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Abstract

The impact of government policy on the dynamics of agricultural supply in
Ethiopia during the 1980s is explored. Specifically, an intertemporal acreage
allocation model that allows for the impact of compulsory grain delivery is de-
veloped. Subsequently, an estimable dynamic acreage demand equation is de-
rived, and estimated for a crop using region-level data. Generalized method
of moments (GMM) estimators for dynamic panel data models are used. The
elasticity estimates thus obtained suggest that the demand for crop acreage (and
hence the supply of crop output) responded negatively to the level of forced grain
procurement, and positively to output price.

1 Introduction

In the 1980’s Ethiopian farm households were subject to a system of compulsory grain
delivery (CGD). Under this system, such households were required to sell a portion
of their output to the government at fixed prices1. After meeting this obligation
(commonly referred to as the ‘quota’) these producers were allowed to buy and sell
farm output on the local ‘open’ or ‘free’ market. Generally, such a system affects
the welfare of producers. It may also affect their resource allocation decisions. The
first objective of this paper is to investigate the impact of CGD on the production
decisions of Ethiopian farm households. Accordingly, one important contribution of
the paper is its quantitative inquiry into this aspect of the recent economic history
of Ethiopia.

In principle the impact of the compulsory delivery system can be modelled in
different ways. That it is an implicit form of taxation (or rent) seems to be the
common view2. Thus, identifying an equivalent form of explicit taxation facilitates
the analysis. Accordingly, it is proposed that the ‘quota’ should be viewed as a
proportional output tax implicitly imposed on farm households. One way of modelling

∗Acknowledgement: I would like to thank Jean-Paul Azam, Paul Collier, Stefan Dercon, An-
drew McKay, Taye Mengistae, John Muellbauer, and the two anonymous referees of the journal for

valuable comments. All remaining errors and omissions are of course mine.
1The government agency responsible for administering the CGD was the Ethiopian Agricultural

Marketing Corporation (EAMC).
2See Taffesse (1989), Franzel et al (1989), Azam (1992), Dercon (1994), Pickett (1991). This view

is shared by those who analyzed the procurement system in general, as well as its specific applications
- see Sah and Stiglitz (1992), Sah and Sirnivasan (1987).
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this is to consider the ‘quota’ as a proportion of output. This is consistent with
the most common criteria used in determining the level of a household’s ‘quota’
obligation, namely3:

� the potential crop output of the household; and

� the wealth (or, more precisely, the overall income-generating capacity) of the
household, measured by variables including size of land-holding, number of oxen
and other livestock owned, and nonfarm income.

In contrast, Azam (1992) identifies the ‘quota’ as an implicit lump sum tax, and
proceeds to model its impact accordingly. This formulation excludes the possibility
of the ‘quota’ system affecting the production decisions of farmers. It also does not
accurately reflect the process of ‘quota’ allocation to peasant households. Moreover,
the alternative characterisation of the ‘quota’ adopted in this paper and presented
in detail below has the added advantage of allowing the study of the impact of an
agricultural price policy (i.e., CGD) in the context of supply response models. This
is an important advantage, since the second objective of the paper is to assess the
price responsiveness of farm households’ crop supply in Ethiopia during the period
of study. The possibility of jointly studying these effects is created by defining the
average price of crops subject to CGD as follows:

P = φP s + (1− φ)Pm

where: P = the weighted average price; P s = the procurement (or EAMC) price;
Pm = the ‘free’ or ‘open’ market price; φ = the ‘quota’ as a proportion of the farm
household’s total output (or the rate of ‘quota’).

To achieve the objectives stated above, a simple dynamic farm household model is
developed. The model is a variant of the linear rational expectations model [Sargent
(1987), Hansen and Sargent (1980)] as applied to agricultural supply response analysis
[Eckstein (1984, 1985), Tegene, Huffman, and Miranowski (1988)]. The main innova-
tion is the direct introduction and analysis of CGD in that framework. Furthermore,
the decision problem of the farm household is explicitly placed in the agricultural
household models framework in a very simple manner. On the basis of the model
elasticities of acreage demand for crop cultivation are computed. Subsequently, an
estimable acreage demand equation is derived and estimated for a crop using region-
level data. The elasticity estimates thus obtained suggest that the demand for crop
acreage (and hence the supply of crop output) responds negatively to the ‘quota’
and positively to output price. These findings have significance to current dialogue
on agricultural price support in Ethiopia. Moreover, the analytical framework and
empirical strategy adopted are both applied to Ethiopian crop supply data for the
first time and thus can inform future work in this area.

The rest of the paper is organized as follows. Section (5.2) presents a simple
dynamic model of farm household production choices and the elasticities thereof.
Section (5.3) describes the details of the empirical analysis including the data, econo-
metric specification, estimation procedure, and estimation results. Section (5.4) con-
cludes. The final section is an appendix detailing the procedure used for obtaining

3To the extent that it was not based on a ‘quota’ schedule, the determination of ‘quota’ levels
to be delivered by households was not uniform. Nevertheless, the most common practice was the
imposition of relatively higher ‘quota’ on households with higher outputs [see Alemayehu (1987)].
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an explicit solution for the acreage decision rule, as well as some of the properties of
the generalized method of moments (GMM) estimators employed.

2 A dynamic model of farm household production choice

A simple dynamic model is presented in this section as a means of investigating the
impact of CGD on the intertemporal production choices of the farm household4.

2.1 Assumptions and Characterization

1. Consider a representative infinitely-lived dynastic farm household which maxi-
mizes its discounted expected intertemporal utility via its consumption, produc-
tion, and saving choices5. This farm household is assumed to have a (common)
one-period utility function, u(xt+j) which is linear, i.e.,

u(xt+j) = %0 + %1xt+j ; %0, %1 > 0, t, j = 0, 1, . . . (1.1)

where xt+j represents consumption in period t+j . In other words the household
is deemed to be risk-neutral. In other words, the impact of the randomness
of some variables on the choices farmers make is considered without modelling
their behaviour towards risk. It is further assumed that the intertemporal utility
function is additively separable, and that in each period yield and price risk are
realized before consumption decisions are taken. Under these circumstances, the
farm household’s production and consumption decisions are separable. Thus the
farm household maximizes its discounted expected utility by first maximizing its
discounted expected profits, and subsequently choosing the level of consumption
and/or savings subject to the corresponding budget constraint. This budget
constraint has three components, savings from the previous period, st+j−1, the
interest (or return) accruing to those savings at a rate, r ( which is assumed to
remain constant over time), and current profits, πt+j , i.e.,

xt+j + st+j = (1 + r)st+j−1 + πt+j ; t, j = 0, 1, . . . (1.2)

Savings represent the cash-equivalent of different saving instruments available
to the farm household, including cash, other financial assets, and grain storages.

2. Using its exogenously given total cultivable land, At+j , and subject to yield risk,
the farm household is assumed to produce two (groups of) annual crops under
a fixed-proportions technology of production6. This technology is represented

4The model stated below is an adaptation of Eckstein (1985). Eckstein (1985) considers the
demand for acreage (in levels rather than shares) by farmers in the absence of forced crop procurement
by the state. He also does not address the question of separability of production and consumption
decisions.

5The structure of our model is such that the conditions for exact aggregation are satisfied. Hence,
the ‘representative’ household is equivalent to the ‘average’ household. In fact, Eckstein (1985)
aggregates a closely related model over a (stable) population of farmers to characterise a rational
expectations equilibrium of the market for a crop.

6The size of the farm household’s landholdings may vary over time, primarily due to land redistri-
bution. But this is beyond the control of the household. Note also that renting out land was illigal.
Moreover, renting-out lnad carried the threat of losing a fraction of one’s holdings in the next round
of redistribution. Due to these circumstances renting land was not widespread during the period
under study.
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by two production functions which are linear in acreage, stochastic, and involve
a one-period lag between cultivation and harvest (harvest at t+ j is a function
of acreage at t+ j − 1)7. Formally8:

Q1,t+j = y1A1,t+j−1 + ε1,t+j ; y1 > 0, t, j = 0, 1, . . . (1.3)

Q2,t+j = y2A2,t+j−1 + ε2,t+j ; y2 > 0, t, j = 0, 1, . . . (1.4)

Qi,t+j = output of crop i (i = 1, 2) at time t + j; Ai,t+j = the proportion
of total acreage allocated to crop i at time t + j; y1 and y2 are parameters;
εi,t+j = exogenous shocks to production during t + j which have zero mean,
constant variance, and are serially uncorrelated. In line with the fact that crop
production involves biological gestation periods of some (sometimes consider-
able) length, the one-period lag in production captures the phenomenon that
the farm household has to make acreage decisions in terms of its expectations
about unknown future output prices. This introduces price risk into the decision
problem of the farm household.

3. It is assumed that the direct cost of producing a crop is a function of acreage
allocated to its production. This cost has two components distinguished by the
period during which they are incurred (or known); costs known at the time
of planting and costs known at the time of harvest. The latter is an attempt
to capture the flexibility of input use after planting and up to and including
harvest and the uncertainty of output given the lag in production. The focus
here is on Crop 1. Given this focus it is assumed that there are additional
adjustment-cost-like expenses related to Crop 1. To capture these costs as well
as the direct costs it is assumed that a quadratic cost function is associated
with that crop. This function takes the following specific form9:

C1,t+j = (v1,t+j−1 + f1,t+j)A1,t+j−1+
b

2
A21,t+j−1+dA1,t+j−1A1,t+j−2 ; b > 0; d ≶ 0

(1.5)
where: v1,t+j−1 and f1,t+j are non-land costs of producing Crop 1 over the total
available acreage at the time of cultivation (t+j−1) and at the time of harvest
(t+j), respectively10. The term b

2A
2
1,t+j−1 eventuates decreasing returns to scale

in the long-run. Two counteracting dynamic effects are captured by d [Eckstein
(1985)]. The first is the tendency to rotate crops if successive cultivation of the

7Under the assumed fixed-coefficients technology, each crop is produced by using land and non-
land factors in fixed proportions. The output of each crop, as well as the direct cost of its production,
can thus be expressed as a function of the amount of acreage allocated to its cultivation. It is in
this sense that (1.3) and (1.4) are production functions. See also Tegene, Huffman, and Miranwski
(1988).

8Crop 1 is identified as the crop subject to CGD while Crop 2 may be considered as free from
CGD. However, even if both are subject to CGD the analysis below will not be affected.

9Although quadratic cost functions are commonly used, this specific form as applied to agricultural
supply response analysis is due to Eckstein (1985). In this regard, Eckstein (1985) notes that a
combination of the terms b

2
A21,t+j−1 and dA1,t+j−1A1,t+j−2 (with d < 0) is equivalent to the standard

adjustment cost formulation.
10More explicitly, vi represents the total non-land costs that would be incurred during the culti-

vation period if total acreage is planted with crop i (i = 1, 2), i.e.:

vi = (non− land cultivation costs of crop i per hectare)×A
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same crop on a plot substantially reduces soil fertility and increases the cost
of production. The second is the incentive to recultivate the crop planted last
period if the cost of land preparation for that crop has been high and the current
cost of production is lower as a result11. The sign of d is determined by which
of these two dominate. If the first effect dominates, then d > 0, while d < 0
if the second effect is dominant. For simplicity it is also assumed that a linear
cost function of the following form is associated with Crop 2:

C2,t+j = (v2,t+j−1 + f2,t+j)A2,t+j−1 (1.6)

where: v2,t+j−1 and f2,t+j are non-land costs of producing crop 2 over the total
available acreage at the time of cultivation (t+j−1) and at the time of harvest
(t+ j) , respectively.

