduction

Why do some countries grow faster than others? What determines long-run economic growth?

These intriguing questions have been part of economic research since its beginnings. Answering

them would permit more stable, long-run oriented policy making. Moreover, knowing what truly

determines growth would help tackle the inequality in living standards between countries. The

importance of this issue is reflected in the extensive research in this area. Unfortunately, different

authors find quite diverse components to determine economic growth (Durlauf, Kourtellos and

Tan, 2008). A far from exhaustive list includes initial GDP, fertility rates, high school enrolment

rates, public debt and quality of institutions.

In judging whether a variable is significant in an economic growth model, researchers often rely

on traditional significance tests. That is, one tests each coefficient individually at some level

α using appropriate p-values. Given the large set of possible explanatory variables in a growth

regression, one simultaneously tests a large number of hypotheses. Given some α, the probability

of committing at least one type I error is arbitrarily larger than α. To see this, note the event of

a rejection is a Bernoulli random variable with “success” probability α if the null is true. Hence,

assuming (for illustration only) that all hypotheses are true and independent, Pl, the probability

of finding l rejections in k tests, corresponding to k possible regressors, is the probability mass

function of a Binomial random variable,

Pl =

(
k

l

)
αl(1 − α)k−l.

Therefore, the probability of at least one erroneous rejection for α = 0.05 and k = 50 equals

Pl>1 =

50∑

j=1

(
50

j

)
0.05j(1 − 0.05)50−j = 0.9231.

Hence, one is bound to erroneously declare irrelevant variables to explain growth. This is of

substantial policy relevance. Growth regressions are used to identify effective policy measures to

boost growth. Now, if variables are only spuriously found related to growth, ineffective public

expenditures may well arise.

The issue is thus related to, but different from, data mining, where, in the words of Lovell (1983)

“a data miner uncovers t-statistics that appear significant at the 0.05 level by running a large

number of alternative regressions on the same body of data.” Doing so, “the probability of a type

I error of rejecting the null hypothesis when it is true is much greater than the claimed 5%.”

Another topic extensively researched in growth econometrics is whether per-capita outputs of

different economies converge. Investigating convergence is relevant for example in the context

of European integration. Of the different notions of convergence proposed in the literature1 we

will focus on convergence across economies using a time-series definition proposed by Pesaran

(2007). There, two economies converge only if a unit root test on the output gap of two economies,

1For a survey see for example Islam (2003).
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i.e. the difference of the log per-capita income, rejects. These pairwise tests with the null of no

convergence are conducted for all different combinations of n countries. This results in n(n−1)/2

simultaneous tests. Again, given the high number of simultaneous tests, even if no country pair

converges one is bound to falsely reject the null of no convergence for several pairs.

We propose to tackle these problems by using multiple testing techniques. These take the mul-

tiplicity of tests performed explicitly into account. One way to achieve such multiplicity control

is to only declare a variable significant if its p-value satisfies pj 6 αj for some suitably chosen

cutoff αj 6 α. Such multiple testing techniques are routinely applied in many areas of applied

statistics that involve multiple hypothesis testing, e.g. genomics (e.g., Dudoit and van der Laan,

2007). Following Romano, Shaikh and Wolf (2008b), we argue that selecting important regressors

in this fashion can fruitfully be used as a simple-to-use model selection device. In that way, we

aim to find a new way to robustly select explanatory variables in economic growth models and to

shed some further light on the question whether economies converge.

We will focus on controlling the False Discovery Rate (FDR) (Benjamini and Hochberg, 1995).

The FDR is defined as the expected value of the number of falsely rejected hypotheses divided

by the overall number of rejections. It is thus an extension of the notion of a type I error to the

multiple testing situation. For the first application, rejection means declaring some determinant to

be significant in an economic growth model. In the second application, rejection means rejection

of the null of no convergence.

The rejective power of the FDR controlling procedures might differ substantially (Romano, Shaikh

and Wolf, 2008a). Thus, we first conduct an extensive Monte Carlo study judging the effectiveness

of the procedures under different settings relevant to the present testing problems.

We find that few other variables beyond initial GDP level are needed to explain growth. We also

show that output convergence using a time series definition with the necessary condition of no

unit root in the output gap of two economies does not seem to hold.

This paper is organized as follows. Section 2 surveys previous approaches in cross-sectional growth

models as well as in the convergence literature. Section 3 describes the FDR controlling procedures

that we employ. Section 4 assesses their quality in a Monte Carlo study. Section 5 examines cross

sectional growth regressions using FDR controlling techniques and compares the results to other

approaches used in the literature. Section 6 conducts FDR controlling pairwise tests for output

convergence. The final section concludes.

2 Literature Review

2.1 Growth Regressions

We follow standard practice and regress the real per capita output on two sets of variables.

The first set includes levels of state variables measuring the initial position of an economy. The

second set uses variables accounting for the difference in steady states across economies. Such
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a specification is consistent with a variety of neoclassical growth models that have as possible

solution a log-linearization around the steady state of the form (Barro and Sala-i-Martin, 1995)

log yT − log y0 = −(1 − e−λT ) log y0 + (1 − e−λT ) log y∗, (1)

where log yt is the logarithm of the per capita gross domestic product (GDP for short) at time

t, log y∗ is its steady-state value, and λ is the convergence rate. If all economies have the same

steady state, the regression corresponding to (1) for n countries and time periods T and 0 reads:

log(yiT /yi0) = µ+ δ log(yi0) + ui, i = 1, . . . , n, (2)

where ui is a disturbance term. Here, δ is expected to have a negative sign, indicating that poor

economies tend to grow faster and converge to rich ones. This is called absolute convergence (Barro

and Sala-i-Martin, 1995). But when taking (2) to the data, this effect can only be seen when fitting

the regression to a set of relatively homogeneous economies. This is because economies generally

differ in their steady state. For heterogeneous economies, the sign of δ becomes ambiguous (Barro

and Sala-i-Martin, 1995). The reason is that heterogeneous economies have different individual-

specific parameters that determine their steady states. Omitting these from (2) leads to a bias.

This motivates the concept of conditional convergence. To incorporate this into (2), one adds

additional control variables xi, measuring the steady state determinants of an economy. The

equation then becomes:

log(yiT /yi0) = µ+ δ log(yi0) + x′
iβ + ui, i = 1, . . . , n, (3)

Although specifications like (3) are very widely used in the literature, there is little agreement on

which variables to include in the vector xi.

Barro (1991) performs growth regressions with data for 98 countries from 1960 to 1985. Next to

the negative relation to initial GDP, he finds a positive relation of growth to initial human capital.

Furthermore, growth appears to be inversely related to the share of government consumption and

a proxy for market distortions, but positively related to measures of political stability. Following

this seminal work, the literature pointed out many different variables that would be significant

in explaining growth. However, few authors perform multiplicity control in spite of often using a

number of candidate variables of the same order of magnitude as n.

Recognizing this problem, Levine and Renelt (1992) apply the extreme bound theory to find a

robust selection of variables in empirical growth models. But since this method is quite severe,

they only find the initial level of income, the investment rate, the secondary school enrolment

rate and the rate of population growth to have explanatory power. Sala-i-Martin (1997) uses

an approach where he aims at assigning some level of certainty to each variable. Doing so, he

finds variables like geography, measures of political quality, shares of certain religions or whether

a country is a former Spanish colony to influence growth. Fernandez, Ley and Steel (2001) and

Sala-i-Martin, Doppelhofer and Miller (2004) use Bayesian Model Averaging (BMA) techniques

to account for the fact that growth theories are not mutually exclusive and that even if one knew

the true theories, it would be unclear which variable to include for each. When accounting for
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this model uncertainty, Sala-i-Martin et al. (2004) find 11 variables to robustly explain growth,

of which initial GDP level again has the strongest impact. The related work of Durlauf et al.

(2008) aims at finding relevant growth theories rather than single variables. The results are still

comparable to the aforementioned papers in that they declare a growth theory to be important

if at least one variable associated with that theory appears in the final model. The reliability of

these studies using BMA is questioned in Ley and Steel (2009). They show that the choices made

concerning prior distributions strongly affect the number of variables declared significant. Thus

the results are sensitive to difficult and somewhat subjective user choices.

2.2 Pairwise Testing for Output Convergence

The literature discusses different definitions for output convergence and resulting tests; see Islam

(2003) for a survey. We are concerned with pairwise output convergence across countries. We

work with the time-series definition of Pesaran (2007). He assumes the following common factor

model for the GDP of country i at time t, yit,
2

yit = ci + git+ θ′
ift + ǫit + ηit for i = 1, 2, . . . , n. (4)

Here, ηit is a zero-mean stationary process, but ft and ǫit could be non-stationary. Following the

definition in Bernard and Durlauf (1995), countries i and j converge if

lim
k→∞

E(yi,t+k − yj,t+k|Ft) = 0 at any fixed time t, (5)

where Ft is an information set containing at least the current and past output series yi,t−s for

i = 1, 2, . . . , n and s = 1, 2, . . . , t. Bernard and Durlauf (1995) show that for (5) to hold, a

necessary, though not sufficient, condition is that the GDPs are cointegrated with cointegrating

vector (1,−1)′. Substituting (4) into (5) the condition for convergence reads

lim
k→∞

(ci − cj) + (gi − gj)(t+ k) + (θi − θj)
′ E(ft+k|Ft) +

E(ǫi,t+k − ǫj,t+k|Ft) + E(ηi,t+k − ηj,t+k|Ft) = 0.

Since ηit is assumed to be stationary, so is the difference ηit − ηjt. Thus, we have

lim
k→∞

E(ηi,t+k − ηj,t+k|Ft) = E(ηit − ηj,t) = 0.

Moreover, for convergence it has to hold that ǫit is I(0), since otherwise limk→∞ E(ǫi,t+k −
ǫj,t+k|Ft) 6= 0. We now have to consider two cases for the order of integration of θ′

ift, namely

θ′
ift ∼ I(0) and θ′

ift ∼ I(1). Under the former, convergence according to (5) requires that ci = cj

and gi = gj . If θ′ft ∼ I(1) we must also have that θi = θj .

Pesaran (2007) argues that of these three conditions, the most unlikely to hold is ci = cj . This

would require the two converging countries to be identical in nearly every respect, including for

example their initial endowment. Hence, he employs a less stringent definition of convergence.

2For a detailed derivation and discussion of the corresponding assumptions refer to Pesaran (2007).
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The definition is based on the idea that for two countries i and j to converge, the output gap

yit − yjt should not fall outside a pre-specified interval C with high probability π. Formally,

Pr {|yi,t+s − yj,t+s| < C|Ft} > π, (6)

for all s = 1, 2, . . . ,∞. This less stringent definition of pairwise convergence requires yit − yjt not

to have a stochastic or deterministic trend. But contrary to (5), (6) does not require ci = cj for

two countries to converge.

Using a cointegration framework and (6), the GDPs of two countries i and j should be cointegrated

and cotrended with vectors (1,−1)′ for them to converge. Pesaran (2007) demonstrates that this

condition can be checked by directly testing each output gap for the absence of a unit root and a

linear trend. In this setting, the absence of a unit root can be seen as a necessary condition and

the additional absence of a linear trend (gi = gj) as a sufficient condition.

Pesaran (2007) tests for the absence of a unit root for all possible n(n − 1)/2 pairs of countries.

