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1. Introduction: A high degree of multicollinearity among the explanatory variables, ,X  of a 

linear regression model, y X uβ= + , has a disastrous effect on estimation of the coefficients, ,β  

by the Ordinary Least Squares (OLS). Several methods have been suggested to ameliorate the 

deleterious effects of multicollinearity.  

 

2. Various Methods of Estimation under Severe Multicollinearity Conditions: In what 

follows, we give a brief account of some important methods of estimation under severe 

multicollinearity conditions:  

(i). The Restricted Least Squares (RLS) Estimator of β : If we can put some restriction on the 

linear combination of regression coefficients such that ,R rβ =  then the RLS estimator of β  

denoted by *β is given by * 1 1 1 1ˆ ˆ ˆ( ) ( ) : ;S R RS R r R S X y S X Xβ β β β− − − −′ ′ ′ ′= + − = = . 

(ii). The Ordinary Ridge Regression (ORR) Estimator of β : As suggested by Hoerl and Kennard 

(1970) it is possible to mitigate the multicollinearity problem by perturbation of S matrix such 

that its principal diagonal elements are inflated. The Ordinary Ridge Regression estimator is 

given by 1ˆ( ) ( )S I X yβ κ κ − ′= + . As stated by Kaçiranlar et al., writing 1 1( )W I Sκ κ − −= + we may 

describe the ORR estimator as 1 1 1ˆ ˆ( ) ( ) .W I S S X yκβ κ β κ − − − ′= = +   

(iii). The Restricted Ridge Regression (RRR) Estimator of β : Sarkar (1992) grafted the ORR 

estimator into the RLS estimation procedure and obtained his RRR estimator given 

as * *( ) Wκβ κ β= where * 1 1 1 1ˆ ˆ ˆ( ) ( ) : ;S R RS R r R S X y S X Xβ β β β− − − −′ ′ ′ ′= + − = =  as stated 

earlier.  Since the expectation of *( )β κ = * 1 1 1[ ( )] ( )E W W S R RS Rκ κβ κ β δ− − −′ ′= + , the RRR 

estimator is always biased unless 0κ =  and ( ) 0.r Rδ β= − =  

(iv). The Liu Estimator of β : Liu (1993) introduced a family of estimators for any parameter 

( , )d ∈ −∞ +∞  given by 1 1ˆ ˆ ˆ( ) ( ) :
d

S I X y d S X yβ β β− −′ ′= + + = . The Liu estimator can be 

described as ˆ ˆ
d d

Fβ β=  for 1( ) ( ).
d

F S I S dI
−= + +  For 1d =  the Liu estimator is identical to the 

OLS estimator ˆ.β  

(v). The Restricted Liu (RL) Estimator of β : Kaçiranlar et al. (1999) grafted the Liu estimator 

into the restricted Least Squares estimation procedure and obtained a new family of estimators 

given by *ˆ
rd d

Fβ β= : ( , )d ∈ −∞ +∞ . For 1d =  the Restricted Liu estimator is identical to the 

RLS estimator *.β  The authors suggested how to choose the appropriate value of d  when 

restrictions hold or when they do not hold. Since the optimal value of d is a function of β  and 
2σ (error variance) in the population, one has to estimate it. The authors provided methods to 

obtain the estimated value of near-optimal .d  The authors also proved the superiority of the RL 

estimator to the Liu estimator.  
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Of the five methods of estimation enumerated above, the last three methods, namely, 

those of Sarkar (1992), Liu (1993) and Kaçiranlar et al. (1999) are improvements on the ORR 

estimator of Hoerl & Kennard and therefore, they inherit from ORR the property of being 

dependent on the population β  and 2.σ  

(vi). The Generalized Maximum Entropy (GME) estimator of β : Golan et al. (1996) introduced 

the Generalized Maximum Entropy (GME) estimator to resolve the multicollinearity problem. 

This estimator requires a number of support values supplied subjectively and exogenously by the 

researcher. The estimates as well as their standard errors depend on those support values. In a 

real life situation it is too demanding on the researcher to supply appropriate support values, 

which limits the application of GME.  