4. At the beginning of this paper it is argued that the ‘quota’ should be viewed as a
proportional output tax implicitly imposed on farm households12. Accordingly,
the impact of the ‘quota’ is analyzed by defining an average price in the following
manner13:

P1 = φ1P
s
1 + (1− φ1)P

m
1

where: P1 = the weighted average price of Crop 1; P s1 = the procurement (or
EAMC) price of Crop 1; Pm1 = the ‘free’ or ‘open’ market price of Crop 1;
φ1 = the ‘quota’ as a proportion of the farm household’s total output of Crop
1 (or the rate of ‘quota’). The average price defined this way represents the
household’s marginal value (or revenue) of a unit of output. It increases with
P s1 and P

m
1 , and falls with φ1. Since P

s
1 is less than P

m
1 , and since, 0 < φ1 < 1,

the average price is less than the corresponding market price14. The valuation
of the corresponding crop output at P1 thus captures the tax nature of the
‘quota’. As will be clear shortly, however, using this expression for the average
price in a dynamic setting is very cumbersome. In particular, it is difficult to
accommodate within the linear-quadratic framework set out below. The main
problem stems from its nonlinearity in the variables, such that it introduces
higher-order moments in the otherwise linear solution (in first-order moments).
Hence it is useful to adopt a linear alternative. To do so, a first-order Taylor

where A is total available acreage in hectares. Similarly:

fi = (non− land harvest costs of crop i per hectare)×A

11In other words, planting a crop different from the one cultivated last period involves costs higher
than replanting with the same crop. In that sense, this tendency is induced by the presence of
adjustment costs.
12The analysis below does not consider ways other than adjusting crop-mix that households may

have devised to avoid delivering the quota or minimize its impact. Thus φ1 has to be viewed as
relating to the implicit output tax actually paid by farm households. In line with that the empirical
analysis uses actual procurement by the EAMC to compute φ1.
13If Crop 2 is also subject to CGD, then the same procedure can be applied to define its average

price. None of the results will be affected as a consequence. But, additional results pertaining to the
effects of the ‘quota’ rate and market price of that crop will be obtained.
14There are anecdotes of some farm households buying crops to meet their ‘quota’ obligations. In

such instances φ1 > 1, and thus, P1 < P
s
1 . Hence, the definition of the average price can accommodate

these cases. However, these cases are not considered since they are unlikely to be typical .
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approximation around the means of the three variables involved is combined
with the fact that procurement prices changed very little over time (see section
3.1.3 below) and that the means of the quota rate and the market price are
constants to simplify the expression. Letting x =

£
φ1 Pm1 P s1

¤
and x =£

φ1 Pm1 P s1
¤
, the latter representing the means, this leads to:

P1 (x) ' ι
0

0 + ι1φ1 + ι2P
m
1 (1.7)

where:

ι0 = ι
0

0 − ι1φ1 − ι2Pm1 + ι3(P
s
1 − P s1 ), ι

0

0 = P1 (x) , ι1 =

µ
∂P1
∂φ1

¶

x

,

ι2 =

µ
∂P1
∂Pm1

¶

x

, ι3 =

µ
∂P1
∂P s1

¶

x

The subscript x indicates that the derivatives are evaluated at x15. Observe
also that ι1 < 0; 0 < ι2 < 1; and 0 < ι3 < 1. Thus the alternative expression
possesses all the key properties of the original.

5. Finally, the farm household is assumed to form expectations rationally. Follow-
ing the most common characterization, rational expectations are identified as
expectations which, in the context of specific models describing the behaviour
of the relevant variables, are equal to the mathematical expectations of those
variables conditional on the information available at the time the forecasts are
made16.

2.2 The model

With the above assumptions, the farm household’s problem can be characterized as
maximizing its discounted intertemporal expected utility by choosing decision rules
for consumption, savings, and acreage allocations under yield and price risk. These
choices are made subject to the sequence of budget constraints, which is partly de-
termined by the linear production technology, the exogenously given total household
land-holdings, and the relevant information available to the household. The exoge-
nously given initial level of savings, st−1, constitutes an additional constraint. The
optimization problem can thus be summarized as follows17:

max
{xt+j ,st+j ,Ai,t+j}

lim
T→∞

E

⎧
⎨
⎩

TX

j=0

βj (%0 + %1xt+j) | Ωt

⎫
⎬
⎭ ; t = 0, 1, . . . (2.1)

subject to:

xt+j + st+j = (1 + r)st+j−1 + πt+j ; t, j = 0, 1, . . . (2.2)

15The partial derivative with respect to φ1 captures only the direct impact of the ‘quota’ rate on
the average price. The effect that may operate via Pm1 is introduced later.
16The nature and/or validity of rational expectations will not be considered any further. There

is a huge literature concerning these issues. Among others, see Sargent (1987), Pesaran (1987),
Cuthberston and Taylor (1987), and Blanchard and Fischer (1989).
17Note that consumption is the numeraire, i.e., all prices are measured relative to an index of

consumption goods’ prices (say, for instance, a consumers’ price index). This reflects the view that
farm households consider relative prices in making their choices.
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Q1,t+j = y1A1,t+j−1 + ε1,t+j ; t, j = 0, 1, . . . (2.3)

Q2,t+j = y2A2,t+j−1 + ε2,t+j ; t, j = 0, 1, . . . (2.4)

1 = A1,t+j−1 +A2,t+j−1; t, j = 0, 1, . . . (2.5)

and st−1 given; where: πt+j ≡ (P1,t+jQ1,t+j −C1,t+j) + (P2,t+jQ2,t+j − C2,t+j) =
farm profits at time t + j ; β = (1 + τ)−1 = the discount factor, τ being the house-
hold’s rate of time preference; Pi,t+j = average price (as defined above) of crop i
(i = 1, 2) at t + j ; E = the mathematical expectations operator; Ωt = the farm
household’s information set at time t. In this regard, the information set is assumed
to contain: current and past realizations of prices, costs, and production shocks; as
well as the history of household production, consumption, and savings choices up to
and including (t− 1). Note that 0 < β < 1. The rest of the notation is as above.

First, consumption is factored out from (2.1) by using (2.2) to substitute for
it. Then, πt+j in (2.1) is expanded by using (2.3)-(2.4), (1.5)-(1.6), and (2.5) to
respectively substitute for Q1,t+j , Q2,t+j , C1,t+j , C2,t+j , and A2,t+j . Correspondingly,
the objective of the farming household can be summarized as:

max
{A1,t+j ,st+j}

lim
T→∞

Et

TX

j=0

βj{%0 + %1[(P1,t+jy1 −R1,t+j − V1,t+j)A1,t+j−1 −
b

2
A21,t+j−1

−dA1,t+j−1A1,t+j−2 + (P2,t+jy2 − v2,t+j−1 − f2,t+j)
+P1,t+jε1,t+j + P2,t+jε2,t+j + (1 + r)st+j−1 − st+j ]} (2.6)

subject to (A1,t−1, st−1) given. Et represents E( . | Ωt) , while R1,t+j ≡ P2,t+jy2,
and V1,t+j ≡ (v1,t+j−1+ f1,t+j)− (v2,t+j−1+ f2,t+j). The sum of R1 and V1 captures
the total (actual and opportunity) cost of producing Crop 1. Briefly, the farm house-
hold chooses a contingency plan {A1,t+j , st+j} to maximize its discounted expected
intertemporal utility. Obviously xt+j and A2,t+j are obtained via (2.2) and (2.5),
respectively.

Equation (2.6) represents a linear-quadratic optimization problem in discrete
time. The corresponding first order conditions (including the transversality con-
ditions) are obtained by differentiating the equation with respect to A1,t+j and st+j
(j = 0, 1, ..., T )18. In this regard, note that At+j directly affects πt+j+1 and πt+j+2 ,
which in turn affect contemporaneous consumption and utility via the budget con-
straints. Similarly, st+j impacts on consumption and utility during (t + j) and
(t + j + 1) through the corresponding budget constraints. After rearranging, the
following Euler equations for j = 0, 1, . . . , T − 1 are thus obtained:

Et{β
j+1[u0(xt+j+1)(P1,t+j+1y1−R1,t+j+1−V1,t+j+1−bA1,t+j−dA1,t+j−1)−βu0(xt+j+2)dA1,t+j+1]} = 0

(2.7a)
−Et

©
βj
£
u0(xt+j)− β(1 + r)u0(xt+j+1)

¤ª
= 0 (2.7b)

18The relevant rule of differentiation is Leibniz’s rule [Whiteman (1983)].
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and for j = T , the transversality conditions:

lim
T→∞

Et
£
βT+1u0(xt+T+1) (P1,t+T+1y1 −R1,t+T+1 − V1,t+T+1 − bA1,t+T − dA1,t+T−1)A1,t+T

¤
= 0

(2.8a)

lim
T→∞

Et
£
βT+1u0(xt+T+1)(1 + r)st+T

¤
= 0 (2.8b)

where u0(.) represents the partial derivative of u(.) with respect to x.
Two remarks about the first-order conditions. First, by the linearity of the one-

period utility function, the marginal utility of consumption over time is constant. By
(1.1) it is equal to %1. Hence the u

0(.) terms drop out of all first order conditions. Sec-
ond, they reveal that, under the specified circumstances, production and consumption
decisions are separable. Combined with the production functions, (2.7a) and (2.8a)
determine household production choices independent of consumption. Accordingly
the production decision of the farm household can be separately considered via the
first-order conditions relating to A1,t+j . As a first step towards a solution the Euler
equations are restated by applying the law of iterated conditional expectations to
(2.7a) and rearranging19:

Et [Et+j (P1,t+j+1y1 −R1,t+j+1 − V1,t+j+1 − bA1,t+j − dA1,t+j−1 − βdA1,t+j+1)] = 0

t = 0, 1, · · ·

j = 0, 1, · · · , T − 1
For these equations to hold for all realizations of ( P1,t+j+1, R1,t+j+1, V1,t+j+1) it is
necessary that the term in parentheses is equal to zero. Therefore, after substituting
for P1 from (1.7) above, the first-order conditions for the farm household’s production
problem can be stated as:

βEt+j

∙
A1,t+j+1 +

b

dβ
A1,t+j +

1

β
A1,t+j−1

¸
= Et+j

1

d

£¡
ι0 + ι1φ1,t+j+1 + ι2P

m
1,t+j+1

¢
y1
¤

−Et+j
1

d
[R1,t+j+1 − V1,t+j+1] (2.9)

for all j = 0, 1, · · · , T − 1.
Equations (2.9) form a set of stochastic Euler equations. Since these equations

are linear, it is possible to explicitly solve for the optimal decision rule if the ad-
ditional assumption is made that the exogenous stochastic processes {Pm1,t+j+1}

∞
j=0,

{R1,t+j+1}
∞
j=0, and {V1,t+j+1}

∞
j=0 are of mean exponential order less than

1√
β
such

that for some M > 0, and 1 ≤ q < 1√
β
[see Sargent (1987, 393); Hansen and Sargent

(1980, 12)]:

¯̄
Et(P

m
1,t+j+1)

¯̄
< Mqt+j+1; |Et(R1,t+j+1)| < Mq

t+j+1; |Et(V1,t+j+1)| < Mq
t+j+1

19The law of iterated conditional expectations states that, for Ωt ⊆ Ωt+j (i.e., for a nondecreasing
information set):

E( . | Ωt) = E [ E( . | Ωt+j) | Ωt]

In the short-hand we use:
Et(.) = Et [ Et+j(.)]
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for all t and all j ≥ 020. The assumption (roughly) implies that Et+j(P
m
1,t+j+1) ,

Et+j(R1,t+j+1), and Et(V1,t+j+1) will not grow faster than β(t+j+1)/2 [Epstein and
Yatchew (1985, 238)], or, more formally, the two stochastic processes are bounded in
the mean [Eckstein (1985, 206)]. This assumption is made to ensure that the solution
satisfy the transversality condition.

