Gerasimou, Georgios (2009): Consumer theory with bounded rational preferences.

PDF
MPRA_paper_18673.pdf Download (258Kb)  Preview 
Abstract
The neoclassical consumer maximizes utility and makes choices by completely preordering the feasible alternatives and weighing when indifferent. The consumer studied in this paper chooses by weighing when indifferent and also when indecisive, without necessarily preordering the alternatives or exhausting her budget. Preferences therefore need not be complete, transitive or nonsatiated but are assumed strictly convex and "adaptive". The latter axiom is new and parallels that of ambiguity aversion in choice under uncertainty.
Item Type:  MPRA Paper 

Original Title:  Consumer theory with bounded rational preferences 
Language:  English 
Keywords:  preferences: incomplete, intransitive, convex, adaptive; representation; demand. 
Subjects:  D  Microeconomics > D0  General > D03  Behavioral Economics; Underlying Principles D  Microeconomics > D1  Household Behavior and Family Economics > D11  Consumer Economics: Theory D  Microeconomics > D0  General > D01  Microeconomic Behavior: Underlying Principles 
Item ID:  18673 
Depositing User:  Georgios Gerasimou 
Date Deposited:  16. Nov 2009 15:21 
Last Modified:  12. Feb 2013 02:38 
References:  [1] N. AlNajjar, Nontransitive smooth preferences, Journal of Economic Theory 60 (1993) 14–41. [2] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, 3rd edition, Berlin Heidelberg: Springer, 2006. [3] R. J. Aumann, Utility theory without the completeness axiom, Econometrica 30 (1962) 445–462, (A correction. Econometrica 32 (1964) 210212.). [4] T. C. Bergstrom, R. P. Parks, T. Rader, Preferences which have open graphs, Journal of Mathematical Economics 3 (1976) 265–268. [5] T. F. Bewley, Knightian decision theory. Part I, Cowles Foundation Discussion Paper No. 807. Reprinted in Decisions in Economics and Finance 25 (2002) 79110. [6] K. C. Border, A core existence theorem for games without ordered preferences, Econometrica 52 (1984) 1537–1542. [7] E. Danan, A. Ziegelmeyer, Are preferences complete? An experimental measurement of indecisiveness under risk, Mimeo. [8] J. Dubra, F. Macheroni, E. A. Ok, Expected utility theory without the completeness axiom, Journal of Economic Theory 115 (2004) 118–133. [9] K. Eliaz, E. A. Ok, Indifference or indecisiveness? Choicetheoretic foundations of incomplete preferences, Games and Economic Behavior 56 (2006) 61–86. [10] L. G. Epstein, The unimportance of the intransitivity of separable preferences, International Economic Review 28 (1987) 315–322. [11] O. Evren, E. A. Ok, On the multiutility representation of preference relations, Mimeo. [12] P. C. Fishburn, Nontransitive measurable utility, Journal of Mathematical Psychology 26 (1982) 31–62. [13] V. Fon, Y. Otani, Classical welfare theorems with nontransitive and noncomplete preferences, Journal of Economic Theory 20 (1979) 409–418. [14] J. Fountain, Consumer surplus when preferences are intransitive: Analysis and interpretation, Econometrica 49 (1981) 379–394. [15] D. Gale, A. MasColell, An equilibrium existence theorem for a general model without ordered preferences, Journal of Mathematical Economics 2 (1975) 9–15, (Corrections. Journal of Mathematical Economics 6 (1979) 297298.). [16] I. Gilboa, D. Schmeidler, Maxmin expected utility with nonunique prior, Journal of Mathematical Economics 18 (1989) 141–153. [17] D. M. Grether, C. R. Plott, Economic theory of choice and the preference reversal phenomenon, American Economic Review 69 (1979) 632–638. [18] A. Kajii, A generalization of Scarf’s theorem: An acore existence theorem without transitivity or completeness, Journal of