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Abstract

The paper introduces new notion for the set-valued mean set of a random set. The

means are defined as families of sets that minimize mean distances to the random

set. The distances are determined by metrics in spaces of sets or by suitable gener-

alizations. Some examples illustrate the use of the new definitions.
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1 Introduction

This paper introduces set-valued means of random finite sets, based on various metrics
in spaces of subsets of a given finite set E. (This set may be, for example, the lattice of
pixels of an image analyzer.) A mean set of a series or a sample of digital images helps to
summarize the information and to find stochastic models of random spread process [20].
In Bayesian image analysis, it may be desirable to compute the mean set corresponding to
a posterior distribution. Finally, means of random sets play a role in the context of limit
theorems.

The structure of the space of sets is the principical difficulty in obtaining a good def-
inition of the mean of a random set. For random convex sets, the Aumann mean [3, 17]
can be defined as the convex set whose support function is the mean value of the support
function of the random set. This definition has many good properties, but usually yields
a convex set, even if the random set is non-convex.

Oleg Vorob’ov [15, 18, 19] introduced other means of a random set X defined as families
of thresholds. His set-median (of X) is defined as the following family:

MedX =
{

A ⊆ E : {x : pX(x) > 1/2} ⊆ A ⊆ {x : pX(x) ≥ 1/2}
}

,

and analogously the set-expectation is defined as:

EX =
{

A ⊆ E : {x : pX(x) > h} ⊆ A ⊆ {x : pX(x) ≥ h}
}

.

Here pX(x) = P(x ∈ X) is the coverage probability of point x by the random set X, and
the level h in the second definition is chosen in such a way that the sets of EX have a
power close to the expected power of X. The set-median minimizes the difference between
X and other sets, i.e.,

E|MedX∆X| = min
A⊆E

E|A∆X|,

see [18, 19]. Here A∆B denotes the symmetric difference of the two sets A and B, and
|A| is the number of elements of A or its power. Unfortunately, the set-median does not
take into account the randomness of the power of X. The notion of set-expectation solves
this problem and has also some other good properties, but it does not yield an absolute
minimum of a mean distance to X in the sense of some metric on the space of sets.

Pratt [1], Andersen [2], Taylor [16] and others have considered more general objective
functions

∆(X, Y ) =
∑

x

ϕ(x,X, Y ),

where X and Y are sets, ϕ(·, X, Y ) : E → R is an arbitrary function and the sum is over all
points x. In the Bayesian case, given data Y we seek a mean X̂ = X̂(Y ) which minimizes
E∆(X, X̂(Y )). If ∆ is a metric, then we arrive at Fréchet’s mean definition[8].

There are some papers [6, 9, 13] where a mean of sets is introduced by the distance
function. Any set A ⊆ E is uniquely identified by its distance function

d(x,A) = min
y∈A

ρ(x, y),

where ρ is a metric given a priori in E, i.e., d(x,A) is the shortest ρ-distance from x to
any point in A.
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In [6, 9, 13] the mean of a random set X is defined as the ’optimal’ level set of the
pointwise mean d̂(x) = Ed(x,X) of the distance function, where optimality is measured
by a minimum difference between d̂(x) and the distance function of the mean.

The distance function allows to construct various metrics in the space of sets. For
example, the Hausdorff metric

ρH(A,B) = max {sup
x∈A

d(x,B), sup
y∈B

d(y, A)}

can be rewritten as a uniform metric for distance functions [7]:

ρH(A,B) = sup
x∈E

|d(x,A) − d(x,B)|, (1)

The papers [4, 5] show that replacing the uniform metric by an Ln metric in (1),

∆n(A, B) =

(

∑

x∈E

|d(x,A) − d(x,B)|n

)1/n

,

produces practically useful results in image analysis. This metric has been used as an
optimality criterion in Bayesian image analysis in [10, 14].

The present paper introduces other metrics in the space of subsets of E and, conse-
quently, further notion of means. In contrast to [6, 9, 13] a mean is here a family of sets.
The members of them do not minimize a distance to a mean function d̂(x), but in con-
trast minimize a mean distance to X, where ’distance’ is understood with respect to some
metric.

Section 2 introduces the metrics in the space of all subsets of E. In Section 3 lemmas
are proved and formulas for mean distances are derived in an space with discrete metric. In
Section 4 the notion of the mean of a random set is defined. An example of the application
of the new mean definition is presented in Section 5.

2 Metrics in the space of subsets of a finite set

Let (E, ρ) be a finite metric space and P(E) be the set of all subset of E, the power set.
This section introduces new metrics in P(E).