With this assumption equation (2.9) can be solved for A1,t+j+1, the solution
being:21022

A1,t+j = λ1A1,t+j−1

−(λ1
d
)
∞X

i=0

(βλ1)
iEt+j

£
y1(ι0 + ι1φ1,t+j+1+i + ι2P

m
1,t+j+1+i)−R1,t+j+1+i − V1,t+j+1+i

¤

(2.10)

where λ1 is the smaller of the roots satisfying
1
λ1
= − bd − βλ1.

Equation (2.10) represents the farm household’s demand for land relating to Crop
1. It implies that this demand is a function of past allocation of acreage to Crop 1,
expected output prices, expected rate of ‘quota’, and realized and expected non-land
input and opportunity costs. Because the terms Et+j(φ1,t+j+1+i), Et+j(P1,t+j+1+i),
Et+j(R1,t+j+1+i), and Et(V1,t+j+1+i) are present, that equation does not yet consti-
tute a decision rule. To make it one, it is necessary to express those expectational
variables as functions of elements of the current information set (Ωt+j), i.e., as func-
tions of variables known to the farm household at time t + j. This is done in the
second sections of rhe appendix. Nevertheless, as it stands, (2.10) can be used to de-
rive expressions for the acreage demand elasticities with respect to relevant variables.

2.3 Elasticities

One of the main objectives in this paper is to examine the impact of CGD on the
intertemporal production choices of farm households under risk. The simple model
presented above reduces this to analyzing the effect of CGD on the acreage allocation
decisions of farm households. The obvious route, in this regard, is to identify the
long-run and short-run elasticities of expected acreage with respect to changes in the
expected rate of ‘quota’, using equation (2.10). The response of these allocations to
prices can also be examined in a similar fashion. This section deals with the task23.

Recall that Crop 1 is subject to CGD, the rate of ‘quota’ being φ1. Also recall
the definition of the average price of that crop as:

P1 = ι0 + ι1φ1 + ι2P
m
1

20Since, by definition, it is bounded within the interval [0, 1] there is no need to make the same
assumption about φ1.
21The solution procedure used is described in the first section of the paper’s appendix.
22The solution stated as (2.10) displays the certainty equivalence property, i.e., the

same solution would result if we had maximized the criteria formed by substituting
[Et(P1,t+j),Et(R1,t+j),Et(V1,t+j)] for [P1,t+j , R1,t+j , V1,t+j ] and dropping the expectations oper-
ator from outside the sum in the objective function (2.6). Also see Sargent (1987), and Hansen and
Sargent (1980).
23The discussion below focuses on acreage elasticities. Note, however, that the linear production

functions can be used to translate the response of acreage demand in to that of output supply.
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Hence, the unconditional and conditional expectations of the average price can be
respectively represented as:

E(P1) = ι0 + ι1E(φ1 ) + ι2E(P
m
1 )

Et+j(P1,t+j+1+i) = ι0 + ι1Et+j(φ1,t+j+1+i ) + ι2Et+j(P
m
1,t+j+1+i) (2.11a)

The previous equations express the argument that the expected rate of ‘quota’ as
well as the expected output market price operate via the expected average price of
Crop 1. As noted earlier a change in the ‘quota’ rate has a direct, negative effect on
P1. That impact is captured by the negative parameter ι1. That an ‘average’ farm
household is being considered implies that the ‘average’ quota rate may also influence
the corresponding market price. The possible routes through which this effect may
occur include: the income effect on farm households’ demand for goods (including
Crop 1); the effect on the supply of Crop 1 in the rural market; the impact on the
purchases of Crop 1 made by urban consumers/traders. A rise in the ‘quota’ rate
reduces the income of farm households. It may thus lower their demand for Crop 1
if it is a normal good. It is also likely to induce a fall in that part of urban demand
for Crop 1 which is met via direct purchases on the rural grain market. This is a
consequence of the fact that a fraction of the amount of Crop 1 procured goes to
urban consumers. On the other hand, a rise in the ‘quota’ rate leads to a decreased
supply on the rural market. The first two tend to push the market price downwards,
while the third exerts a pressure in the opposite direction. The ultimate effect on the
market price of Crop 1 in the rural market is dependent on the relative strength of
these counteracting pressures.

In line with the observations in the previous paragraph, (2.11a) is differentiated
with respect to the relevant expected φ1, to derive the impact of the latter on the
unconditional and conditional means of the average price of Crop 1, respectively:

∂E(P1)

∂E(φ1)
= ι1 + ι2

∂E(Pm1 )

∂E(φ1)

∂Et+j(P1,t+j+1+i)

∂Et+j(φ1,t+j+1+i)
= ι1 + ι2

∂E(Pm1,t+j+1+i)

∂E(φ1,t+j+1+i)
(2.11b)

The analogous expressions for the effect of Pm1 are:

∂E(P1)

∂E(Pm1 )
=

∂Et+j(P1,t+j+1+i)

∂Et+j(Pm1,t+j+1+i)
= ι2 (2.11c)

Note that an expected rise in Pm1 always increases the expected average price (ι2 > 0).
In contrast, a rise in expected φ1 generates two potentially counteracting effects. The
direct effect is always negative since, given P s1 and P

m
1 , a higher ‘quota’ rate results a

lager expected share of the lower P s1 in the average price. The indirect effect, which
operates via Pm1 , is ambiguous since the impact of φ1 on P

m
1 cannot be signed a

priori. If the indirect effect is negative (or zero), then, an expected rise in the ‘quota’
rate leads to an expected fall in the average price of Crop 1. In contrast, if the
indirect effect is positive, but the direct impact exceeds the induced change in Pm1 in
absolute value, i.e.,

|ι1| > ι2
∂E(Pm1 )

∂E(φ1)

|ι1| > ι2
∂E(Pm1,t+j+1+i)

∂E(φ1,t+j+1+i)
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then, the net effect is an expected fall in the average price of Crop 124.

2.3.1 Long-run elasticities

The long-run elasticities express the impact of expected changes in mean prices and
the mean ‘quota’ rate on the farm household’s mean acreage demand. Consider the
effect of the ‘quota’ rate first. The long-run elasticity of expected acreage demand
with respect to expected φ1,

¡
ξLA,φ

¢
, is derived by first taking the unconditional

expectation of (2.10), differentiating with respect to E(φ1) and making use of (2.11b),
and weighting the result by the ratio of the unconditional means E(φ1) and E(A1)

25.
The final result is:

ξLA,φ =

∙
∂E(A1)

∂E(P1)

∂E(P1)

∂E(φ1)

¸
E(φ1)

E(A1)

= −
µ

λ1y1
d(1− λ1)(1− βλ1)

¶ ∙
ι1 + ι2

∂E(Pm1 )

∂E(φ1)

¸
E(φ1)

E(A1)
(2.12a)

The long-run elasticity of expected acreage demand with respect to expected market
price of Crop 1, ξLA,Pm , is derived in analogous manner:

ξLA,Pm =

∙
∂E(A1)

∂E(P1)

∂E(P1)

∂E(Pm1 )

¸
E(Pm1 )

E(A1)

= −
µ

λ1y1
d(1− λ1)(1− βλ1)

¶
ι2
E(Pm1 )

E(A1)
(2.12b)

The corresponding elasticity with respect to R1 is obtained in the same way:

ξLA,R =
∂E(A1)

∂E(R1)

E(R1)

E(A1)

=

µ
λ1

d(1− λ1)(1− βλ1)

¶
E(R1)

E(A1)
(2.12c)

Recall that: 0 < β < 1; 0 < |λ1| < 1; y1 is positive; and λ1 and d can be positive
or negative. However, the latter two will have opposite signs since d ≷ 0 implies
λ1 ≶ 026. In addition, the nature of the CGD implies that 0 < E(φ1) < 1, ι1 is

24Obviously, the two oppsite effects may cancel each other out if they are equal.
25Take unconditional expectations of both sides of (2.10) and rearrange to obtain:

(1− λ1)E(A1) = −(λ1
d
)E [y1(ι0 + ι1φ1 + ι2P

m
1 )−R1 − V1]

∞X

i=0

(βλ1)
i

Given |βλ1| < 1, it is also the case that:

∞X

i=0

(βλ1)
i =

1

(1− βλ1)

such that:

(1− λ1)E(A1) = −
∙

λ1
d(1− βλ1)

¸
E [y1(ι0 + ι1φ1 + ι2P

m
1 )−R1 − V1]

26That, λ1λ2 =
1

β
, and, 0 < β < 1, imply, λ1λ2 > 0, such that λ1 and λ2 have the same sign.

Further, with b and β positive, λ1+λ2 = − b
βd
, means that the sign of λ1 and λ2 depends on that of

d. In short, if d ≷ 0, then, λ1 + λ2 ≶ 0, and thus, λ1,λ2 ≶ 0.
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negative, and 0 < ι2 < 1. By making use of these features, the following can be
inferred from (2.12a)-(2.12c)27.

1) The long-run ‘quota’ elasticity, ξLA,φ, is negative if both the direct and indirect
effects of φ1 are negative, or if the latter, though positive, is less than the former
in absolute value:

|ι1| > ι2
∂E(Pm1 )

∂E(φ1)

It implies that the imposition of, or increase in the rate of, the ‘quota’ on Crop
1 reduces the acreage share of that crop in the long-run. The impact occurs
via the average price, P1. A rise in the mean rate of ‘quota’ decreases the mean
P1, and thereby makes Crop 1 less profitable. As a result the household lowers
its mean acreage demand for that crop, provided that it is feasible to do so.
The reduction is conditioned by production possibilities via b, y1, and d, as
well as household rate of time preference through β. If Crop 2 is free from
the ‘quota’ the household switches into that crop. If Crop 2 is also subject to
‘quota’, however, the choice between the two crops will be affected not only by
production possibilities, but also by the relative magnitude of the two ‘quota’
rates28. Briefly, in the long-run, the system of forced grain procurement may
reduce the production of the crops it directly affects, and may even lead to a
fall in crop production as whole. On the other hand, the ξLA,φ is positive if:

|ι1| < ι2
∂E(Pm1 )

∂E(φ1)

In other words, a positive indirect effect more than compensates for the negative
direct effect, such that mean P1 rises. This rise, in turn, provides the incentive
for the household to increase its long-run acreage demand for Crop 1.

2) The long-run price elasticity, ξLA,Pm , is positive but lower than what it would
have been in the absence of CGD. Indeed a one percent rise in Crop 1’s mar-
ket price counts as a ι2 percent (less than one percent) increase for the farm
household’s acreage decisions. Thus, the system of compulsory grain delivery
reduces the long-run price responsiveness of crop supply.

3) The long-run elasticity of acreage demand for Crop 1 production with respect to
R1, ξ

L
A,R, is negative. A permanent rise in the revenue (per hectare) obtainable

from the cultivation of Crop 2 creates the incentive for the household to switch
into that crop, and out of Crop 1.