(vii). The Maximum Entropy Leuven (MEL) estimators of β : Paris (2001-a, 2001-b) introduced 

the Maximum Entropy Leuven (MEL) estimators. The MEL estimators exploit the information 

available in the sample data more efficiently than the OLS does; unlike the RLS or GME 

estimator they do not require any constraints or additional information to be supplied by the 

researcher, and unlike the RRR, the Liu or the Restricted Liu estimators, they do not need the 

estimated surrogate parameters (representing the population parameters) in the estimation 

procedure. The MEL1 estimator of Paris maximizing entropy in the regression coefficients β̂  is 

formulated as min 1 log( ) log( )H p p L L u uβ β β β
′ ′= + + , subject to three equality restrictions given 

as follows: (1) ; (2) ; (3) / : 0 1.y X u L and p L pβ β β ββ β β β β′= + = = Θ ≤ ≤  The symbol Θ  

indicates the element-by-element Hadamard product. The product log( ) 0 0.
i i i

p p if p= =  

Analogously, the MEL2 estimator of Paris maximizes entropy in the regression 

coefficients as well as the regression residuals. It is formulated so as to minimize 

2 log( ) log( ) log( ) log( )
u u u u

H p p L L p p L Lβ β β β
′ ′= + + +  subject to five restrictions given as: 

(1) ; (2) ; (3) / : 0 1; (4) ; (5) / :u u uy X u L p L p L u u p u u Lβ β β ββ β β β β′ ′= + = = Θ ≤ ≤ = = Θ  

0 1.
u

p≤ ≤  Additionally, the product log( ) 0 0.
i i i

p p if p= =  

(viii). An Extended Family of Maximum Entropy Leuven (MEL) estimators of β : It is possible to 

extend the family of MEL estimators by making the choice of the norm flexible in defining the 

probabilities, pβ  and .u
p . Paris used the Euclidean norm to obtain the probabilities, since 

2( ) /j jprob β β β β′= = 1/ 2 2{ /( ) } ; 1, 2,..., .j j mβ β β′ =  The same is true of the 

( ); 1,2,..., .
i

prob u i n=  Mishra (2004) used the absolute norm to obtain the ( )prob β  such that 

1

( ) / .
m

j j j

j

prob β β β
=

= �  Thus, by using the absolute norm (instead of the Euclidean norm) in 

defining the ( )
j

prob β , the author modified MEL1 estimator of Paris to obtain a new estimator – 

the MMEL (or call it MMEL1) estimator. Monte Carlo experiments carried out by the author 

showed that the MMEL estimator outperforms the MEL (that is MEL1) estimator. The idea of 

using the absolute norm in defining the probabilities may be extended to ( )
i

prob u also. 

The members of the extended MEL family of estimators may be described in terms of 

three parameters, k1= (1 or 2), k2 = (1 or 2) and k3 = (0 or 1) in the following manner: 

Min 1

1 2 3 3 3

1

( , , ) log( ) log( ) { log( ) log( )} 1{ }
n

k

u u u u i

i

H k k k p p L L k p p L L k uβ β β β
=

′ ′= + + + + − �   
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subject to the following restrictions chosen on the k3-criterion: 

2 2

3 0 1 [ (1) ; (2) ; (3) / : 0 1 ]
m

k k

j j

j

if k or then y X u L p L pβ β β ββ β β
=

= = + = = ≤ ≤�  

2 2

3

1

1 [ (4) ; (5) / :
n

k k

u i u i u

i

if k then L u p u L
=

= = =� 0 1 ].
u

p≤ ≤  

0 log( ) 0 .i i i uif p then p p for p as well as pβ= =   

In the equations above, k1 = (1 or 2) indicates the absolute or the Euclidean norm used for 

determining the length of the error term, .u  In the Least Squares formulation k1=2 is chosen such 

that 
2

1

n

i

u u u
i

=

′ =�  (� the Euclidean norm). In the LAD (Least Absolute Deviation estimation; 

Dasgupta & Mishra, 2004) one chooses k1=1 such that u u′ is replaced by 
1

i

n

i

u
=

�  (� the absolute 

norm).  The parameter k2 = (1 or 2) is the norm to be used in order to define ( )prob β or 

( ).prob u  In the MEL1 and the MEL2 of Paris (2001-b), k2 = 2 is used. However, the MMEL 

(Mishra, 2004) uses k2 = 1. The parameter k3 = (0 or 1) indicates whether the entropy of β  alone 

is minimized (k3 = 0) or the entropy of β  conjointly with the entropy of u  is minimized (k3 = 1). 

