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Abstract

Bayesian inference requires an analyst to set priors. Setting the right

prior is crucial for precise forecasts. By using an autoregressive distributed

lag model, this paper analyzes how optimal Litterman prior changes when

an economy is hit by a recession. The results show that a sharp economic

slowdown changes the optimal prior in two directions. First, it changes

the structure of the optimal weight prior by setting smaller weight on the

lagged dependent variable compared to variables containing more recent

information. Second, greater uncertainty brought by a rapid economic

downturn requires more space for coefficient variation which is set by the

overall tightness parameter. It is shown that the optimal overall tightness

parameter may increase to such an extent that Bayesian ADL becomes

equivalent to frequentist ADL.
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1 Introduction

Bayesian inference requires an analyst to set a prior. Setting the right prior is
crucial for precise forecasts. This paper analyzes how optimal Litterman prior
changes when an economy is hit by a recession. By an ’optimal Litterman prior’
in this paper we define Litterman hyperparameters that minimize the root mean
squared error from one-period ahead forecasts.

Although the question about what hyperparameters to use has been ad-
dressed in a series of papers by, among others, Litterman and coauthors (Litter-
man (1979), Doan, Litterman and Sims (1984), Litterman (1986)) and LeSage
and coauthors (LeSage and Magura (1991), LeSage and Pan (1995), LeSage
and Krivelyova (1999)), the role of a business cycle on the optimal prior, to
the best of our knowledge, has not been discussed. Thus, this paper analyzes
how (if any) prior hyperparameters should be altered for the best one-period
ahead forecasting performance when there is a switch in a phase of a business
cycle. For this task, an autoregressive distributed lag model (ADL) is chosen.
The prior is set up like in Litterman (1979). The model is solved by ‘mixed
estimation’ set forth in Theil and Goldberger (1961). Latvia’s gross domestic
product (GDP) was found to be well suited for the analysis. The results show
that a sharp economic slowdown changes the optimal prior in two directions.

First, a lagged dependent variable loses its dominance as the key explanatory
variable and, instead, more current information contained in leading indicator-
type variables is of greater importance to improve forecasts. This changes the
structure of the optimal weight prior, setting smaller weight on the lagged de-
pendent variable compared to variables containing more recent information.

Second, greater uncertainty brought by a swift economic downturn requires
more space for coefficient variation, which is set by the overall tightness param-
eter. Particularly, the results show that, in economic downturn, the optimal
overall tightness parameter may increase to such an extent that Bayesian ADL
becomes equivalent to frequentist ADL, which may imply that a greater uncer-
tainty in an economy requires more skills from an analyst to set the right prior
such that, during great economic uncertainty, one may become more comfort-
able using frequentist rather than Bayesian inference.

The paper is organized as follows. Section 2 describes the model and its
estimation procedure. Section 3 presents the results from a case study. Finally,
Section 4 concludes.

2 Methodology

2.1 The Model

Consider an autoregressive distributed lag model (ADL) of order (p, q):

yt =

p
∑

m=1

�myt−m +

q
∑

n=0

′
nxt−n + �′zt + �t (1)

where yt is the dependent variable, xt is a d × 1 vector of key explanatory
variables x = [x1 x2 . . . xd] , zt is (a vector of) other explanatory variable(s)
potentially containing a constant, a dummy variable for an outlying effect, etc.,
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and �t ∼ N(0, �2). The Bayesian prior is set to

�m ∼ N(1{1}(m), �2

m)

in ∼ N(0, �2

in) (2)

where 1{}() is an indicator function, m = 1, 2, . . . , p, i = 1, 2, . . . , d, and n =
0, 1, . . . , q. The specification of the standard deviation of the prior is à la Doan,
Litterman and Sims (1984):

�m = �km−�

�in = �l(1 + n)−�

(

�̂u,i

�̂u,y

)

(3)

where �̂u,y and �̂u,i are the standard errors from a univariate autoregression
involving y and xi, respectively, so that �̂u,i/�̂u,y is a scaling factor that adjusts
for varying magnitudes of the involved variables. The parameter � is referred
as the overall tightness. The terms m−� and (1+n)−� are referred as lag decay
functions for y and xi, respectively, with � ≥ 0 reflecting a shrinkage of the
standard deviation with increasing lag length. The parameters k and l specify
the relative tightness of the prior for variables y and xi, respectively. Note that,
for simplicity, we set l the same for all xi.