For every set A ∈ P(E) all points in E can be classified according to their position
with respect to A. For example, for every point the distance to A can be defined.

Definition. Let x ∈ E, A ∈ P(E), then distance from point x to set A is defined as:

d(x,A) = min
y∈A

ρ(x, y).

This function is called a distance function.
The map A → d(·, A) embeds P(E) into the space of distance functions {d(·, A) : A ∈

P(E)}. Therefore metrics in spaces of functions can be used to construct metrics in P(E).
For example, the Hausdorff metric between sets is equal to the uniform metric between
their distance functions, i.e.,

ρH(A,B) = max {max
x∈A

d(x,B), max
y∈B

d(y, A)} = max
x∈E

|d(x, A) − d(x,B)|.
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In [4, 5] instead of the uniform metric, an Ln metric was used

∆n(A,B) =

(

∑

x∈E

|d(x,A) − d(x, B)|n

)1/n

which is convenient to analyze images, since it is less sensivitive to small variations of
images than the Hausdorff metric.

Two new families of metric in P(E) can be introduced as follows. The first metric is
defined for n = 1, 2, ... as

rn(A,B) =

(

∑

x∈E

|d(x,A) − d(x,B)| +

∣

∣

∣

∣

∣

∑

x∈E

(d(x,A) − d(x,B))

∣

∣

∣

∣

∣

n)1/n

.

To define the second metric use the notation

EAB = {x ∈ E : d(x,A) > d(x,B)},

EBA = {x ∈ E : d(x,A) < d(x,B)}

for two subsets A and B of E. The metric

ρn(A,B) =

=

((

∑

x∈EAB

(d(x,A) − d(x,B))

)n

+

(

∑

x∈EBA

(d(x,B) − d(x,A))

)n)1/n

is defined. The function ρn is the metric in a corollary of the Minkowski inequality.
Note that some of these metrics coincide. For example

∆1 = ρ1 =
∑

x∈E

|d(x,A) − d(x,B)|,

and

ρ∞ =
r1

2
=

∑

x∈E |d(x,A) − d(x,B)| +
∣

∣

∑

x∈E(d(x,A) − d(x,B))
∣

∣

2
=

= max

(

∑

x∈EAB

(d(x,A) − d(x,B)),
∑

x∈EBA

(d(x,B) − d(x,A))

)

.

An important particular case is the discrete metric in E

ρ(x, y) =

{

1, x 6= y

0, x = y
.

In the case of the space with discrete metric the Hausdorff metric is equal to the discrete
metric in P(E)

ρH(A, B) =

{

1, A 6= B

0, A = B
.

The ∆n metric is defined by the (1/n)th power of symmetric difference between sets

∆n(A,B) = |A∆B|1/n,

and new metrics have the following forms:

ρn(A,B) = (|A \ B|n + |B \ A|n)
1

n ,

rn(A,B) = (|A∆B| + ||A| − |B||n)
1

n .
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3 Mean distances in the space with discrete metric

This section introduces some further notation and proves lemmas and formulas for mean
distances in the space with discrete metric.

Let E be a space with discrete metric and X : (Ω,A,P) → (P(E),P(P(E))) be a
random set with realization in P(E) and use the following notation:

p(A) = P(X = A),

SX(h) = {A ∈ P(E) : {x ∈ E : pX(x) > h} ⊆ A ⊆

⊆ {x ∈ E : pX(x) ≥ h}},

IX
h =

[

min
A∈SX(h)

|A|, max
A∈SX(h)

|A|

]

FX(s) = P(|X| < s),

I
|X|
h =

[

inf
s

(FX(s) ≥ h), sup
s

(FX(s) ≤ h)

]

,

HX =
{

h ∈ [0, 1] : I
|X|
h ∩ IX

h 6= ∅
}

,

where x ∈ E, h ∈ [0, 1], s ∈ R.
In these notations the set-median and the set-expectation can be written as:

MedX = SX(1/2),

and

EX = SX(h),

where h is chosen to satisfy the condition E|X| ∈ IX
h .