It is to be noted that LAD estimators have their own utility, especially when the error term is 

infested with large outliers. 

 
3. The objectives of the Present Investigation: The present work aims at comparing the results 

of Kaçiranlar et al. with those obtained by us applying the MEL family of estimators on the 

widely analyzed dataset on Portland cement. This dataset (see table 1) has been obtained from an 

experimental investigation of the heat evolved during the setting and hardening of Portland 

cements of varied composition and the dependence of this heat on the percentage of four 

compounds ( ; 1,2,3, 4
j

x j = ) in the clinkers from which the cement was produced.  The 

relevance of the relationship between the heat evolved and the chemical processes undergone 

while setting takes place is best stated in the words of Woods et al. (p. 1207) : “This property is 

of interest in the construction of massive works as dams, in which the great thickness severely 

hinder the outflow of the heat. The consequent rise in temperature while the cement is hardening 

may result in contractions and cracking when the eventual cooling to the surrounding 

temperature takes place.”  

 
4. Estimation of Regression Coefficients of Homogenous Model by the OLS: Wood et al. set 

up the linear regression model (without intercept term) as follows: 

1 1 2 2 3 3 4 4y X u x x x x uβ β β β β= + = + + + +     

The Ordinary Least Squares (OLS) estimates of β  presented by them (Woods et al. p.1212) are 

as ˆ (2.18 1.206 0.73 0.526).
OLS

β ′ =      

Kaçiranlar et al. re-estimated ˆ (2.1930 1.1533 0.7585 0.4863)
OLS

β ′ =  by OLS. They used 

the JMP statistical package for computations.  The difference between OLS estimates of β  

obtained by Woods et al. and Kaçiranlar et al. has been explained by Kaçiranlar et al. in the 

following words: “while the computational algorithms available today are surely more accurate 

than 65 years ago, we note that Woods, Steinour and Starke … present the values of the four 
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compounds … as integers – percentages rounded to the nearest integer – and it is possible that 

the values of these percentages which these authors used to compute their OLS estimates … 

were not so rounded.” 

We obtain ˆ (2.171 1.158 0.728 0.499)
OLS

β ′ =  by SPSS (SPSS Inc., 1996) and 

ˆ (2.170685 1.158001 0.728356 0.499202)
OLS

β ′ =  by STATISTICA (StatSoft, Inc., 1993) under 

extended precision computations. We also obtain 1ˆ
OLS

VD V X yβ − ′ ′= , where V  and D are 

eigenvectors and eigenvalues (respectively) of X X′ such that .X X VDV′ ′=  The resulting 

ˆ (2.17068539 1.15800117 0.72835584 0.49920151)
OLS

β ′ = is computed by the computer 

program (in FORTRAN 77) written by us. All computations are carried out with the double 

precision arithmetic. The results obtained by SPSS, STATISTICA and ours own program agree. 

It appears that Kaçiranlar et al. have not gone in for high precision in their computations.    