For large n and T , if no country pair converges, the null of no convergence should only be rejected

for a fraction of pairs equal to the significance level α of the individual tests applied. In this case,

the null could have been rejected by chance for pairs found to be convergent. On the other hand,

if all country pairs converge, for large n and T , the fraction of country pairs found convergent

should tend to 1. Using data from the Penn World Tables 6.1 he only rejects the null for a

fraction of country pairs roughly equal to α. Hence, he finds no evidence for overall convergence.

However, since his approach makes no statements about individual country pairs it cannot say

whether the fraction of rejections consists entirely of type I errors or possibly does contain some

correct rejections.

Further studies using a time-series framework and similar definitions of convergence are also

largely in disfavor of the overall convergence hypothesis. Bernard and Durlauf (1995) apply

cointegration tests in a panel setting to test for convergence. They fail to find convergence for a

set of 15 OECD countries when testing for the cointegration vector (1,−1)′. Nevertheless they find

cointegration relationships of the form (1,−a) among different countries. This indicates, following

their definition, conditional convergence, a concept less strict than the one employed here. Pesaran

(2007) shows that this approach can only handle a limited number of countries simultaneously.

Earlier studies using univariate time series techniques (e.g., Campbell and Mankiw, 1989; Quah,

1990) also fail to find evidence for overall convergence. A problem inherent to their approaches

is the choice of a ‘reference country’ to which convergence of the other economies is tested.

This paper tests the null of a unit root in each output gap for all possible n(n− 1)/2 pairs vs. the

alternative of no unit root. Unlike Pesaran (2007) we directly account for the multiplicity of tests,

thereby allowing us to make statements about individual country pairs rather than fractions of

rejections. We thus test for the necessary condition for convergence of two countries, controlling

the FDR. Doing so, we clarify if the fraction of convergent pairs in Pesaran (2007) is spurious or

if there is some evidence of ‘true convergence’. Our results in section 6 show that not even the

necessary condition holds such that we do not investigate the sufficient one gi = gj .
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3 Controlling the FDR

The false discovery rate (FDR) as a desirable measurement of type I errors in multiple testing

situations is introduced by Benjamini and Hochberg (1995). They also provide a step-up procedure

that is shown to control the FDR at a desired level γ. A step-up method considers the hypotheses

ordered from most significant to least significant based on their p-values. The idea is then,

beginning with the least significant hypothesis, to accept hypotheses up to a certain point and

reject the remaining ones.

We now present four methods controlling the FDR in more detail. Concretely, we employ the

methods from Benjamini and Hochberg (1995), Storey, Taylor and Siegmund (2004), Benjamini,

Krieger and Yekutieli (2006) and the bootstrap method of Romano et al. (2008a). We will

frequently refer to these as BH method, Storey method, BKY algorithm and bootstrap method.

Adapting a notation similar to Benjamini and Hochberg (1995) and referring to Table 1, there are

m hypotheses to be tested simultaneously out of which m0 are true. R is an observable random

variable, whereas U, F, S and T are unobservable random variables. The proportion of falsely

rejected null hypotheses can be described by Q = F/(F + S). Naturally, if F + S = 0, we take

Q = 0. The FDR is then defined as E(Q) = E(F/(F + S)) = E(F/R). Lower-case letters denote

the realizations of the underlying random variable.

3.1 BH Method

In the FDR controlling method suggested in Benjamini and Hochberg (1995) one first chooses

a level γ at which to control the FDR. Let p̂(1) ≤ . . . ≤ p̂(m) be the ordered p-values and

H(1), . . . ,H(m) the corresponding null hypotheses, such that the hypotheses are now ordered from

most to least significant. For 1 ≤ j ≤ m, let γj = j
mγ. Then the method rejects H(1), . . . ,H(j∗),

where j∗ is the largest j such that p̂(j) ≤ γj . If no such j exists, no hypothesis is rejected. The

intuition behind the procedure is the following: When testing each hypothesis at some level α,

we have that E(F) ≤ αm. So a valid estimate for the upper bound of the expected value of Q

is αm/r(α), where r(α) denotes the number of rejected hypotheses when testing each at level α.

Given the observed p-values, α can now be chosen to maximize the observed number of rejections

r(α) given the constraint that FDR ≤ γ. Given FDR ≤ γ, maximizing the observed number of

Table 1: Number of decisions made when testing m null hypotheses

Declared Declared Total

non-significant significant

True null hypotheses U F m0

Non-true null hypotheses T S m−m0

m-R R m
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rejections is desirable, since this identifies as many false hypotheses as possible. Here this means

that one finds as many relevant variables as possible. Moreover, Benjamini and Yekutieli (2001)

show control of the FDR under positive regression dependency, which under certain conditions

includes coefficient test statistics in static regressions. The Monte Carlo study in section 4 shows

that the FDR is also controlled under plausible assumptions about e.g. the DGP of a cross-

sectional growth regression.

3.2 Storey Method

Even if the conditions of the BH method are met the method is conservative as it can be shown

that FDR ≤ m0
m γ. So, unless m0 = m, the power of the method can be improved by redefining

γj as γj = j
m0
γ. Since m0 is unknown, it has to be estimated. Storey et al. (2004) propose to

estimate m0 by m̂0 =
#[p̂j>λ]+1

1−λ , where λ ∈ (0, 1) is a user-specified parameter. The idea behind

this estimator is the following: p-values corresponding to true null hypotheses approximately

follow a uniform[0, 1] distribution. Therefore one would expect m0(1 − λ) of these to lie in the

interval (λ, 1]. When replacing m in the BH method by m̂0, Storey et al. (2004) show that this

procedure typically controls the FDR whenever the BH method does. The Storey procedure can

however be quite liberal under constant positively dependent p-values.

3.3 BKY Algorithm

Benjamini et al. (2006) propose another improvement of the original BH method. It comes in the

form of a two step algorithm. First, one applies the BH procedure at a level γ∗ = γ/(1 + γ). If

r = 0, no hypothesis is rejected and the procedure stops. Likewise, if r = m, all hypotheses are

rejected. Otherwise, the procedure continues using the BH method with γj replaced by j
m̂0
γ∗,

where m̂0 = m− r. Benjamini et al. (2006) prove that this method works under independent test

statistics and also provide simulations suggesting that it works under dependent test statistics.

3.4 Bootstrap Method

The bootstrap method is a step-down rather than a step-up procedure as the three previously

described methods. Assume without loss of generality that a hypothesis H(i) is rejected for large

values of its corresponding test statistic Ti. Further, order the test statistics from smallest to

largest, i.e. T1 ≤ T2 ≤ . . . ≤ Tm, and let H(1), H(2), . . . ,H(m) denote the corresponding hypotheses.

A step-down procedure then compares the largest test statistic Tm with a suitable critical value

cm. If Tm < cm the procedure rejects no hypothesis; otherwise it rejects H(m) and steps down to

Tm−1. The procedure continues in this fashion until it either rejects H(1) or does not reject the

current hypothesis. More formally, a step-down procedure rejects hypotheses

H(m), H(m−1), . . . ,H(m−j∗),
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where j∗ is the largest integer j satisfying

Tm ≥ cm, Tm−1 ≥ cm−1, . . . , Tm−j ≥ cm−j .

If no such j exists, the method does not reject any hypotheses.

3.4.1 Intuition

Recall the FDR is the expected value of falsely rejected hypotheses over the total number of

rejected hypotheses. For any step-down procedure this expected value can be calculated as

FDR = E

[
F

max {R, 1}

]
=

∑

1≤r≤m

1

r
E[F|R = r]P {R = r}

=
∑

1≤r≤m

1

r
E[F|R = r]

× P {Tm ≥ cm, . . . , Tm−r+1 ≥ cm−r+1, Tm−r < cm−r} ,

where the event Tm−r < cm−r is defined to be true when r = m.

Assume without loss of generality that the true hypotheses correspond to the indices {1, . . . ,m0}.
Under weak assumptions relating to test consistency, all other (i.e. the false) hypotheses are

rejected with probability tending to one. Moreover, let Tr:t denote the rth smallest of the test

statistics T1, . . . , Tt. In particular, when t = m0, Tr:m0 denotes the rth smallest test statistic of

all true hypotheses. Then, with probability approaching one,

FDR =
∑

m−m0+1≤r≤m

r −m+m0

r
(7)

× P {Tm0:m0 ≥ cm0 , . . . , Tm−r+1:m0 ≥ cm−r+1, Tm−r:m0 < cm−r} .

Again the event Tm−r < cm−r is defined to be true when r = m. The intuition behind (7) is

the following: Given that all false hypotheses are rejected with probability tending to one, one

only needs to search among the hypotheses {H1, . . . ,Hm0} how many of these are falsely declared

significant. Then, summing over every possible proportion of falsely rejected hypotheses weighted

by its probability gives the expected value of this, i.e. the FDR.

Since m0 is unknown, one has to ensure that (7) is bounded above by γ for every possible m0.

That is exactly the condition used to recursively determine the critical values. For m0 = 1, (7)

simplifies to

FDR =
1

m
P {T1:1 ≥ c1} .

Hence one can calculate the first critical value from

c1 = inf

{
x ∈ R :

1

m
P {T1:1 ≥ x} ≤ γ

}

If mγ > 1, c1 is set to −∞. For m0 = 2, (7) equals

1

m− 1
P {T2:2 ≥ c2, T1:2 < c1} +

2

m
P {T2:2 ≥ c2, T1:2 ≥ c1} (8)
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Hence, having determined c1, c2 then simply is the smallest number for which (8) is bounded

above by γ. In general, having determined c1, . . . , cj−1, cj is the smallest value for which the

following expression is bounded above by γ,

FDR =
∑

m−j+1≤r≤m

r −m+ j

r

× P {Tj:j ≥ cj , . . . , Tm−r+1:j ≥ cm−r+1, Tm−r:j < cm−r} (9)

For j = m, (9) simplifies to

P {Tm:m ≥ cm} .

Thus, one can find the mth critical value via the following minimization:

cm = inf {x ∈ R : P {Tm:m ≥ x} ≤ γ} .

In practice this choice of critical values is infeasible, since the probability measure P is unknown.

Hence, P is approximated using bootstrap techniques as presented in the following.

3.4.2 Procedure

The idea is to replace P by a suitable P̂ using bootstrap techniques. The exact choice of bootstrap

depends of course on the nature of the data and the problem that is analyzed. We will present

the two bootstrap procedures used later. Here, it is only required that P̂ estimates P such that

T ∗
j , the bootstrapped test statistic, is a good approximation of Tj whenever the corresponding

null hypothesis is true (Romano et al., 2008a).

Given P̂ , the critical values are defined recursively as follows: Having determined ĉ1, . . . , ĉj−1, the

jth critical value is determined using the minimization rule (Romano et al., 2008a):

ĉj = inf

{
c ∈ R :

∑

m−j+1≤r≤m

r −m+ j

r
(10)

×P̂
{
T ∗

j:j ≥ c, . . . , T ∗
m−r+1:j ≥ ĉm−r+1, T

∗
m−r:j < ĉm−r

}
≤ γ

}

Here, it is crucial to understand the meaning of T ∗
r:t. The index t stems from the ordering of

the original test statistics, whereas r corresponds to the bootstrapped test statistics. So T ∗
r:t has

the following meaning: Out of the t smallest original test statistics pick the rth smallest of the

corresponding bootstrap test statistics.

3.4.3 Linear Regression Model

For the application to cross sectional growth regressions we consider the model

y = Xβ + u,

where X is a n× (k + 1) matrix containing k possible regressors and a constant. All vectors are

of dimension n. We use the following semi-parametric bootstrap:
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1. Estimate β using β̂ = (X ′X)−1X ′y.

