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Abstract

In North America, professional sports leagues operate mostly as cartels. They employ
certain policies such as revenue sharing, salary caps to ensure that teams get high revenues
and players get high wages. There are two major hypotheses regarding the talent distribution
among the teams that would maximize the total revenues, dominant teams rule and equal
strength team rule. This paper examines the revenue structure of National Football League
and proposes policy recommendations regarding talent distribution among the teams. By us-
ing a unique, rich data set on game day stadium attendance and TV ratings I am able to
measure the total demand as a function of involved teams talent levels. Reduced form regres-
sion results indicates that TV viewers are more interested in close games, on the other hand
stadium attendees are more interested in home teams dominance. In order to identify the
true effects of possible policy experiments, I estimate the parameters of the demand for TV
as functions of team talent , fixed team and market variables by using partial linear model
described as in Yatchew (1998) which uses non-parametric and difference-based estimators. I
then estimate the demand for stadium attendance using random coefficients model by using
normative priors for the 32 cities that hosts the teams. Estimated demand for TV ratings and
stadium attendance corroborates the findings of reduced form regressions, stadium demand
and TV demand working against each other. We therefore propose a somewhat equal strength
team policy where big market teams has a slight advantage over the others. Total revenues of
the league is maximized under such a policy.
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1 Introduction

Professional sports leagues in North America are good examples of cartels. Most of them have some

sort of exemption status from the laws of commerce that the rest of the economy has to abide by.

They have a league governing body formed by the owners and players that plan and take care of

the problems of the league. The league generates revenue through games and the revenue is shared

between team owners and players. They are mostly free to adopt policies on governing the league

as they wish. The league primarily wants to increase the total revenue made throughout the league

in order to increase the salaries for players and profits for team owners. There are various actions

available to the league including imposing a salary cap or revenue sharing.

There are two major hypotheses regarding how leagues use relative strength of teams to increase

total revenues, player salaries and fan utility. The first is to follow the dominant teams rule. Pick

a few teams that have revenue making advantage over the others and make sure that they have a

stronger team ensuring that their fans will generate higher revenue. MLB, to some extent follows

this, New York Yankees, Boston Red Sox, New York Mets and Chicago Cubs have clear advantage

in revenue generation over the other teams. The second hypothesis is to distribute talent among

the teams ”evenly”, ensuring a high level of competition and thereby attracting higher demand for

the game.

In this paper we are going to empirically assess the superiority of these two hypotheses over

each other for National Football League.

Among all professional sports leagues National Football League is by far the most lucrative

sports league. In 2007, the NFLs annual revenues exceeded $7 billion. In contrast, Major League

Baseball generated revenues of just over $6 billion. Basketball and hockey lag far behind. The

National Basketball Associations annual revenues stand at $3.3 billion. Bringing up the rear among

the Big Four team sports leagues, the National Hockey Leagues revenues reach $2 billion annually 1.

There are clearly certain things going right with NFL. Popularity of the game has been increasing

every passing year along with its’ revenue making potential. Clearly their policies are working

for the league. They have been employing a salary cap rule along with revenue sharing due to a

collective bargaining with NFL Players Association.

1http://anthonygaughan.blogspot.com/2008/02/king-of-sports-world.html
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This paper argues that in NFL, TV audience in general likes to watch somewhat close games

while fans attending the games like to see their teams dominate the other team. On average 66-70

percent of a team’s revenue comes from media deals. Since most of the revenue comes from the

media it’s best to have a policy that advocates a somewhat equal team strength.

There is a rich literature in sports economics. Most of the literature is in theoretical sports

economics with a few empirical research papers mainly done in simple regressions. In the first

mathematical model of a professional sports league, El-Hodiri and Quirk,(1971), examine whether

the current organization of professional team sports will lead to equalization of playing strengths.

They develop a dynamic model involving wages, revenues, trades, the draft, skill level, and the

probability of winning a game. Profit maximization is not consistent with the equalization of

playing strengths unless all teams are affected equally by a change in strength of one team in terms

of gate receipts, or if the home team receives at least half of the gate receipts and all teams have

the same revenue function. Additionally, to ensure equalization, there must be a constant supply of

new playing skill and no cash sales. Equal strengths will converge regardless of the initial allocation

of talent. Fewer teams and a quicker depreciation of talent will speed up the convergence process.

Atkinson, Stanley, and Tschirhart (1988), develop a model of a professional sports league which

shows how revenue sharing encourages an optimal distribution of resources among teams. The

league tries to devise an incentive scheme that will induce agents to maximize total output. The

agents, on the other hand, receive private non-monetary benefits which are not shared. This leads

to classical principal agent problem. Empirically, they show that that revenue sharing has desirable

properties for the NFL, but is partially mitigated if teams are not profit maximizers.

Fort and Quirk, (1995), develop a profit maximizing model of a professional sports league.

They discuss the issues in determining the definition of winning, whether it be season-long winning

percentage or championship prospect. The effects of the reserve system versus free agency are

examined. A salary cap results in equal playing strengths and would be adopted if the cap is

sufficiently low. They argue that it is the only incentive mechanism which can maintain league

viability and competitive balance.

Empirical papers in Sports Economics are mostly done with very limited data. This is usually

due to lack of team level game day data. Most of the empirical analysis is done for aggregate level

data instead and usually done for a few years. The biggest problem is we don’t have individual
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level data on consumers. The big elephant in the room is unobserved heterogeneity that’s hard to

touch due to lack of data at the individual level. Specifically it’s hard to measure the ”fanness” of

consumers. In European sports leagues people are more attached to their teams, in some cases cult

like cultures exist. This is not really the case in US. However, we still see that type of behavior for

certain teams. Detroit Lions have been a losing team for quite some time, yet they manage to sell

almost capacity for most of their games. Whether this is due to fans’ connection to their teams or

some other reason is hard to guess.

Welki and Zlatoper, (1991), analyzes the game day stadium attendance in NFL for 1991 season.