 

5. Estimation of the Nonhomogenous Model by Different Estimators: Following Hald (1952, 

pp. 648-649), Gorman & Toman (1966, pp. 35-36) and Daniel & Wood (1980, p. 89) Kaçiranlar 

et al. augment X matrix by adding a column of ones to it such that 5 (1 1 ... 1)x′ =  and fit a non-

homogenous linear regression model with intercept to the data. They obtain 

ˆ (1.5511 0.5102 0.1019 0.1441 62.4054).
OLS

β ′ = −  Running our own program we have obtained 

ˆ (1.55923438 0.53028708 0.10683607 0.12048488 60.30287081).
OLS

β ′ = −  We observe that the 

estimated coefficients of the non-homogenous regression model are at a great disagreement with 

those of the homogenous regression equation. This is due to the fact that the augmented 

(13,5)X is suffering from the multicollinearity problem. According to our computation, 1 5/λ λ = 

6414.38, where 1λ and 5λ  are the largest and the smallest eigenvalues of X X′ matrix. Kaçiranlar 

et al. obtain the said ratio = 6056.3744. Balsley’s (Belsley, et al., 1980, Ch. 3) condition number 

is obtained as 
n

C = 1449.60. All these measures suggest a very high degree of multicollinearity 

in the columns of X matrix.  

Kaçiranlar et al. estimated the nonhomogenous model described above by their Restricted 

Liu estimator, while the restrictions on β  are correct and while they are not so. The present 

study adopts them as they have been reported in their paper.  However, the MEL estimators of 

various types – including the MEL1 and the MEL2 of Paris (2001-b) and MMEL estimator of 

Mishra (2004) – have been applied to the model.  Computations have been done on a Pentium-3 

Personal Computer by running the programs written by us in Fortran 77. Double precision 

arithmetic has been used to obtain the results. The findings are presented in Table 2. 

 

6. Formulation and Estimation of an Extended Homogenous Model : In the dataset that we 

are dealing with, ; 1, 2,3,4jx j =  are measured in percentage, but they do not sum up to 100. The 

residual may be designated as 
4

5

1

100 .
j

j

x x
=

= −�  Now, if we specify our model as 
5

1

j j

j

y x uβ
=

= +� , 

we obtain a homogenous regression model with perfect multicollinearity. The 5 (1 1 ... 1)x ′=  of 

the nonhomogenous model considered earlier may be interpreted as a dummy of 
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4

5

1

100 .
j

j

x x
=

= −�  Thus, assuming of 5 (1 1 ... 1)x ′=  or otherwise has its own implications to its 

correlation with other explanatory variables as well as the errors in .y  The coefficients of 

correlation between the estimated error ( û ) obtained by different estimation methods and 5x  = 

(100 - sum( 1 2 3 4, , ,x x x x )) are between 0.25 and 0.28, although statistically insignificant at 5% 

level of significance and 11 degrees of freedom. In particular, 5
ˆ( , ) 0.2704

OLS
r x u = , 

5
ˆ( , ) 0.2535

RL
r x u =  and 5 (2,1,0)

ˆ( , ) 0.2686
MEL

r x u = . It is not unlikely that the residual chemicals 

( 5x ) is the percentage of other (relevant!) chemicals in the composition of the Portland cement. It 

may or may not have any role in evolvement of heat in the process of setting and hardening of 

cement; it is for the chemist to investigate.    

If we make an attempt to estimate the coefficients of the extended model described 

above, OLS cannot be used since the X X′ matrix is deficient in rank. However, we may obtain 

the Moore-Penrose inverse (Theil, 1971, pp. 268-270) of  X X′ given by ( ) ,X X VD V+ +′ ′=  where 

V and D  are the eigenvectors and the eigenvalues of  X X′ matrix. To obtain D+ we define 
1 0 0.

ii ii ii ii
d d if d else d

+ − += ≠ =  Thus we obtain ˆ .
OLS

VD V X yβ +

+ ′ ′=  Estimation of β  by the 

MEL estimators does not pose any problem. The results of this exercise are presented in table 3. 

 

7. A Summary of the Relative Performance of Various Estimators:  Using the OLS-estimates 

of the original  model (4-variable homogenous regression equation) coefficients as reference, 

that is ˆ (2.1707 1.1580 0.7284 0.4992)
OLS

β ′ = , we obtain the Euclidean norm of the alternative 

estimates obtained by various estimators (such as OLS
+
, RL, MEL), presented in table 4. 