2. Calculate the residuals û using û = y−Xβ̂ and their demeaned version ũ = û−ι(ι′ι)−1ι′û,

where ι is a vector of ones.

3. For each element of β, calculate the t-statistic β̂i√
s2(X′X)−1

ii

for H0 : βi = 0 against H1 : βi 6=

0. Here s2 =
∑

i
û2

i

n−(k+1) .

4. Resample non-parametrically with replacement from ũ to obtain the bootstrap residuals u∗i
and build the bootstrap sample

y∗i = x′
iβ̂ + u∗i

5. Calculate β̂∗ = (X ′X)−1X ′y∗ and u∗ = y∗ − Xβ̂∗.

6. For each element of β̂∗ construct the bootstrapped version of each individual t-statistic

using the formula
β̂∗

i −β̂i√
s2∗(X′X)−1

ii

, where s2∗ =
∑

i
u∗2

i

n−(k+1) . Repeat steps 4 – 6 B times.

7. Apply the rule (10) with m = k + 1 to calculate the critical values.

8. Use the critical values from 7 and compare them in the previously described step-down

fashion (10) to the t-statistics found in 2.

We thus bootstrap by estimating the original model under the alternative and calculating the

bootstrap t-statistic accordingly. This has two major advantages. First this leads to an enormous

gain in computation time of the algorithm, since one only needs to rebuild the DGP once and not

k + 1 times. Secondly, and more importantly, this preserves the dependence of the test statistics

in each bootstrap iteration. This is important, since when applying the rule (10), one makes

statements about the joint distribution of the test statistics.

3.4.4 Pairwise Testing for Output Convergence

When applying the bootstrap procedure to pairwise testing of output convergence we consider

n different countries leading to n(n − 1)/2 different country pairs. Previous applications of the

Romano et al. (2008a) approach tested stationary variables. We now describe how to extend their

approach to the present testing problem on nonstationary time series. We apply the following

semi-parametric bootstrap unit root test procedure developed in Smeekes (2009).

1. Calculate the output gap dijt = yit − yjt for each country pair, i.e. for i = 1, . . . , n − 1,

j = 2, . . . , n and t = 1, . . . , T . Do the next steps simultaneously for all i = 1, . . . , n− 1 and

j = 2, . . . , n.

2. Detrend the output gap dijt. We consider two detrending schemes. Either calculate dd
ijt =

dijt − φ̂′zt, where zt = (1, t)′. Here, φ̂ is the usual OLS estimator, φ̂ =
(∑T

t=1 ztz
′
t

)−1×(∑T
t=1 ztdijt

)
. We also consider GLS detrending. Elliot, Rothenberg and Stock (1996) show

that GLS detrending may result in higher power of the ADF test against local alternatives

of the form ρ = 1 + c̄T−1. Let z1c̄ = z1 and ztc̄ = zt − (1 + c̄T−1)zt−1 for t = 1, 2, . . . , T .
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Likewise, define dij1c̄ = dij1 and dijtc̄ = dijt − (1 + c̄T−1)dij,t−1 for t = 1, 2, . . . , T . Then,

calculate

φ̂c̄ =

(
T∑

t=1

ztc̄z
′
tc̄

)−1( T∑

t=1

ztc̄dijtc̄

)
.

Finally calculate dd
ijt = dijt − φ̂′

c̄zt.

3. Estimate an ADF regression of order p for dd
ijt and calculate the residuals as

ǫ̂ijt = ∆dd
ijt − α̂dd

ij,t−1 −
p∑

j=1

ψ̂j∆d
d
ij,t−j .

3

Calculate the demeaned residuals ǫ̃ijt = ǫ̂ijt − 1
n−p−1

∑
t ǫ̂ijt. Also calculate the ADF test

statistic tα̂ for α̂ and ADF−1 = (−1)tα̂, so as to reject for large values of the test statistic

as assumed in the derivation of critical values (10).

4. Resample ǫ̃ijt non-parametrically with replacement to obtain the bootstrap residuals ǫ∗ijt.

5. Build u∗ijt recursively as u∗ijt =
∑p

j=1 ψ̂ju
∗
ij,t−j + ǫ∗ijt. Then build d∗ijt = d∗ij,t−1 + u∗ijt.

4

6. Detrend d∗ijt as in step 2 to obtain dd∗
ijt.

7. Estimate by OLS the ADF regression

∆dd∗
ijt = α̂∗dd∗

ij,t−1 +

p∑

j=1

ψ̂j∆d
d∗
ij,t−j + ǫ̂∗ijt

and calculate the ADF test statistic for α̂∗ and ADF∗
−1. Repeat steps 2 – 7 B times.

8. Apply the rule (10) with m = n(n− 1)/2 and ADF∗
−1 to calculate the critical values.

9. Use the critical values from 8 and compare them to ADF−1 from 2 using the step-down

procedure (10).

4 Monte Carlo Study

We now shed some light on the performance of the FDR controlling techniques described above.

We compare the four procedures with each other and with the classical approach to hypothesis

testing (i.e. rejecting Hi if pi ≤ α). The first performance criterion is the average of the proportion

of falsely rejected hypotheses. This will, as the number of simulations grows, converge to the FDR.

The second criterion is the average number of rightly rejected null hypotheses. This provides

insights on the rejective power of the procedures. Section 4.1 considers significance tests in

the linear regression model, corresponding to cross sectional growth regressions. Section 4.2

investigates multiple unit root tests as in the tests for output convergence.

3If the estimated AR process is explosive we impose a root bound as suggested in Burridge and Taylor (2004).
4Following Smeekes (2009), we do not add deterministic components to the bootstrapped series for simplicity.
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Table 2: Linear regression model with 5 false hypotheses

# false hypotheses: 5 Sample size: 100 # Regressors: 50

ρ = 0

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.083 3.96 0.273 4.61 0.426 4.81

BH 0.010 2.27 0.038 3.35 0.086 3.81

Storey 0.013 2.32 0.049 3.40 0.102 3.84

BKY 0.010 2.29 0.040 3.36 0.086 3.79

Bootstrap 0.011 2.36 0.052 3.45 0.010 3.94

ρ = 0.3

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.097 3.08 0.302 4.12 0.457 4.49

BH 0.007 1.21 0.043 2.29 0.092 2.85

Storey 0.008 1.26 0.051 2.35 0.113 2.91

BKY 0.007 1.22 0.043 2.28 0.090 2.80

Bootstrap 0.009 1.22 0.050 2.39 0.102 2.95

ρ = 0.5

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.125 2.250 0.336 3.48 0.473 3.98

BH 0.009 0.547 0.042 1.32 0.080 1.80

Storey 0.011 0.594 0.050 1.35 0.096 1.87

BKY 0.009 0.549 0.042 1.30 0.078 1.75

Bootstrap 0.010 0.592 0.048 1.35 0.092 1.88

This table shows the results of a Monte Carlo simulation as specified in section 4.1 with 2000 sim-

ulations and the indicated parameter settings. The procedures controlling the FDR were applied as

described in section 3. For the Storey procedure, λ = 0.5.

4.1 Linear Regression Model

We simulate a data generating process (DGP) of the following form:

y = Xβ + u.

In the basic setup, X = (x′
1, . . . ,x

′
k)

′ is a n × k matrix of regressors, where each row xi =

(x1i, . . . , xki) is distributed multivariate normal with mean zero, variance one and common cor-

relation ρ. The elements ui of the vector u are iid N(0, 1). The vector β is k × 1. In each setup,

n = 100 and k = 50.5 We consider ρ = {0, 0.3, 0.5} and investigate three scenarios for the vector β:

• Every tenth βi = 0.5, and the remaining βi = 0, such that there are 5 false hypotheses.6

• Every fifth βi = 0.5, and the remaining βi = 0, such that there are 10 false hypotheses.

• Every second βi = 0.5, and the remaining βi = 0, such that there are 25 false hypotheses.

For the case of five false hypotheses, Table 2 shows that all multiple testing procedures control

the FDR for any correlation ρ. Classical testing does not; in general FDRs substantially higher

than the nominal level of the individual tests result. The violation of the FDR increases in

ρ. One reason for this is that the larger ρ, the larger the problem of multicollinearity among

the regressors. Hence, the individual t-tests become less reliable. This can also be seen from

5Unreported experiments draw qualitatively similar pictures for different n and k.
6The value 0.5 is chosen so as to be able to discriminate between the rejective power of the procedures. An

extremely high value for example, would have resulted in all false hypotheses being rejected by all procedures. A

low value would have resulted in the opposite.
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the fact that the number of right rejections declines for higher ρ. Unsurprisingly, the number

of right rejections using classical testing is above that of the multiple testing procedures. But

this comes at the price of unacceptable many wrong rejections. Moreover, unlike with multiple

testing procedures, the FDR of classical testing is unknown in practice. Hence, the user does not

know how many hypotheses are rightfully rejected. Among the FDR controlling procedures the

bootstrap yields the highest number of right rejections. This likely is due to the bootstrap method

taking the dependence between the test statistics into account. Hence the bootstrap appears to

slightly outperform the other FDR controlling procedures.

When either 10 or 25 coefficients are significant, the picture is qualitatively the same.7 Again,

all procedures except classical testing control the FDR at the desired γ. Moreover, the bootstrap

approach again appears to be most powerful. The non-control of the FDR using classical testing

becomes less severe as the number of false hypotheses increases. In view of the definition of the

FDR, E
(

F

F+S

)
, this should be no surprise. As more variables are rightly declared significant,

keeping the total number of false rejections, F, constant, the FDR is lower by construction.

4.2 Pairwise Testing for Output Convergence

As in Pesaran (2007) we use the following DGP

yit = γift + ǫit,

where

ft = ft−1 + vt, vt = ρvvt−1 + et, et ∼ iid N(0, 1 − ρ2
v)

and

ǫit = ρiǫi,t−1 + νit, νit ∼ iid N(0, σ2
νi(1 − ρ2

i )), σ2
νi ∼ iid uniform[0.5, 1.5],

for i = 1, 2, . . . , n and t = 1, 2, . . . , T . We consider n = 10 and set T = 50 and T = 100.8 When

generating the autoregressive processes we start at t = −49 and discard the first 50 draws. As in

Pesaran (2007) we take ρv = 0.6 and ρi ∼ iid uniform[0.2, 0.6]. We only consider one single pool

of convergent countries, i.e. all countries within the pool converge with each other and all others

do not. For all converging pairs we set γi = γj = 1. For all others, γi ∼ iid χ2
κi

, where κi is drawn

with replacement from integers 1 to 10. We consider two scenarios:

• For 3/10 of all countries γi = 1. For n = 10 this amounts to 3 convergent pairs.

• For 1/2 of all countries γi = 1. For n = 10 this amounts to 10 convergent pairs.

7Results are available upon request. (Please refer to Tables A.1 and A.2.)
8Due to the large computation time required to find the bootstrap critical values in Algorithm 3.4.4 we only

conduct limited experiments for larger n, for which we find a qualitatively similar pattern. Results are available

upon request. (Please refer to Table A.6.)