2.2 Estimation

The model (1) to (3) can be estimated using the ‘mixed estimation’ method set
forth in Theil and Goldberger (1961). For ease of exposition, drop zt from (1)
and rewrite it as

y = X� + � (4)

where y is the T × 1 vector of observations on the dependent variable, X the
T × (p+(q+1)d) matrix of observations on the explanatory variables with rank
p+(q+1)d, � the (p+(q+1)d)× 1 vector of coefficients, and � the T × 1 vector
of disturbances such that

E� = 0, Σ := E(��′) = �2IT×T . (5)

The Bayesian prior is included in

r = R� + �, (6)

where r is a (p+(q+1)d)×1 vector [1 0 0 . . . 0]′, R is a (p+(q+1)d)×(p+(q+1)d)
identity matrix, and � is a (p+ (q + 1)d)× 1 vector of disturbances such that

E� = 0 (7)
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and E(��′) is a (p + (q + 1)d) × (p + (q + 1)d) diagonal matrix with diagonal
elements being the variances specified in (3),

Ω := E(��′) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�2

1
0 ⋅ ⋅ ⋅ 0

0 �2

2

0 0
. . .

�2

p

... �2

10

...
�2

11

. . .

�2

d,q−1
0

0 ⋅ ⋅ ⋅ 0 �2

dq

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(8)

The sample and the independent extraneous information may be combined
by writing

[

y
r

]

=

[

X
R

]

� +

[

u
�

]

; E

[

u
�

]

= 0; E

([

u
�

]

[

u′ �′
]

)

=

[

Σ 0
0 Ω

]

. (9)

An application of generalized least squares (GLS) procedure leads to estimating
� as

�̂ =

(

[

X ′ R′
]

[

Σ 0
0 Ω

]−1 [

X
R

]

)−1

[

X ′ R′
]

[

Σ 0
0 Ω

]−1 [

y
r

]

(10)

or
�̂ =

[

X ′Σ−1X +R′Ω−1R
]−1 [

X ′Σ−1y +R′Ω−1r
]

. (11)

Normalizing R:

R̃ :=

⎡
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⎥

⎥
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and r:

r̃ :=

[

�

�1

0 0 . . . 0

]

gives E(��′) = �2I, and the GLS estimator in (11) reduces to an ordinary least
squares estimator:

�̂ =
[

X ′X + R̃′R̃
]−1 [

X ′y + R̃′r̃
]

. (12)
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Model RMSE RMSE1sthalf RMSE2ndhalf

SARMA(01)(01) 0.0328737 0.0160291 0.0436398
AR(1) 0.0275043 0.0194567 0.0336810
AR(2) 0.0263058 0.0203990 0.0311106

FADL(1,0)(D) 0.0277540 0.2011203 0.0330832
FADL(2,0)(D) 0.0289995 0.0272706 0.0306310
FADL(2,1)(D) 0.0253833 0.0196827 0.0300202
FADL(2,1)(E) 0.0257016 0.0216257 0.0292142

FADL(2,1)(D+E) 0.0247125 0.0220415 0.0271218
FADL(3,2)(D) 0.0260984 0.0216730 0.0298754
FADL(3,2)(E) 0.0257382 0.0217008 0.0292230

FADL(3,2)(D+E) 0.0253316 0.0251711 0.0254912
BADL(2,1)(D+E)(.95,.1,.8,0) 0.0239113 0.0196482 0.0275217
BADL(2,1)(D+E)(.05,1,2,0) 0.0264237 0.0258526 0.0269828

BADL(3,2)(D+E)(1,.35,.2,0) 0.0223288 0.0171109 0.0265400
BADL(3,2)(D+E)(.8,.25,.2,0) 0.0225414 0.0166686 0.0271732

Table 1: A brief comparison of SARMA, AR, FADL and BADL. The two latter
models are specified by their orders, (p, q), key exogenous variables, e.g. (D+E),
and the Bayesian ADL with a single key exogenous variable is specified by its
prior, (k,l,�,�), where prior weight w := [k l]. The least RMSE in each sample
space is framed.