2.3.2 Short-run elasticities

The short-run elasticities capture the effect, on current acreage demand, of changes
in expected prices and ‘quota’ rates, (i+ 1) periods hence. These elasticities are
computed in the same way as their long-run counterparts, but directly using (2.10),

27Note that analogous results hold in the static case under certainity (see Taffesse (1999)).
28Note, however, that this possible impact on acreage allocations to Crop 1 will operate through

the ‘profitability’ of Crop 2. In the empirical application below this profitability is included in the
acearage equation.
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with (2.11b), and (2.11c). For φ1, P
m
1 , and R1 these elasticities, evaluated at the

unconditional means of φ1, P
m
1 , R1, and A1, are:

ξi+1A,φ =

∙
∂Et+j(At+j)

∂Et+j(P1,t+j+1+i)

∂Et+j(P1,t+j+1+i)

∂Et+j(φ1,t+j+1+i)

¸
E(φ1)

E(A1)

= −
µ
λ1y1
d

¶
(βλ1)

i

∙
ι1 + ι2

∂Et+j(P
m
1,t+j+1+i)

∂Et+j(φ1,t+j+1+i)

¸
E(φ1)

E(A1)
(2.13a)

ξi+1A,Pm =

"
∂Et+j(At+j)

∂Et+j(P1,t+j+1+i)

∂Et+j(P1,t+j+1+i)

∂Et+j(Pm1,t+j+1+i)

#
E(Pm1 )

E(A1)

= −
µ
λ1y1
d

¶
(βλ1)

iι2
E(Pm1 )

E(A1)
(2.13b)

ξi+1A,R =
∂Et+j(At+j)

∂Et+j(R1,t+j+1+i)

E(R1)

E(A1)

=

µ
λ1
d

¶
(βλ1)

iE(P
m
1 )

E(A1)
(2.13c)

Again the aforementioned results concerning λ1, β, d, y1, ι1, and ι2 are used. In
addition, note that, given the sign of d, the sign of (βλ1)

i , depends on whether i is
even or odd. Suppose the decline in land productivity is the dominant dynamic effect
such that d is positive. Then λ1 and (βλ1) are negative. Hence, (βλ1)

i is negative
(positive) with i odd (even). In contrast, d is negative if adjustment costs dominate
dynamic behaviour. Accordingly, λ1, and (βλ1) , are positive, such that (βλ1)

i , is
positive for all i. Hence:

(βλ1)
i < 0, if (d > 0 and i is odd)

(βλ1)
i > 0, if (d > 0 and i is even) or (d < 0)

Note also that (βλ1)
i , approaches zero as i gets larger, implying the further into the

future a period is the less important to current decisions it becomes. These features
enable us to make the following observations concerning short-run elasticities on the
basis of (2.13a)-(2.13c).

1) The short-run elasticity of acreage demand with respect to expected rate of
‘quota’ alternates sign with i if d > 0. It is, however, negative for all i provided
that d < 0, and that the direct and indirect effects of φ1 are both negative, or
if: the latter, though positive, is less than the former in absolute value:

|ι1| > ι2
∂E(Pm1,t+j+1+i)

∂E(φ1,t+j+1+i)

Furthermore, as the forecast period becomes longer (i.e., the higher i is), this
elasticity gets closer to zero.
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2) The short-run elasticity of acreage demand with respect to expected market
price of Crop 1 alternates sign with i if d > 0. It is, however, positive for all
i provided that d < 0. Like its long-run counterpart, this elasticity is lower
than the level that would obtain in a CGD-free environment. In addition, the
magnitude of this elasticity becomes smaller in absolute value as the forecast
period gets longer.

3) The short-run elasticity of acreage demand with respect to R1 alternates sign
with i if d > 0. It is, however, negative for all i provided that d < 0. Like the
other short-run acreage elasticities, this elasticity declines (in absolute value)
towards zero as the forecast period gets longer.

Two examples illustrate some of these features. In both cases, assume that the
effect of expected φ1 on expected P1 is negative. First, suppose the farm household
anticipates a rise in next (or harvest) period’s ‘quota’ rate. In this case, where
i = 0, the short-run elasticity is negative, implying that the household responds by
reducing the current acreage share of Crop 1. The household expects a lower return
from cultivating Crop 1 and accordingly reduces its current acreage allocation to that
crop. In contrast, an expected increase in the harvest period’s Pm1 , and thus a higher
profit from Crop 1, will induce a higher acreage share for the crop. Second, suppose
the household expects φ1 to rise two periods hence (i.e., i = 1 or during t + j + 2).
Consequently that period’s expected return from Crop 1 falls. Further assume that
d > 0. Then deteriorating soil fertility means that the household has to plant more
(less) of Crop 1 during (t+j+1) depending on whether it has cultivated less (more) of
that crop during the current period (i.e., t+j). To counter the potential loss of revenue
and simultaneously satisfy the need for crop rotation the household grows more of
Crop 1. In short, current acreage demand for Crop 1 rises because lower expected
profitability combines with the dynamic effect of declining land productivity to make
that crop more attractive for current production. On the other hand, since it involves
a potential gain in income, the converse will apply for an expected increase in Crop
1’s market price that will obtain during (t+ j + 2).

To summarize, by decreasing the returns to farm households, CGD is likely to
have reduced, directly as well as through lower own-price responsiveness, the long-run
acreage share (and thus output supply) of the crops it affected. The corresponding
short-run effects are more complicated in that they also depend on the pattern of
the dynamic effects at work. Moreover, both of these effects are further complicated
by the impact of the ‘average’ rate of ‘quota’ on market price - an impact which
cannot be signed a priori. On the other hand, it is shown that acreage demand
generally responds positively to a crop’s own price and negatively to the revenue
from competing crops.

3 Empirical Analysis

3.1 The Data

The basic features of the data used are described in this section. The main sources
of information are the publications of the Central Statistical Authority (CSA) and
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the Ethiopian Agricultural Marketing Agency (EAMC)29. The dataset thus compiled
contains information on: acreage, output, and yield of major annual crops; producer
prices of crops; and EAMC purchases and procurement prices.

Before moving on to considering other characteristics of the data, the following
remarks about its spatial and temporal dimensions are deemed helpful.

1. The unit of observation are administrative regions. Up to 1988 there were
14 administrative regions in the country. Of these data is not available for
two (Eritrea and Tigray). In 1988 a new administrative structure with thirty
regions was introduced. Twenty-six of these are covered by the dataset used.
In addition to Eritrea and Tigray, two new regions (Assab and Ogaden) are
not covered by the reports available30. The twenty-six regions are aggregated
into twelve to make the coverage compatible with that of the previous years31.
Although inexact, this aggregation is not likely to involve substantial errors.

2. The data set covers the period from 1980/81 to 1989/90. There are a number
of reason for restricting the analysis to this period. First, although introduced
in 1979, the centralized CGD system was not fully operational until 1981. This
was particularly true of its impact on farm households. Second, the main source
of consistent time-series data is the annual Agricultural Sample Survey of the
CSA. This Survey has began in 1980/81. Third, the CGD system was abolished
in 1990. Fourth, a new government assumed power in 1991, and subsequently
adopted a radically different administrative structure as well as an economic
structural adjustment program. The first two facts mean that it is reasonable
to start with 1980/81, whereas the last two imply that it is problematic to go
beyond 1989/90.

3.1.1 acreage allocation patterns

Table 1 reports the average regional acreage shares of cereals as a group and its
five main constituents32. The first row of figures in that table confirm what has

29As part of the grain market reforms, this agency has been reorganized and renamed the Ethiopian
Grain Trade Enterprise (EGTE).
30Assab and Ogaden are not major crop producing areas. That they are not included for the years

1988/89 and 1989/90 is unlikely to materially affect compatiblity with the data for the years before
1988.
31The aggregation involved the following. For 1988/89 and 1989/90:

Old New

Arssi = Arssi
Bale = Bale
Gamo Gofa = North Omo + South Omo
Gojam = East Gojam + West Gojam + Metekel
Gondor = North Gondor + South Gondor
Hararghe = West Hararghe + East Hararghe + Dire Dawa
Illubabor = Illubabor + Gambela
Keffa = Keffa
Shewa = East Shewa + North Shewa + South Shewa + West Shewa
Sidamo = Sidamo + Borena
Wellega = Wellega + Asosa
Wollo = North Wollo + South Wollo

32Note that Producers’ Cooperatives and State Farms are excluded, such that all figures relate to
private peasant producers
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Table 1: Mean Regional Acreage Shares (1981-90)
Region Cereals Barley Maize Sorghum Teff Wheat

National 0.87 (0.06) 0.18 (0.13) 0.25 (0.18) 0.18 (0.16) 0.23 (0.13) 0.10 (0.10)

Arssi 0.83 (0.03) 0.37 (0.04) 0.11 (0.02) 0.05 (0.02) 0.10 (0.02) 0.34 (0.04)

Bale 0.89 (0.03) 0.43 (0.06) 0.12 (0.05) 0.01 (0.01) 0.08 (0.04) 0.25 (0.04)

Gamo Gofa 0.92 (0.04) 0.14 (0.03) 0.37 (0.12) 0.31 (0.07) 0.15 (0.08) 0.03 (0.02)

Gojam 0.81 (0.02) 0.21 (0.06) 0.13 (0.02) 0.05 (0.02) 0.43 (0.03) 0.08 (0.02)

Gondor 0.75 (0.02) 0.24 (0.07) 0.06 (0.02) 0.18 (0.04) 0.33 (0.04) 0.09 (0.03)

Hararghe 0.94 (0.02) 0.05 (0.02) 0.26 (0.08) 0.59 (0.08) 0.05 (0.01) 0.04 (0.01)

Illubabor 0.92 (0.02) 0.05 (0.02) 0.41 (0.03) 0.18 (0.03) 0.32 (0.02) 0.02 (0.01)

Keffa 0.90 (0.03) 0.06 (0.01) 0.41 (0.06) 0.19 (0.04) 0.26 (0.07) 0.04 (0.02)

Shewa 0.82 (0.02) 0.19 (0.03) 0.17 (0.03) 0.14 (0.03) 0.33 (0.03) 0.17 (0.02)

Sidamo 0.91 (0.02) 0.12 (0.04) 0.61 (0.10) 0.07 (0.03) 0.15 (0.05) 0.04 (0.02)

Wellega 0.87 (0.02) 0.07 (0.02) 0.33 (0.07) 0.15 (0.03) 0.36 (0.04) 0.02 (0.01)

Wollo 0.82 (0.04) 0.27 (0.09) 0.05 (0.02) 0.27 (0.08) 0.25 (0.04) 0.14 (0.02)
Notes: Standard deviations in parentheses. Shares are computed from data copmiled from CSA,

Statistical Bulletin No. 56, No. 74, No. 79, and No.103. The share of cereals is out of total
acreage cultivated with annual crops, while those of individual crops are out of total cereal
acreage.

been observed before; cereals constitute by far the most important annual crop to
farm households, accounting for more than 80 per cent of the total area planted
with annual crops. The rest is cultivated with pulses and oil seeds. From among
cereals, maize and Teff have the largest shares, respectively accounting for 25 per
cent and 23 per cent. The table also shows the considerable regional variation in land
allocation among crops. For instance, Arssi and Bale farm households concentrate on
growing barley and wheat, while those residing in Gojam, Gondar, Shewa, and Wollo
allocate more than half of cereal-cultivated land to barley and Teff. Such variation
reflects differences in natural endowments, technological possibilities, tastes, and the
historical processes which affect all of these regional and individual attributes. In
the analysis below, this regional variation will be exploited jointly with the variation
across time periods.