13



Table 3: Pairwise unit root tests with 10 false hypotheses and T = 50

n = 10[45pairs] T = 50 false hypotheses: 5[10pairs]

OLS detrending GLS detrending

p = 0

FDR Right Rejections FDR Right Rejections

Classical approach 0.203 9.95 Classical approach 0.184 9.94

BH 0.160 9.54 BH 0.142 9.48

Storey 0.281 9.45 Storey 0.179 9.38

BKY 0.171 9.62 BKY 0.150 9.58

Bootstrap 0.168 9.62 Bootstrap 0.154 9.70

p = 1

FDR Right Rejections FDR Right Rejections

Classical approach 0.173 9.47 Classical approach 0.159 9.35

BH 0.119 7.00 BH 0.115 7.24

Storey 0.316 7.78 Storey 0.284 7.86

BKY 0.126 7.24 BKY 0.123 7.43

Bootstrap 0.115 7.15 Bootstrap 0.123 7.68

p = 3

FDR Right Rejections FDR Right Rejections

Classical approach 0.144 6.69 Classical approach 0.166 6.48

BH 0.0668 1.85 BH 0.0867 2.26

Storey 0.279 4.63 Storey 0.291 4.82

BKY 0.0648 1.94 BKY 0.0853 2.33

Bootstrap 0.0599 1.89 Bootstrap 0.0652 2.14

p = 4

FDR Right Rejections FDR Right Rejections

Classical approach 0.158 5.10 Classical approach 0.172 4.94

BH 0.0505 0.866 BH 0.0636 1.08

Storey 0.272 3.89 Storey 0.266 3.81

BKY 0.0472 0.910 BKY 0.0600 1.13

Bootstrap 0.0454 0.989 Bootstrap 0.0478 0.978

p = 5

FDR Right Rejections FDR Right Rejections

Classical approach 0.175 4.24 Classical approach 0.183 4.24

BH 0.0467 0.557 BH 0.0643 0.769

Storey 0.277 3.62 Storey 0.259 3.45

BKY 0.0450 0.637 BKY 0.0630 0.845

Bootstrap 0.0386 0.650 Bootstrap 0.0276 0.592

p = 10

FDR Right Rejections FDR Right Rejections

Classical approach 0.216 1.59 Classical approach 0.232 1.73

BH 0.0287 0.0730 BH 0.0498 0.154

Storey 0.190 1.81 Storey 0.162 1.15

BKY 0.0278 0.0840 BKY 0.0469 0.193

Bootstrap 0.0178 0.112 Bootstrap 0.00911 0.0770

This table shows the results of a Monte Carlo simulation as specified in section 4.2 with 1000 sim-

ulations and the indicated parameter settings. Tests were conducted for α = γ = 0.05. The FDR

controlling procedures applied are described in section 3. For the Storey procedure, λ = 0.5.

When applying the ADF regression we consider p = 0 and p = 1 as well as deterministic lag length

choices as suggested in Schwert (1989). We do not use model selection criteria such as AIC, since

Leeb and Pötscher (2008) show that such an approach can distort subsequent tests. Rules we

consider are: p = 4(T/100)1/4, p = 5(T/100)1/4, p = 6(T/100)1/4 and p = 12(T/100)1/4. These

rules are shown to work well in Demetrescu, Hassler and Kuzin (2008). We employ both OLS

and GLS detrending in the ADF test (cf. sec. 3.4.4). We do not include a time trend, since the

model is simulated without such. The null distribution when using GLS detrending asymptotically

follows the standard ADF-distribution with no deterministics included. However, the finite sample

distribution differs substantially from those. We therefore simulate MacKinnon-type finite sample

distributions to get more accurate finite sample p-values.
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Table 3 shows the results for n = 10, so 45 hypotheses are tested, T = 50 and 10 pairs are signif-

icant, i.e. contain no unit root. At any lag length p, classical testing results in a severe violation

of the FDR, irrespective of whether OLS or GLS detrending is used. All the other procedures

except Storey control the FDR for sufficiently high p.9 A high number of lags is plausible for this

DGP, as the dijt are sums of AR(1) processes, that generally follow an ARMA(2, 1) (Granger

and Morris, 1976), or AR(∞), process, that has to be approximated with a high number of lags.

Moreover, that FDR control can only be attained for high p is in line with Pesaran (2007), who

finds size distortions of the individual tests when p < 4. Given the required p for each FDR

controlling procedure, the bootstrap is most powerful. For the BH and the BKY method, GLS

detrending yields somewhat higher power than OLS detrending.

Varying T and the number of false hypotheses leaves the results qualitatively the same.10 Classical

testing results in a violation of the FDR in all scenarios for OLS as well as GLS detrending. Again,

the Storey procedure does not control the FDR. The main difference for T = 100 is that FDR

control of the BH, BKY and bootstrap procedure is only attained when p = 6 and p = 12

(corresponding to the rules p = 6(T/100)1/4 and p = 12(T/100)1/4).

5 Empirical Growth Models Revisited

We now apply the above techniques to two widely used data sets. We first discuss the data, their

sources and prior use and then present the results obtained for each. We estimate equation (3) by

OLS. Of course, OLS generally produces inconsistent estimators under e.g. endogeneity and/or

measurement errors. However, Hauk Jr. and Wacziarg (2009) have recently shown that these and

other effects plaguing cross-sectional growth regressions largely cancel out in OLS estimation,

making it a superior choice to more complicated estimators like Arellano and Bond’s (1991).

In a third section we compare the results to previous studies that have used these data sets. The

first data set is from Fernandez, Ley and Steel (2001) (FLS). It also constitutes the main reference

point, since many authors have used this data set to whose results we can compare ours. The

second data set was first used in Masanjala and Papageorgiou (2005) (MP).11

5.1 FLS

5.1.1 Data

The FLS data set is a version of that used in Sala-i-Martin (1997). The latter includes n =

140 countries for which GDP growth is computed over the period 1960-1992, and 62 regressors.

9We even find that all FDR controlling procedures also control the Familywise Error Rate (FWER), defined as

the probability of one or more false rejections, a stricter criterion than the FDR.
10Results are available upon request. (Please refer to Tables A.3, A.4 and A.5.)
11These data are available at http://econ.queensu.ca/jae/. We also investigated the data set of Sala-i-Martin,

Doppelhofer and Miller (2004), but only found one variable (“Fraction Hindu”) to be significant at the 5% level

using classical testing. Controlling the FDR at any level, no variable was found to explain growth.
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Table 4: Results for the FLS Data Set

Regressor β̂i p-value Classical BH Storey BKY Boot

1 GDP level 1960 −0.0170 0.00001 1% 1% 1% 1% 1%

2 Fraction Confucian 0.0748 0.00002 1% 1% 1% 1% 1%

3 Life expectancy 0.000891 0.00303 1% 5% 5% 5% 5%

4 Equipment investment 0.127 0.00778 1% 5% 5% 5% 5%

5 Sub-Saharan dummy −0.0201 0.00589 1% 5% 5% 5% 5%

6 Fraction Muslim 0.0107 0.227 - - - - -

7 Rule of Law 0.0116 0.0679 10% - - - -

8 Number of years open economy −0.00269 0.620 - - - - -

9 Degree of Capitalism 0.00111 0.284 - - - - -

10 Fraction Protestant −0.00280 0.677 - - - - -

11 Fraction GDP in mining 0.0401 0.00769 1% 5% 5% 5% 5%

12 Non-Equipment investment 0.0367 0.0811 10% - - - -

13 Latin American dummy −0.0127 0.0391 5% - 10% 10% 10%

14 Primary School Enrollment, 1960 0.0202 0.0455 5% - 10% 10% 10%

15 Fraction Buddhist 0.00734 0.277 - - - - -

16 Black-market premium −0.00690 0.0752 10% - - - -

17 Fraction Catholic 0.00307 0.593 - - - - -

18 Civil Liberties −0.00242 0.322 - - - - -

19 Fraction Hindu −0.0967 0.000540 1% 1% 1% 1% 1%

20 Political Rights 0.000162 0.934 - - - - -

21 Primary Exports, 1970 −0.00550 0.421 - - - - -

22 Exchange rate distortions −0.00002 0.538 - - - - -

23 Age −0.000009 0.774 - - - - -

24 War dummy −0.00144 0.548 - - - - -

25 Size labor force 0.0000003 0.00411 1% 5% 5% 5% 5%

26 Fraction speaking foreign language −0.00246 0.468 - - - - -

27 Fraction of Pop speaking English −0.00707 0.132 - - - - -

28 Ethnologic fractionalization 0.0137 0.0122 5% 5% 5% 5% 5%

29 Spanish Colony dummy 0.0131 0.0225 5% 10% 10% 10% 10%

30 SD of black-market premium −0.000001 0.892 - - - - -

31 French Colony Dummy 0.00894 0.0378 5% - 10% 10% 10%

32 Absolute latitude −0.00009 0.521 - - - - -

33 Ratio of workers to population −0.000520 0.945 - - - - -

34 Higher education enrollment −0.129 0.00214 1% 5% 5% 5% 5%

35 Population Growth −0.114 0.609 - - - - -

36 British Colony dummy 0.00680 0.0726 10% - - - -

37 Outward orientation −0.00453 0.0364 5% - 10% 10% 10%

38 Fraction Jewish −0.000774 0.942 - - - - -

39 Revolutions and coups 0.00321 0.504 - - - - -

40 Public Education Share 0.138 0.250 - - - - -

41 Area (Scale Effect) 0.0000003 0.638 - - - - -

42 Intercept 0.0207 0.000 1% 1% 1% 1% 1%

For every regressor in the FLS data set this table shows whether the variable is found to be significant when

controlling the FDR at the indicated level. The procedures are described in section 3. We work with 5000 bootstrap

iterations. In the Storey approach λ = 0.5.

Fernandez et al. (2001) only include those countries for which observations on all 25 variables

flagged important by Sala-i-Martin (1997) are available. This amounts to n = 72. They then

add all variables which do not induce any missing observations in these countries. This yields

41 variables. Using this data set allows us to compare our findings to those of Fernandez et al.

(2001), Sala-i-Martin (1997), Hendry and Krolzig (2004) and Ley and Steel (2009).

5.1.2 Results

Table 4 shows the results of the application of the different techniques to the FLS data set. The

results reported are obtained with usual OLS standard errors. We also calculate results using the

heteroscedasticity robust standard errors HC2 and HC3 (MacKinnon and White, 1985). Results
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Figure 1: Test statistics and bootstrap critical values for the FLS data

The test statistics Ti and the relevant bootstrap critical values ĉγ,j (i.e. those until and around Ti < ĉγ,i) for

different γ plotted against k, the ranks of the Ti.

using HC2 are similar to the OLS results; using HC3 resulted in substantially fewer rejections.12

Classical testing declares 20 variables (excluding the intercept) to be significant at the 10% level,

15 at the 5% level and 9 at the 1% significance level. The picture is different when accounting for

multiple testing by controlling the FDR. The most rejective and still reliable procedure according

to the Monte Carlo study, the bootstrap method, declares 15 variables significant at γ = 0.1,

10 at γ = 0.05 and when controlling the FDR at the 1% level, only 3 variables are found to be

significantly related to GDP growth. (See Figure 1 for a graphical illustration.) We will elaborate

on the three variables later. Hence, this simple comparison reveals that several variables appear to

be only spuriously declared significant because of the large number of hypothesis tests performed.