In their paper they analyze the attendance in terms of ticket price, home team record, visiting team

record, income level of home team population, temperature and some other dummy variables. Their

Tobit analysis finds a clear bias for home team record which supports our hypothesis for game day

attendance. However, their data is only for one season which raises doubts about the validity of

the results. In their (1999) paper they analyze the games for 1986 and 1987 seasons. In that paper

they use betting lines to measure how close a game is expected to be by the general audience. They

find that fans do care about closeness of games and quality of the playing teams, especially home

team.

Carney and Fenn,(2004), on the other hand analyzes the TV ratings for NFL games in 2000

and 2001 seasons. In their analysis they find that closeness of the games matter by using winning

records of opposing teams. They use various variables such as player race, coach race. However

their analysis relies on local TV ratings which is a relatively minor consideration for the general

discussion since most of the revenue comes from national media deals.

There is no research done on NFL for the entire revenue scheme. Our analysis is done for both

TV ratings and stadium attendance making it possible for us to come up with a better policy

analysis. TV ratings data we use is national level data and game day attendance data is a very rich

panel data that spans 14 years.

The rest of the paper proceeds as follows. Section 2 introduces the theoretical model. Section 3

introduces the data used in the paper. In Section 4, we use reduced form regressions and random

coefficient models for both sets of data to estimate demand and discusses the results. Section 5

concludes.
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2 Theory

This section first presents a simple theoretical model for sports demand both in terms of stadium

attendance and TV ratings. Then I discuss some analytical results.

In general the audience cares about a game’s potential characteristics such as how close the

game will be, likelihood of their team winning the game, the week the game is played and other

variables. We can represent the first two characteristics in terms of the talent levels of the teams.

Let t1 be the home team’s talent level and t2 be the visiting team’s talent level. Probability of

home team winning has to be positively correlated with home team’s talent level. Without loss of

generality assume that

Win1,2 =

(

t1

t1 + t2

)α

(1)

where 0 < α < 1. This assures us that probability of winning is an increasing and concave

function of t1. Probability of winning for the visiting team is defined similarly

Closeness of the game has to be correlated with the talent difference of the teams. Without loss

of generality assume that

Close1,2 = |t1 − t2|
β (2)

where −1 < β ≤ 0.

The TV ratings for a particular game will be the product of winning probability and closeness.

Similarly, stadium attendance will be a product of winning probability and closeness. Here, α is the

elasticity of demand with respect to winning probability, β is the elasticity of demand with respect

to closeness.

We assume that there are two types of cities, big cities and small cities. In an environment like

this it’s normal to assume that team types are also correlated with the city types. Teams in big

cities should be able to bring more demand and more revenue. Therefore I am going to assume

that big city teams will have t1 talent and small city teams have t2 talent. This model is equivalent

to the model where there is one big city team and one small city team facing each other certain

percentages of times in each other’s stadium. Without loss of generality we can assume that they
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face each other ω1 times at the big city team’s turf, ω2 times at the small city team’s turf. We can

assume that ω1 +ω2 = 1, moreover we will normalize the total talent to 1, t1 + t2 = 1. Even though

total talent used by the league can be less than 1 we will assume that it will be binding. In other

words, everyone in the talent pool will be employed.2 Let the size of the big city be n1 and the size

of the small city be n2.

Under these assumptions total demand for stadium attendance will be

Att = n1ω1

(

t1

t1 + t2

)α1
(

t2

t1 + t2

)α2

|t1 − t2|
β1 + n2ω2

(

t1

t1 + t2

)α3
(

t2

t1 + t2

)α4

|t1 − t2|
β2 (3)

We are assuming that elasticities of winning probabilities and closeness are different for each

city. On the other hand TV ratings will be

Rating = n1ω1

(

t1

t1 + t2

)α5
(

t2

t1 + t2

)α6

|t1 − t2|
β3 + n2ω2

(

t1

t1 + t2

)α7
(

t2

t1 + t2

)α8

|t1 − t2|
β4 (4)

Since we are only looking national level TV data, for ratings can assume that elasticities of

winning and closeness are same throughout the league. We have no way of seeing which city

watched which game. Total demand for the game will be the sum of Att and Rating.

Proposition 2.1 Total demand is maximized when t1 = t2 if βi 6= 0 for at least one i = 1, 2, 3, 4.

Proof See appendix.

Clearly the degree of how much people care about close games is important. If they don’t care

at all, rather they care about their team winning then maximum demand is achieved depending on

the relative elasticity of winning probabilities, relative size of the cities and ratio of the type of big

cities and small cities.

Corollary 2.2 If TV viewers care more about close games and stadium attendees care more about

their home team winning then total demand is maximized when t1 = t2.

2Players have a union and one of the objectives of the union is to make sure every player is employed. Teams
have to have number of players in their rosters to make sure that they can field a team for every game during the
season. Every player that’s in the pool at the beginning of the season will be allocated to a team.
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Proof This is a simple application of Proposition 2.1.

3 Data

3.1 TV Data

Since almost 70 percent of operating income of every team under the current revenue sharing rule

comes from media deals, it’s only fitting to first analyze TV ratings. Our TV ratings data comes

from Football Hall of Fame archives. Data spans nationally televised games for 1972-1978, 1981 and

1983. Data includes preseason games, regular games and playoff games. Almost all of the preseason

games have ratings available, however there are no betting lines quoted for them. Not all of the

regular games have been nationally televised. Monday night, Thursday, Friday and Saturday games

are usually nationally televised. On Sundays, usually one or two games are picked and televised

by national stations. Even though there is 1943 games in this period we have only 491 games with

ratings.