3.1.2 ‘quota’ rates

The available data regarding EAMC’s procurement of crops from farm households
can be grouped into two33. The first group consists of the annual domestic purchases
of EAMC by crop (including the five major cereals) and source of supply (including
merchants, and farm households via Peasant Associations and Service Cooperatives).
The second category is formed by the annual purchases of EAMC from farmers and
merchants (together), by crop and administrative region. From the first set the
share, at the national level, of farm households in the total domestic procurement
of different crops by EAMC can be computed. The analogous share of merchants is
similarly obtained. The relative shares of the two suppliers are then calculated, and
the results are subsequently applied on the corresponding regional procurements from

33All the information concerning the operations of the EAMC are compiled from EAMC (1987)
and EGTE (1995).
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Table 2: Mean Regional ‘Quota’ Rates (1981-90)
Region Barley Maize Sorghum Teff Wheat

National 0.02 (0.03) 0.02 (0.05) 0.02 (0.03) 0.03 (0.05) 0.05 (0.08)

Arssi 0.08 (0.05) 0.07 (0.15) 0.03 (0.03) 0.01 (0.01) 0.19 (0.08)

Bale 0.07 (0.07) 0.02 (0.02) 0.02 (0.02) 0.01 (0.03) 0.19 (0.11)

Gamo Gofa 0.00 (0.00) 0.01 (0.01) 0.00 (0.01) 0.01 (0.01) 0.00 (0.00)

Gojam 0.03 (0.02) 0.03 (0.02) 0.08 (0.05) 0.18 (0.06) 0.08 (0.03)

Gondor 0.01 (0.01) 0.01 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)

Hararghe 0.00 (0.00) 0.00 (0.00) 0.00 (0.01) 0.01 (0.02) 0.03 (0.07)

Illubabor 0.00 (0.01) 0.01 (0.01) 0.01 (0.02) 0.01 (0.01) 0.00 (0.01)

Keffa 0.02 (0.04) 0.01 (0.01) 0.01 (0.01) 0.00 (0.01) 0.01 (0.01)

Shewa 0.03 (0.02) 0.08 (0.04) 0.04 (0.03) 0.05 (0.01) 0.06 (0.03)

Sidamo 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.03 (0.03) 0.01 (0.01)

Wellega 0.01 (0.01) 0.03 (0.03) 0.02 (0.02) 0.03 (0.02) 0.04 (0.03)

Wollo 0.00 (0.00) 0.03 (0.04) 0.02 (0.01) 0.01 (0.01) 0.01 (0.01)
Notes: Standard deviations in parentheses.

farmers and merchants so as to arrive at an estimate of the annual level of ‘quota’ by
crop and administrative region. Finally, the ratio of the ‘quota’ level thus obtained
to the corresponding regional output gives us the desired ‘quota’ rates. In short the
next formula is used:

φikt =

³
sFit

sFit+s
M
it

´
Xikt

Qikt

where: φikt is the rate of ‘quota’ applying to crop i and region k in year t; s
F
it and s

M
it

are, respectively, the (national) share of farm households and merchants in EAMC’s
total domestic procurement of crop i in year t; Xikt represents the total amount of
crop i purchased by EAMC from the farmers and merchants of region k in year t;
and Qikt is the total output of crop i produced by the farm households of region k in
year t. The rates calculated in this manner are to be viewed as the average rates of
‘quota’ which farm households of region k faced during year t.

At the national level, the average share of farm households in EAMC’s total
domestic purchases range from 60 percent for maize to 76 percent for Teff. The
corresponding ‘quota’ rates range from 2-5 percent (see Table 2). However, there
were substantial regional differences in ‘quota’ rates. The relevant rates for the five
main cereals are summarized in Table 2. The average regional ‘quota’ rate can be as
low as zero for most crops (Gamo Gofa), and as high as 19 percent for wheat (Arssi
and Bale). In this regard, the general pattern has been that higher regional output
of a crop meant higher regional ‘quota’ level. The corresponding correlations are all
positive, and are large and mostly significant (see Table 3). This pattern reflects the
‘quota’ determination process described above. It also provides some support to the
argument that the ‘quota’ should be treated as an implicit proportional output tax34.

34It does not however imply that these two variables are positively correlated overtime.

17



Table 3: Correlations between Regional Crop Output and ‘Quota’ Level
Year Barley Maize Sorghum Teff Wheat

1980/81 0.60 (0.038) 0.77 (0.004) 0.59 (0.045) 0.63 (0.027) 0.70 (0.011)

1981/82 0.52 (0.083) 0.84 (0.001) 0.68 (0.016) 0.63 (0.029) 0.72 (0.008)

1982/83 0.49 (0.106) 0.36 (0.246) 0.58 (0.049) 0.79 (0.002) 0.60 (0.041)

1983/84 0.48 (0.113) 0.80 (0.002) 0.53 (0.075) 0.67 (0.016) 0.66 (0.018)

1984/85 0.90 (0.000) 0.77 (0.003) 0.20 (0.536) 0.84 (0.001) 0.92 (0.000)

1985/86 0.53 (0.076) 0.49 (0.102) 0.66 (0.019) 0.81 (0.001) 0.82 (0.001)

1986/87 0.59 (0.042) 0.81 (0.002) 0.80 (0.002) 0.75 (0.005) 0.77 (0.004)

1987/88 0.88 (0.000) 0.74 (0.006) 0.56 (0.059) 0.71 (0.010) 0.90 (0.000)

1988/89 0.81 (0.001) 0.86 (0.000) 0.39 (0.218) 0.70 (0.011) 0.86 (0.000)

1989/90 0.95 (0.000) 0.87 (0.000) 0.56 (0.057) 0.80 (0.002) 0.95 (0.000)
Notes: Each entry is Pearson’s correlation coefficient between regional output and ‘quota’ level of the

crop identified in the column, during the year identified in the row. Figures in parentheses
are two-tailed significance levels.

Table 4: Mean Panterritorial Procurement Crop Prices (1981-90)
Barley Maize Sorghum Teff Wheat

28.2 (1.93) 20.0 (1.83) 23.8 (1.34) 39.3 (2.21) 31.6 (0.97)

Notes: Current prices in Birr per Quintal. Computed form the information in EAMC (1987). Stan-
dard deviations in parentheses.

3.1.3 crop prices

Two sets of crop prices are relevant for the present analysis, namely, procurement
prices and market prices. Procurement prices were administratively determined by
the central government. They were also pan-territorial in that they apply to all parts
of the country. Mean procurement prices for the five main cereals are reported in
Table 4. As indicated by the low standard deviations, these prices did not change
significantly in the 1980s. In fact they were raised only once for barley and wheat,
and twice for the remaining three cereals during that period. Not only were the
increases infrequent, they were also very modest, involving Birr 1 - Birr 4 per quintal
(or less than 10 percent for the entire period) 35.

Market prices, in contrast, refer to producers’ prices which obtained on the ‘free’
market. In this regard, the CSA collects monthly retail and producers’ prices in
rural areas since 1981. The data thus collected are summarized as regional quarterly
prices and are published36. Annual regional producers’ prices of crops are computed
as the simple mean of the corresponding quarterly prices37. Table 5 reports the
cereal prices calculated in this manner. First, these prices are considerably higher
than the corresponding procurement prices. Second, substantial regional variation
in crop prices can be observed. It is reasonable to expect that this variation reflects
regional aspects of demand and supply including production patterns, supply shocks,
and the degree of urbanization.

35Unpublished EAMC document.
36For the years 1987/88-1989/90 the monthly prices themselves are reported.
37Ideally some weighting scheme is desirable to account for seasonality. In the absence of any

information that can serve as a basis for devising such a scheme, the simple strategy is opted for.
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Table 5: Mean Regional Market Crop Prices (1981-90)
Region Cereals Barley Maize Sorghum Teff Wheat

National 54.5 (19.9) 54.4 (19.2) 47.6 (19.4) 52.6 (21.6) 74.8 (25.0) 65.4 (20.2)

Arssi 44.7 (13.1) 38.2 (11.4) 38.1 (12.0) 46.0 (12.6) 68.6 (18.6) 51.3 (14.7)

Bale 45.3 (14.4) 44.9 (14.6) 47.1 (17.0) 54.8 (18.4) 72.1 (23.2) 60.4 (18.8)

Gamo Gofa 47.1 (12.0) 47.9 (11.3) 40.9 (12.3) 42.4 (11.8) 75.1 (16.0) 70.3 (14.7)

Gojam 43.6 (11.6) 42.7 (13.4) 36.2 (9.9) 33.2 (9.6) 51.6 (13.9) 48.8 (13.8)

Gondor 55.3 (15.4) 50.9 (16.3) 45.2 (14.0) 51.8 (16.7) 65.0 (18.0) 57.6 (16.4)

Hararghe 70.9 (22.4) 70.8 (23.6) 63.3 (18.9) 73.4 (23.9) 96.1 (22.1) 79.0 (24.2)

Illubabor 54.8 (15.3) 61.8 (14.7) 47.2 (13.8) 48.5 (14.6) 75.7 (23.7) 66.9 (15.1)

Keffa 47.8 (15.5) 52.4 (17.3) 41.0 (16.2) 43.9 (12.1) 68.9 (19.6) 62.6 (17.7)

Shewa 66.0 (23.6) 59.7 (20.5) 51.3 (21.6) 59.8 (25.9) 84.1 (27.7) 75.8 (21.6)

Sidamo 50.2 (11.3) 56.0 (11.4) 45.4 (10.5) 53.4 (23.0) 74.3 (17.3) 67.5 (12.6)

Wellega 53.4 (13.1) 58.9 (15.2) 45.8 (12.4) 50.5 (13.5) 68.3 (18.6) 67.9 (19.9)

Wollo 75.0 (33.9) 69.0 (28.9) 69.5 (36.8) 73.0 (34.0) 97.4 (42.1) 77.4 (28.8)
Notes: Current prices in Birr per Quintal. Computed form the information in CSA (1985), CSA

(1988a), CSA (1988b), CSA (1991a), CSA (1991b), CSA (1992) . Standard deviations in
parentheses.

3.2 Econometric Specification

In this section an estimable form of the farm household’s acreage demand decision
rule is specified.38 The formulation is a specific application of equation (A2.9) in the
appendix, Teff taking the place of Crop 139. Teff is a major cereal in terms acreage
and output shares accounting, respectively, for 23 per cent and 17 per cent. It is highly
demanded as a food crop, particularly in urban areas. Partly as a consequence of this
demand, it is the most commercialized food crop, constituting a major (for many parts
of the country the major) source of cash income for farm households. For the same
reason Teff has also been the main target of EAMC in its cereal procurement effort.
On average, it accounted for 36 per cent of EAMC’s annual cereal purchases from
farm households. As a result, the imposition of the Teff ‘quota’ on farm households
is likely to have had a very large impact on their cash income and, through it, their
welfare. These reasons are behind the decision to make Teff the focus of the empirical
analysis.

Equation (A2.9) represents a closed form solution for the decision rule for A1t. It
expresses the optimal acreage allocation rule of the farm household as a function of
acreage allocated last period, current output price, current and once-lagged ‘quota’
rate, and current actual and opportunity costs of cultivating Crop 1. As it stands,
equation (A2.9) is nonstochastic, however. All right-hand-side variables are elements
of the farm household’s information set at t (or Ωt). Moreover, data on V1t is not
available. A solution to both is provided by the Koyck transformation. Applying the
Koyck transformation, (A1t − ωA1,t−1), and using, (1 − ρL)V1t = uVt (see equation
(A2.4)), leads to:

A1t = κ0 + κ1A1,t−1 + κ2A1,t−2 + κ3P
m
1t + κ4P

m
1,t−1 + κ5φ1t + κ6φ1,t−1 + κ7φ1,t−2

38See the second section of the appendix for a discussion on why equation (2.10) does not represent
a decision rule as well as the procedure used to derive an explicit acreage decision rule.
39For the sake of notational economy, the subscript 1 is retained, but now used to identify variables

relating to Teff .
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+κ8R1t + κ9R1,t−1 + ²t (3.1)

where: κ0 = ω0(1 − ρ); κ1 = λ1 + ρ; κ2 = ρλ1; κ3 = ω3; κ4 = −ρω2; κ5 = ω3;
κ6 = (ω4 − ρω3); κ7 = −ρω4; κ8 = ω5; κ9 = −ρω5; and ²t = ω6u

V
t . In the process

a stochastic relation estimable with available data is obtained. In equation (3.1)
²t represents shocks to non-land costs of producing Teff and other cereals. It can
also be used as a means of including random errors of optimization and errors in data
[Epstein and Yatchew (1985)]. This equation is directly estimated as the unrestricted
reduced form of the structural model. In this regard no attempt is made to recover
the structural parameters. Thus, the restrictions implied by the underlying model
are neither exploited nor their validity established empirically. However, the primary
objective of estimating acreage elasticities can be achieved using the unrestricted
version. Next, a brief discussion of how these elasticities are computed.

