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Abstract 

 

The yuan-dollar returns prior to the 2005 revaluation show a Sierpinski triangle in an 

iterated function system clumpiness test.  Yet the fractal vanishes after the revaluation.  

The Sierpinski commonly emerges in the chaos game, where randomness coexists with 

deterministic rules [2, 3].  Here it is explained by the yuan’s pegs to the US dollar, 

which made more than half of the data points close to zero.  Extra data from the 

Brazilian and Argentine experiences do confirm that the fractal emerges whenever 

exchange rate pegs are kept for too long. 
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1. Introduction 

 

China introduced market reforms in the early 1980s.  Only a third of the economy is 

now directly state-controlled.  The country has become a global economic force and 

joined the World Trade Organization in 2001.  It currently exports more information 

technology goods than the United States.  It also created a commodity-market boom, 

and turned into the world’s third largest car market.  Over a dozen Chinese companies 

are on the Fortune 500 list. 

From 16 June 1994 to 21 July 2005 China pegged its currency, the yuan, at 8.28 

to the dollar.  Following the 2005 revaluation the yuan’s central rate against the dollar 

was shifted by 2.1 percent, to 8.11. From then on, the yuan is said to be linked to a 

basket of currencies, the central parities of which are set at the end of each day.  The 

Chinese central bank called it a “managed floating exchange-rate regime”.  Yet as of 30 

March 2006, the yuan has risen by a mere one percent against the dollar (left-hand chart 

in Figure 1).  Zhou Xiaochuan, the central bank’s governor, said that he understood it 

was in China’s interest to make the yuan more flexible over time, but that this needed to 

be gradual. 

US political pressure on the yuan is mounting, as a result.  Yet it seems 

reasonable for the Chinese government not to allow the yuan rise much against the 

dollar while the dollar itself remains climbing.  The yuan has risen against the euro, and 
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its trade-weighted value rose in 2005 (Figure 1).  And the trade-weighted rate has a 

much greater effect on both China’s economy and the world’s. 

The yuan’s revaluation of 2005 was not the first big episode of foreign exchange 

intervention (Figure 2).  However, the last revaluation brought a fundamental change.  

Prior to the revaluation, a mix of intervention and random shocks hitting China’s trade 

balance generated a fractal pattern in the yuan-dollar rate series [1].  The fractal, a 

Sierpinski triangle, is indicative that the Chinese central bank was playing the “chaos 

game” [2, 3].  The fractal vanishes from 22 July 2005 on (Figure 8), though some 

pattern can still be detected. 

Section 2 details the concepts above and presents analysis.  Section 3 explains 

the origin of the yuan’s fractal structure.  And Section 4 concludes. 

 

2. Analysis 

 

Daily data from the yuan-dollar rate were taken from the Federal Reserve website.  It 

ranges from 2 January 1981 to 31 March 2006.  Figure 2 displays the time evolution of 

rate Zt together with single returns Xt = Zt – Zt–1.  We consider 0=tX  whenever 

0001.0|| 1 ≤− −tt ZZ .  The spikes correspond to the biggest episodes of foreign exchange 

intervention (Xt > 0.05).  Figure 3 shows the probability density function in logs with 

the days of intervention dropped.  A stationary ARMA seems inadequate to model data.  

Indeed there is marked asymmetry and a peak higher than that of a Gaussian 

distribution.  (Figure 4 shows pieces of the entire series.) 

 Figure 5 shows the autocorrelation and partial autocorrelation functions for Xt.  

The autocorrelations are not significantly different from zero after the first lag.  Thus we 

cannot dismiss Xt as an uncorrelated random process.  We carried out other statistical 

tests and they also failed to detect autocorrelation (Table 1).  Because distinguishing an 

IID process from a non-IID is not possible on the basis of second order properties, we 

also considered higher order ones and took squared single returns.  But all these failed 

to detect autocorrelation.  However, autocorrelation is clear-cut for portions of data 

(Figure 6). 

 Then we performed an iterated function system (IFS) clumpiness test using SAS 

(and also Chaos Data Analyzer [4]).  Here while white noise fills a screen uniformly, 

correlated noise generates localized clumps.  And, indeed, the data idiosyncratically 

clump together and form a Sierpinski triangle (upper chart in Figure 7).  More than half, 

64 percent to be precise, of the data points near zero.  This is due to exchange rate pegs.  

Also, 16 percent are positive values, and 20 percent are negative values.  Commonly the 

Sierpinski stems from a deterministic rule implemented in a random fashion.  This is the 

chaos game [2, 3, 5].  Here the deterministic rules can be thought of as the central bank 

interventionist behavior over the pegs, while defending the yuan against random shocks.  