Unreported additional simulations13 as in section 4 with 10 (out of 50) false hypotheses find an

FDR of classical testing of around 1/3. To the extent that the MC study of sec. 4 is representative

for the present empirical application, we should therefore expect roughly 1 false for every 3

rejections when testing at α = 0.1. This would mean that we should expect around 14(= 20− 6)

of the 20 rejections to be correct. This is in line with the bootstrap results, where around

(1−0.1)×15 ≈ 13−14 of the rejections can be expected to be correct. Of course, such corrective

reasoning for classical testing hinges on Monte Carlo designs that may or may not yield estimated

FDRs representative for the empirical study under consideration. A key advantage of multiple

testing techniques is that FDR control obtains under much more general conditions, as evidenced

12Performing a White type test for heteroscedasticity would be pointless here, since the null of no heteroscedas-

ticity would never be rejected because of the high number of variables included in the model. The 95% critical value

of the 800 degrees of freedom test is 866.9, whereas n · R2 of the test regression is bounded above by 72. (Please

refer to Tables A.7 and A.8.)
13(Please refer to Table A.1.)
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Table 5: Comparison FLS Data Set

Regressor Bootstrap BMA posterior prob. Sala-i-Martin Hendry & Krolzig

1 GDP level 1960 1% 1.000 1.000∗∗ yes

2 Fraction Confucian 1% 0.995 1.000∗ yes

3 Life expectancy 5% 0.946 0.999∗∗ yes

4 Equipment investment 5% 0.942 1.000∗ yes

5 Sub-Saharan dummy 5% 0.757 0.997∗ yes

6 Fraction Muslim - 0.656 1.000∗ -

7 Rule of Law - 0.516 1.000∗ -

8 Number of years open economy - 0.502 1.000∗ yes

9 Degree of Capitalism - 0.471 0.987∗ -

10 Fraction Protestant - 0.461 0.966∗ -

11 Fraction GDP in mining 5% 0.441 0.994∗ yes

12 Non-Equipment investment - 0.431 0.982∗ -

13 Latin American dummy 10% 0.190 0.998∗ yes

14 Primary School Enrollment, 1960 10% 0.184 0.992∗∗ yes

15 Fraction Buddhist - 0.167 0.964∗ -

16 Black-market premium - 0.157 0.825 -

17 Fraction Catholic - 0.110 0.963∗ -

18 Civil Liberties - 0.100 0.997∗ -

19 Fraction Hindu 1% 0.097 0.654 yes

20 Political Rights - 0.071 0.990∗ -

21 Primary Exports, 1970 - 0.069 0.998∗ -

22 Exchange rate distortions - 0.060 0.968∗ -

23 Age - 0.058 0.903 -

24 War dummy - 0.052 0.984∗ -

25 Size labor force 5% 0.047 0.835 yes

26 Fraction speaking foreign language - 0.047 0.831 -

27 Fraction of Pop speaking English - 0.047 0.910∗ -

28 Ethnologic fractionalization 5% 0.035 0.643 yes

29 Spanish Colony dummy 10% 0.034 0.938∗ yes

30 SD of black-market premium - 0.031 0.993∗ -

31 French Colony Dummy 10% 0.031 0.702 yes

32 Absolute latitude - 0.024 0.980∗ -

33 Ratio of workers to population - 0.024 0.766 -

34 Higher education enrollment 5% 0.024 0.579 yes

35 Population Growth - 0.022 0.807 -

36 British Colony dummy - 0.022 0.579 yes

37 Outward orientation 10% 0.021 0.634 -

38 Fraction Jewish - 0.019 0.747 -

39 Revolutions and coups - 0.017 0.995∗ -

40 Public Education Share - 0.016 0.580 -

41 Area (Scale Effect) - 0.016 0.532 -

“Bootstrap” denotes significance when controlling the FDR at the indicated level; “BMA post. prob.” denotes the

marginal posterior probability of inclusion found in Fernandez et al. (2001); “Sala-i-Martin” shows the CDF(0),

explained in section 5.1.3, found in Sala-i-Martin (1997), where ∗∗ indicate variables always included and ∗ indicate

variables found significantly related to growth; “Hendry and Krolzig” shows a “yes” if the variable is included

following the procedure in Hendry and Krolzig (2004).

by our and many other studies and theoretical contributions.

Here, the bootstrap method does not lead to more rejections than the Storey procedure or the

BKY algorithm. Although the Monte Carlo study draws a somewhat different picture, one should

note that the power differences were modest. The three variables found most robustly related to

per capita growth, i.e. the ones with significance at γ = 0.01, are “GDP level 1960”, “Fraction

Confucian” and “Fraction Hindu” (Table 4). The rationale for the impact of initial GDP on

economic growth is well established since the work of Solow (1956) and Swan (1956). The signifi-

cance of the two other variables might indicate that some religions support a growth stimulating

environment (Confucian) and some harm it (Hindu). On the other hand, these variables might

also capture regional heterogeneity, since the data set contains no regional dummies.
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5.1.3 Comparison to Previous Studies

Fernandez et al. (2001) Table 5 compares our findings to those of Fernandez et al. (2001).

To be able to better compare the findings, we briefly explain the concept of marginal inclusion

probability, which is key in Fernandez et al. (2001) to judge the importance of a variable in a

regression.

Fernandez et al. (2001) use BMA techniques to account for the model uncertainty in the growth

regression context. Given the 41 possible explanatory variables there are 241 possible correct

models, assuming that these nest the true DGP. One now has to assign a ‘prior distribution’ to

each model as well as to the inclusion of a certain variable in each model. We will elaborate on the

influence of these choices in section 5.1.3. Using Bayes’ law Fernandez et al. (2001) then compute

the ‘posterior inclusion probability’ of each of the 241 possible models: “The marginal posterior

probability of including a certain variable is simply the sum of the posterior probabilities of all

models that contain this regressor.” The Bayesian framework provides no cut-off value for the

marginal inclusion probability of a variable to declare it (non-)significant. Nevertheless, one gets

a good feeling of the importance of each variable.

Table 5 shows that the five variables with the highest marginal posterior probability of inclusion

in Fernandez et al. (2001) are also significant according to the bootstrap method at γ = 0.05.

But there are also variables which are significantly related to growth using our approach which

have a marginal posterior probability below 0.1. For example, “Fraction Hindu” is significant at

γ = 0.05 while its marginal posterior probability is only 0.097. Hence, there are non-negligible

differences between the two approaches.

Sala-i-Martin (1997) We now compare the results of the FLS data set with those of Sala-i-

Martin (1997). His approach is as follows: In every regression run, there are three sets of variables,

w, v and q. w consists of the three variables, namely “GDP level in 1960”, “Life expectancy”

and “Primary school enrolment”. These three variables are included in every regression. v is the

variable under study and q is a trio of the other remaining 58 variables. He then computes the

cumulative distribution function (CDF) of the coefficient corresponding to v at zero by averaging

the coefficient of v obtained in the regressions for all combinations of variables in q.14 Since a

variable can have a positive or negative coefficient he sets CDF(0) = max {CDF(0), 1 − CDF(0)}.
He then flags a variable significantly related to growth if its CDF(0) ≤ 0.91. The outcome of this

approach depends on a large set of misspecified regressions, in particular via the omitted variable

bias inherent when conducting many overly short regressions.

Sala-i-Martin (1997) finds the same five variables to be significant that were already significant

in both the bootstrap approach and in Fernandez et al. (2001) (Table 5). But beyond that, there

seems to be little agreement concerning significance of variables in Sala-i-Martin (1997) and in our

14This results in 455,126 different models. The two million regressions in his title arise because any model is

counted four times, since he distinguishes whether a variable is in v or in q.
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study. Out of the 25 variables15 flagged significant by Sala-i-Martin (1997), we can only confirm

9 using an FDR up to 10%.

Hendry and Krolzig (2004) Hendry and Krolzig (2004) also use the FLS data. They argue

that if the general unrestricted model (GUM) provided by all available explanatory variables nests

a good approximation of the DGP, then a “General to simple” (Gets) selection based approach

would suffice to find the best model. Of course, this abstracts from problems like data accuracy,

exogeneity of regressors or constancy of the parameters across observations. But this abstraction

is inherent to all approaches presented here, including the one we propose. Hendry and Krolzig

(2004) further note that if all regressors were mutually orthogonal, then selection based on the

ordered squared t-statistics from the GUM, say t2(1) ≥ t2(2) ≥ . . . ≥ t2(k), could be validly used

for model selection. One would then declare variables 1, . . . , k̃ with t2
(k̃)

≥ cα significant and the

remaining ones insignificant, where t2
(k̃+1)

≤ cα. They choose α = 0.025 so as to only select one

variable by chance out of the k = 41 regressors. Since t-values in fact are not mutually orthogonal,

a multi-path search introduced in Hoover and Perez (1999) is used. This approach is somewhat

similar to the one employed here, where decisions are also based on individual t-statistics and

their dependence is taken into account using the bootstrap approach described in section 3.3.

The bootstrap approach may be more transparent for the user—all one has to choose is some γ.

Transparent cutoffs ĉj are then provided, and no multi-path search is needed.

The similarity of the two approaches can be seen when comparing the variables found significant

(Table 5). The number of significant variables in Hendry and Krolzig (2004) is 16 compared to 15

for our approach, out of which 14 coincide. (A J-test rejects both models, although Hendry and

Krolzig’s model is rejected only at larger significance values.) Again, the five variables already

jointly significant in Fernandez et al. (2001) and Sala-i-Martin (1997) are also significant in Hendry

and Krolzig (2004). Hence, we are quite confident regarding the importance of “GDP level 1960”,

“Fraction Confucian”, “Life expectancy”, “Equipment investment” and “Sub-Saharan dummy”.

Ley and Steel (2009) Results from BMA techniques to account for model uncertainty in

growth regression are potentially sensitive to choices made by the modeler. This problem is

identified among others in Ley and Steel (2009). They consider BMA on linear regression models

Mj with 0 ≤ kj ≤ k regressors grouped in Xj leading to

y|a,βj , σ ∼ N(aι + Xjβj , σ
2I),

where βj ∈ R
kj and σ ∈ R+ is a scale parameter.

One then needs to specify the prior distribution of each parameter for model Mj as well as the

prior distribution of the inclusion of model Mj . For the prior density of the parameters, Ley and

Steel (2009) use a combination of a so called ‘non-informative’ improper priors on a and σ as

well as a ‘g-prior’ on β. Ley and Steel (2009) advocate choosing g = 1/max
{
n, k2

}
. The prior

15He actually finds 22 significant variables, but he also assumes significance of the three variables in w.
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model probabilities are often specified as P (Mj) = θkj (1 − θ)k−kj , assuming that each regressor

enters a model with equal probability and independently of the others. Fernandez et al. (2001)

choose θ = 0.5, implying an expected model size of m = k/2. Ley and Steel (2009) also consider

choosing θ randomly. In that case, one first fixes the expected model size m and then determines

the interval in which θ can vary.

Ley and Steel (2009) show that when using the above priors in the FLS data set, the posterior

mean model size ranges from 6.03 with m = k/2 = 20.5, random θ and g = 1/k2 to 19.84

for m = k/2 = 20.5, fixed θ and g = 1/n. Their Table II shows the ranking of the marginal

posterior probability of including a certain variable to also be highly sensitive to the prior settings.

Comparing cases with g = 1/n and fixed θ they note: “Fraction Hindu, the Labor force size, and

Higher education enrolment go from virtually always included with m = 20.5 to virtually never

included with m = 7.”

These findings might help explain the differences between the bootstrap approach and the marginal

posterior inclusion probabilities found in Fernandez et al. (2001). Moreover, it might also be a

reason for the differences between the latter and the variable selection in Sala-i-Martin (1997).