In order to analyze the effect of close games on TV ratings we have collected Las Vegas Betting

lines data for the corresponding games using Washington Post archives. Lines are quoted as one

single number representing which team is favored by how many points. It represents public’s

perception of an upcoming game. It’s a good candidate for measuring how close a game will be

if it’s measured around zero. If betting line between Vikings playing at Green Bay is reported

as -5, this means Green Bay is favored by 5 points. The more the betting lines negative, the

more home team is favored. If betting lines are quoted as positive that means visiting team is

favored. Clearly a betting line close to zero means that game is perceived to be tight. Bookies who

publish betting lines usually have their own formulas. In order to do a consistent estimation, it’s

important to find consistent betting lines. This is especially important since I use betting lines for

different periods, 1970’s and 1994-2007 period. Our comparison shows that they are following the

same line. Bookies in general use win ratios, streaks of teams involved in the upcoming game in

their formulas. Correlation between visiting team win ratio and betting lines for the TV data is

about 0.47, correlation between home team win ratio and betting lines is about -0.46 which is a

clear indication of their formula effecting the betting lines. Correlations with the win-loss streaks
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are 0.38 and -0.38 respectively. They also use game specific information such as the place of the

game, weather conditions during the game3 and team specific information such as injuries. I will

denote these information as Σ. Therefore, betting line between team i and team j at time t can be

formulated as

Betijt = E [Pointi,t − Pointj,t|Winrati,t−1,Winratj,t−1, Streaki,t−1, Streakj,t−1,Σ] (5)

Here Pointi,t and Pointj,t are the number of points team i and team j will score at the game

respectively.

Summary of the data is given in Table 1 in the appendix.

A single national ratings point represents one percent of the total number of television house-

holds. Since they are normalized with respect to the number of households with TV for that year

it’s a good measure for the TV demand for the game. There is quite a bit variation in the rating

data to explain. The lowest rating we have is recorded on a game that coincided with a World

series game. The highest was recorded on a Super Bowl game. Standard error for playoff games

is about 7.6, standard error for regular games is 3.8. Viswinper and Homwinper are winning

percentages of visiting and home teams prior to every game respectively. Betting lines only measure

how close a game is expected to be, in other words they measure the relative perceived strength

of the opposing teams, they do not measure individual qualities of the teams. We use winning

percentages for this purpose. Win-loss streaks of opposing teams going into each game measures

the order of wins. Order of wins are clearly important for our analysis as well since win percentages

are not a good measure of how teams are doing going into a specific game. After four games, if

a team has two wins and two losses clearly when those games are won make a difference. If they

won the last two games, they go into next games on a winning spree and usually audience respond

positively to that. If they win on an alternating schedule then the effect of the last win is not as

much. Homebase measures the possible population who would be interested in watching home

team’s game, visbase is similarly defined. It’s calculated by using team’s division city populations

. The rest of the variables are dummy variables describing the game day. Worldseries corresponds

to the games coincides with MLB playoff games, Doubleheader corresponds to games that are

3This is especially important for open air stadiums. Bookies follow the game day weather report a few days before
the game and put that into their formulas.
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televised consecutively on the same day. On the other hand, weekcount measures the week the

game is played, as the season progresses we see increased attention towards the game. Since betting

lines show winning bias, we also include the absolute value of the betting lines, we only care how

close a game is perceived to be not who is likely to win, absline measures this. By using absolute

value of betting lines we introduce nonlinearity into our estimation, however at the same time we

lose the directional information that betting lines bring into the table.

3.2 Stadium Data

Our stadium data covers the games between 1994-2007. I collected attendance data for every

regular game using various web sites. I then collected betting lines corresponding to these games

from Mrnfl.com. Mrnfl.com reports the betting lines published on Washington Post, therefore it

matches the betting lines I used for TV ratings. Summary of the data is given in Table 2 in the

appendix.

Some of the variables here are same as what I used for TV ratings. I include stadium size,

stadium cost adjusted for 1938 prices, stadium age, attendance normalized by stadium size, MSA

population, MSA income per capita, difference between attendance and stadium size, average season

price adjusted for 1994 prices. Unfortunately at the panel level some of these variables are useless.

Price is seasonal therefore has no effect on game by game estimation, stcost on the other hand is

constant and in the usual reduced regression it has negative coefficient. Dif measures the difference

between attendance and stadium size, difrat is the normalized difference ratio. I have to use difrat

for censored regression model. Stadium size here is not a hard upper bound for attendance. It’s

most of the time adhered but in some cases some teams can add a few more seats to their stadiums.

This is especially true for warm climate teams such as Tampa Bay. Nevertheless, the stadium sizes

listed on team web sites are mostly observed, there are only 382 cases out of 3448 games that

somehow teams managed to post attendance higher than their stadium size.
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4 Estimation

4.1 TV Demand

The most important aspect of our TV Data is that we observe that games expected to be close bring

higher ratings. Our hypothesis is that TV audience has a different utility function than the typical

fan. In terms of the model we introduced, elasticity of winning probability for TV audience is very

close to zero. Instead of going through the hassles of driving, waiting for the queues, bathrooms,

parking, dealing with the rowdy fans they’d like to sit at the comfort of their house and watch a nice

game. Average game watcher on TV is mostly interested in games that are competitive rather than

his team definitely winning. Let (t1, t2) be the talent level of both of the teams. Utility function

of TV audience has to be a decreasing function of |t1 − t2|, increasing function of win records of

both teams. Utility maximization of TV audience problem gives us a plausible demand function.

It simply leads to the following assumption for TV ratings: I assume that the TV ratings is a

production of betting lines , home team’s win percentage, visiting team’s win percentage and other

market and game specific variables. This is along the lines of the theory I introduced in Section 2.

In order to account for the negative values that win-loss streaks and betting lines take I will use

the following log-linear modeling:

Ratingijt = A ∗ eα∗abslineijt ∗ eβ∗homwinpert ∗ eγ∗viswinpert ∗ eΩ (6)

where Ω = {homestreak, visstreak, homebase, visbase, totbase, dummyvariables} and i denotes

the home team, j denotes visiting team. We do expect the coefficient for absline to be negative and

coefficients of win percentages of both teams to be positive of close magnitude when we log-linearize

the production function for ratings. In the log-linear model ln(y) = β1 + β2x, one-unit increase in

x leads to 100 × β2% change in y.

