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Abstract

The neoclassical consumer maximizes utility and makes choices by completely preordering the
feasible alternatives and weighing when indifferent. The consumer studied in this paper chooses
by weighing when indifferent and also when indecisive, without necessarily preordering the al-
ternatives or exhausting her budget. Preferences therefore need not be complete, transitive or
non-satiated but are assumed strictly convex and adaptive. The latter axiom is new and parallels
that of ambiguity aversion in choice under uncertainty.

Keywords: preferences: incomplete, intransitive, convex, adaptive; representation; demand.

1. Introduction

This paper is concerned with the consumer’s problem of choosing the best among the feasible
alternatives when her preferences over the latter are not assumed complete, transitive or non-
satiated. Completeness and transitivity are the fundamental rationality axioms in decision theory
and economics in general. Yet, rationality and reality do not go hand-in-hand. Completeness re-
quires universal decisiveness and transitivity demands perfect consistency from the consumer’s
preferences. Whether or not, however, preferences should be regarded as of this kind for theoret-
ical model-building purposes has been the subject of a long-lasting debate.

A simple reason why a consumer may be unable to compare two alternatives and thereby be
indecisive is ignorance about these alternatives. Another explanation that was put forward by
Luce and Raiffa [27] is that if alternatives are multi-attribute and in pairwise comparisons each
one dominates the other in some attributes, then the consumer may be indecisive because of the
conflicting signals she receives. These authors further argued that if an individual is forced to
choose when she is in fact indecisive, this may lead her to inconsistent choices. In other words,
violations of completeness and transitivity may co-exist and the former may be causing the latter.
To the extent that this is so, attempting to model such behavior is presumably well-motivated.

✩I am indebted to Robert Evans for valuable advice. I am also grateful to Aldo Rustichini for helpful suggestions. I finally thank
Eddie Dekel, Jayant Ganguli, David K. Levine, R. Duncan Luce, Fabio Maccheroni, Sönje Reiche, Ariel Rubinstein and Nicholas
Yannelis for useful comments or questions. Early general discussions with Nikos Gerasimou have been influential for this project
choice. Any errors are my own.
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Building on the literature generated by the seminal work of Sonnenschein [43], and partic-
ularly on the innovative paper of Shafer [39], we outline here a consumer theory for a decision
maker whose preferences are not complete, transitive or non-satiated. First, we derive a represen-
tation theorem that offers a complete characterization of the strict preference relation by means
of a bivariate preference function, which stands in lieu of the utility function that is infeasible in
this setting. The representation theorem generalizes that of [39] to the direction of incomplete
preferences and substantially improves the partial extensions in relation to incompleteness that
were offered by Shafer and Sonnenschein [41] and Bergstrom et. al. [4].

Using this representation theorem and assuming that preferences are convex, we maximize
them over competitive budget sets to obtain a demand correspondence for which the optimal
feasible alternatives are the maximal (undominated) ones. In light of the remarks in Mas-Colell
[30], this result is implicitly present in [43]. However, the method of proof here is very different,
and although it relies on (and extends) two arguments of Shafer [39], it also makes use of the cel-
ebrated Maximum Theorem and allows for some notion of indirect utility to arise naturally. Not
surprisingly, this demand correspondence does not generally satisfy the Weak Axiom of Revealed
Preference (WARP). However, an identification of the pattern of WARP-“irrationality” is offered
as a simple corollary with the intuitive statement that if two alternatives are violating WARP over
two different budget sets, then it must follow that the consumer has no strict preference between
them.

The final result shows how the demand correspondence can be reduced to a demand function
that satisfies WARP. This is done by assuming strictly convex preferences and by introducing the
new axiom of adaptiveness. An individual’s preferences are said to be adaptive if whenever she is
indecisive between two alternatives there exists some convex combination of them that is weakly
preferred to both. Despite its simplicity, to our knowledge this axiom is new. It will be argued
that it is intuitive and that conceptually it also parallels the axiom of ambiguity aversion in choice
under uncertainty introduced by Gilboa and Schmeidler [16].