Figure 8 shows the IFSs for portions of data.  The fractal vanishes after the 2005 

revaluation. 

The IFS, the chaos game representation, and the results above are now explained 

in more detail (this borrows in part from [6]).  An iterated function system is a set of 

functions 2 2:if ℜ →ℜ  where ( ) ( ) , 1 ,i i if M i nθ θ θ θ= − + ≤ ≤  θ is any point ( , )r s , 

( , )i r sθ  is a given fixed point on the plane associated with each particular if , and 

(0,1)M ∈  is a multiplier. 

Thus each function if  is a linear contraction of the plane. If we take 

( ) ( ) ( ) ( )i i i i if f Mθ θ θ θ θ θ= = − + −  for any given function if  and an arbitrary point 
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( , )r sθ , then the distance between the arbitrary point θ and the fixed point iθ  will 

decrease by a factor of M.  Since (0,1)M ∈ , the arbitrary point θ will approach the fixed 

point iθ . So multiplier M is called the contraction factor of the function. 

For any point ( , )r sθ , if one iterates the function if , the result will converge to 

the fixed point ( , )i ir sθ  regardless of the value of (0,1)M ∈ .  The sequence of points in 

the plane obtained as the result of iterating each of the if  functions of a given point 

0 0( , )r sθ  is called the orbit of 0 0( , )r sθ . The fixed point is called the seed. 

A simple graphical technique using the IFS is the chaos game algorithm [2], 

which aims to map a sequence of numbers into a subset of 2ℜ .  The chaos game 

algorithm thus produces a visual representation of the sequence of random numbers.  

The technique is intended as a visual aid to more conventional statistically-oriented 

methods to find non-randomness within pseudo random data sets. 

The chaos game algorithm uses the IFS with particular constraints, namely (1) a 

probability iπ  is associated with each function if ; (2) M = ½, which means that the 

midpoint of a current point and the fixed point ( , )i ir s  is taken when evaluating ( )f θ ; 

(3) introduction of a mechanism for generating a sequence of random numbers in the 

interval (0,1)  which corresponds to the probabilities iπ  given in the IFS table; and (4) 

choice of a seed point 2

0 0( , )r s ∈ℜ .  An additional implementation is to choose the 

number of vertices to be used, since each equation if  is generally associated with a 

vertex of a geometric figure.  Four vertices are usually taken because this can be easily 

mapped to the corners of a computer display.  The resulting image is referred to as the 

chaos game representation. 

To apply (or “play”) the chaos game algorithm given a seed point 0 0( , )r s  is to 

use a random number to select the j
th

 equation, jf .  The point 0 0( , )jf r s  is plotted. With 

the next play, 0 0( ( , ))k jf f r s  is plotted, then 0 0( ( ( , )))i k jf f f r s , and so on. This process is 

iterated for some large number of steps.  The orbit that is created will, with a probability 

of 1, tend toward the same orbit for any initial seed point in 2ℜ . 

If the numbers are random, then the figure generated will tend toward the orbit.  

If the numbers are not random, or there exists correlation in data, then one may find 

features in the visual representation of the sequence corresponding to these anomalies. 

Suppose that the chaos game is played with a randomly generated time series 

nttW 31}{ ≤≤ .  Then sort this sequence as (1) (2) (3 )nW W W≤ ≤ ≤ , where each )(kW  is the k
th

 

order statistic from nttW 31}{ ≤≤ .  Now divide the sequence equally into three parts 

nttW ≤≤1)( }{ , ntntW 2)( }{ ≤< , and ntntW 32)( }{ ≤< .  One can thus define the IFS as follows.  Step 

1: choose a seed point 2

0 0( , )r s ∈ℜ .  Step 2: for t = 1 to 3n, 

if nttt WW ≤≤∈ 1)( }{  then make 10.5( 1)t tr r −= +  and 10.5( 1)t ts s −= + ; 

 if ntntt WW 2)( }{ ≤≤∈  then make 10.5( 0)t tr r −= +  and 10.5( 1)t ts s −= + ; and 

 if ntntt WW 32)( }{ ≤≤∈  then make 10.5( 0)t tr r −= +  and 10.5( 0)t ts s −= + . 

Step 3: stop.  The output will be a Sierpinski triangle similar to that in Figure 7. 