One of the problems with the estimation of TV ratings is that our data has sample selection

issues. Scheduling of most of the games are done before the season starts. Monday night games are

scheduled this way just as Thanksgiving day games at Detroit and Dallas. Regular Sunday games

and some Saturday games on the other hand are selected by the broadcast company a week prior

to the game. They tend to pick competitive games in general. My data includes playoff games
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as well but they are in general quite competitive and fit the selection criteria. In order to correct

for selection I use the heckman probit model. Selection equation is determined by Homewinper,

Viswinper, Homestreak, Visstreak. In order to use heckman selection model I need exclusion

restriction variables. Betting lines are determined to some extent using these variables but the

correlation is not that much. Especially, correlation between betting lines and win-loss streaks are

very low. We use the type II Tobit model:

y1 = x1β1 + u1 (7)

y2 = 1[xδ2+v2>0] (8)

The second equation is the selection equation. y2 and x are always observed, y1 is observed only

when y2 = 1. We have observations for Homewinper, Viswinper, Homestreak, Visstreak

on every game. The fact that win-loss streak can be negative and we look at games where teams

are more likely to be in equal strengths ensure that y2 can be 0. For those games we don’t have

any ratings. With further assumptions that (u1, v2) is independent of x with zero mean, v2 ∼

Normal(0,1) and E(u1|v2) = γ1v2 we can estimate this model. A little bit manipulation gives us

the following:

E(y1|x, y2 = 1) = x1β1 + γ1λ(xδ2) (9)

where λ is the inverse Mills ratio. We can estimate this model using the Heckit procedure:

We first obtain the probit estimate δ̂2 from the model

P (yi2 = 1|xi) = Φ(xiδ2) (10)

using all observations. Then, obtain the estimated inverse Mills ratios λ̂i2 = λ(xiδ̂2). Then, we

obtain β̂1 and γ̂1 from OLS regression on the selected sample, yi1 on xi1, λ̂i2.

A simple t-test of the estimate of the inverse Mills ratio λ is a valid test for sample-selection

bias.

Results of reduced form regressions and heckman probit selection model is shown in Table 3-6.
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Results are corroborating our hypothesis. TV audience cares more about how close the games are.

Clearly the negative coefficient on the absolute value of betting lines show that people care more

about close games, it’s statistically significant at the level of 10%. For every one unit difference in

team talent ratings decrease by 6.7 percent. This is a significant effect on the ratings. Home team’s

winning percentage is favored a little more than the visiting team winning percentage. Even when

corrected for selection we see that closeness of the games are significantly important.

Linear regression unfortunately gives us only a general idea about how the audience is reacting

to games on TV. It averages out quite a bit of information and doesn’t use the nonlinearity. If we

look at Figure 1-3, we see that ratings are very nonlinear in terms of betting lines, win percentages.

In order to account for nonlinearity in the model I use two other specifications to model the TV

demand. The other specification for TV Ratings as a function of explanatory variables I use is

LogRatingijt = α + β ∗ abslineγ
ijt + τhomwinper

η
ijt + ψviswinperκ

ijt + ... (11)

The other variables are in linear form. Nonlinear estimation of this specification is reported in

Table 7. Even when accounted for nonlinearity we see that absline has negative coefficient albeit

it’s statistical significance is not much. The power of absline,γ, comes out 1.655. This supports

the linear regression model we estimated earlier. The coefficients and powers of win ratios are quite

significant and again supports our results from linear regression.

Throughout all these models one other common result we see is that population base of a team

is also very important. In other words teams that play in big cities or big markets tend to draw

more audience to TV, this is of course expected but as a possible policy we can see that big market

teams should have better teams in order to maximize the revenues. This is especially true for home

teams that has a large audience. It’s better to televise games that’s played on a big city team turf.

The last specification I use is the semiparametric regression formulated by Yatchew:

yijt = f(zijt) + xijtβ + ǫijt (12)

where z is a random variable, x is a p-dimensional random variable. E[y|x, z] = f(z) + xβ and

ǫijt is iid mean-zero error term such that V ar[y|x, z] = σ2
ǫ . The function f is a smooth, single valued

function with a bounded first derivative. In this model the parametric (xβ) and non-parametric
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(f(z)) parts are additively separable.

We follow the methodology suggested by Yatchew (1997). We first estimate the nonparametric

nonlinear part by locally weighted least squares method as described in Yatchew (2003). Then we

do the linear least squares on yi = π + xβ where π is the estimate from lowess method.

We assume that E(ǫ|x, z) = 0 and that V ar(ǫ|x, z) = σ2
ǫ , z’s have bounded support and have

been rearranged so that they are in increasing order. Suppose that the conditional mean of x is a

smooth function of z, say E(x|z) = g(z) where g′ is bounded and V ar(x|z) = σ2
u. Then we may

rewrite x = g(z) + u. Differencing yields

yi − yi−1 = (xi − xi−1)β + (f(zi) − f(zi−1)) + ǫi − ǫi−1

= (g(zi) − g(zi−1))β + (ui − ui−1)β + (f(zi) − f(zi−1)) + ǫi − ǫi−1

∼= (ui − ui−1)β + ǫi − ǫi−1

Thus, the direct effect f(z) of the nonparametric variable z and the indirect effect g(z) that

occurs through x are removed. Suppose we apply the OLS estimator of β to the differenced data,

that is,

β̂diff =

∑

(yi − yi−1)(xi − xi−1)
∑

(xi − xi−1)2
(13)

Then, substituting the approximations xi−xi−1
∼= ui−ui−1 and yi−yi−1

∼= (ui−ui−1)β+ǫi−ǫi−1

into above and rearranging, we have

n1/2(β̂diff − β) ∼=
n1/2 1

n

∑

(ǫi − ǫi−1)(ui − ui−1)
1
n

∑

(ui − ui−1)2
(14)

We can show that the above equation converges in distribution to N
(

0, 1.5σ2
ǫ

σ2
u

)

. Our estimator

will be consistent.