As far as the literature is concerned, early studies on the representation of incomplete pref-
erences include Aumann [3], Richter [35, 36] and Peleg [33]. With such preferences, equilibrium
existence in a pure exchange economy was proved by Schmeidler [37], while Bewley [5] modeled
an individual choosing under uncertainty. More recently, Seidenfeld et. al. [38], Shapley and Bau-
cells [42], Ok [31], Dubra et. al. [8], Kochov [22] and Evren and Ok [11] represented incomplete
preferences by means of an infinite set of real-valued functions. The problem of distinguishing
indifference and incomparability that comes about when preferences are incomplete was stud-
ied by Eliaz and Ok [9] and Mandler [28]. With regard to transitivity, apart from the two papers
mentioned above, other notable studies that relax this assumption include Kihlstrom et. al. [19],
Fishburn [12], Loomes and Sugden [26], as well as Fountain [14], Epstein [10], Al-Najjar [1], Quah
[34] and Masatlioglu and Ok [32]. Preferences that are simultaneously incomplete and intransitive
have been studied in a general equilibrium, non-cooperative and cooperative game theory context
by Mas-Colell [30], Gale and Mas-Colell [15], Shafer and Sonnenschein [41], Fon and Otani [13],
Yannelis and Prabhakar [46], Border [6], Kim and Richter [20], Kajii [18] and Martins-da-Rocha
and Topuzu [29]. Shafer [40] characterized such preferences that lead to demand functions consis-
tent with WARP and SARP, importantly by weakening completeness with the technical condition
of local completeness and by retaining non-satiation.

Empirical evidence against the assumption that preferences are transitive has been provided
by, among others, Tversky [44], Grether and Plott [17], Loomes et. al. [25], Kivetz and Simonson
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[21] and Lee et. al. [23]. Interestingly, the experimental design in [21] was based on choice
alternatives that were both multi-attribute and such that in all pairwise comparisons information
was missing for some attributes, making the comparison challenging in the first place. Thus, a
possible alternative explanation of the systematic intransitivies detected (30% on average) might
be the subjects’ inability to compare with confidence the two options each time presented, in
accordance with what Luce and Raiffa [27] predicted. Regarding violations of the decisiveness
hypothesis associated with preference completeness per se, such patterns are manifested in Danan
and Ziegelmeyer [7] in an environment of choice under risk.

2. Preference Representation

2.1. Definitions and Result

Throughout this section the consumer is assumed to have preferences over alternatives be-
longing to a metric space X. Her strict preferences, indifference and weak preferences are cap-
tured by the binary relations ≻, ∼ and % := ≻ ∪ ∼ on X respectively, while the inverses of ≻ and
% are denoted ≺ and -. For notational convenience, (x, y) ∈ % is usually written x % y and this
applies to every relation considered here. It is assumed that ≻ is asymmetric and ∼ is reflexive
and symmetric, so that % is merely reflexive. In particular, the two axioms that are typically im-
posed on % and which are not employed here are completeness (CM) and transitivity (TR), which
require that for all x, y ∈ X and all x, y, z ∈ X respectively

CM: x % y or y % x

TR: (x % y, y % z) ⇒ x % z.

In the absence of CM, the relation f := {(x, y) : x 6% y and y 6% x} which captures the con-
sumer’s indecisiveness is nonempty and by construction also irreflexive and symmetric. Let us
now introduce the relation ∼̂ := ∼ ∪ f, which is reflexive and symmetric by definition (Mandler
[28] uses this relation independently for distinct purposes). We will refer to ∼̂ as the consumer’s
ambivalence relation because it consists of pairs over which she is either indifferent or indecisive.
Ambivalence is identically equal to (X × X) \ (≻ ∪ ≺) and is the maximal (with respect to set
inclusion) reflexive and symmetric relation on X given the asymmetric relation ≻. It is empha-
sized that ambivalence is not a relabeling of indifference. Indifference is reflexive and symmetric
by assumption and in view of the above remark it is contained in the ambivalence relation. The
latter is reflexive and symmetric by definition, and this is true even when ∼ is an equivalence
relation, which happens when % satisfies TR and therefore becomes a preorder. The two notions
coincide if and only if % is complete, in which case f ≡ ∅.