In general the findings in Ley and Steel (2009) cast doubt on the robustness of BMA techniques.

A more transparent and robust selection of variables is obtained using e.g. the FDR controlling

bootstrap approach presented here.

5.2 MP Data Set

5.2.1 Data

The data set covers 93 countries, for which average GDP growth was calculated from 1960 to 1992.

It was developed and first used in Masanjala and Papageorgiou (2005). The data set consists of 32

basic variables out of which 22 are also combined with an interaction dummy for African countries.

Thus, k = 54 here. To tackle the endogeneity issues Masanjala and Papageorgiou (2005) devote

careful attention to only including predetermined variables. Furthermore, the interaction dummies

address possible parameter heterogeneity.

5.2.2 Results

Table 6 shows the results when accounting for multiple testing by controlling the FDR in the

MP data set.16 Only three variables are found to be significantly related to GDP growth, namely

“ln GDP per capita, 1960” (at γ = 0.05), “Life expectancy”(at γ = 0.01) and “A∗Mining”(at

γ = 0.01) using the bootstrap method.17 Again the difference to the number of significant

variables using classical testing is substantial. Classical testing finds 13 significant variables at

16We also calculate robust standard errors. The results are qualitatively the same as for the FLS data set.
17For the MP data set, the BH method and the BKY algorithm yield the same results; the Storey method finds

significance of “A*Mining” only at a FDR of 5%.
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Table 6: MP Data Set

Regressor β̂i p-value Classical BH Storey BKY Boot

1 ln GDP per capita, 1960 −1.80 0.000960 1% 5% 5% 5% 5%

2 Life expectancy, 1960 0.196 0.000101 1% 1% 1% 1% 1%

3 A∗Mining 10.7 0.000504 1% 1% 5% 1% 1%

4 South-East Asia 2.15 0.0240 5% - - - -

5 Fraction muslim 2.62 0.0174 5% - - - -

6 A∗Land area −0.00113 0.0744 10% - - - -

7 OECD 1.48 0.0337 5% - - - -

8 A∗Primary export, 1970 −4.73 0.0141 5% - - - -

9 Primary export, 1970 0.0783 0.942 - - - - -

10 A∗European language 3.98 0.278 - - - - -

11 European language 0.955 0.0575 10% - - - -

12 Fraction Confucian 3.74 0.0835 10% - - - -

13 A∗Colony 1.98 0.604 - - - - -

14 A∗Tropical fraction −2.90 0.570 - - - - -

15 A∗Landlocked −0.199 0.849 - - - - -

16 Latin America −0.227 0.778 - - - - -

17 A∗Labor force, 1960 0.000 0.755 - - - - -

18 Malaria prevalence, 1960 0.335 0.723 - - - - -

19 Landlocked −0.436 0.427 - - - - -

20 Fraction Catholic 0.835 0.383 - - - - -

21 A∗Malaria prevalence, 1960 −1.77 0.664 - - - - -

22 A∗Primary school, 1960 4.39 0.0574 10% - - - -

23 A∗Fraction Muslim 0.905 0.577 - - - - -

24 Fraction Protestant 0.534 0.619 - - - - -

25 A∗ln GDP per capita, 1960 0.300 0.725 - - - - -

26 Tropical fraction 0.559 0.519 - - - - -

27 Fraction Buddhist 0.707 0.539 - - - - -

28 Primary school, 1960 −1.42 0.400 - - - - -

29 A∗British colony −0.483 0.887 - - - - -

30 Sub Saharan Africa 7.68 0.235 - - - - -

31 A∗Fraction urban pop, 1960 −6.49 0.105 - - - - -

32 A∗Life expectancy, 1960 −0.0356 0.666 - - - - -

33 A∗Secondary school, 1960 1.13 0.961 - - - - -

34 Mining −0.319 0.892 - - - - -

35 Fraction Hindu 2.82 0.0957 10% - - - -

36 A∗Fraction Catholic −2.43 0.753 - - - - -

37 Distance from equator −0.00667 0.800 - - - - -

38 Land area 0.000161 0.0583 10% - - - -

39 Colony −1.21 0.258 - - - - -

40 A∗Ethnoliguistic fractionalization −0.559 0.645 - - - - -

41 Spanish Colony 0.895 0.324 - - - - -

42 Secondary school, 1960 0.725 0.622 - - - - -

43 A∗French colony −1.03 0.751 - - - - -

44 A∗Distance from equator −0.103 0.142 - - - - -

45 Tertiary education, 1960 −4.50 0.401 - - - - -

46 British colony 0.554 0.582 - - - - -

47 A∗Fraction Protestant −2.73 0.639 - - - - -

48 A∗Fraction English speaking −3.71 0.847 - - - - -

49 French colony 0.861 0.369 - - - - -

50 Ethnoliguistic fractionalization −0.107 0.876 - - - - -

51 Fraction English speaking 0.281 0.693 - - - - -

52 Labor force, 1960 −0.000002 0.810 - - - - -

53 Fraction Jewish 2.00 0.166 - - - - -

54 Fraction urban pop, 1960 0.0889 0.924 - - - - -

Intercept 1.73 0.000 1% 1% 1% 1% 1%

For every regressor in the MP data set this table shows whether the variable is found to be significant when

controlling the FDR at the indicated level. The procedures are described in section 3. We work with 5000 bootstrap

iterations. In the Storey approach λ = 0.5.

α = 0.1. Compared to the FLS data, a possible reason for the larger difference between classical

testing and FDR controlling testing is the larger number of explanatory variables. This results in

stricter FDR controlling tests. (Of course, it is also simply other data.)

5.2.3 Comparison to Previous Studies

Masanjala and Papageorgiou (2005) also use BMA techniques to account for model uncertainty.

Out of their three variables with a marginal posterior probability of inclusion of 100%, we can
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Table 7: Countries Included

Argentina Finland Mexico Spain

Australia France Morocco Sri Lanka

Austria Guatemala Netherlands Sweden

Belgium Honduras New Zealand Switzerland

Bolivia Iceland Nicaragua Thailand

Brazil India Nigeria Trinidad & Tobago

Canada Ireland Norway Turkey

Colombia Israel Pakistan Uganda

Costa Rica Italy Panama United Kingdom

Denmark Japan Peru United States

Egypt Kenya Philippines Uruguay

El Salvador Luxembourg Portugal Venezuela

Ethiopia Mauritius South Africa

confirm two. On the other hand, “A*Mining” only has marginal posterior probability of 76.1, yet

it is found significant by the FDR controlling techniques. Hence, again the BMA results differ

somewhat from the multiple testing results.18 Ley and Steel (2009) also use this data set to

investigate the influence of the priors on the outcome of BMA. Again, depending on the different

choices, the average posterior model size ranges from 5.42 (m = 7, random θ, g = 1/k2) to 17.90

(m = 27, fixed θ, g = 1/n). Thus, BMA results are again sensitive to the modeler’s choices.

6 Output Convergence Revisited

We now employ the FDR controlling techniques described in section 3 to a data set of n = 51

countries ranging from 1950 to 2003, so T = 54. The resulting number of different country

pairs is 1275. The data is from the Penn World Tables Version 6.2 (Heston, Summers and

Aten, 2006) and includes all countries for which data on per-capita output was available for the

indicated time span.19 We employ standard ADF tests and ADF-GLS tests. The deterministic

component also includes a time trend. We choose the lag length p according to p = 5(T/100)1/4

and p = 6(T/100)1/4 as those yielded the highest number of right rejections while still controlling

the FDR for the bootstrap procedure when T = 50, which is close to the actual T . For the present

data this results in p = 4 and p = 5. Critical values and p-values are adjusted to sample size.

Table 4.2 shows the results of applying the FDR controlling techniques to testing for pairwise

convergence. We corroborate the results of Pesaran (2007) that the null of no convergence is only

rejected for a fraction of countries less than or equal to the individual significance level of the unit

root test applied. When accounting for the multiplicity of tests performed, for no level γ do we

find any rejection of the null; this also holds in particular for the most powerful FDR controlling

procedure, the bootstrap method using either OLS or GLS detrending.20

18For a comparison of the marginal posterior probability to our results refer to Table A.9.
19Table 7 gives a complete list of countries included in the analysis.
20As Pesaran (2007), we also perform analogous exercises for subgroups like European or American countries.

Again, our findings coincide with his in that we do not find individual converging country pairs.
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Table 8: Pairwise Test for Output convergence

OLS detrending GLS detrending

p = 4

α = γ = 0.01

# pairs % of pairs # pairs % of pairs

Classical approach 2 0.16 Classical approach 3 0.24

BH 0 0 BH 0 0

BKY 0 0 BKY 0 0

Bootstrap 0 0 Bootstrap 0 0

α = γ = 0.05

# pairs % of pairs # pairs % of pairs

Classical approach 40 3.13 Classical approach 23 1.80

BH 0 0 BH 0 0

BKY 0 0 BKY 0 0

Bootstrap 0 0 Bootstrap 0 0

α = γ = 0.1

# pairs % of pairs # pairs % of pairs

Classical approach 83 6.51 Classical approach 47 3.68

BH 0 0 BH 0 0

BKY 0 0 BKY 0 0

Bootstrap 0 0 Bootstrap 0 0

p = 5

α = γ = 0.01

# pairs % of pairs # pairs % of pairs

Classical approach 10 0.78 Classical approach 8 0.63

BH 0 0 BH 0 0

BKY 0 0 BKY 0 0

Bootstrap 0 0 Bootstrap 0 0

α = γ = 0.05

# pairs % of pairs # pairs % of pairs

Classical approach 45 3.53 Classical approach 39 3.06

BH 0 0 BH 0 0

BKY 0 0 BKY 0 0

Bootstrap 0 0 Bootstrap 0 0

α = γ = 0.1

# pairs % of pairs # pairs % of pairs

Classical approach 96 7.53 Classical approach 73 5.49

BH 0 0 BH 0 0

BKY 0 0 BKY 0 0

Bootstrap 0 0 Bootstrap 0 0

“# pairs” shows the number of country pairs for which the null of a unit root is rejected. “% of

pairs” shows the proportion of those pairs compared to the total number of pairs. The procedures are

described in section 3. We use 5000 bootstrap iterations. In the Storey approach, λ = 0.5.

At first glance, this finding might seem a bit surprising. But this finding clarifies the results in

Pesaran (2007).21 His approach does not allow to say whether rejection of the null for some country

pairs was spurious or not. Finding no converging pairs when employing a more appropriate testing

framework for individual tests (rather than for fractions of rejections), the confidence in Pesaran’s

no time-series convergence finding is strengthened.

Nevertheless, we emphasize that cross-country convergence was tested using a very strict defini-

tion (Islam, 2003). We cannot rule out cross-country convergence using for example conditional

definitions nor do we make any statements about ‘within convergence’ here, i.e. whether countries

converge to a steady state output. Indeed we found evidence for ‘within convergence’ in section

5 as initial GDP was always included in the final model. Hence, we do not claim that there is no

convergence of economies, but that convergence across economies using a time series definition

with the necessary condition of no unit root in the log per-capita output gap of two economies

does not appear to hold.