Overall, the norm of RL estimates (incorrect restriction) is the largest (2.9911) followed by the 

norm of OLS (nonhomogenous model) estimates, which is 1.2403 (not shown in table 4). On the 

other end, the norm of MEL(2,1,0) is the smallest (0.0221). The MEL(2,1,0) is the MMEL 

estimator (Mishra, 2004). The MEL(2,2,1) and the MEL(1,2,1) have norm = 0.0233. The 

MEL(2,2,1) is the MEL2 of Paris. In the sequel come the estimates obtained by MEL(2,2,0), 

which is the MEL1 of Paris, MEL(2,1,1) and MEL(2,1,0) applied on the extended homogenous 

model. Now come the RL (correct restriction) estimates which has norm = 0.0364.  Further, note 

that the OLS
+
 (which is a minimum norm LS estimator) and MEL(2,2,0) ≡ MEL1 of Paris are 

identical for the extended homogenous model.  

Obviously, the RL estimator (even when it uses the correct restriction) is dominated by a 

number of members of the MEL family estimators. Moreover, MEL estimators withstand perfect 

multicollinearity without its destabilizing effects on the estimates of the regression coefficients.  

 

8. Conclusion: Our findings suggest that several members of the MEL family of estimators 

outperform the OLS and the Restricted Liu estimators. The MEL estimators perform well even 

when perfect multicollinearity is there. A few of them outperform the OLS
+
 estimator. Since the 

MEL estimators do not seek extra information from the analyst, they are easy to apply. 

Therefore, one may rely on the MEL estimators for obtaining the coefficients of a linear 

regression model under the conditions of severe multicollinearity among the explanatory 

variables.   
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Table 1. The Portland Cement Dataset (cf. Woods, Steinour and Starke, 1932) 

y′  78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5 93.1 115.9 83.8 113.3 109.4 

1x′  7 1 11 11 7 11 3 1 2 21 1 11 10 

2x′  25 29 56 31 52 55 71 31 54 47 40 66 68 

3x′  6 15 8 8 6 9 17 22 18 4 23 9 8 

4x′  60 52 20 47 33 22 6 44 22 26 34 12 12 
4

1

j

j

x
=

′�  
98 97 95 97 98 97 97 98 96 98 98 98 98 

1x =3CaO.Al2O3 ; 2x =3CaO.SiO2 ; 3x = 4CaO.Al2O3.Fe2O3 ;  4x =2CaO.SiO2 ; y = heat (calories per gram of 

cement) evolved after 180 days of curing. The matrices X and y are transposed for tabular presentation here. 

 

 

 

 

 

  

  Table 2. Estimated Coefficients of Portland Cement Dataset by RL, MEL and OLS 

                  (Non-homogenous Model 
4

5 5 5

1

: (1 1 ... 1)
j j

j

y x x u xβ β
=

′= + + =� ) 

Estimated Regression Coefficients Estimators    Specification of 

      parameters 
1β  2β  3β  4β  5β  

ˆ
RLS

d = ���� !� !�" �"� "�"#$ � ���#%$� ��&�%�� ����  �Restricted 

Liu esimator  
ˆ

RLS
d  = �� #!�� ��%!��� '��!�" � '���! �� '�� $�"� "&!��$� �

1 2 3( , , )k k k (�)!�!��*� !�"$#�� "�"%&$� ����$�� ��#�! � ��"! #�

1 2 3( , , )k k k (�)!�!�"*� !�"#!�� "�"# &� ���"$%� ��&  $� ��!$% �

1 2 3( , , )k k k (�)!�"��*� !�"#&"� "�"%!�� ���"#"� ��#�!#� '���#"��

1 2 3( , , )k k k (�)!�"�"*� !�!�!�� "�"$ !� ���&��� ��& &�� '��"!���

1 2 3( , , )k k k (�)"�"��*� !�" !%� "�"$��� ���$%�� ��& &$� ����!"�

1 2 3( , , )k k k (�)"�"�"*� !�!�! � "�"$ !� ���&��� ��& &�� '��"!���

1 2 3( , , )k k k (�)"�!��*� "� #$%� "�" "�� ���$�!� ��#�  � ����$ �

Maximum 

Entropy 

Leuven  

Family of 

Estimators  

1 2 3( , , )k k k (�)"�!�"*� !�"#!�� "�"# $� ���"$%� ��&  $� ��!$% �

���'��������+�� "�## !� ��#$�$� ��"�%�� '��"!�#� %��%#"&�OLS  

Estimator Homogenous 2.1707 1.1580 0.7284 0.4992       - 
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Table 3. Estimated Coefficients of Portland Cement Dataset by RL, MEL and OLS
+ 