Bottom line is, the estimation method we have here relies heavily on first differencing. After

that we take the simple OLS estimator and then use kernel regression to get the nonparametric

part. On the linear part we are using win ratios, streaks and other dummy variables. There is a

clear correlation between betting lines and win ratios. This makes the assumption x = g(z) + ǫ
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possible. Moreover, differencing here is crucial because we difference the trends out from win ratios.

For the nonlinear part I use betting lines as explanatory variable. Results are reported in Table 8.

The only difference here is that home team’s win percentage has much more significance than the

visiting team’s win percentage.

On the other hand when we use the betting lines themselves for the nonparametric part and

absolute value of betting lines in the linear part we get a much better picture. Using absolute value

of betting lines in the linear part ensures us that positive trends from previous weeks are trended

out. We can see this in Figure 1. If we don’t use absolute value of betting lines in the linear part,

for regular games we get the Figure 2. Figure 2 is a better indicator, it tells us that demand is

maximized when betting lines are close to zero. However, the curvature around zero is not as high

as in Figure 1.
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Figure 1: TV Ratings against betting lines, abso-
lute value of betting lines and other variables.
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Figure 2: Regular game TV Ratings against bet-
ting lines and other variables.

Table 8 and table 9 shows the results. When we use absline in the linear part, we are getting a

positive coefficient, this is due to the fact that most of the effect has gone onto nonparametric part

that includes betting lines. The other results are similar with table 9, home team’s win ratio is still

more important than visiting team win ratio. Home team’s population again is important.

The most important result from semiparametric estimation is that our hypothesis is supported

again. TV audience is more interested in close games.

4.2 Stadium Attendance Demand

For the stadium case I am going to report linear fixed effect estimation results along with random

effects tobit results for panel data in Table 10 and Table 11. Results are pooled. In the following
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linear fixed effect model, xijt includes absline, homwinrat, viswinrat, homstreak, visstreak

and other dummy variables. One of the problems with using absline as explanatory variables here

is that we lose quite a bit of information by doing that. We are losing the directional interpretation

of betting lines, in other words which team is favored. If the coefficient of absline comes up as

negative the interpretation is straightforward, fans like games that are close. If it comes up as

positive interpretation is vague, it most probably means they like blow-out games but since absline

doesn’t tell us which team is favored we have to use other variables to come up with that result.

The first model is usual fixed effects panel data OLS estimation:

Attijt = α + x
′

ijtβ + ǫijt (15)

Attendance is limited by number of seats available to fans, therefore it’s important take this

censoring into account. As I pointed out in Section 3, censoring is not observed for every game.

For some games, some teams manage to post attendance more than stadium size, nevertheless this

is not a big problem since I censor any attendance over the stadium size and use the stadium size

as attendance for that particular game.

Att⋆ijt = α + x
′

ijtβ + ǫijt , ǫijt ∼ N(0, σ2
i ) (16)

where Attijt = Att∗ijt if Att∗ijt < stdsizei and Attijt = stdsizei otherwise.

Clearly, fans in this case care much more about their own team’s strength since the coefficient

of home team’s winning percentage is very high compared to visiting team winning percentage.

Moreover, the coefficient on betting lines show a small bias towards home team’s relative strength

when it’s done with betting lines only rather than absolute value of the lines. As I pointed out before,

the interpretation of absolute value of betting lines is problematic, we do get that it is positive and

people care about blow out result. The fact that coefficient of homwinrat is significantly bigger

than the coefficient of viswinrat tells us that the blow out should be done by home team. If the

home team goes into game as a clear favorite, for every 1 unit advantage over the visiting team

the attendance is likely to increase by by 6 percent of the stadium size. Censored regression on

betting lines itself gives us a better interpretation. In table 12, we see that coefficient of betting

lines is negative, showing bias towards home team. Once again homwinrat and viswinrat are
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much better indicators corroborating our previous result. Stadium attendees care more about their

home team winning. We can assume that elasticity of closeness for stadium attendees is almost

zero.

If we however do the estimation team by team we see the effect of lines varying quite a bit. In

some cases such as in Arizona, fans are more interested in the visiting team rather than the home

team. When done with absolute values however we expect the coefficient to be negative, we are not

getting that but the coefficient is very close to zero. Team records are much better predictions of

the expectations of the fans.

It’s natural to think that consumers in different cities have different preferences, therefore dif-

ferent coefficients for different games and games in general. For example, people in New York might

care about Philadelphia games more than Arizona games.

A parsimonious model for the relationships between attendance and betting lines can be obtained

by specifying a team-specific random intercept ζ1j and a team-specific random slope ζ2j for (xij):

yij = β1 + β2xij + ζ1j + ζ2jxij + ǫij (17)

= (β1 + ζ1j) + (β2 + ζ2j)xij + ǫij (18)

We assume that the covariate xij is exogenous with E(ζ1j |xij) = 0, E(ζ2j|xij) = 0, and

E(ǫij |xij , ζ1j, ζ2j) = 0.

We will, as is usually done, assume that, given xij , the random intercept and random slope have

a bivariate normal distribution with zero mean and covariance matrix Σ.

Following Rossi, Allenby and McCulloch (2005), I use a hierarchical Bayesian model with a

mixture of four normal priors to account for the random coefficients. I use EM algorithm to estimate

the game day attendance. Table 13 and 14 shows the results. I then go onto show predicted Bayesian

posterior distribution for the teams.

Results are again as we predicted. Coefficient of betting lines is negative albeit very small.

However win ratio of home team again has a very high coefficient compared to win ratio of visiting

team. Figures 9-12 shows the density distribution of random coefficients we use to estimate our

model. If we make the home team’s talent increase by 1 unit relative to visiting teams, we see the
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attendance increase only by .00048%. On the other hand if we increase home team’s win record by

one unit (hypothetically), attendance increase by 5 percent. This clearly shows that home team’s

record is much more important for fans to attend. Home team fans would like to see their team

going dominant into a game.