 However, if nttW 41}{ ≤≤  is sorted and divided into four equal parts nttW ≤≤1)( }{ , 

ntntW 2)( }{ ≤< , ntntW 32)( }{ ≤< , ntntW 43)( }{ ≤< , and the line 

if ntntt WW 43)( }{ ≤≤∈  then make 10.5( 1)t tr r −= +  and 10.5( 0)t ts s −= +  
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is added to the routine in step 2, the output will be data points uniformly dense in the 

screen, such as those in Figure 14.  Interestingly, our results for the yuan-dollar returns 

show a situation where the Sierpinski triangle emerges in the latter case.  That happens 

because one out of the four rules (defined to move a point) is inactive.  Put it differently, 

there is a dimension reduction of the game.  As if one rolls a four-sided dice and one of 

the sides almost never come up. 

The first quartile 1χ , the median 2χ , and the third quartile 3χ  are values 

satisfying (1) 1( ) 0.25tP X χ≤ ≥  and 1( ) 0.75tP X χ≥ ≥ ; (2) 2( ) 0.50tP X χ≤ ≥  and 

2( ) 0.50tP X χ≥ ≥ ; and (3) 3( ) 0.75tP X χ≤ ≥  and 3( ) 0.25tP X χ≥ ≥  (e.g. [9]).  If 64 

percent of the data points are null (as in the Chinese pegs), then 1χ  = 2χ  = 3χ  = 0 

satisfies these three conditions.  In such a situation the dimension of the chaos game is 

reduced. 

Figures 9 and 10 present scatterplots of Xt against Xt–1.  These suggest a 

nonlinear deterministic structure given by 11 −−= ttt XJX , where 1−tJ  is a deterministic 

input with states varying from –5 to +5 by fixed amount 0.25.  It is assumed that 

1 0tJ − =  whenever either 01 =−tX  or 0tX = .  The J can be thought of as representing 

episodes of central bank intervention.  We find this model to be valid for 70 percent of 

the dataset; and state 01 =−tJ  alone represents 64 percent of data.  Figure 11 shows that 

episodes of intervention are more frequent from 16 June 1994 on (apart from the 

interventions 01 =−tJ  and 11 ±=−tJ ).  And state 11 ±=−tJ  dominates from 16 June 

1994 to 14 December 2004.  This is not so surprising because 16 June 1994 is the date 

of launching of the 11-year-old peg.  Interventions are also less frequent after the 2005 

revaluation. 

The IFS tests (Figure 8) cannot track single episodes of intervention.  This is 

because the IFS cannot distinguish deterministic zeros from random zeros.  To illustrate 

this, consider a model with nonadditive noise [1] given by 11 −−= ttt XAX , where 1−tA  is 

an intrinsic random variable with conditional distribution 

( ) 







+

−=≠< −− 2111
)1(2

1
10|

a
pXaAP tt  if a > 0, 

( ) 







−

=≠< − 221
)1(2

1
0|

a
pXaAP tt  if a < 0, and 

( ) 311 0|0 pXAP tt =≠= −− , 

where 1321 =++ ppp , and 1 2 30 , , 1p p p< < .  Moreover 

( ) 








+
−==< −

1)1(2

1
10|

1

11 βα x
qXxXP tt  if x > 0, 

( ) 








−
==< −

2)1(2

1
0|

2

21 βα x
qXxXP tt  if x < 0, and 

( ) 31 0|0 qXXP tt === − , 

where 1321 =++ qqq , 1 2 30 , , 1q q q< < , and 0, >βα  are the distribution parameters. 

 Figure 12 shows 6,000 realizations of this model calibrated with probabilities 1p  

= 2p  = 0.36, 3q  = 0.74, 1q  = 2q  = 0.115, and 3q  = 0.77, and with parameters 

5.321 ==αα , and 74721 == ββ .  The model replicates part of the yuan behavior [1] 

because the dominant patterns are not consequence of the deterministic inputs J. 



 5

We can also focus on the period after the 2005 revaluation.  Thanks to the fewer 

observations, we discard the use of a GARCH model.  Yet the autocorrelations (Figure 

6) (significant at lags 5, 15, and 16) suggest a cyclical pattern each trading week.  This 

subset of data can then be modeled by an adjusted autoregressive model such as 

1 5 160.0005 0.14 0.43 0.19t t t t tX X X X a− − −= − − − + + , where ta  is white noise with zero 

mean and estimated variance 68.3 10−× .  Coefficients’ P values fall short of 5.5 percent.  