Economic Theory 56 (1992) 194–205. [19] R. Kihlstrom, A. MasColell, H. Sonnenschein, The demand theory of the weak axiom of revealed preference, Econometrica 44 (1976) 971–978, (withW. J. Shafer). [20] T. Kim, M. K. Richter, Nontransitivenontotal consumer theory, Journal of Economic Theory 38 (1986) 324–363. [21] R. Kivetz, I. Simonson, The effects of incomplete information on consumer choice, Journal of Marketing Research 37 (2000) 427–448. [22] A. S. Kochov, Subjective states without the completeness axiom, Mimeo. [23] L. Lee, O. Amir, D. Ariely, In search of Homo Economicus: Cognitive noise and the role of emotion in preference consistency, Journal of Consumer Research 36 (2009) 173–187. [24] V. Levin, Measurable utility theorems for closed and lexicographic preference relations, Soviet Mathematics  Doklady 27 (1983) 639–643. [25] G. Loomes, C. Starmer, R. Sugden, Observing violations of transitivity by experimental methods, Econometrica 59 (1991) 425–439. [26] G. Loomes, R. Sugden, Regret theory: An alternative theory of rational choice under uncertainty, Economic Journal 92 (1982) 805–824. [27] R. D. Luce, H. Raiffa, Games and Decisions, New York: Dover, 1957. [28] M. Mandler, Indifference and incompleteness distinguished by rational trade, Games and Economic Behavior 67 (2009) 300–314. [29] V. F. MartinsDaRocha, M. Topuzu, CournotNash equilibria in continuum games with nonordered preferences, Journal of Economic Theory 140 (2008) 314–327. [30] A. MasColell, An equilibrium existence theorem without complete or transitive preferences, Journal of Mathematical Economics 1 (1974) 237–246. [31] E. A. Ok, Utility representation of an incomplete preference relation, Journal of Economic Theory 104 (2002) 429–449. [32] E. A. Ok, Y. Masatlioglu, A theory of (relative) discounting, Journal of Economic Theory 137 (2007) 214–245. [33] B. Peleg, Utility functions for partially ordered topological spaces, Econometrica 38 (1970) 93–96. [34] J. K.H. Quah,Weak axiomatic demand theory, Economic Theory 29 (2006) 677–699. [35] M. Richter, Revealed preference theory, Econometrica 34 (1966) 635–645. [36] M. Richter, Rational choice, in: J. S. Chipman, L. Hurwicz, M. K. Richter, H. F. Sonnenschein (eds.), Preferences, Utility and Demand, New York: Harcourt Brace Jovanovich, 1971, pp. 29–58. [37] D. Schmeidler, Competitive equilibria in markets with a continuum of traders and incomplete preferences, Econometrica 37 (1969) 578–585. [38] T. Seidenfeld, M. J. Scherwish, J. B. Kadane, A representation of partially ordered preferences, Annals of Statistics 23 (1995) 2168–2217. [39] W. J. Shafer, The nontransitive consumer, Econometrica 42 (1974) 913–919. [40] W. J. Shafer, Preference relations for rational demand functions, Journal of Economic Theory 11 (1975) 444–455. [41] W. J. Shafer, H. Sonnenschein, Equilibrium in abstract economies without ordered preferences, Journal of Mathematical Economics 2 (1975) 345–348. [42] L. S. Shapley, M. Baucells, Multiperson utility, Working Paper No 779, Deparment of Economics, UCLA. [43] H. Sonnenschein, Demand theory without transitive preferences, with applications to the theory of competitive equilibrium, in: J. S. Chipman, L. Hurwicz, M. K. Richter, H. F. Sonnenschein (eds.), Preferences, Utility and Demand, New York: Harcourt Brace Jovanovich, 1971, pp. 215–223. [44] A. Tversky, Intransitivity of preferences, Psychological Review 76 (1969) 31–48. [45] K. Vind, Independent preferences, Journal of Mathematical Economics 20 (1991) 119–135. [46] N. C. Yannelis, N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, Journal of Mathematical Economics 12 (1983) 233–245. 
URI:  http://mpra.ub.unimuenchen.de/id/eprint/18673 