The strict preference relation ≻ is said to have an open graph if ≻ is an open subset of X × X
with the product topology. Importantly, it was shown first by Shafer [39] and then by Bergstrom
et. al. [4] that CM and TR are not needed for ≻ to have an open graph.

To study the uniqueness properties of the representation provided below we introduce the
following transformation concept.

Definition 1

Let f : X × X → R be a function satisfying f (x, y) = − f (y, x) for all x, y ∈ X. A function
g : R→ R is an odd-monotonic transformation of f if g is odd and strictly increasing.
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For example, g : R→ R defined by g(z) = αz3 with α > 0 is an odd-monotonic transformation of
f : R2

+ → R defined by f (x, y) = x − y, because g(−z) = −g(z) and z > z′ implies g(z) > g(z′)
for all z, z′ ∈ R. However, the function h : R→ R defined by h(z) = αz + b with α > 0 and b 6= 0
is not an odd-monotonic transformation of f because, clearly, h(−z) 6= −h(z) for some z ∈ R.

We can now state and prove the representation theorem, which generalizes that of Shafer [39]
to the direction of incomplete preferences and substantially improves the partial extensions of
that result in relation to incompleteness that were provided by Shafer and Sonnenschein [41] and
Bergstrom et. al. [4]. The argument is a variation of Shafer’s [39] constructive idea and crucially
depends on the observation that ∼̂ is reflexive and symmetric.

Theorem 1

The asymmetric relation ≻ has an open graph if and only if there exists a continuous function
P : X × X → R, unique up to odd-monotonic transformations, such that for all x, y ∈ X
P(x, y) > 0 ⇔ x ≻ y
P(x, y) = 0 ⇔ x ∼̂ y
P(x, y) = −P(y, x).

Proof.
Suppose ≻ has an open graph and let P be defined by

P(x, y) :=

{
d
(
(x, y), ∼̂

)
if x ≻ y or x ∼̂ y

−d
(
(y, x), ∼̂

)
if y ≻ x or y ∼̂ x

(1)

where d(·) is the product metric on X × X and d
(
(x, y), ∼̂

)
= inf(w,z)∈∼̂ d

(
(x, y), (w, z)

)
. The

open-graph property of ≻ and the fact that ∼̂ ≡ (X × X) \ (≻ ∪ ≺) establish that ∼̂ is closed
in X × X and therefore that P is continuous. The three properties of P follow directly from (1)
and the reflexivity and symmetry of ∼̂, while its uniqueness is straightforward. For the converse
implication, see the proof of Theorem 4 in [4]. �
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FIGURE 1
An example of a preference function P
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The function P of Theorem 1 generalizes the utility function concept for preferences that are
incomplete or intransitive. Given its binary structure, it would be natural for P to be called a
preference function, because with each ordered pair (x, y) ∈ X × X it associates a positive, negative
or zero value whenever (x, y) ∈ ≻, (x, y) ∈ ≺ or (x, y) 6∈ ≻ and (x, y) 6∈ ≺ respectively. This
motivates the following definition, which supersedes the one proposed by Vind [45].

Definition 2

If ≻ is an asymmetric relation on X, then P : X × X → R is a preference function if for all x, y ∈ X,
P(x, y) > 0 ⇔ x ≻ y, P(x, y) = 0 ⇔ (x 6≻ y, y 6≻ x) and P(x, y) = −P(y, x).

In light of this definition, P of Theorem 1 is a preference function satisfying
P(x, y) = 0 ⇔ x ∼̂ y. In Shafer’s [39] representation theorem, % satisfies CM but not TR and
the preference function k : Rn

+ × Rn
+ → R introduced there is such that k(x, y) ≥ 0 ⇔ x % y

and k(x, y) = −k(y, x) so that k(x, y) = 0 ⇔ x ∼ y. If % satisfies CM and TR (and X is separable
and connected), then the open graph property of ≻ implies the existence of a continuous utility
function u : X → R with x % y ⇔ u(x) ≥ u(y) for all x, y ∈ X, so that one can define P∗ by
P∗(x, y) := u(x)− u(y). It is easily verified that P∗ satisfies the properties of Definition 1. This
fact supports the claim made above that preference functions generalize utility functions when
CM and/or TR are not assumed. Of course, the original idea behind this generalization (certainly
so for intransitive preferences) is due to Shafer [39].