And the model presents the smaller value in Schwarz criterion (Table 2).  As a result, 

mean returns can be predicted using returns of 1, 5, and 16 previous days.  Obviously 

the model is useful as a trend-tracker only, since its explanation coefficient is too low 

(0.22).  Despite that, it can still account for more than 1/5 of the total variation of 

returns. 

 

3. Explaining the origin of the yuan’s fractal structure 

 

The Sierpinski triangle in data prior to the last revaluation seems to originate from the 

yuan’s exchange rate pegs.  These made more than half of the returns’ data points close 

to zero.  To evaluate the hypothesis that it is the amount of zeros in data that causes the 

fractal structure, we shuffled the yuan-dollar returns dataset only to have the Sierpinski 

appearing again (not shown).  Generally, taking pseudo-random numbers (Figure 13) 

with more than 50 percent of zeros ( 1 2 3 0χ χ χ= = = ) suffices to generate the fractal in 

an IFS clumpiness test. 

This can also be confirmed by extra actual data.  We take these from Brazil and 

Argentina because these countries also experienced exchange rate pegs recently.  (Data 

are from the Fed and Oanda websites respectively).  Data from the Brazilian real–US 

dollar returns during the “exchange rate anchor” over the period 3 January 1995−12 

January 1999 present 11.4 percent of zeros, 58.2 percent of positive values, and 30.4 

percent of negative values ( 1 2 30.0002, 0.0002, 0.0009χ χ χ= − = = ).  This peg of the 

exchange rate was not enough to produce the fractal in an IFS test (Figure 14). 

Yet the Sierpinski also emerges for the Argentine peso during the “currency 

board” (1991−2002).  Data from 29 April 1998 to 31 December 2002 show 76.7 percent 

of zeros, 12 percent of positive values, and 11.3 percent of negative values 

( 1 2 3 0χ χ χ= = = ).  The peg was enough to produce the chaos game (Figure 15). 

 Finally we say a few words about the underlying dynamics of our findings.  Let 

tY  be the yuan-dollar returns’ time series with the episodes of intervention dropped.  

The interventions tJ  are seen as dichotomous, i.e. 0=tJ  if an intervention occurs at 

time t, and 1=tJ  in the absence of intervention.  Then define a new series of returns as 

a mixture of two time series given by t t tX Y J= .  The Sierpinski triangle emerges from 

the IFS as the probability of state 0=tJ  increases.  Actually the yuan-dollar returns 

present more than two states tJ  (Figure 11).  But state 0=tJ  is dominant, and this is 

reflected in the IFS.  The same is true as for the Argentine peso-dollar returns, but this is 

not so for the Brazilian real-dollar returns. 

 

4. Conclusion 

 

The yuan-dollar returns prior to the 2005 revaluation exhibit a Sierpinski triangle in an 

IFS clumpiness test.  The presence of this type of determinism in data suggests that 

China played the “chaos game” with its currency over the period. 
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The fractal pattern vanishes after the 2005 revaluation, though behavior does not 

become purely random.  An adjusted autoregressive model of the period can account for 

more than 1/5 of the total variation of returns. 

The Sierpinski in data can be explained by the yuan’s exchange rate pegs, which 

made more than half of the observations close to zero.  Shuffling the yuan-dollar returns 

data still produces the Sierpinski.  Generally, a pseudo-random series with more than 50 

percent of zeros generates the fractal.  And data from the Brazilian and Argentine 

experiences of exchange rate pegs do confirm that the Sierpinski originates from the 

amount of zeros in the time series. 
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Test Null 

Hypothesis 

H0 

Alternative 

Hypothesis 

HA 

Statistic of Test P-Value Decision 

Ljung-Box Type1 White Noise No White Noise 4.67 with 120 

Degrees of 

Freedom 

~1.000 

Durbin-Watson2 ρ(h) = 0 

where ρ(h) is 

Correlation 

Between X(t) 

and X(t + h) 

ρ(h) ≠ 0 About 2.00 for h 

= 1, 2, 3,..., 200. 

> 

0.5000 

McLeod–Li3 Data Set is an  

IID Gaussian 

Sequence 

Data Set is not 

an IID Gaussian 

Sequence 

0.07 with 50 

Degrees of 

Freedom 

~1.000 

Turning Points3 501 ~1.000 

Difference–Sign3 405 ~1.000 

Rank Test3 

Data Set is an 

IID Sequence 

Data Set is not 

an IID Sequence 

489.248 ~0.9965 

One 

Cannot 

Reject H0 

 

Table 1. Autocorrelation tests for the presence of white noise. 
 