3 Results

The dependent variable of the model (1) is Latvia’s quarterly GDP series from
1995Q1 till 2009Q1. The key explanatory variables x are two quarterly series,
the output in manufacturing industry (according to Nace revision 1.1 subse-
quently called D) and output in electricity, gas and water supply industry (E).
All three series are chained priced as of year 2000 and twice regularly and
once seasonally differenced. The second regular difference is performed for bet-
ter forecasting performance during the latter part of the GDP series due to a
sharp economic downturn (see Buss, 2009 for a discussion). Series D and E are
published before the GDP flash estimate is released, thus we can potentially use
these series to forecast GDP before its other components are known. The model
may contain a constant and other explanatory variables, all contained in z in
(1). All calculations are performed in Scilab with the aid of its econometrics
toolbox Grocer.

3.1 Warm-up

To start, Table 1 shows root mean squared forecast errors (RMSE) for the
whole sample, the first half of the sample (RMSE1sthalf) and the second half of
the sample (RMSE2ndhalf) from one-period ahead pseudo real-time forecasts
beginning at sample size 17 from simple benchmark seasonal autoregressive
moving average model (SARMA), autoregressive models (AR), and frequen-
tist and Bayesian autoregressive distributed lag models (FADL and BADL, re-
spectively) of order (p, q) with explanatory variable in parenthesis. Notation
(D+E) means the variables are summed to result in a single explanatory vari-
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able. The Bayesian counterpart of ADL requires to specify the hyperparameters
for (3), called Litterman prior consisting of four parameters, k, l, �, and �, with
w := [k l] for one-dimensional x. The forecasts are called pseudo real-time be-
cause they are made on the revised values of left-hand-side and right-hand-side
variables in (1); although the revisions for the specific variables used in this anal-
ysis tend to be relatively small, they might underestimate RMSE. Nonetheless,
this does not harm for our purpose.

The sample is split in halves because the first half contains a smooth growth
whereas the second half contains rapid economic downturn (see the GDP series
in Figure 1), so we can analyze how the forecasting performance of the models
changes with the business cycle and, especially, how Bayesian prior has to be
altered for the best forecasting performance.

Figure 1 about here

The least RMSE in each column is framed. It can be seen that Bayesian ADL
models compare well with other models. It can also be seen that the BADL(3,2)
models give the most precise one-period ahead forecasts for the whole sample
as well as for the first half of the sample among all the ADL models considered,
but they are outperformed by FADL for the second half of the model. This
observation suggests that the optimal Bayesian prior might be different for the
first half of the model (smooth positive growth) compared to the second half of
the sample when there is a rapid economic downturn. We check this hypothesis
further by employing grid search for the optimal prior.

3.2 Search for optimal priors

First, the grid search is performed for BADL(2,1)(D+E). The weight vector [k
k] is 2-dimensional, one element, k, for the dependent variable and one, l, for
a single explanatory variable x, both ranging from .05 to 1 with step size .05.
The overall tightness, �, is set to range from .6 to 2.5 with step .1, and the
lag decay, �, from 0 to 1 with step .2. So, the grid size is 20 × 20 × 20 × 6
containing overall 48000 prior combinations for each one-period ahead forecast
with sample size ranging from 17 to 51. The minimum RMSE for the whole
sample is attained at the coordinate [19 2 3 1] with the corresponding values [k
l � �]=[.95 .1 .8 0] with a boundary value at � = 0. The boundary for � can not
be decreased further since negative values would presume lags of a higher order
be more informative which is counterintuitive. Figures 2(a) and 2(b) show the
inverse of the RMSE as a function of the prior for the whole sample.

Figure 2 about here

Figure 2(a) shows the inverse of the RMSE as a function of the weight vector
(the x and y axes represent k and l, respectively) given the rest of parameters,
� and �, at their RMSE-minimizing values. It can be seen that the values of
k have the major impact on the RMSE with acceptable range about (.4,1),
otherwise the RMSE increases substantially. On the contrary, values of l have
less influence on the RMSE given k, nonetheless, a peak is evident at l = .1 for
all acceptable values of k.

Similarly, Figure 2(b) shows the inverse of the RMSE as a function of � and
� (representing x and y axes, respectively) given the RMSE-minimizing weight
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vector. It can be seen that the values of both � and � have a nontrivial impact
on RMSE at its optimum with the maximizing values .8 and 0, respectively.
The maximizing value of � = 0 might be due to the small number of lags, which
is one for each RHS variable in this model.