2.2. Discussion

We now turn to a comparison between Theorem 1 and other representations of incomplete
(and in one case also intransitive) preferences that are already available in the literature. To start
with, Peleg (1970), assuming transitivity and imposing further some hemicontinuity and order-
separability restrictions on the strict preference relation ≻, showed that there exists a continuous
“weak” utility function v : X → R such that, for any x, y ∈ X, x ≻ y ⇒ v(x) > v(y). This
weak utility representation, however, does not characterize strict preferences, because knowledge
of the values of the function does not lead to a reconstruction of the strict preference relation ≻.
To compare Peleg’s weak utility function v with the preference function P of Theorem 1, consider
the function φ : X × X → R defined by φ(x, y) := v(x)− v(y). Clearly then,

x ≻ y ⇒ φ(x, y) > 0 and y ≻ x ⇒ φ(x, y) < 0, (2)

while the equivalence in the above relations is ruled out by incompleteness. However, it is an
implication of the properties of the preference function P that

x ≻ y ⇔ P(x, y) > 0 and y ≻ x ⇔ P(x, y) < 0. (3)

A comparison of (2) and (3) shows that P completely characterizes ≻ whereas the weak utility
function v only partially so.

Applying Shafer’s [39] representation theory above to the problem of equilibrium-existence
in an abstract economy with incomplete and intransitive preferences, Shafer and Sonnenschein
[41] observed that the open-graph property of Theorem 1 implies the existence of a continuous
function V : X × X → R+ defined by V(x, y) := d

(
(x, y),≻c

)
, where ≻c := (X × X)\≻ and d(·)

is again the product metric. This function has the properties that, for all x, y ∈ X, V(x, y) > 0 ⇔
x ≻ y and V(x, y) = 0 ⇔ x 6≻ y. While these were sufficient for the authors’ purposes, one
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observes that V takes non-negative values and therefore that it is not a preference function. Thus,
V does not characterize ≻ and cannot be used to elicit this relation’s maximal elements. Theorem
1 demonstrates that introducing the ambivalence relation ∼̂ allows for this device of Shafer and
Sonnenschein [41], which was also later characterized by Bergstrom et. al. [4], to be substantially
improved upon at no cost.

Kochov [22] and Evren and Ok [11], in the spirit of multi-function preference representations
described in the introduction and building also on the work of Levin [24], showed that % is an
incomplete preorder with a closed graph1 in X × X if and only if there exists an infinite set U
of continuous real-valued functions u on X such that, for all x, y ∈ X, x % y ⇔ u(x) ≥ u(y)
for all u ∈ U , provided X is compact.2 This multi-utility result assumes TR, which Theorem 1
does not. Furthermore, the open-graph property of the asymmetric relation ≻ and the closed
graph property of the preorder % are not related in the present context. Finally, while multi-
utility representation allows for a full characterization of the preorder % at the cost of introducing
an infinite number of functions, the preference function P of Theorem 1 fully characterizes the
asymmetric relation ≻ only, but it does so in a more general (i.e. without assuming transitivity),
tractable and perhaps also intuitive way. For demand theory, it is shown next that working with
P , or equivalently, focusing on ≻ rather than on %, is actually sufficient.

3. Consumer Demand

3.1. Demand Correspondence

From now on we assume that the consumption set is X = Rn
+. Furthermore, we let Y := Rn

++

denote the set of strictly positive price-income ratios that the consumer faces, with generic element
p ∈ Y. We define also the budget correspondence B : Y ։ X by B(p) = {x ∈ X : px ≤ 1},
which, as well-known, is continuous and compact-valued. In addition to the sine qua non axioms
concerning the asymmetry of ≻ and the reflexivity and symmetry of ∼, the following two axioms
will also be imposed on preferences, the restrictions applying to every element x ∈ X.