The long-run elasticity of expected acreage demand with respect to mean φ1,¡
ξLA,φ

¢
, is derived by first taking the unconditional expectation of (3.1), differentiating

with respect to E(φ1), and weighting the result by the ratio of the unconditional
means E(φ1) and E(A1). The result is:

ξLA,φ =
∂E(A1)

∂E(φ1)

E(φ1)

E(A1)
=

∙
κ5 + κ6 + κ7
(1− κ1 − κ2)

¸
E(φ1)

E(A1)
(3.2a)

The long-run elasticity of expected acreage demand with respect to mean Pm1 and
mean R1 are obtained similarly:

ξLA,Pm =
∂E(A1)

∂E(Pm1 )

E(Pm1 )

E(A1)
=

∙
κ3 + κ4

(1− κ1 − κ2)

¸
E(Pm1 )

E(A1)
(3.2b)

ξLA,R =
∂E(A1)

∂E(R)

E(R)

E(A1)
=

∙
κ8 + κ9

(1− κ1 − κ2)

¸
E(R)

E(A1)
(3.2c)

The corresponding short-run elasticities, ξSA,φ, ξ
S
A,Pm , and ξSA,R are computed in an

analogous fashion. All are evaluated at the unconditional means of acreage shares,
prices, and the rate of ‘quota’ associated with Teff, and appear as:

ξSA,φ =
∂(A1,t)

∂(φ1t)

E(φ1)

E(A1)
= κ5

E(φ1)

E(A1)
(3.3a)

ξSA,Pm =
∂(A1,t)

∂(Pm1t )

E(Pm1t )

E(A1)
= κ3

E(Pm1 )

E(A1)
(3.3b)

ξSA,R =
∂(A1,t)

∂(R1t)

E(R1t)

E(A1)
= κ8

E(R1)

E(A1)
(3.3c)

3.3 Estimation Procedure

The models for A1, P
m
1 , φ1 are estimated using available data on the relevant vari-

ables. As noted above the data set employed is composed of region-level information
over ten years. To exploit this panel dimension, the equations are restated in the
appropriate form by introducing regional effects. The resulting Teff acreage demand
can be written as:

yit = κ1yi,t−1 + κ2yi,t−2 +K3x0it +K4x
0
i,t−1 +K5x

0
i,t−2 + ηi + νit, t ≥ 3 (3.4)
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where: i (i = 1, · · · , N) identifies regions; y ≡ A1; x =
£
Pm1 φ1 R1

¤
; ηi =

unobserved region-specific effects; and

K3 =
£
κ3 κ5 κ8

¤
, K4 =

£
κ4 κ6 κ9

¤
, K5 =

£
0 κ7 0

¤

To ensure stationarity, it is also assumed that, κ1 + κ2 < 1, κ2 − κ1 < 1, and κ2 >
−140. Similarly, the following for the Teff price equation and the Teff ‘quota’ rate
equation are respectively obtained:

yPit = θ1y
P
i,t−1 + θ2x

P
i,t−1 + θ3x

P
i,t−2 + ηPi + νPit , |θ1| < 1, t ≥ 3 (3.5)

yφit = γyφi,t−1 + ηφi + νφit, |γ| < 1, t ≥ 2 (3.6)

where: yP = Pm1 , x
P = φ1, and y

φ = φ1. Again, the subscript i indexes regions. Note
that:

ηi + νit = ²it, ηPi + νPit = u
P
it , ηφi + νφit = u

φ
it

represent the “fixed effects” decomposition of the disturbance terms commonly adopted
in panel data models, with νit’s representing white noise..

Equations (3.4)-(3.6) form a set of dynamic panel data models. Thus each has
to be estimated using estimation techniques applicable to such models. Recently, a
variety of estimators have been developed for the parameters of these models [Ander-
son and Hsiao (1982), Arellano and Bond(1991), Arellano and Bover (1995), Blundell
and Bond (1995)]. From among alternatives, a specific variant of the linear General-
ized Method of Moments (GMM) estimator is chosen, namely, the system estimator
proposed by Blundell and Bond (1995). This estimator is based on the estimation of
the first-difference equations and the levels equations together as a system. In this
process, lagged levels of (y, x) are used as instruments for the equations in first dif-
ferences, while lagged differences are used as instruments for the equations in levels.
To distinguish between them, this estimator and the usual GMM estimator based on
the equations in first differences, are referred to as the GMM(II) estimator and the
GMM(I) estimator, respectively41.

The estimation results are reported in Tables 6-8. To highlight the advantages
derived from using the GMM(II) estimator, results relating to some of the alter-
natives are also presented. The GMM(I) and GMM(II) estimates are reported for
all equations. Two more estimates for the Teff acreage demand equation are also
reported. The first is obtained by applying OLS directly to the pooled data (i.e.,
ignoring regional effects). The results included in the column of Table 8 identified
as OLS. The second is derived by applying the Within-groups estimator. To ac-
commodate regional effects, this estimator uses the data transformed by subtracting
the appropriate time-means of the relevant variables. The resultant estimates are
reported under the heading ‘Within’ in Table 8.

In addition to the estimates themselves, a number of test statistics are reported.

1. The first pair relate to the Wald tests of the joint significance of the regressors
and the time-dummies, respectively. One is a test of the null hypothesis that
the estimated coefficients of the regressors in an equation are all zero. Under

40These conditions ensure the stationarity of an AR(2) process [see, for instance, Davidson and
MacKinnon (1993)]. In this regard, recall that, in the present case, |κ1| = |λ1 + ρ| < 2, and |κ2| =
|λ1ρ| < 1, since |λ1| < 1 and |ρ| < 1.
41Further details regarding the two estimators are provided in the appendix.
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the null the test statistic is asymptotically distributed χ2(p), where the degrees
of freedom p is equal to the number of regressors. This statistic is reported as
χ2-Regressors. The other relates to the null hypothesis that the coefficients of
the time dummies are jointly zero. It is asymptotically distributed χ2(q − 1)
under the null, where q is equal to the number of time-dummies. This statistic
is reported as χ2-Time dummies.

2. The second pair of reported test statistics is associated with testing the absence
of first-order and second-order serial correlation in the residuals. Because, the
first-differenced residual is an MA(1) process, first-order serial correlation is
to be expected. On the other hand, if the original residuals are serially inde-
pendent, there will be no second-order autocorrelation in the residuals of the
equations in first differences. Thus, not rejecting the null of no second-order
serial correlation in the first-difference residuals implies either no serial corre-
lation in the errors in levels or the residuals in levels follow a random walk.
The former is necessary for the consistency of the GMM estimators, while the
latter will make both OLS and GMM estimates of the first-difference equation
consistent. Which of the two possibilities (no serial correlation in the errors
in levels or the residuals in levels follow a random walk) apply may be deter-
mined by the test for first-order serial correlation in the differenced residuals.
In this regard, Arellano and Bond (1991) developed test statistics for first-order
and second-order serial correlation based on the residuals from the equations in
first-differences. Under the respective nulls these tests are distributed asymp-
totically as standard normal42. The tests are reported as m1 and m2.

3. The Sargan test of the overidentifying (moment) restrictions is the third test
reported. It is based on the two-step estimates of the model in first-differences.
Under the null of optimal instruments, the Sargan test-statistic is asymptot-
ically distributed χ2(r) with as many degrees of freedom as overidentifying
restrictions43. In the tables of results, this statistic is reported as χ2-Sargan
test.

4. Finally, the Akaike Information Criteria (AIC) is reported for the market price
and the ‘quota’ rate equations. It is computed as44:

AIC = ln

µ
RSS

N(T − 2)

¶
+

2K

N(T − 2)

where: RSS is the residual sum of squares, and K represents the number of
regressors. A lower AIC suggests a better specification.

42For further details regarding these tests consult Arellano and Bond (1988, 1991).
43See Arellano and Bond (1988, 1991).
44The common formula for AIC is [Greene (1993)]:

AIC = ln

µ
RSS

T

¶
+
2K

T

The formula in the text is adopted to account for the panel dimension of the data used and the lag
structure of the equations estimated.
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3.4 Results

This section presents the main empirical findings45046. These findings are summarized
in Tables 6-9. Before considering other results, let us remark on the merits of the
two main estimators employed. Overall, the GMM(II) estimator performed better
than its GMM(I) counterpart. The efficiency gains due to the former are substantial.
All standard errors (except one) are lower compared to those associated with the
GMM(I) estimator. Accordingly, the discussion of results, including the comparison
between the AR(1) and AR(2) models for the Teff market price and the Teff ‘quota’
rate, refer to the corresponding GMM(II) estimator.

1) The main results pertaining to the market price of Teff are reported in Table
6. First, the AR(1) and AR(2) specifications for the market price of Teff are
compared on the basis of the respective GMM(II) estimates (Column 3 and 5
of Table 6). The AR(1) model is superior in that: the coefficient of Pm1,t−2 (i.e.,
bθ2 in the last column of Table 6) is not significantly different from zero; the
AR(2) model induces second-order serial correlation in the errors, which can be
viewed as a sign of misspecification; and the AIC is smaller for the AR(1) model.
Second, the estimate of the coefficient of Pm1,t−1 in the preferred AR(1) process

shows that the process is stable (bθ1 = 0.39). Third, the coefficient of φ1t−1
is positive but insignificant, while that of φ1t−2 is negative and significant. It
suggests that temporary or short-run changes in the ‘quota’ rate do not affect
the market price of Teff. In contrast, permanent or long-run changes in φ1
reduce the market price of Teff.

2) Table 7 summarizes the results relating to the law of motion of the Teff ‘quota’
rate. First, GMM(II) estimates favour the AR(1) specification. Apart from gen-
erating an insignificant coefficient of φ1,t−2, the AR(2) model leads to second-
order autocorrelation in the errors. Second, the estimate of γ1 (bγ1 = 0.74)
indicate the stability of the AR(1) process.

3) Estimates of the parameters of the Teff acreage equation (equation 3.1) are
reported in Table 8. They correspond to the OLS, Within-groups, GMM(I),
and GMM(II) estimators. The first three of these are included for comparison
purposes. GMM(II) estimates are the preferred estimates. Observe that the
estimates of κ1 and κ2 (bκ1 = 0.37 and bκ2 = 0.53) satisfy the stationarity
conditions for an AR(2) process.

Finally, the long-run and the short-run elasticities of acreage demand for Teff pro-
duction are computed using the equations (3.2) and (3.3) together with the GMM(II)
parameter estimates in Table 8. The results are reported in Table 9. All the elastic-
ities are evaluated at the sample means of the relevant variables.