              (Extended Homogenous Model 
5 4

5

1 1

: 100
j j j

j j

y x u x xβ
= =

= + = −� � ) 

Estimated Regression Coefficients Estimator    Specifications  

    k-Parameters 
1β  2β  3β  4β  5β  

1 2 3( , , )k k k (�)!�!��*� !�"%#�� "�"$%�� ���"$$� ��&�%�� ��%�%#�

1 2 3( , , )k k k (�)!�!�"*� !�"!%�� "�"#�$� ��%�� � ��& &�� ��&�!#�

1 2 3( , , )k k k (�)!�"��*� !�"#�&� "�"$�#� ������� ��&���� ��%��"�

1 2 3( , , )k k k (�)!�"�"*� !�"#%!� "�"&$!� �����#� ��& ��� ��& �"�

1 2 3( , , )k k k (�)"�"��*� !�" #%� "�"&!$� ���!#�� ��& # � '���% !�

1 2 3( , , )k k k (�)"�"�"*� !�!�$�� "�"$ $� ���&� � ��& & � '�����"�

1 2 3( , , )k k k (�)"�!��*� !�" #%� "�"&!$� ���!#�� ��& # � '���% !�

Maximum 

Entropy 

Leuven  

Family of 

Estimators  

1 2 3( , , )k k k (�)"�!�"*� !��$� � "�"#�"� �����%� ��#�#&� ��!"�$�

OLS
+
  

Estimator 
��������+�� !�"%#�� "�"$%�� ���"$$� ��&�%�� ��%�%#�

Note : The OLS
+
 and MEL(2,2,0) ≡  MEL1 of Paris are identical for the extended homogenous model. 

  

  

���������	
���������������	����������������������������������������
��	�����������
���������������������������� !���������"�������
���!#��������$�������%��������������&������'�

����������������������������������
��$���� ���������	(������"�������
��$��� 

Estimator Specification Norm 

 

Estimator�    Specification� Norm 

�
R L Estimator 

Correct Restriction 
ˆ

RLS
d = ���� !� 0.0364 

 
R L Estimator 

Incorrect Restriction�
ˆ

RLS
d  = �� #!�� 2.9911 

 

OLS
+
 Estimator 

Obtained by 

Moore-Penrose 

Inverse of X X′  

Extended  
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0.0296
 

 

 

1 2 3( , , )k k k (�)!�!��*� 0.0434 1 2 3( , , )k k k (�)!�!��*� 0.0296
  

1 2 3( , , )k k k (�)!�!�"*� 0.0233 1 2 3( , , )k k k (�)!�!�"*� 0.0605 

1 2 3( , , )k k k (�)!�"��*� 0.0221 1 2 3( , , )k k k (�)!�"��*� 0.0331 

1 2 3( , , )k k k (�)!�"�"*� 0.1184 1 2 3( , , )k k k (�)!�"�"*� 0.0308 

1 2 3( , , )k k k (�)"�"��*� 0.1124 1 2 3( , , )k k k (�)"�"��*� 0.1018 

1 2 3( , , )k k k (�)"�"�"*� 0.1184 1 2 3( , , )k k k (�)"�"�"*� 0.1186 

1 2 3( , , )k k k (�)"�!��*� 0.2199 1 2 3( , , )k k k (�)"�!��*� 0.1018 
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5 1ix i= ∀ �

1 2 3( , , )k k k (�)"�!�"*� 0.0233 
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4

5

1

100 j

j

x x
=

= −� �

1 2 3( , , )k k k (�)"�!�"*� 0.1452 

Note: The best estimator(s) under a particular model specification is (are) underlined. 

 

 

   