The following theorem is a basic property of the set-median [18, 19].
Theorem. For MedX it is

MedX =

{

A ⊆ E : A = arg min
B⊆E

E|X∆B|

}

In Section 4 analogous theorems for the metric ρ∞ and for the square of metric r2

instead symmetric difference are proved. In the proofs the following lemmas are needed.
The first of them is the following lemma, which presents a formula for the calculation

of mean distances.
Lemma. For any subset A ∈ P(E) it holds

Eρ∞(X,A) =
∑

x∈AC

pX(x) +

|A|
∑

n=0

FX(n), (2)

and

Er2
2(X,A) = E|X|2 + E|X| +

∑

x∈A

(1 − 2pX(x) + |A| − 2E|X|). (3)
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Proof. It is

Eρ∞(X, A) =
∑

B⊆E

max{|A \ B|, |B \ A|}p(B) =

=
∑

B⊆E,|B|>|A|

|B \ A|p(B) +
∑

B⊆E,|B|≤|A|

|A \ B|p(B) =

=
∑

B⊆E

|B \ A|p(B) +
∑

B⊆E,|B|≤|A|

(|A \ B| − |B \ A|)p(B) =

=
∑

x∈AC

pX(x) +
∑

B⊆E,|B|<|A|

(|A| − |B|)p(B).

Furthermore

∑

B⊆E,|B|<|A|

(|A| − |B|)p(B) =

|A|−1
∑

m=0

∑

B⊆E,|B|=m

(|A| − |B|)p(B) =

=

|A|−1
∑

m=0

(|A| − m)P(|X| = m).

On the other hand,

|A|
∑

n=0

FX(n) =

|A|
∑

n=0

n−1
∑

m=0

P(|X| = m) =

|A|−1
∑

m=0

P(|X| = m)

|A|
∑

n=m+1

1 =

=

|A|−1
∑

m=0

(|A| − m)P(|X| = m),

what proves formula (2).

Formula (3) is obtained by

Er2
2(X,A) = E|X∆A| + E(|X| − |A|)2 =

= E|X| + |A| − 2E|X ∩ A| + E|X|2 + |A|2 − 2|A|E|X| =

= E|X|2 + E|X| + |A| − 2
∑

x∈A

pX(x) + |A|(|A| − 2E|X|) =

= E|X|2 + E|X| +
∑

x∈A

(1 − 2pX(x) + |A| − 2E|X|).

The lemma is proved.

The formulas (6) and (7) yield the following result:

E(ρ∞(X, A) − ρ∞(X, B)) =

=











∑

x∈B\A pX(x) −
∑

x∈A\B pX(x), |A| = |B|,
∑

x∈B\A pX(x) −
∑

x∈A\B pX(x) +
∑|A|

n=|B|+1 FX(n), |A| > |B|,
∑

x∈B\A pX(x) −
∑

x∈A\B pX(x) −
∑|B|

n=|A|+1 FX(n), |B| > |A|,

(4)
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E(r2
2(X,A) − r2

2(X, B)) = 2
∑

x∈B\A

pX(x) −

−2
∑

x∈A\B

pX(x) + (|A| − |B|)(|A| + |B| − 2E|X| + 1). (5)

Lemma. The set HX is nonempty for any random set X.
Proof. Let N = |E|. Order the points of E in decreasing order of coverage probabilities

of X:
pX(x1) ≥ pX(x2) ≥ ... ≥ pX(xN),

and define numbers pi by p0 = 1, pi = pX(xi) for i = 1, . . . N , pN+1 = 0. Furthermore, let

fi = FX(i), i = 0, ..., N + 1.

Since p0 > f0 and pN+1 < fN+1 an integer l can be defined by

l = min{i : 0 ≤ i ≤ N + 1 and fi ≥ pi}.

Two cases are possible:
fl−1 < pl−1, fl = pl

and
fl−1 < pl−1, fl > pl.

In the first case it is fl ∈ HX . Indeed, let h = fl = pl, then

|{x : pX(x) > h}| = l − 1, |{x : pX(x) ≥ h}| ≥ l

and
inf
s

(FX(s) ≥ h) = l − 1, sup
s

(FX(s) ≤ h) ≥ l,

hence
[l − 1, l] ⊆ I

|X|
h ∩ IX

h 6= ∅.

In the second case for any h ∈ (max{fl−1, pl}, min{fl, pl−1})

|{x : pX(x) > h}| = l − 1, |{x : pX(x) ≥ h}| = l − 1

and
inf
s

(FX(s) ≥ h) = l − 1, sup
s

(FX(s) ≤ h) = l − 1,

therefore
I
|X|
h ∩ IX

h = {l − 1} 6= ∅.

The lemma is proved.
Lemma. For any h ∈ HX there is a subset A ∈ SX(h) such that

|A| ∈ I
|X|
h ∩ IX

h .

Proof. An existence of the set follows from the fact that for any h ∈ HK

I
ν(K)
h ∩ IK

h 6= ∅

and for any a ∈ I
ν(K)
h ∩ IK

h ⊆ IK
h there is a set A ∈ SK(h) such that |A| = a. The lemma

is proved.