45Note that all prices used in the analysis are deflated by the national rural consumers’ price index.
46The estimation is implemented using the current version of DPD developed by Arellano and

Bond (1988). Note further that the two-step GMM(I) and GMM(II) estimates involve substantial
downward bias in asymptotic standard errors relative to the corresponding finite-sample standard
deviations [Arellano and Bond (1991), Blundell and Bond (1995)]. As a result only one-step estimates
are reported. The only exception is the Sargan test which is based on the two-step estimator.
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Table 6: One-step GMM Estimates of the Teff Market Price Equations
AR(1) AR(2)

Variable GMM(I) GMM(II) GMM(I) GMM(II)

Pm1,t−1 0.24 (0.083)∗ 0.39 (0.052)∗ 0.05 (0.115) 0.37 (0.065)∗

Pm1,t−2 · · · · · · -0.52 (0.080)∗ 0.09 (0.097)

φ1t−1 63.30 (43.687) 41.13 (34.795) 47.28 (17.190)∗ 39.42 (34.455)

φ1t−2 -30.50 (50.269) -98.52 (32.096)∗ -25.56 (38.728) -89.58 (25.413)∗

χ2−Regressors 16.92 [3]∗ 63.49 [3]∗ 52.88 [4]∗ 152.53 [4]∗

χ2−Time dummies 328.421 [7]∗ 248.83 [7]∗ 182.26 [7]∗ 359.07 [7]∗

m1 -2.55 ∗ -2.44 ∗ -2.57 ∗ -2.02 †

m2 -1.01 -0.92 1.67 ‡ -2.00†

χ2−Sargan test − 11.92 [27] − 11.44 [26]

AIC 10.33 9.91 10.77 10.37

N 120 120 120 120
Notes: Standard errors in parentheses, and degrees of freedom in square brackets. All standard

errors are consistent in the presence of general heteroskedasticity. The Sargan test statistic
corresponding to GMM(I) is not reported, because it is not well-determined. (∗), (†), and (‡)
represent significance at 1 per cent, 5 per cent, and 10 per cent, respectively.

Table 7: One-step GMM Estimates of the Teff ‘Quota’ Rate Equations
AR(1) AR(2)

Variable GMM(I) GMM(II) GMM(I) GMM(II)

φ1t−1 0.38 (0.041)∗ 0.74 (0.026)∗ 0.19 (0.071) 0.75 (0.055)∗

φ1t−2 · · · · · · -0.91 (0.082)∗ -0.03 (0.087)

χ2−Regressors 87.2 [1]∗ 820.88 [1]∗ 329.68 [2]∗ 1152.12 [2]∗

χ2−Time dummies 26.86 [7]∗ 26.23 [7]∗ 17.22 [7]∗ 23.93 [7]∗

m1 -1.99† -2.07† -2.07∗ -2.06†

m2 -1.60‡ -1.52 1.45 -1.69‡

χ2−Sargan test 4.96 [6] 4.88 [14] 4.62 [5] 1.66 [13]

AIC -2.43 -2.92 -2.48 -2.66

N 120 120 120 120
Notes: Standard errors in parentheses, and degrees of freedom in square brackets. All standard

errors are consistent in the presence of general heteroskedasticity. (∗), (†), and (‡) represent
significance at 1 per cent, 5 per cent, and 10 per cent, respectively.
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Table 8: One-step GMM Estimates of the Teff Acreage Demand Equation
Parameter OLS Within GMM(I) GMM(II)

A1t−1 0.4665 (0.1190)∗ 0.2557 (0.1316)† 0.0384 (0.2303) 0.3751 (0.1368)∗

A1t−2 0.4496 (0.1364)∗ 0.2698 (0.1640)‡ 0.2457 (0.3500) 0.5338 (0.1437)∗

Pm1t 0.0005 (0.0003)‡ 0.0002 (0.0002) 0.0005 (0.0005) 0.0013 (0.0007)†

Pm1t−1 -0.0004 (0.0002)† -0.0008 (0.0003)∗ -0.0012 (0.0005)∗ -0.0011 (0.0005)†

φ1t 0.1513 (0.1114) 0.1907 (0.1991) -0.0180 (0.3294) 0.0398 (0.1484)

φ1t−1 -0.2344 (0.2089) -0.2253 (0.1859) -0.3465 (0.1818)† -0.3406 (0.1681)†

φ1t−2 0.0885 (0.1750) 0.2000 (0.2089) 0.1230 (0.3320) 0.2727 (0.1370)†

R1t -0.00005 (0.00002)† -0.00005 (0.00003) -0.00004 (0.00002)‡ -0.00004 (0.00002)‡

R1t−1 0.00001 (0.00001) -0.00001 (0.00001) 0.00002 (0.0001) 0.00001 (0.00001)

χ2−Regressors 9282.45 [9]∗ 68.48 [9]∗ 50.47 [9]∗ 4042.27 [9]∗

χ2−Time dummies 20.17 [7]∗ 15.96 [7]† 78.76 [7]∗ 22.43 [7]∗

m1 -1.03 -2.54∗ -1.82† -2.04†

m2 0.54 2.16† 0.79 1.21

N 120 120 120 120

Notes: Standard errors in parentheses, and degrees of freedom in square brackets. All standard
errors are consistent in the presence of general heteroskedasticity. The Sargan test statistic
corresponding to GMM(I) and GMM(II) is not reported, because it is not well-determined.
(∗), (†), and (‡) represent significance at 1 per cent, 5 per cent, and 10 per cent, respectively.

Table 9: Elasticities of Teff Acreage Demand
Long-run short-run

ξLA,φ -0.04 ξSA,φ 0.005

ξLA,Pm 0.48 ξSA,Pm 0.31

ξLA,R -0.93 ξSA,R -0.13
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1) The long-run elasticity of Teff acreage demand with respect to the ‘quota’
rate is negative but relatively small. That it is negative is consistent with the
prediction of the theoretical model set out earlier in this paper. It suggests
that the long-run acreage demand for Teff cultivation has been reduced by the
institution and expansion of the CGD. The reduction appears to have been
relatively small. In contrast, the associated short-run elasticity is positive, but
very small. Observe, however, that the coefficients of φ1t in the Teff acreage
equation is insignificant. The latter suggests that the ‘quota’ rate did not affect
contemporaneous acreage decisions of farm households - a result consistent
with the fact that quota rates were determined after cultivation and can only
influence acreage decisions in subsequent periods.

2) The long-run and short-run elasticities of acreage demand for Teff production
with respect to the market price of Teff are positive. The signs of these elastici-
ties conform with those of their theoretical counterparts. As would be expected,
the long-run price elasticity is greater than the short-run one. In addition, the
levels of the two elasticities are somewhat lower relative to those obtained by
other studies47. This is particularly true of the long-run elasticity. This rela-
tively low own-price responsiveness may be partly explained by the presence of
CGD, which is an outcome predicted by the theoretical model.

3) Consistent with the prediction of the theoretical model, the long-run and short-
run elasticities of Teff acreage demand with respect to revenue from other an-
nual crops are negative. Again, the short-run elasticity is smaller (in absolute
value) than the corresponding long-run elasticity. In fact, permanent changes
in the revenue from other crops induce the strongest response from long-run
acreage demand for Teff cultivation. This is due to the fact that such changes
represent a favorable shift in the profitability profile of, not a single alterna-
tive crop, but, most likely, a number of other annual crops. As a result the
farm household affords a greater degree of flexibility in its acreage reallocation
decision.

To summarize, the demand for Teff acreage responds positively to the market
price of Teff, and negatively to the revenue obtainable from other cereals and pulses.
In addition, the long-run demand for Teff acreage is negatively affected by the ‘quota’
rate imposed on that crop.

4 Conclusion

This paper set out to investigate the impact of compulsory grain delivery (CGD)
and crop prices on the production choices of farm households in Ethiopia. For that
purpose, a simple dynamic agricultural household model is developed under rational
expectations and risk neutrality. In that model the effect of CGD is introduced via a
weighted average price of crops. This price is approximated as a linear combination
of the relevant ‘quota’ rate, crop procurement price, and crop market price. The
model is then used to characterize acreage demand elasticities with respect to the

47Scandizzo and Bruce (1980) report more than forty elasticities for different crops in different
countries. Fifty-six per cent of the reported long-run elasticities are above 0.5. The corresponding
proportion for short-run elasticities is forty per cent.
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‘quota’ rate, the market price of the crop, and the revenue from alternative crops.
It is demonstrated that, in general, these elasticities depend on the technology of
production, the cost of adjusting acreage allocations, the pattern of dynamic produc-
tivity effects, and household time preference. More specifically, it is shown that the
long-run and current acreage allocations to a crop respond positively to that crop’s
market price, and negatively to the corresponding ‘quota’ rate and the revenue from
competing crops.

Subsequently, an estimable dynamic acreage demand equation is derived by explic-
itly solving for the farm household’s acreage allocation decision rule. This equation
is then estimated for Teff - a major crop produced by Ethiopian farm households -
using region-level data. Recently developed techniques for estimating dynamic panel
data models are employed for that purpose. The resulting estimates of elasticities of
acreage demand for Teff production are consistent with the predictions of theoretical
model.

The empirical evidence suggests that CGD is likely to have reduced the long-run
acreage share (and thus the long-run supply) of the crops to which it applied to.
It is likely to have done so by directly and indirectly (through lower market prices)
reducing farm households’ returns from these crops. The estimated elasticities of
acreage demand for Teff production imply that CGD have reduced the long-run
acreage share (and thus the long-run supply) of Teff. It is likely to have done so
by directly and indirectly (through lower market prices) reducing farm households’
returns from this crop, though the direct effect appears small. Specifically the results
imply that the discontinuation of CGD (i.e., the reduction of φ1 to zero, which is
a 100 percent decline) will increase Teff acreage by 4 percent in the long-run (see
Table 9 above). That this is a reasonable estimate is corroborated by the 6.4 percent
increase in the median Teff acreage during the post-CGD period (1990/91-1996/97)
relative to the CGD period (1980/81-1989/90). Needless to say, the abolition of CGD
is only part of the expalnation for this increase. Moreover, if comparable effects were
exerted on other crops by CGD the overall direct impact may have been significant,
particularly in the light of considerable food insecurity Ethiopia suffers from.

It should also be noted that CGD may have affected crop supply in ways other
than acreage reallocations. For instance, the lower crop profitability induced by CGD
may adversely affect the farm households’ efforts towards raising farm productivity,
such as adoption of new cultivation practices and crop varieties. Or it may even
have forced some of these households to reduce their dependence on crop cultivation
and seek alternative income sources, such as animal husbandry. These possibilities,
viable or otherwise, cannot be explicitly captured by the simple model employed in
this paper. Nevertheless, on the basis of that model and the related empirical results,
it is possible to conclude that the policy of compulsory grain delivery is unlikely to
have been beneficial to the growth of crop production.

The empirical results also imply that acreage demand for the cultivation of a crop
rises with the crop’s price, and falls with revenue obtainable from competing crops.
In other words, the empirical evidence supports a normal supply response to prices.
Furthermore, a comparison with elasticities reported by other studies indicate that
the output price elasticities of acreage demand may have been somewhat lower in
Ethiopia during the 1980’s. It appears that this is in part explained by CGD.48 The

48In the light of the above, it is reasonable to expect that the process of market liberalization,
which begun with the abolition of CGD in 1990, stimulates greater supply responsiveness to market
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implication to more recent periods is that since the supply decisions of Ethiopian
farm households are reasonably responsive to prices and since crop price volatility
is considerable in the country, a systematic look at the need for and feasibility of
alternative agricultural price support schemes is warranted.
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Appendix

1 Solution procedure

1.1 General

For the purpose of solving for A1,t+j the method suggested by Sargent (1987, 395) is
adopted. The method involves the operator B , which, for each integer i, is defined
by:

B−iEt+j(xt+j+1) = Et+j(xt+j+1+i) (A1.1)

i.e., the application of B−i shifts forward by i periods the date on the variables
whose conditional expectations are being computed, but leaves the information set
unchanged. To simplify notation let us use

Zt+j+1 ≡
1

d

£
(ι0 + ι1φ1,t+j+1 + ι2P

m
1,t+j+1)y1 −R1,t+j+1 − V1,t+j+1

¤

and restate the Euler equations as:

βEt+jA1,t+j+1 +
b

d
Et+jA1,t+j +Et+jA1,t+j−1 = Et+jZt+j+1 (A1.2)

By (A1.1) equation (A1.2) can be rewritten as:

∙
βB−2 +

b

d
B−1 + 1

¸
Et+j(A1,t+j−1) = Et+j(Zt+j+1) (A1.3)

Rewriting the term in square brackets on the left-hand-side of the preceding equation
and factorizing leads to:

β

µ
B−2 +

b

dβ
B−1 +

1

β

¶
= β

¡
B−2 − (λ1 + λ2)B

−1 + λ1λ2
¢
= β(λ1−B−1)(λ2−B−1)

where the roots λ1,λ2 satisfy; (λ1+λ2) = − b
dβ and λ1λ2 =

1
β . Thus equation (A1.3)

can be expressed as:

β(λ1 −B−1)(λ2 −B−1)Et+j(A1,t+j−1) = Et+j(Zt+j+1) (A1.4)

Select λ1 to be the smaller of the two roots, with |λ1| < 1 and λ2 = (1/βλ1)
49.