Now, calculating the minimum RMSE for the second half of the sample, the
optimum value is attained at the coordinate [1 20 15 1] with the corresponding
values [k l � �]=[.05 1 2 0] with three boundary values for k, l and �. It can
already be seen that the optimal prior weight is different compared to the full
sample. Figures 2(c) and 2(d) show the inverse of the RMSE as a function of the
prior for the second half of the sample. Figure 2(c) looks almost like the inverse
of Figure 2(a). Now, the RMSE is increasing with k, with an optimum at the
lowest k considered; other values of k would significantly increase the RMSE at
all levels of l, the latter being also critical for optimal RMSE with acceptable
range about (.3,1), otherwise the forecast error increases substantially. This
observation is in line with our hypothesis that, during sharp decline in the
economy, explanatory variables containing most recent information are more
important than the lagged dependent variable.

Figure 2(d) shows that, for the second half of the sample, the optimal tight-
ness parameter is higher compared to the full sample, with acceptable values
in about (1,2.5), otherwise the forecast error increases substantially. This ob-
servation is as expected since the model coefficients should be given more flex-
ibility during a rapid change in an economy. For acceptable �, the values of
lag decay parameter, �, is of less importance. The forecasting performance of
BADL(2,1)(D+E) for the first half of the sample is not impressive and thus not
presented here.

Having explored BADL(2,1)(D+E), we now check the results for BADL(3,2)
(D+E) whose forecasting performance for all sample spaces considered, as it can
be seen in Table 1, is promising. The grid space is formed by k and l being from
.05 to 1 with step .05, � from .1 to 1 with step .1, and � from 0 to 1 with step
.1. The coordinate for the least RMSE for full sample is [20 7 2 1] with the
prior values [k l � �]=[1 .35 .2 0], showing some resemblance with the results for
BADL(2,1)(D+E). The inverse RMSE for full sample around the optimal prior
values is shown in Figures 3(a) and 3(b). The behavior of the inverse RMSE
around its optimal value is similar to that of BADL(2,1)(D+E).

Figure 3 about here

We can see from Table 1 about the model’s BADL(3,2)(D+E) comparatively
competitive forecasting performance for the first half of the sample. Figures
3(c) and 3(d) show the inverse RMSE around its optimum as a function of prior
parameters for the first half of the sample. We see that the results are similar
to the results from a full sample with optimal k = .8, l = .25, � = .2 and � = 0.
It can also be seen that l has more influence on the RMSE compared to the full
sample, with lowest RMSE concentrating on the lowest part of l space.

Regarding the results for the second half of the sample, the coordinate of the
optimal value is [20 20 10 1], with all values being at a boundary and suggesting
a greater � (i.e., more flexibility for coefficient values). An extensive search for
the optimal � resulted to its value around 105 with RMSE being the same as
for FADL(3,2)(D+E) at least up to and including the 7tℎ digit after a comma,
shown in Table 1. The latter result might suggest that during a sharp decline
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in an economy one might wish to set the overall tightness parameter, �, so loose
that one is more comfortable to use frequentist version of ADL.

4 Conclusions

Bayesian inference requires an analyst to set priors. Setting the right prior is
crucial for precise forecasts. This paper analyzes how optimal prior changes with
business cycle, specifically, when an economy is hit by a recession. Latvia’s GDP
is well suited for this analysis. The results show that when economy is growing,
the optimal overall tightness parameter is less than one, and the optimal weight
vector sets a higher weight on a lagged dependent variable compared to other
explanatory variables. However, a swift economic downturn changes the optimal
prior considerably in two directions.

First, a lagged dependent variable loses its dominance as the key explanatory
variable and, instead, more current information contained in leading indicator-
type variables is of greater importance to improve forecasts. This changes the
structure of the weight prior, setting smaller weight on the lagged dependent
variable compared to variables containing more recent information.

Second, greater uncertainty brought by a rapid economic downturn requires
more space for coefficient variation, which is set by the overall tightness param-
eter. Particularly, the results show that, in economic downturn, the optimal
overall tightness parameter may increase to such an extent that Bayesian ADL
becomes equivalent to frequentist ADL, which may imply that a greater uncer-
tainty in an economy requires more skills from an analyst to set the right prior
such that, during great economic uncertainty, one may become more comfort-
able using frequentist rather than Bayesian inference.
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