5 Conclusion

The estimation results in Section 4 clearly shows that TV viewers and stadium attendees display

different type of preferences for the game. TV ratings are determined mostly by close games with

possibly strong teams playing each other. Figure 1 and 2 shows that maximum ratings are attained

when lines are close to zero. Moreover, big city teams are drawing bigger audiences to their games.

Coupled with this fact, it’s better to have as many close games and these games should be played

among teams that has larger fan base. On the other hand stadium attendance is determined by

home team’s dominance. In a city, fans are much more likely to attend a game if they think their

team is more likely to win. Therefore, it’s better to give some bias in the distribution of talent

to big city teams. Nevertheless, since most of the revenue is obtained through media deals we

suggest that talent distribution among the teams should be more towards an even distribution. It’s

imperative that there should be some bias towards teams that have bigger fan base. Of course,

this is a policy that should be adopted if there is a sensible revenue sharing policy throughout the

league. Here we are assuming that the NFL Commissioner acts as a Social Planner and has the

means to redistribute the revenue generated by this cartel. With a policy of this sort, it’s pretty

easy to increase the size of the total revenue league makes and increase the individual teams’ share.

Under this regime players on average are more likely to see their salaries go up as well since the

total revenue made will increase considerably thereby increasing team owners’ shares and players’

wages. If there is no redistribution of revenue in place then a policy that favors big city teams even

a little bit is bound to backfire in the future since small city teams will get weaker considerably in

time. Big city teams will likely use the revenues they make to attract better talent and get stronger

as time progresses. This should have adverse effects on player salaries on average even though a

few high talent players will likely see their wages go up much higher.

There is still more research to be done in this area. Once the demand parameters for TV Ratings
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and Stadium attendance are covered, it’s pretty straightforward to do a policy analysis as to how

the distribution should actually be done. Actual numerical experiments can be done to simulate

the effects of any redistribution of talent. One should also observe that winning percentages are

nonlinear functions of betting lines. Therefore this makes it easier to do analysis for TV Ratings.

On the other hand, for stadium attendance since we have recovered the random coefficients the

policy analysis should be done to calculate the probability of fans attending a game depending on

the betting lines. Unfortunately we do not have yet data on player salaries and player talent. The

next step in this research will be correlating the player salaries to their talent level and coming up

with profit function for the league so as to see the effects of a possibly policy like salary cap.
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A Proofs

Proof of Proposition 2.1

If at least one of the βi 6= 0, then limt1→t2 |t1 − t2|
βi = ∞, since −1 < βi < 0. Moreover,

limt1→t2
t1

t1+t2
= 1

2
. Therefore,

lim
t1→t2

(

t1

t1 + t2

)αi

|t1 − t2|
βi → ∞ (19)

Since for any other combination of (αi, βi) the total profit will be finite we conclude that max-

imum is achieved when t1 = t2. In other words, whenever closeness is important it leads our total

demand to be maximized when strengths are equal.
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A Results

Table 1: Summary statistics for TV ratings
Variable Definition Mean Std. Dev. Min. Max. N

lines Betting Lines -2.102 7.704 -43 20 1843
absline Absolute Value of Betting Lines 5.732 3.709 0 43 1843
rating TV Ratings 18.273 6.44 5.9 49.1 491
Share Share of the Ratings 37.35 11.454 11 78 491
Viswinper Visiting Team Win Percentage before game 0.500 0.275 0 1 1861
Homwinper Home Team Win Percentage before game 0.500 0.274 0 1 1861
1PM 1 if game started at 1PM ET 0.025 0.156 0 1 1934
4PM 1 if game started at 4PM ET 0.117 0.321 0 1 1934
Evening 1 if game is played on an evening 0.108 0.311 0 1 1934
Friday 1 if game is played on Friday 0.008 0.088 0 1 1934
Thursday 1 if game is played on Thursday 0.016 0.126 0 1 1934
Thanksgiving 1 if game is played on Thanksgiving 0.009 0.096 0 1 1934
Saturday 1 if game is played on Saturday 0.046 0.21 0 1 1934
Doubleheader 1 if game is a doubleheader 0.142 0.349 0 1 1934
WorldSeries 1 if game day coincides with World Series 0.011 0.104 0 1 1934
Monday 1 if game is played on Monday 0.069 0.253 0 1 1934
Playoff 1 if it’s a playoff game 0.036 0.186 0 1 1934
Superbowl 1 if it’s a superbowl game 0.005 0.068 0 1 1934
Preseason 1 if it’s a preseason game 0.038 0.191 0 1 1934
weekcount Week the game played 8.199 4.528 1 20 1861
visstreak Visiting team’s win-loss streak before the game 0.14 2.782 -13 15 1861
homestreak Home team’s win-loss streak before the game -0.005 2.882 -14 16 1861
visbase Population of visiting team’s division MSAs 3.415 0.642 2.11 5 1934
homebase Population of home team’s division MSAs 3.409 0.645 2.11 5 1934
totbase Sum of visbase and homebase 6.824 1.037 4.3 9.810 1934
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Table 2: Summary statistics for game day attendance
Variable Definition Mean Std. Dev. Min. Max. N