Axiom 1

U≻(x) := {y ∈ X : y ≻ x} and L≻(x) := {y ∈ X : x ≻ y} are open in X.

Axiom 2

U≻(x) is convex.

Axioms 1 and 2 are the familiar (upper- and lower-) hemicontinuity and convexity restric-
tions on the preference relation ≻ respectively, although it should be noted that Axiom 2 can be
replaced by the weaker requirement that x 6∈ co[U≻(x)], where co(·) denotes convex hull. Using
Theorem 1 and these two axioms we can prove the existence of an upper-hemicontinuous and
compact-valued demand correspondence consisting of the maximal (undominated) elements of
the asymmetric relation ≻. As noted in the introduction, this result is implicit in Sonnenschein
[43]. Instead of using the KKM Theorem and non-empty intersection arguments that were em-
ployed in [43], however, preferences here are maximized by means of the preference function P ,
much in the spirit of neoclassical consumer theory.

1We express axiomatically our reservations regarding this assumption elsewhere.
2This is Kochov’s [22] formulation. Evren and Ok [11] provide a one-way axiomatization assuming that X is locally compact.
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Theorem 2

Under Axioms 1 and 2 there exists an upper-hemicontinuous, nonempty- and compact-valued
correspondence x : Y ։ X such that, for all p ∈ Y, x(p) = {x ∈ B(p) : P(x, y) ≥ 0 ∀ y ∈ B(p)}.

Proof.
Note first that under Axioms 1 and 2 the relation ≻ has an open graph (see Lemma in [39]),

so that from Theorem 1 there exists a continuous preference function P on X. The remainder of
the proof is split into three parts, the first two of which rely on (and generalize to the direction of
incomplete preferences) Theorems 2 and 3 in [39]. Their proofs appear in the Appendix.

Lemma 1

For p ∈ Y, there exists x ∈ B(p) such that P(x, y) ≥ 0 for all y ∈ B(p).

Lemma 2

For p ∈ Y, it holds that x ∈ B(p) satisfies P(x, y) ≥ 0 for all y ∈ B(p) if and only if there exists a
continuous function h : Y × X → R such that h(p, x) = max{h(p, z) : z ∈ B(p)}.

Since the function h of Lemma 2 is continuous and so is the budget correspondence B, it fol-
lows from Berge’s Maximum Theorem that there exists a continuous function m : Y → R such
that m(p) = max{h(p, z) : z ∈ B(p)} and an upper-hemicontinuous compact-valued correspon-
dence x : Y ։ X such that x(p) = argmax {h(p, z) : z ∈ B(p)}. From Lemma 2 we know that
x(p) = {x ∈ B(p) : P(x, y) ≥ 0 ∀ y ∈ B(p)} while Lemma 1 shows that x(p) 6= ∅. �

In his framework of intransitive but complete preferences, Shafer [39] interpreted the function
h of Lemma 2 as the consumer’s “utility” function that is dependent on prices.3 With this inter-
pretation, and observing that m : Y → R defined by m(p) = max{h(p, z) : z ∈ B(p)} in the proof
of Theorem 2 above is an optimal value function, we can clearly interpret it as the consumer’s
“indirect utility” function in this setting. Therefore, this proof on the existence of a demand cor-
respondence allows for some connection between the consumer’s problem when her preferences
are bounded-rational and the neoclassical consumer problem when preferences are rational, since
in both cases use is made of preference representations by means of numerical functions and of
the Maximum Theorem, an approach that in both cases allows for optimal value functions to be
derived.

The next observation shows that when the demand correspondence x(·) of Theorem 2 vio-
lates WARP, the violation is caused by consumer ambivalence or equivalently, by lack of strict
“psychological” preference, which is an intuitive but nevertheless interesting fact.