8



4 Means of random sets

In this section a set-valued mean of a random set X is defined which minimizes a mean
distance to X. This distance is determined by some metrics in P(E) or by functions of
these metrics. In the case of a space with discrete metric for the metric ρ∞(A,B) and
for the square of metric r2

2(A,B) theorems are proved by which means of random set are
calculated from coverage probabilities and from characteristics of |X|.

Definition. The function ϕ : P(E)×P(E) → [0,∞) is called to be a measure of closeness

on E if it satisfies the following properties

ϕ(A,B) = 0 iff A = B,

ϕ(A,B) = ϕ(A,B), A, B ∈ P(E).

Using a given ϕ a mean for random sets can be defined. It is the family of sets Eϕ(X)
which minimze the mean distance to X:

Eϕ(X) =

{

A ⊆ E : A = arg min
B⊆E

Eϕ(X,B)

}

and is called to be the mean the random set X relative to ϕ.
Assume in the following that X is a space with discrete metric ρ. Consider the family

of sets
S|X| =

{

A ⊆ E : A ∈ SX(h), h ∈ HX , |A| ∈ I
|X|
h ∩ IX

h

}

It could be called the power-distirbution threshold of X. The following shows that S|X|

coincides with the mean relative to ϕ = ρ∞.
Theorem. For ϕ = ρ∞ it is

Eϕ(X) = S|X|.

Proof. Let A ∈ S|X|, and let B be an arbitrary subset of E. Then (4) implies the
following.

1. If |A| = |B|, then

Eρ∞(X,A) − Eρ∞(X, B) =
∑

x∈B\A

pX(x) −
∑

x∈A\B

pX(x) ≤

≤ h|B \ A| − h|A \ B| = 0.

2. If |A| > |B|, then

Eρ∞(X, A) − Eρ∞(X, B) =

=
∑

x∈B\A

pX(x) −
∑

x∈A\B

pX(x) +

|A|
∑

n=|B|+1

FX(n) ≤

≤ h(|B \ A| − |A \ B|) + (|A| − |B|)FX(|A|) ≤

≤ h(|B \ A| − |A \ B| + |A| − |B|) = 0.

3. If |A| < |B|, then

Eρ∞(X, A) − Eρ∞(X, B) =

=
∑

x∈B\A

pX(x) −
∑

x∈A\B

pX(x) −

|B|
∑

n=|A|+1

FX(n) ≤

≤ h(|B \ A| − |A \ B|) − (|B| − |A|)FX(|A|) ≤

≤ h(|B \ A| − |A \ B| − |B| + |A|) = 0.
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Thus it is A ∈ Eϕ(X). For A /∈ S|X|, then for B ∈ S|X| the inequality

Eρ∞(X, A) − Eρ∞(X, B) ≤ 0

is not valid, i.e., A /∈ Eϕ(X). The theorem is proved.
Order the point of E in decreasing order of coverage probabilities of X:

pX(x1) ≥ pX(x2) ≥ ... ≥ pX(xN),

and define numbers pi by p0 = 1, pi = pX(xi) for i = 1, . . . N , pN+1 = 0.
Denote by hX the coverage probability pm(X)+1, where m(X) = [E|X|] is the greatest

integer in E|X|. Then E|X| ∈ [m(X),m(X) + 1] ⊆ IX
hX

.
Consider the family of sets

SE|X| = {A ⊆ E : A ∈ SX(hX)},

where subsets A such as:

|A| =











m(X), hX + f(X) < 1

m(X) + 1, hX + f(X) > 1

m(X), m(X) + 1, hX + f(X) = 1

.

It could be called the mean-power threshold of X. Here f(X) = {E|X|} is the fractional
part of the mean power.

The following shows that SE|X| coincides with the mean relative to ϕ = r2
2.

Theorem. For ϕ = r2
2 it is

Eϕ(X) = SE|X|.

Proof. Let A ∈ SE|X| and let B be a arbitary subset of E. Then (5) implies the
following.

E(r2
2(X, A) − r2

2(X, B)) =

= 2
∑

x∈B\A

pX(x) −

−2
∑

x∈A\B

pX(x) + (|A| − |B|)(|A| + |B| − 2E|X| + 1) ≤

≤ (|A| − |B|)(1 − 2hX + |A| + |B| − 2E|X|).