weekdate Week day the game played 6.494 1.554 1 7 3448
line Betting lines -2.55 5.874 -24 20 3448
week Week the game played 9.144 4.968 1 17 3448
att Attendance 64520.151 10313.258 15131 90910 3433
yearweek Year of the game 2000.668 3.994 1994 2007 3448
stdsize Stadium size 70210.216 6969.578 41203 91665 3448
viswinrat Visiting team win ratio before the game 0.502 0.262 0 1 3448
homwinrat Home team win ratio before the game 0.499 0.262 0 1 3448
monday 1 if game is played on Monday 0.068 0.252 0 1 3448
thursday 1 if game is played on Thursday 0.019 0.135 0 1 3448
friday 1 if game is played on Friday 0.009 0.093 0 1 3448
saturday 1 if game is played on Saturday 0.026 0.159 0 1 3448
sunday 1 if game is played on Sunday 0.879 0.326 0 1 3448
dif Difference between attendance and stadium size -5701.219 8804.909 -57010 14856 3433
Visteamstreak Visiting Team win-loss streak before the game 0.158 2.61 -12 15 3448
Homteamstreak Home Team win-loss streak before the game -0.125 2.656 -14 14 3448
absline Absolute value of betting lines 5.406 3.431 0 24 3448
Priceadjusted Average season ticket prices in 1994 dollars 40.622 8.679 23.93 70.48 3448
stcost Stadium cost in 1938 dollars 19647038.373 11734284.431 125000 51020166.7 3448
stdage Stadium age 19.374 13.94 0 81 3448
attratio Attendance normalized by stadium size 0.92 0.123 0.242 1.235 3433
difrat Attendance difference normalized by stadium size -0.08 0.123 -0.758 0.235 3433
Population Population of home team MSA 4155653.971 4132625.006 260000 18959938 3448
Income Income level of home team MSA 28241.209 4440.646 20645 43841.078 3448
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Figure 4: Ratings against Home Team Win Per-
centages for all games.

1
0

2
0

3
0

4
0

5
0

ra
ti
n
g

0 .2 .4 .6 .8 1
Visitingteamwinpercentage

Figure 5: Ratings against Visiting Team Win Per-
centages for all games.
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Figure 6: Attendance against betting lines for reg-
ular games all teams combined.
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Table 3: Reduced regression on log ratings for all games

Variable Coefficient (Std. Err.)
absline -0.067† (0.039)
Homewinpercentage 2.376∗∗ (0.711)
Visitingwinpercentage 1.771∗ (0.710)
1PM -0.207 (1.187)
4PM 0.225 (1.073)
Evening 1.357 (1.204)
Friday -5.832∗ (2.887)
Thursday 0.489 (1.381)
Thanksgiving 1.933 (1.561)
Saturday -3.654∗∗ (0.474)
Doubleheader 0.066 (1.008)
WorldSeries -4.522∗∗ (0.664)
Monday 3.356∗∗ (0.927)
Playoff 8.077∗∗ (0.563)
Superbowl 15.895∗∗ (1.452)
weekcount 0.232∗∗ (0.037)
visstreak 0.126∗ (0.062)
homestreak 0.094 (0.060)
visbase -0.089 (0.211)
homebase 0.517∗ (0.221)
Intercept 10.525∗∗ (1.778)

N 414
R2 0.820
F (20,393) 89.595
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 4: Reduced regressions on log ratings for playoff games

Variable Coefficient (Std. Err.)
absline -0.212 (0.179)
Homewinpercentage 8.730 (7.356)
Visitingwinpercentage 16.569∗∗ (5.972)
4PM 1.400 (0.881)
Saturday -4.402∗∗ (0.958)
Doubleheader 4.073 (2.628)
WorldSeries 0.000 (0.000)
Monday 2.957 (2.336)
Superbowl 16.069∗∗ (3.134)
weekcount 1.381∗∗ (0.343)
visstreak 0.054 (0.164)
homestreak -0.189 (0.141)
visbase -0.137 (0.686)
homebase 0.077 (0.714)
Intercept -17.003 (10.954)

N 69
R2 0.865
F (13,55) 27.21
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 5: Reduced regressions on log ratings for regular games

Variable Coefficient (Std. Err.)
absline -0.068† (0.038)
Homewinpercentage 2.602∗∗ (0.685)
Visitingwinpercentage 1.522∗ (0.694)
1PM 0.134 (1.223)
4PM 0.718 (0.999)
Evening 0.370 (1.132)
Friday -5.341∗ (2.705)
Thursday 0.641 (1.367)
Thanksgiving 2.300 (1.552)
Saturday -2.044∗∗ (0.607)
Doubleheader -1.450 (1.117)
WorldSeries -4.540∗∗ (0.611)
Monday 3.549∗∗ (1.003)
weekcount 0.185∗∗ (0.036)
visstreak 0.092 (0.067)
homestreak 0.109 (0.067)
visbase -0.093 (0.215)
homebase 0.539∗ (0.228)
Intercept 11.698∗∗ (1.774)

N 345
R2 0.598
F (18,326) 26.956
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 6: Heckman selection results
Variable Coefficient (Std. Err.)

Equation 1 : rating
absline -0.077∗ (0.036)
1PM -0.688 (1.164)
4PM -0.237 (1.059)
Evening 0.689 (1.181)
Friday -6.042∗ (2.749)
Thursday 0.628 (1.351)
Thanksgiving 1.805 (1.529)
Saturday -3.611∗∗ (0.468)
Doubleheader -0.048 (1.014)
WorldSeries -4.108∗∗ (0.644)
Monday 3.452∗∗ (0.928)
Playoff 8.418∗∗ (0.533)
Superbowl 15.678∗∗ (1.496)
weekcount 0.230∗∗ (0.036)
visbase -0.144 (0.206)
homebase 0.499∗ (0.214)
Intercept 17.629∗∗ (1.795)

Equation 2 : select
Homewinpercentage 0.957∗∗ (0.146)
Visitingwinpercentage 0.954∗∗ (0.150)
visstreak 0.040∗∗ (0.014)
homestreak 0.041∗∗ (0.014)
Intercept -1.825∗∗ (0.122)

N 1857
Log-likelihood -1877.62
χ2

(16) 1415.189

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 7: Nonlinear least squares regression of log ratings on the explanatory variables

Variable Coefficient (Std. Err.)
α 2.474∗∗ (0.107)
β -0.001 (0.003)
γ 1.655 (1.357)
τ 0.124∗∗ (0.042)
η 1.494 (1.038)
ψ 0.082∗ (0.042)
κ 1.300 (1.309)
visstreak 0.006† (0.004)
homestreak 0.005 (0.004)
onepm 0.018 (0.069)
fourpm 0.042 (0.063)
evening 0.083 (0.070)
friday -0.358∗ (0.168)
thursday 0.007 (0.081)
thanksgiving 0.155† (0.092)
saturday -0.169∗∗ (0.028)
doubleheader -0.032 (0.059)
worldseries -0.361∗∗ (0.039)
monday 0.185∗∗ (0.054)
playoff 0.374∗∗ (0.033)
superbowl 0.372∗∗ (0.085)
weekcount 0.013∗∗ (0.002)
totbase 0.014† (0.008)