21As we have shown in the Monte Carlo study, we also control the FWER at γ. Hence, the probability of even a

single false rejection is bounded by γ.
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7 Conclusion

This paper highlights the importance of accounting for the multiplicity of tests performed in two

applications to growth econometrics. Controlling the FDR, we have shown how to robustly select

explanatory variables in cross-sectional growth regressions. Among others, this was done using

a bootstrap approach which takes the dependence structure of the test statistics into account

and thus has high power. The outcome of other approaches in cross-sectional growth regressions,

such as Bayesian Model Averaging, is sensitive to user choices and hence may not be robust. In

addition to the robustness of our bootstrap approach, we believe the selection of variables using

FDR controlling techniques to be very transparent for the user. The only choice to make is the

level at which one wants to control the FDR.

The actual variables selected support the neoclassical growth theory and its implied convergence

of countries to a steady state output. The second application investigates cross-country conver-

gence using pairwise unit-root tests. Controlling the FDR, we find no evidence of this type of

convergence. This clarifies the results of Pesaran (2007), whose framework does not allow to say

whether the fraction of rejected pairs is spurious or not.

There are more fields in econometrics where accounting for multiplicity is important. For exam-

ple, modeling returns to schooling involves a large number of candidate explanatory variables.

As we have shown in the application to cross-sectional growth regressions, classical significance

tests produce a non-negligible number of variables which appear to be only spuriously significant

because of the large number of tests performed. As such, the techniques studied here may prove

fruitful in many other literatures.
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Appendix A Additional Tables—Not For Publication

Table A.1: Linear regression model with 10 false hypotheses
# false hypotheses: 10 Sample size: 100 # Regressors: 50

ρ = 0

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.039 7.94 0.156 9.26 0.268 9.61

BH 0.008 5.39 0.040 7.68 0.079 8.50

Storey 0.011 5.65 0.053 7.88 0.101 8.66

BKY 0.009 5.52 0.045 7.78 0.087 8.57

Bootstrap 0.011 5.50 0.050 7.89 0.101 8.67

ρ = 0.3

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.047 6.19 0.176 8.27 0.284 8.95

BH 0.008 2.96 0.038 5.45 0.076 6.77

Storey 0.011 3.22 0.053 5.76 0.104 7.05

BKY 0.009 3.03 0.042 5.54 0.083 6.83

Bootstrap 0.010 3.10 0.046 5.71 0.096 7.03

ρ = 0.5

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.062 4.57 0.199 6.90 0.299 8.00

BH 0.006 1.41 0.036 3.27 0.072 4.63

Storey 0.009 1.61 0.050 3.57 0.097 4.97

BKY 0.006 1.42 0.037 3.30 0.073 4.62

Bootstrap 0.008 1.52 0.044 3.42 0.091 4.74

This table shows the results of a Monte Carlo simulation as specified in section 4.1 with 2000 sim-

ulations and the indicated parameter settings. The procedures controlling the FDR were applied as

described in section 3. For the Storey procedure, λ = 0.5.
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Table A.2: Linear regression model with 25 false hypotheses

# false hypotheses: 25 Sample size: 100 # Regressors: 50

ρ = 0

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.011 19.83 0.048 23.11 0.090 24.01

BH 0.005 16.67 0.025 21.61 0.050 23.07

Storey 0.001 18.69 0.051 22.86 0.100 23.93

BKY 0.007 17.88 0.043 22.63 0.087 23.81

Bootstrap 0.008 18.15 0.046 22.80 0.095 23.93

ρ = 0.3

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.013 15.39 0.054 20.61 0.098 22.38

BH 0.004 10.18 0.026 17.34 0.050 20.10

Storey 0.010 12.78 0.051 19.68 0.102 22.01

BKY 0.006 11.03 0.039 18.74 0.080 21.37

Bootstrap 0.008 11.32 0.042 19.31 0.087 21.82

ρ = 0.5

1% 5% 10%

FDR Right Rejections FDR Right Rejections FDR Right Rejections

Classical 0.017 11.32 0.063 17.27 0.103 19.98

BH 0.004 5.16 0.024 11.81 0.048 15.77

Storey 0.008 7.21 0.047 14.67 0.093 18.65

BKY 0.004 5.49 0.032 12.78 0.065 17.02

Bootstrap 0.006 5.60 0.034 13.18 0.075 17.27

This table shows the results of a Monte Carlo simulation as specified in section 4.1 with 2000 sim-

ulations and the indicated parameter settings. The procedures controlling the FDR were applied as

described in section 3. For the Storey procedure, λ = 0.5.
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Table A.3: Pairwise unit root tests with 3 false hypotheses and T = 50

n = 10[45pairs] T = 50 false hypotheses: 3[3pairs]

OLS detrending GLS detrending

p = 0

FDR Right Rejections FDR Right Rejections

Classical approach 0.432 2.98 Classical approach 0.431 2.98

BH 0.311 2.57 BH 0.326 2.64

Storey 0.400 2.54 Storey 0.343 2.52

BKY 0.314 2.56 BKY 0.328 2.64

Bootstrap 0.329 2.67 Bootstrap 0.332 2.77

p = 1

FDR Right Rejections FDR Right Rejections

Classical approach 0.355 2.84 Classical approach 0.361 2.78

BH 0.208 1.59 BH 0.228 1.64

Storey 0.393 1.92 Storey 0.380 1.94

BKY 0.209 1.59 BKY 0.227 1.64

Bootstrap 0.211 1.55 Bootstrap 0.225 1.77

p = 3

FDR Right Rejections FDR Right Rejections

Classical approach 0.318 1.99 Classical approach 0.329 1.95

BH 0.0809 0.338 BH 0.116 0.458

Storey 0.330 1.18 Storey 0.327 1.21

BKY 0.0791 0.346 BKY 0.112 0.484

Bootstrap 0.0768 0.409 Bootstrap 0.110 0.444

p = 4

FDR Right Rejections FDR Right Rejections

Classical approach 0.295 1.53 Classical approach 0.319 1.56

BH 0.0556 0.185 BH 0.0906 0.253

Storey 0.317 1.04 Storey 0.319 1.06

BKY 0.0523 0.189 BKY 0.0891 0.271

Bootstrap 0.0610 0.211 Bootstrap 0.0593 0.231

p = 5

FDR Right Rejections FDR Right Rejections

Classical approach 0.305 1.26 Classical approach 0.318 1.27

BH 0.0486 0.137 BH 0.0569 0.147

Storey 0.322 1.04 Storey 0.302 0.936

BKY 0.0460 0.153 BKY 0.0552 0.156

Bootstrap 0.0434 0.138 Bootstrap 0.0430 0.157

p = 10

FDR Right Rejections FDR Right Rejections

Classical approach 0.277 0.544 Classical approach 0.318 0.512

BH 0.0313 0.0340 BH 0.0517 0.0530

Storey 0.220 0.594 Storey 0.232 0.492

BKY 0.0279 0.0510 BKY 0.0464 0.0680

Bootstrap 0.0176 0.0360 Bootstrap 0.0202 0.0260

This table shows the results of a Monte Carlo simulation as specified in section 4.2 with 1000 sim-

ulations and the indicated parameter settings. Tests were conducted for α = γ = 0.05. The FDR

controlling procedures applied are described in section 3. For the Storey procedure, λ = 0.5.
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Table A.4: Pairwise unit root tests with 3 false hypotheses and T = 100

n = 10[45pairs] T = 100 false hypotheses: 3[3pairs]

OLS detrending GLS detrending

p = 0

FDR Right Rejections FDR Right Rejections

Classical approach 0.452 3.00 Classical approach 0.425 3.00

BH 0.363 3.00 BH 0.337 2.96

Storey 0.449 3.00 Storey 0.364 2.94

BKY 0.366 3.00 BKY 0.340 2.96

Bootstrap 0.360 3.00 Bootstrap 0.335 2.96

p = 1

FDR Right Rejections FDR Right Rejections

Classical approach 0.390 3.00 Classical approach 0.350 2.94

BH 0.281 2.99 BH 0.251 2.64

Storey 0.457 2.98 Storey 0.427 2.71

BKY 0.284 2.99 BKY 0.254 2.64

Bootstrap 0.280 2.98 Bootstrap 0.260 2.68

p = 4

FDR Right Rejections FDR Right Rejections

Classical approach 0.261 2.90 Classical approach 0.286 2.40

BH 0.140 1.71 BH 0.146 1.33

Storey 0.396 2.10 Storey 0.417 1.88

BKY 0.139 1.70 BKY 0.145 1.33

Bootstrap 0.135 1.83 Bootstrap 0.148 1.39

p = 5

FDR Right Rejections FDR Right Rejections

Classical approach 0.236 2.77 Classical approach 0.268 2.11

BH 0.116 1.19 BH 0.131 0.898

Storey 0.384 1.78 Storey 0.395 1.62

BKY 0.113 1.18 BKY 0.128 0.903

Bootstrap 0.125 1.35 Bootstrap 0.113 0.917

p = 6

FDR Right Rejections FDR Right Rejections

Classical approach 0.242 2.51 Classical approach 0.261 1.84

BH 0.107 0.780 BH 0.0933 0.603

Storey 0.420 1.61 Storey 0.355 1.35

BKY 0.106 0.784 BKY 0.0915 0.617

Bootstrap 0.101 0.926 Bootstrap 0.0889 0.677

p = 12

FDR Right Rejections FDR Right Rejections

Classical approach 0.205 1.25 Classical approach 0.266 0.879

BH 0.0293 0.112 BH 0.0437 0.116

Storey 0.301 1.02 Storey 0.345 0.983

BKY 0.0291 0.122 BKY 0.0420 0.153

Bootstrap 0.0220 0.154 Bootstrap 0.0248 0.0900

This table shows the results of a Monte Carlo simulation as specified in section 4.2 with 1000 sim-

ulations and the indicated parameter settings. Tests were conducted for α = γ = 0.05. The FDR

controlling procedures applied are described in section 3. For the Storey procedure, λ = 0.5.
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Table A.5: Pairwise unit root tests with 10 false hypotheses and T = 100

n = 10[45pairs] T = 100 false hypotheses: 5[10pairs]