Corollary 1

Suppose there exist p, p′ ∈ Y and x, y ∈ X such that (i) x ∈ x(p) and y ∈ B(p) \ x(p); (ii) y ∈ x(p′)
and x ∈ B(p′). Then x ∼̂ y.

Proof.
By assumption, P(x, y) ≥ 0 and P(y, x) ≥ 0. Thus, P(x, y) = 0 so that x ∼̂ y. �

3Note, however, that in both this framework as well as Shafer’s [39], for p ∈ Y and x, y ∈ B(p), x ≻ y neither implies nor is
implied by h(p, x) > h(p, y). It is the case, however, that in any budget set, the maximizers of h coincide with the maximal elements
of ≻.
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We finally note that it cannot be distinguished whether the consumer is indifferent or inde-
cisive between any two optimal alternatives in relation to the demand correspondence x(·) of
Theorem 2 without adding more structure to the analysis, and this is in line with the relevant
findings in Mandler [28].

3.2. Demand Function

In this subsection we reduce the demand correspondence of Theorem 2 to a single-valued
demand function that satisfies WARP. To do so, the following two axioms are used in addition to
Axioms 1 and 2.

Axiom 3

(x % z, y % z, x 6= y) implies that for all α ∈ (0, 1), αx + (1 − α)y ≻ z.

Axiom 4

x f y implies there exists λ ∈ (0, 1) such that z := λx + (1 − λ)y satisfies z % x and z % y.

Axiom 3 is the standard assumption of strict convexity. Axiom 4 is a new preference axiom,
which we will refer to as adaptiveness. If a consumer is indecisive between two alternatives x and
y and her preferences are adaptive, then some weighted average of x and y (which will generally
depend on x and y) makes her at least as well off as x and y. If, for example, an individual is
about to buy ice-cream for the first time and is offered the choice between a cup of vanilla, a cup
of chocolate and a cup containing both in equal shares, then given that she’s never tried vanilla
and chocolate before, she may prefer the mixture because it gives her the opportunity to diversify
across the two primitive alternatives so that whichever of the two turns out to be undesirable
for her, she can consume the part containing the other (presumably more desirable) one. Her
preferences therefore adapt to indecisiveness, and they do so in a way that parallels the axiom of
ambiguity aversion (Gilboa and Schmeidler [16]) in choice under uncertainty and the principle of
hedging against risk.

A testable implication of this new axiom is that when the decision maker chooses between
two unfamiliar alternatives at the same time when mixtures of them are also feasible, certain
mixtures will be preferable to the original options and the weights that determine these mixtures
will generally be biased toward the option that is more familiar to her. In the ice-cream example,
if the consumer likes chocolate but hasn’t tried vanilla before, she may prefer a cup where the
analogy is 3/4 chocolate and 1/4 vanilla. This prediction is also in line with Ellsberg-paradox
findings, where preferences have been shown to favor risky alternatives that are better understood
compared to uncertain ones. The framework there, of course, is one of genuine probabilistic
uncertainty whereas here uncertainty is implicit, but there is an analogy between the two that is
perhaps noteworthy.

Theorem 3

Under Axioms 1–4, p ∈ Y implies there exists x ∈ B(p) such that P(x, y) > 0 for all y ∈ B(p) with
y 6= x.

Proof.
Let p ∈ Y. From Theorem 2 there exists x ∈ B(p) such that P(x, y) ≥ 0 for all y ∈ B(p).

Suppose w ∈ B(p) also satisfies P(w, y) ≥ 0 for all y ∈ B(p). We will show that x = w. Note first
that, by assumption, P(x, w) ≥ 0 and P(w, x) ≥ 0, so that P(x, w) = 0 which in turn is equivalent
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to x ∼̂ w and (x ∼ w or x f w). Suppose x ∼ w. Convexity of the set B(p) and Axiom 3 imply
that every convex combination z of x and w satisfies z ∈ B(p), z ≻ x and z ≻ w, which imply
P(z, x) > 0 and P(z, w) > 0, a contradiction. Now suppose x f w. Convexity of B(p) and Axiom
4 imply the existence of a nontrivial convex combination z of x and w such that z ∈ B(p), z % x
and z % w. If z ∼ x or z ∼ w, Axiom 3 leads to the previous contradiction. If z ≻ x or z ≻ w, then
the optimality of x and w is directly violated. It follows then that x = w. �

Thus, under the conditions of Theorem 3 the upper-hemicontinuous demand correspondence
x(·) of Theorem 2 becomes a continuous demand function. Given prices p, p′ ∈ Y, if x(p) = x,
x 6= y and y ∈ B(p), then P(x, y) > 0 and hence x(p′) = y implies x 6∈ B(p′). Therefore, the
demand function associated with Theorem 3 satisfies WARP.

To interpret Theorem 3 consider the following example, where although alternatives are in-
divisible and therefore, strictly speaking, no convex combinations exist, the central idea is pre-
served. Suppose a consumer is about to buy a computer as a gift for her child. She goes to a
computer store and tells the salesman about her plan. He informs her that there are three types
of computers, “desktops” (d), “laptops” (l) and “palmtops” (p). She understands that there are
two criteria on which to base her choice, computing power and portability. It is clear to her that
desktops dominate laptops and laptops dominate palmtops in computing power, while palmtops
dominate laptops and laptops dominate desktops in portability.

Keeping this in mind, to make a choice she first assigns a numerical value from 0 (lowest)
to 2 on each of the two attributes of the three available alternatives as follows (the first entry
in brackets corresponds to the assigned value for computing power and the second to that for
portability): d = (2, 0), l = (1, 1), p = (0, 2). With perfect information about her child’s attitude
toward computing power and portability a transitive ordering of the above triple would occur,
either such that

d ≻ l, l ≻ p, d ≻ p (4)

or
p ≻ l, l ≻ d, p ≻ d. (5)

Thus, she would buy the desktop in the first case and the palmtop in the latter case. However,
she is unaware of the criterion that matters most for her child and is therefore reluctant to make
a choice according to either (4) or (5). In particular, due to the conflicting values over the two
attributes, in all three pairs she is indecisive à la Luce and Raiffa [27], so that df l, l f p and df p.
Since her preferences are adaptive, she looks for weighted averages in every pair. There is none
for (d, l) and (l, p) but there is one for (d, p), namely the laptop, since l = 1

2 d + 1
2 p. This option, in

particular, offers a balanced choice in terms of both computing power and portability. Reasoning
in this way, she leaves the store with the laptop.

The only paper that we are aware of which has provided demand-existence results similar
to Theorem 3 is Shafer [40], where the preference relations that generate WARP- and SARP-
rational demand functions that exhaust the budget were characterized. However, completeness
in Shafer’s case was replaced by local completeness, which requires that if x 6∈ cl[U≻(y)], where
cl(·) denotes closure, then there exists β ∈ [0, 1) such that βx + (1 − β)y ≻ x. Yet, it generally
holds that cl[U≻(y)] 6= U%(y) and therefore the behavioral restrictions that this axiom places are
not clear. In contrast, the adaptiveness axiom that is used in Theorem 3 is arguably behavioral
in nature and although similar to local completeness in its convexity-like structure, the two are
independent. Furthermore, Shafer’s [40] results rely on the budget-exhaustive property of the

9



demand functions. By contrast, in Theorem 3 existence is proved without this assumption and
therefore local non-satiation restrictions on preferences are also not imposed. Finally, unlike [40],
the demand function here is ultimately established through the use of a preference function.

4. Concluding Remarks

Motivated by the scepticism on intuitive and empirical grounds that has been surrounding
the principal rationality axioms of complete and transitive preferences for long, we studied here
consumer theory when both these axioms were removed. It was shown that the two basic pillars
of this theory, preference representation and demand, can be appropriately modified to accom-
modate this weaker axiomatic framework. In particular, the existence of a single-valued and
well-behaved demand function was established under conditions that allow for a new interpre-
tation of the consumer’s problem and its solution. In sharp contrast to the neoclassical consumer
who maximizes utility and makes choices by completely preordering the alternatives and weigh-
ing when indifferent, the proposed consumer makes choices by weighing both when indecisive
and when indifferent. She is therefore “rational” in that she maximizes her preferences to single
out the best alternative, but also “bounded rational” because her preferences incorporate the im-
perfections of indecisiveness and inconsistency, both of which are inherent properties of human
decision making. In future work we plan to extend the representation theorem presented here to
choice environments of risk and uncertainty. It may also be of interest to study the possible effects
of this demand theory on the existence and optimality of general equilibrium.