Notes 

1 SAS/ETS/PROC ARIMA Version 8.2 

2 SAS/ETS/PROC AUTOREG Version 8.2 

3 ITSM96, Program PEST [8] 

 

 

 Estimate Std Error t Value Pr > |t| Lag 

Moving Average −0.0004767 0.0001573 −3.03 0.0028 0 

AR(1, 1) −0.13605 0.07009 −1.94 0.0539 1 

AR(1, 2) −0.43492 0.07748 −5.61 < 0.0001 5 

AR(1, 3) 0.19106 0.09112 2.10 0.0375 16 

 

Table 2. Schwarz criterion for model selection for the subset of data after the 2005 

revaluation. 
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Source: Thomson Datastream, J. P. Morgan Chase, The Economist 

 

Figure 1. The yuan. 
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Figure 2. The yuan-dollar exchange rate (upper chart) and the single returns (lower 

chart), from 2 January 1981 to 31 March 2006.  The five vertical dotted lines represent 

dates 3 July 1986, 8 April 1991, 31 May 1994, 30 November 1997, and 21 July 2005 

respectively. 
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Figure 3. Probability density function (in logs) of the yuan-dollar returns with the 

biggest episodes of intervention dropped. 
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Figure 4. Subsets of data.  Periods 2 January 1981−3 July 1986, 7 July 1986–8 April 

1991, 9 April 1991–31 May 1994, 1 June 1994–30 November 1997, 1 December 1997–

21 July 2005, and 22 July 2005−31 March 2006 respectively. 
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Figure 5. Autocorrelation function (upper chart) and partial autocorrelation function 

(lower chart) for the entire dataset.  The autocorrelations do not significantly depart 

from zero after the first lag. 
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Figure 6. Autocorrelation functions (left-hand charts) and partial autocorrelation 

functions (right-hand charts) for subsets of data.  Periods 9 April 1991–31 May 1994, 1 

June 1994–30 November 1997, 1 December 1997–21 July 2005, and 22 July 2005−31 

March 2006 respectively.  Now there is evidence of autocorrelation. 
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Figure 7. IFS clumpiness test for the entire dataset. 
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Figure 8. IFS clumpiness tests for subsets of data.  From left to right, periods 2 January 

1981−3 July 1986, 7 July 1986–8 April 1991, 9 April 1991–31 May 1994, 1 June 1994–

30 November 1997, 1 December 1997–21 July 2005, and 22 July 2005−31 March 2006.  

The Sierpinski triangle emerges in the first three and fifth cases, and it disappears after 

the 2005 revaluation. 

 

 

 

 



 16

 
Figure 9. Scatterplot for the entire dataset of Xt against Xt–1 with the major episodes of 

intervention Xt, Xt–1 > 0.05 dropped. 
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Figure 10. Scatterplots for subsets of data of Xt against Xt–1 with the major episodes of 

intervention Xt, Xt–1 > 0.05 dropped.  From left to right, periods 2 January 1981−3 July 

1986, 7 July 1986–8 April 1991, 9 April 1991–31 May 1994, 1 June 1994–30 

November 1997, 1 December 1997−21 July 2005, and 22 July 2005−31 March 2006 

respectively. 
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Figure 11. Episodes of foreign exchange intervention tJ . These are more frequent 

during the 11-year-old peg. 
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Figure 12. Behavior of stochastic model 11 −−= ttt XAX . 
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              a           b 

 
             c           d 

 
             e           f 

 

Figure 13. Pseudo-random numbers with (a) more than 50 percent of zeros 

( 1 2 3 0χ χ χ= = = ); (b) 40.3 percent of zeros ( 1 2 30.06, 0, 0.74χ χ χ= − = = ); (c) 20.6 

percent of zeros ( 1 2 30.16, 0, 0.74χ χ χ= − = = ); (d) 10 percent of zeros 

( 1 2 30.20, 0, 0.74χ χ χ= − = = ); (e) 50 percent of zeros and 40 percent of positive values 

( 1 2 30.15, 0χ χ χ= − = = ); and (f) 50 percent of zeros and 40 percent of negative values 

( 1 2 30, 0.74χ χ χ= = = ). 
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Figure 14. IFS test for the Brazilian real–US dollar returns over the “exchange rate 

anchor” (3 January 1995−12 January 1999).  11.4 percent of the data points near zero. 
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Figure 15. IFS test for the Argentine peso in the “currency board” (29 April 1998−31 

December 2002).  76.7 percent are zeros, 12 percent are positive values, and 11.3 

percent are negative values ( 1 2 3 0χ χ χ= = = ). 
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