OLS detrending GLS detrending

p = 0

FDR Right Rejections FDR Right Rejections

Classical approach 0.207 10.0 Classical approach 0.175 9.99

BH 0.166 10.0 BH 0.140 9.92

Storey 0.271 10.0 Storey 0.189 9.90

BKY 0.178 10.0 BKY 0.147 9.93

Bootstrap 0.190 10.0 Bootstrap 0.156 9.94

p = 1

FDR Right Rejections FDR Right Rejections

Classical approach 0.169 10.0 Classical approach 0.154 9.86

BH 0.126 9.99 BH 0.115 9.40

Storey 0.328 9.99 Storey 0.311 9.51

BKY 0.137 10.0 BKY 0.123 9.48

Bootstrap 0.132 9.99 Bootstrap 0.132 9.44

p = 4

FDR Right Rejections FDR Right Rejections

Classical approach 0.126 9.67 Classical approach 0.141 7.92

BH 0.0803 7.75 BH 0.0931 5.57

Storey 0.331 8.40 Storey 0.331 7.09

BKY 0.0853 7.97 BKY 0.0974 5.74

Bootstrap 0.0751 8.15 Bootstrap 0.0781 5.76

p = 5

FDR Right Rejections FDR Right Rejections

Classical approach 0.114 9.25 Classical approach 0.127 7.03

BH 0.0743 6.16 BH 0.0760 4.10

Storey 0.305 7.31 Storey 0.325 6.23

BKY 0.0780 6.35 BKY 0.0774 4.24

Bootstrap 0.0671 6.55 Bootstrap 0.0766 4.42

p = 6

FDR Right Rejections FDR Right Rejections

Classical approach 0.111 8.48 Classical approach 0.127 6.28

BH 0.0661 4.12 BH 0.0688 2.86

Storey 0.291 6.08 Storey 0.309 5.33

BKY 0.0675 4.26 BKY 0.0679 2.94

Bootstrap 0.0540 4.69 Bootstrap 0.0496 3.03

p = 12

FDR Right Rejections FDR Right Rejections

Classical approach 0.111 4.25 Classical approach 0.152 3.15

BH 0.0222 0.493 BH 0.0484 0.439

Storey 0.266 3.63 Storey 0.238 2.69

BKY 0.0208 0.518 BKY 0.0467 0.515

Bootstrap 0.0147 0.551 Bootstrap 0.0110 0.315

This table shows the results of a Monte Carlo simulation as specified in section 4.2 with 1000 sim-

ulations and the indicated parameter settings. Tests were conducted for α = γ = 0.05. The FDR

controlling procedures applied are described in section 3. For the Storey procedure, λ = 0.5.
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Table A.6: Pairwise unit root tests for n = 20 (190 pairs)

n = 20[190pairs] T = 50

false hypotheses: 4[6pairs] false hypotheses: 10[45pairs]

p = 3

FDR Right Rejections FDR Right Rejections

Classical approach 0.509 3.91 Classical approach 0.159 29.3

BH 0.137 0.446 BH 0.0904 8.06

Storey 0.370 2.12 Storey 0.290 21.0

BKY 0.131 0.469 BKY 0.0907 8.27

Bootstrap 0.162 0.466 Bootstrap 0.0709 7.11

p = 4

FDR Right Rejections FDR Right Rejections

Classical approach 0.514 3.06 Classical approach 0.159 22.6

BH 0.0913 0.195 BH 0.0586 2.78

Storey 0.328 1.87 Storey 0.253 15.5

BKY 0.0846 0.229 BKY 0.0578 2.93

Bootstrap 0.0816 0.181 Bootstrap 0.0460 2.44

p = 5

FDR Right Rejections FDR Right Rejections

Classical approach 0.502 2.59 Classical approach 0.184 18.8

BH 0.0772 0.154 BH 0.0572 1.65

Storey 0.330 1.87 Storey 0.258 14.7

BKY 0.0731 0.216 BKY 0.0566 1.85

Bootstrap 0.0412 0.0950 Bootstrap 0.0329 1.05

This table shows the results of a Monte Carlo simulation as specified in section 4.2 with 1000 sim-

ulations and the indicated parameter settings. Tests were conducted for α = γ = 0.05. The FDR

controlling procedures applied are described in section 3. For the Storey procedure, λ = 0.5. Detrend-

ing is done using GLS.
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Table A.7: Results for the FLS Data Set using HC2 standard errors

Regressor β̂i p-value Classical BH Storey BKY Boot

1 GDP level 1960 −0.0170 0.0000001 1% 1% 1% 1%

2 Fraction Confucian 0.0748 0.00002 1% 1% 1% 1%

3 Life expectancy 0.000891 0.00309 5% 5% 5% 5%

4 Equipment investment 0.127 0.00559 5% 5% 5% 5%

5 Sub-Saharan dummy −0.0201 0.00165 5% 1% 1% 1%

6 Fraction Muslim 0.0107 0.295 - - - -

7 Rule of Law 0.0116 0.0247 10% 10% 10% 10%

8 Number of years open economy −0.00269 0.651 - - - -

9 Degree of Capitalism 0.00111 0.317 - - - -

10 Fraction Protestant −0.00280 0.679 - - - -

11 Fraction GDP in mining 0.0401 0.0120 10% 5% 5% 5%

12 Non-Equipment investment 0.0367 0.0850 - - - -

13 Latin American dummy −0.0127 0.0637 - 10% - -

14 Primary School Enrollment, 1960 0.0202 0.0537 - 10% 10% 10%

15 Fraction Buddhist 0.00734 0.410 - - - -

16 Black-market premium −0.00690 0.0347 - 10% 10% 10%

17 Fraction Catholic 0.00307 0.550 - - - -

18 Civil Liberties −0.00242 0.258 - - - -

19 Fraction Hindu −0.0967 0.0001 1% 1% 1% 1%

20 Political Rights 0.000162 0.926 - - - -

21 Primary Exports, 1970 −0.00550 0.457 - - - -

22 Exchange rate distortions −0.00002 0.457 - - - -

23 Age −0.000009 0.786 - - - -

24 War dummy −0.00144 0.509 - - - -

25 Size labor force 0.0000003 0.000360 1% 1% 1% 1%

26 Fraction speaking foreign language −0.00246 0.393 - - - -

27 Fraction of Pop speaking English −0.00707 0.134 - - - -

28 Ethnologic fractionalization 0.0137 0.0172 10% 5% 10% 10%

29 Spanish Colony dummy 0.0131 0.0279 10% 10% 10% 10%

30 SD of black-market premium −0.000002 0.905 - - - -

31 French Colony Dummy 0.00894 0.0431 - 10% 10% 10%

32 Absolute latitude −0.00009 0.538 - - - -

33 Ratio of workers to population −0.000520 0.950 - - - -

34 Higher education enrollment −0.129 0.00185 5% 1% 1% 1%

35 Population Growth −0.114 0.559 - - - -

36 British Colony dummy 0.00680 0.0417 - 10% 10% 10%

37 Outward orientation −0.00453 0.0444 - 10% 10% 10%

38 Fraction Jewish −0.000774 0.927 - - - -

39 Revolutions and coups 0.00321 0.534 - - - -

40 Public Education Share 0.138 0.110 - - - -

41 Area (Scale Effect) 0.0000003 0.616 - - - -

42 Intercept 0.0207 − 1% 1% 1% 1%

For every regressor in the FLS data set this table shows whether the variable is found to be significant when

controlling the FDR at the indicated level. The procedures are described in section 3. We work with 5000 bootstrap

iterations. In the Storey approach λ = 0.5.
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Table A.8: Results for the FLS Data Set using HC3 standard errors

Regressor β̂i p-value Classical BH Storey BKY Boot

1 GDP level 1960 −0.0170 0.00383 10% 10% 10% -

2 Fraction Confucian 0.0748 0.0616 - - - -

3 Life expectancy 0.000891 0.0670 - - - -

4 Equipment investment 0.127 0.118 - - - -

5 Sub-Saharan dummy −0.0201 0.0772 - - - -

6 Fraction Muslim 0.0107 0.527 - - - -

7 Rule of Law 0.0116 0.205 - - - -

8 Number of years open economy −0.00269 0.806 - - - -

9 Degree of Capitalism 0.00111 0.549 - - - -

10 Fraction Protestant −0.00280 0.804 - - - -

11 Fraction GDP in mining 0.0401 0.243 - - - -

12 Non-Equipment investment 0.0367 0.299 - - - -

13 Latin American dummy −0.0127 0.275 - - - -

14 Primary School Enrollment, 1960 0.0202 0.222 - - - -

15 Fraction Buddhist 0.00734 0.662 - - - -

16 Black-market premium −0.00690 0.299 - - - -

17 Fraction Catholic 0.00307 0.720 - - - -

18 Civil Liberties −0.00242 0.498 - - - -

19 Fraction Hindu −0.0967 0.0159 - - - -

20 Political Rights 0.000162 0.958 - - - -

21 Primary Exports, 1970 −0.00550 0.659 - - - -

22 Exchange rate distortions −0.00002 0.686 - - - -

23 Age −0.000009 0.863 - - - -

24 War dummy −0.00144 0.693 - - - -

25 Size labor force 0.0000003 0.0583 - - - -

26 Fraction speaking foreign language −0.00246 0.616 - - - -

27 Fraction of Pop speaking English −0.00707 0.388 - - - -

28 Ethnologic fractionalization 0.0137 0.125 - - - -

29 Spanish Colony dummy 0.0131 0.209 - - - -

30 SD of black-market premium −0.000002 0.945 - - - -

31 French Colony Dummy 0.00894 0.245 - - - -

32 Absolute latitude −0.00009 0.714 - - - -

33 Ratio of workers to population −0.000520 0.970 - - - -

34 Higher education enrollment −0.129 0.111 - - - -

35 Population Growth −0.114 0.743 - - - -

36 British Colony dummy 0.00680 0.236 - - - -

37 Outward orientation −0.00453 0.229 - - - -

38 Fraction Jewish −0.000774 0.995 - - - -

39 Revolutions and coups 0.00321 0.710 - - - -

40 Public Education Share 0.138 0.390 - - - -

41 Area (Scale Effect) 0.0000003 0.762 - - - -

42 Intercept 0.0207 0.000 1% 1% 1% 1%

For every regressor in the FLS data set this table shows whether the variable is found to be significant when

controlling the FDR at the indicated level. The procedures are described in section 3. We work with 5000 bootstrap

iterations. In the Storey approach λ = 0.5.
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Table A.9: Comparison MP Data Set

Regressor Bootstrap approach BMA post. prob.

1 ln GDP per capita, 1960 5% 100.0

2 Life expectancy, 1960 1% 100.0

3 A∗Mining 1% 76.1

4 South-East Asia - 93.9

5 Fraction muslim - 83.5

6 A∗ Land area - 62.8

7 OECD - 45.3

8 A∗Primary export, 1970 - 43.1

9 Primary export, 1970 - 49.9

10 A∗European language - 51.4

11 European language - 24.4

12 Fraction Confucian - 21.7

13 A∗Colony - 54.6

14 A∗Tropical fraction - 100.0

15 A∗Landlocked - 72.2

16 Latin America - 7.5

17 A∗Labor force, 1960 - 10.6

18 Malaria prevalence, 1960 - 12.8

19 Landlocked - 7.1

20 Fraction Catholic - 7.2

21 A∗Malaria prevalence, 1960 - 78.9

22 A∗Primary school, 1960 - 3.2

23 A∗Fraction Muslim - 1.4

24 Fraction Protestant - 3.8

25 A∗ln GDP per capita, 1960 - 2.8

26 Tropical fraction - 3.5

27 Fraction Buddhist - 2.0

28 Primary school, 1960 - 4.4

29 A∗British colony - 1.1

30 Sub Saharan Africa - 2.7

31 A∗Fraction urban pop, 1960 - 1.1

32 A∗Life expectancy, 1960 - 1.5

33 A∗Secondary school, 1960 - 0.9

34 Mining - 4.9

35 Fraction Hindu - 1.0

36 A∗Fraction Catholic - 0.5

37 Distance from equator - 0.5

38 Land area - 0.6

39 Colony - 0.9

40 A∗Ethnoliguistic fractionalization - 1.0

41 Spanish Colony - 0.7

42 Secondary school, 1960 - 1.1

43 A∗French colony - 5.1

44 A∗Distance from equator - 0.2

45 Tertiary education, 1960 - 0.2

46 British colony - 0.3

47 A∗Fraction Protestant - 0.2

48 A∗Fraction English speaking - 47.1

49 French colony - 0.3

50 Ethnoliguistic fractionalization - 0.2

51 Fraction English speaking - 0.1

52 Labor force, 1960 - 0.1

53 Fraction Jewish - 0.1

54 Fraction urban pop, 1960 - 0.3

“Bootstrap approach” denotes significance when controlling the FDR at the indicated

level; “BMA post. prob.” denotes the marginal posterior probability of inclusion found

in Masanjala and Papageorgiou (2005).
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