Appendix

Proof of Lemma 1.
B : Y ։ X is a continuous compact-valued correspondence and P : X × X → R is a contin-

uous function. Fix p ∈ Y and let S : B(p) → R be defined by S(y) = max{P(w, y) : w ∈ B(p)}.
Since P is continuous and B(p) is compact, S is continuous. In view of these facts, from Berge’s
Theorem follows that E : B(p) ։ B(p) defined by E(y) = argmax{S(y) : y ∈ B(p)} is an
upper-hemicontinuous and compact-valued correspondence, and from Weierstrass’ Theorem it
is also nonempty-valued. Let G : B(p) ։ B(p) be defined by G(y) = co[E(y)], where co(·)
denotes convex hull. G is convex-valued and from the above it is also nonempty-valued, upper-
hemicontinuous and compact-valued (see Corollary 5.33 and Theorem 17.35 in [2]). From Kaku-
tani’s Theorem there exists x ∈ B(p) such that x ∈ G(x).

Since G(x) = co[E(x)] is convex and X = R
n
+, from Carathéodory’s Theorem there exist

m ≤ n + 1 points x1, . . . , xm in B(p) and real numbers α1, . . . , αm with αi ≥ 0 and ∑
m
i=1 = 1 such

that xi ∈ E(x) for all i ≤ m and x = ∑
m
i=1 αixi. Suppose P(xi, x) > 0 for all i ≤ m. From Theorem

1 this is equivalent to xi ∈ U≻(x) and since U≻(x) is convex from Axiom 2 and x = ∑
m
i=1 αixi,

it also implies x ∈ U≻(x), a contradiction. There exists then some xj, j ∈ {1, . . . , m}, such that
P(xj, x) ≤ 0. But since xi ∈ E(x) for all i ≤ m, it is true that P(xj, x) = P(xi, x) for all i 6= j. Thus,
P(xi, x) ≤ 0, or equivalently, P(x, xi) ≥ 0 for all i ≤ m. From the definition of xi then follows that
P(x, y) ≥ 0 for all y ∈ B(p). �

Proof of Lemma 2.
Let the function h : Y × X → R be defined by h(p, x) = min{P(x, y) : y ∈ B(p)}, where

x ∈ B(p). Since B(p) is compact, h(p, x) is well-defined. Since P and B are continuous, h is
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continuous. Suppose x ∈ B(p) is such that P(x, y) ≥ 0 for all y ∈ B(p). Since P(x, x) = 0, it
follows that h(p, x) = min{P(x, y) : y ∈ B(p)} = 0. Furthermore, for z ∈ B(p), z 6= x, it holds
that h(p, z) = min{P(z, y) : y ∈ B(p)} ≤ min{P(x, y) : y ∈ B(p)} = h(p, x) = 0. Thus, if
x ∈ B(p) is such that P(x, y) ≥ 0 for all y ∈ B(p), then h(p, x) ≥ h(p, z) for all z ∈ B(p).

Now suppose x ∈ B(p) and h(p, x) ≥ h(p, z) for all z ∈ B(p). Let w ∈ B(p) be such that
P(w, y) ≥ 0 for all y ∈ B(p). It follows from above that h(p, w) = 0, while h(p, x) ≥ h(p, w) is
also true by assumption. But since it is necessarily true that h(p, x) ≤ 0 because x ∈ B(p), this
implies h(p, x) = h(p, w) = 0, so that P(x, y) ≥ 0 for all y ∈ B(p) too. From this also follows that
P(x, w) = 0 and therefore x ∼̂ w. �
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