Let’s consider two cases. The first,

0 ≤ hX + f(X) ≤ 1, |A| = m(X),

and

E(r2
2(X,A) − r2

2(X,B)) =

= (m(X) − |B|)(1 − 2hX − 2f(X) + |B| − m(X)). (6)

Since 1 − 2hX − 2f(X) ∈ [−1, 1], and |B| can be equal to integers, then the difference (6)
is less than zero. The second, 1 ≤ hX + f(X) ≤ 2, |A| = m(X) + 1 and

E(r2
2(X, A) − r2

2(X,B)) =

= (m(X) + 1 − |B|)(2 − 2hX − 2f(X) + |B| − m(X)). (7)
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Figure 1: The original image (left) and realization of the corresponding random set (right)

The difference (7) is less than zero also.
Thus it is A ∈ Eϕ(X).
For A /∈ SE|X|, then for B ∈ SE|X| the inequality

E(r2
2(X, A) − r2

2(X, B)) ≤ 0

is not valid, i.e., A /∈ Eϕ(X). The theorem is proved.

5 An example

The following example is related to Bayesian image classification [11]. The starting point
is a 300 × 150 binary image which was obtained by scanning the text fragment shown in
Fig. 1.a. Realizations of a random set X were generated by adding to the original image
independent uniform noise consisting of black pixels. The intensity of the noise is so that
its coverage probability is 0.17, while the coverage probability of the original image is 0.4
(Fig. 1.b).

Two series of 10 and 100 independent samples were generated. For each series the means
of the random set relative to the metrics ρ∞ and r2

2 and also the Molchanov-Baddeley mean
set [6] were derived. The outcomes of evaluations are represented in Fig.2 and Fig.3.

There are no discernible differences between mean sets relative to the measure of near-
ness r2

2 and ρ∞ (Fig. 2.a, 3.a). Figures 2.b and 3.b shows Molchanov-Baddeley mean set
[6].

The statistical analysis shows clear differences between the means, between the new
mean introduced in the present paper, see Fig. 2.a, 3.a, and the Molchanov-Baddeley
mean, see Fig. 2.b, 3.b. Obviously the new mean shows better behaviour, because its
theoretical value coincides with original image.

It is rather interesting that the Molchanov-Baddeley mean is not improved by increasing
sample size. The result for 100 realizatons is practical the same as that for 10.

However, the Molchanov-Baddeley mean can be improved by a choice of the the ’opti-
mal’ level set of the pointwise mean Ed(x,X) of the distance function, where optimality is

11



Figure 2: Means based on 10 realizations of the random set. (left-up) The mean cor-
responding to r2

2 or ρ∞. (right-up) The Molchanov-Baddeley mean. (center-down) The
improved Molchanov-Baddeley mean with optimal threshold.

12



measured by a minimum difference between the mean of random set and the original im-
age. Figures 2.c and 3.c show the improved Molchanov-Baddeley means with the optimal
threshold.

Our mean (Fig. 2.a, 3.a) is better than Molchanov-Baddeley mean (Fig. 2.b, 3.b) and
has the same properties with improved mean (Fig. 2.c, 3.c).

Figure 3: Means based on 100 realization of random set. (left-up) The mean set rela-
tive to r2

2 or ρ∞. (right-up) Molchanov-Baddeley mean set. (center-down) The improved
Molchanov-Baddeley mean set with the optimal threshold.

References

[1] I.E. Abdou and W.K. Pratt, Quantitative design and evalualion of enhancement /
thresholding edge detectors, in: Proc. of the IEEE 67 (1979) 753–763.

13



[2] L.S. Andersen, Inference for hidden Markov models, in: A. Possolo ed., Proc. of

the Joint IMS-AMS-SIAM Summer Res. Conf. on Spatial Statistics and lmaging

(Brunswick. Maine. 1988) 1–13.

[3] Z. Artstein and R.A. Vitale, A strong law of large numbers for random compact sets,
Ann. Probab. 3 (1975) 879–882.

[4] A.J. Baddeley, An error metric for binary images, in: W. Forstner, H. Ruwiedel, eds.,
Robust Computer Vision: Quality of Vision Algorithms (Wichmann: Karlsruhe, 1992)
59–78.

[5] A.J. Baddeley, Errors in binary images and an Lp version of the Hausdorff metric,
Nieuw Archief voor Wiskunde 10 (1992) 157–183.

[6] A. Baddeley and I. Molchanov, Averaging of Random Sets Based on Their Distance
Functions, Journal of Mathematical Imaging and Vision 8 (1998) 79–92.

[7] C. Beer, On convergence of closed sets in a metric space and distance functions, Bull

Austral. Math. Soc. 31 (1985) 421–432.
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