N 414
R2 0.742
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 8: Semiparametric Estimation of Ratings with absline as linear variable

Variable Coefficient (Std. Err.)
absline 1.07∗ (0.752)
Homewinpercentage 3.001∗ (1.254)
Visitingwinpercentage 0.555 (0.800)
1PM 0.799 (1.311)
4PM 1.168 (1.178)
Evening 2.393† (1.317)
Friday -8.029∗ (3.214)
Thursday 0.693 (1.592)
Thanksgiving 1.867 (1.805)
Saturday -4.062∗∗ (0.509)
Doubleheader 0.574 (1.102)
WorldSeries -4.950∗∗ (0.731)
Monday 3.663∗∗ (1.002)
Playoff 8.661∗∗ (0.625)
Superbowl 15.318∗∗ (1.675)
totbase 0.108 (0.151)
weekcount 0.200∗∗ (0.047)
visstreak 0.112 (0.069)
homestreak 0.137∗ (0.064)

N 413
R2 0.825
F (19,394) 97.678
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Figure 7: Censored regression against normalized attendance difference for absolute value of betting
lines.
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Table 9: Semiparametric Estimation of Ratings of Regular games

Variable Coefficient (Std. Err.)
weekcount 0.133∗ (0.056)
Homewinpercentage 2.126∗ (0.853)
Visitingwinpercentage 1.856∗ (0.916)
1PM -2.090 (1.585)
4PM -0.025 (1.247)
Evening -0.359 (1.361)
Friday -5.129 (3.164)
Thursday 1.441 (1.633)
Thanksgiving 2.730 (1.862)
Saturday -1.676∗ (0.712)
Doubleheader -1.342 (1.274)
WorldSeries -4.686∗∗ (0.718)
Monday 3.633∗∗ (1.149)
visstreak 0.104 (0.082)
homestreak 0.084 (0.085)
homebase 0.676∗ (0.274)
visbase -0.162 (0.252)

N 344
R2 0.621
F (17,327) 31.524
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 10: Fixed effects panel estimation for attendance ratio

Variable Coefficient (Std. Err.)
absline 0.0014∗∗ (0.0005)
week -0.002∗∗ (0.000)
homwinrat 0.049∗∗ (0.007)
viswinrat 0.002 (0.006)
visstreak 0.002∗∗ (0.001)
homstreak 0.004∗∗ (0.001)
monday 0.044∗∗ (0.007)
thursday 0.027∗ (0.012)
friday 0.005 (0.018)
saturday -0.003 (0.011)
Population 0.000∗∗ (0.000)
Income 0.000∗∗ (0.000)
Intercept 0.317∗∗ (0.028)

N 3433
R2 0.169
F (43,3389) 57.623
Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Figure 9: Posterior distribution for coefficients of
betting lines.
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Figure 10: Posterior distribution for coefficients
of home team winning ratios.
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Table 11: Random effects censored regression results on attendance ratio

Variable Coefficient (Std. Err.)

Equation 1 : difrat
absline 0.002∗∗ (0.001)
week -0.002∗∗ (0.000)
homwinrat 0.057∗∗ (0.008)
viswinrat 0.002 (0.007)
visstreak 0.003∗∗ (0.001)
homstreak 0.004∗∗ (0.001)
monday 0.049∗∗ (0.008)
thursday 0.033∗ (0.015)
friday -0.015 (0.021)
saturday -0.008 (0.012)
Intercept -0.096∗∗ (0.014)

Equation 2 : sigma u
Intercept 0.068∗∗ (0.009)

Equation 3 : sigma e
Intercept 0.110∗∗ (0.001)

N 3433
Log-likelihood 1952.545
χ2

(10) 206.555

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Figure 11: Posterior distribution for coefficients
of visiting team winning ratios.
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Figure 12: Posterior distribution for coefficients
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Table 12: Censored regression on betting lines

Variable Coefficient (Std. Err.)

Equation 1 : difrat
line -0.00006 (0.0003)
homwinrat 0.059∗∗ (0.008)
viswinrat 0.002 (0.007)
week -0.002∗∗ (0.000)
visstreak 0.002∗∗ (0.001)
homestreak 0.005∗∗ (0.001)
monday 0.049∗∗ (0.008)
thursday 0.032∗ (0.015)
saturday -0.008 (0.012)
friday -0.015 (0.021)
Intercept -0.088∗∗ (0.014)

Equation 2 : sigma u
Intercept 0.068∗∗ (0.009)

Equation 3 : sigma e
Intercept 0.110∗∗ (0.001)

N 3433
Log-likelihood 1948.085
χ2

(10) 197.237

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Table 13: Random Coefficients Model with absolute value of betting lines

Variable Coefficient (Std. Err.)

Equation 1 : attratio
absline 0.002∗ (0.001)
homwinrat 0.060∗∗ (0.007)
viswinrat 0.004 (0.007)
Intercept 0.880∗∗ (0.013)

N 3433
Log-likelihood 2863.799
χ2

(3) 81.549

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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Table 14: Random coefficient estimation with betting lines

Variable Coefficient (Std. Err.)

Equation 1 : attratio
line -0.000048 (0.001)
homwinrat 0.051∗∗ (0.013)
viswinrat 0.005 (0.008)
visstreak 0.002∗∗ (0.001)
homstreak 0.004∗∗ (0.001)
week -0.002∗∗ (0.000)
monday 0.041∗∗ (0.007)
thursday 0.027∗ (0.013)
saturday -0.008 (0.011)
friday -0.012 (0.018)
Intercept 0.905∗∗ (0.015)

N 3433
Log-likelihood 2918.139
χ2

(10) 137.599

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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