Operate on both sides of (A1.4) with (λ2−B−1) and rearrange to obtain the solution:

(λ1 −B−1)Et+j(A1,t+j−1) =
1

β

Ã
1

λ2

1

(1− 1
λ2
B−1)

!
Et+j(Zt+j+1) + cλ

t+j
2 (A1.5)

49Combining: λ1 + λ2 = − b
βd
, and λ1λ2 =

1

β
, we have:

1

λ1
= − b

d
− βλ1

The left-hand-side of the previous equation is a hyperbola (in λ1), while the right-hand-side is a
straight line(again in λ1) with a slope of −β. The latter intersects the former in the negative
(positive) values of λ1 provided that

b
d
is positive (negative). Thus, given

¯̄
b
d

¯̄
> 1 + β, there exist

two real solutions for λ1, one of them being less than one in absolute value. Therefore, λ1 and λ2
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where c is a constant 50.
That

¯̄
¯ 1λ2
¯̄
¯ < 1, implies:

1

(1− 1
λ2
B−1)

=

Ã
1 +

µ
1

λ2

¶
B−1 +

µ
1

λ2

¶2
B−2 + . . .

!
.

Futhermore, by construction, the following hold:

Et+j(A1,t+j−1) = A1,t+j−1 ;

B−1Et+j(A1,t+j−1) = Et+j(A1,t+j) = A1,t+j

Using these to rewrite equation (A1.5) implies:

−(A1,t+j − λ1A1,t+j−1) =
1

β

1

λ2

"
1 +

µ
1

λ2

¶
B−1 +

µ
1

λ2

¶2
B−2 + . . .

#
Et+j(Zt+j+1)

Successive application of the B−i operator on Et+j(Zt+j+1) and summing reduces the

term on the right-hand-side of the preceding equation to (1/βλ2)
∞P
i=0

(1/λ2)
i
t+jE(Zt+j+1+i).

By substituting for λ2 and Zt+j+1+i from their respective definitions above, and re-
arranging the solution is finally obtained as:

A1,t+j = λ1A1,t+j−1

−(λ1
d
)
∞X

i=0

(βλ1)
iEt+j

£
y1(ι0 + ι1φ1,t+j+1+i + ι2P

m
1,t+j+1+i)−R1,t+j+1+i − V1,t+j+1+i

¤

(A1.6)

1.2 An explicit solution for the acreage decision rule

As noted earlier, equation (2.10) in the text (or equation A1.6 in the previous sec-
tion of this appendix) does not constitute a decision rule because the expectational
terms Et+j(φ1,t+j+1+i), Et+j(P1,t+j+1+i), Et+j(R1,t+j+1+i), and Et+j(V1,t+j+1+i) are
present. To transform it into such a rule, it is necessary to express those expecta-
tional variables as functions of elements of the current information set (Ωt+j). One

are real and distinct roots, which satisfy:

|λ1| < 1 <
1√
β
< |λ2|

provided that: ¯̄
¯̄ b
d

¯̄
¯̄ > 1 + β.

For further details see Sargent (1987) and Eckstein (1985).
50Note that cλt+j2 is included because it is the general solution to a first-order homogenous differ-

ence equation, i.e., when Et+j(Zt+j+1) = 0 . (A1.5) is an extension of that to the nonhomogenous
case with a variable-term. Note also that c = 0 must be imposed if the solution {A1,t+j} sequence
is to be bounded (or the solution is to satisfy the transversality condition). If that is not the case,
then λt+j2 →∞ as j →∞ , since |λ1| < 1 and 0 < β < 1 imply |λ2| > 1 . Also see Sargent (1987).
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way of achieving this involves first postulating autoregressive processes for Pm1 , φ1,
R1, and V1, and then apply the Weiner-Kolmogorov prediction formula to solve for
the expectational variables51. Towards that end, alternative specifications for these
processes are explored using the available data.

A simple strategy is adopted for selecting from among alternative specifications.
First, autoregressive models of the first- and second-order (AR(1) and AR(2), respec-
tively) are specified for Pm1 and φ1

52
0
53. The model for Pm1 thus specified incorporate

the possible impact that φ1 may have. Second a combination of the Akaike Informa-
tion Criteria (AIC) and tests for parameter significance is used to select the better
specification. The details of this exercise are reported with the other results in section
(3.4). In this section it suffices to report that the following specifications are selected
in this manner.

Pm1t = θ1P
m
1,t−1 + θ2φ1,t−1 + θ3φ1,t−2 + u

P
t ; |θ1| < 1 (A2.1)

φ1t = γφ1,t−1 + u
φ
t ; |γ| < 1 (A2.2)

Moreover let us assume that the stochastic variables R1t and V1t are generated by
the following AR(1) processes:

R1t = αR1,t−1 + uRt ; |α| < 1 (A2.3)

V1t = ρV1,t−1 + uVt ; |ρ| < 1 (A2.4)

where uPt , u
φ
t , u

R
t and u

V
t are zero-mean, constant-variance, and serially uncorrelated

random variables54. Two remarks have to be made at this point. First, the farm
household is assumed to derive its decisions rules taking the price, cost, and ‘quota’
rate stochastic processes as given. In other words, it operates according to the belief
that its actions do not affect these processes. Second, recall that the specific AR

51See Hansen and Sargent (1980) for further details.
52It is possible to postulate higher-order and/or vector autoregressive processes for P1t and φ1t.

Solutions analogous to (3.1a) below can still be obtained [see Hansen and Sargent (1980)]. Indeed,
the ideal procedure is to postulate AR processes without specifying the order, and then empirically
choose the appropriate lag length. Restricting the choice to AR(1) and AR(2) processes reflects data
constraints. To that extent it is rather arbitrary.
53Data on V1 is unavailable. Consequently, it is excluded from this effort. However, we postulate

that it is generated by an AR(1) process. The case of R1 is more complicated. It measures the
revenue per hectare from all cereals and pulses other than Teff, and is computed as:

R1 =
JX

j=2

Pjyj

where: Pj = φjP
s
j + (1− φj)P

m
j = the average price of the crop j; P sj = the procurement price of

crop j; Pmj = the market price of the crop j; φj = the rate of ‘quota’ on crop j. All attempts to
consistently estimate an AR(1) and AR(2) processes describing R1 failed. It is possible to consider
more complicated models. But the resulting acreage equation will be very problematic to implement
using the data available. As a result, the assumption that the law of motion of R1 is AR(1) is
maintained.
54These variables are defined as:

u
P
t = P

m
1t −Et−1(Pm1t ), u

φ
t = φ1t −Et−1(φ1t), u

R
t = R1t −Et−1(R1t), u

V
t = V1t −Et−1(V1t)

such that:
Et−1(u

P
t ) = 0, Et−1(u

φ
t ) = 0, Et−1(u

R
t ) = 0, Et−1(u

V
t ) = 0
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processes for Pm1 and φ1 are selected via a simple procedure involving estimation and
testing. This procedure is legitimate only under rational expectations.. The reason
is that, under rational expectations, the models used by the farm household to form
expectations about random variables are identical to the actual laws of motion of
those variables [Epstein and Yatchew (1985)].

Now turning to the task of solving for the farm household’s acreage decision rule,
begin by restating (2.10) for j = 0, to simplify notation:

A1t = λ1A1,t−1 − (
λ1
d
)
∞X

i=0

(βλ1)
iEt

£¡
y1(ι0 + ι1φ1,t+1+i + ι2P

m
1,t+1+i)

¢
−R1,t+1+i − V1,t+1+i

¤

(2.10a)

Also define Wt ≡
£
Pm1t φ1t

¤0
and U ≡

£
1 0

¤
, where 0 represents the matrix

transpose operation. Then, following Hansen and Sargent (1980), state:

U
∞X

i=0

(βλ1)
iEt(Wt+1+i) =

∞X

i=0

(βλ1)
iEt(P

m
t+1+i)

Furthermore, by defining ut ≡
h
uPt uφt

i0
, and combining (A2.1) and (A2.2) the

law of motion of Pm1 can be rewriten as:

Θ(L)Wt = ut

where:

Θ(L) = (I −Θ1L−Θ2L2), Θ1 =

∙
θ1 θ2
0 γ

¸
, Θ2 =

∙
0 θ3
0 0

¸
,

I is (2×2) identity matrix, and L is the lag operator with, Lkxt = xt−k. Similarly
rearranging using the lag operator it follows that:

γ(L)φ1t = u
φ
t , α(L)R1t = u

R
t , ρ(L)V1t = u

V
t

where: γ(L) = (1− γL); α(L) = (1− αL); and ρ(L) = (1− ρL). Note also that the
assumption that |θ| < 1, |γ| < 1, |α| < 1, and |ρ| < 1 ensure the existence of moving
average representations for Wt, φ1t, R1t, and V1t

55. Finally, note that the Wiener-
Kolmogorov prediction formula provided by Hansen and Sargent (1980) explicitly

solves for
∞P
i=0

(βλ1)
iEt(xt+i). Thus it has to be slightly modified in order to solve for

∞P
i=0

(βλ1)
iEt(xt+1+i). This is done by exploiting the following equality:

∞X

i=0

(βλ1)
iEt(xt+1+i) = (βλ1)

−1
∞X

i=0

(βλ1)
iEt(xt+i)− (βλ1)−1Et(xt)

where x ∈ (Pm1 ,φ1,R1, V1). Substituting for
∞P
i=0

(βλ1)
iEt(xt+i) from the Hansen-

Sargent version provides the desired formula. This modified version of the Wiener-

55In fact, for θ1 and γ these assumptions are not rejected by the data.
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Kolmogorov prediction formula is applied to obtain56:

∞X

i=0

(βλ1)
iEt(P

m
1,t+1+i) =

µ
θ1

1− (βλ1)θ1

¶
Pm1t +

µ
θ2 + (βλ1)θ3

[1− (βλ1)θ1][1− (βλ1)γ]

¶
φ1t

+

µ
θ3

1− (βλ1)θ1

¶
φ1,t−1 (A2.5)

∞X

i=0

(βλ1)
iEt(φ1,t+1+i) =

µ
γ

1− (βλ1)γ

¶
φ1t (A2.6)

∞X

i=0

(βλ1)
iEt(R1,t+1+i) =

µ
α

1− (βλ1)α

¶
R1t (A2.7)

∞X

i=0

(βλ1)
iEt(V1,t+1+i) =

µ
ρ

1− (βλ1)ρ

¶
V1t (A2.8)

Substituting these in (2.10a)
0
, and rearranging results in:

A1t = ω0+ω1A1,t−1+ω2P
m
1t +ω3φ1t+ω4φ1,t−1+ω5R1t+ω6V1t; t = 0, 1, . . . (A2.9)

where57:

ω0 = −
µ
λ1y1
d

¶µ
ι0

1− (βλ1)

¶

ω1 = λ1

ω2 = −
µ
λ1y1
d

¶µ
θ1ι2

1− (βλ1)θ1

¶

ω3 = −
µ
λ1y1
d

¶µ
θ2ι2

[1− (βλ1)θ1][1− (βλ1)γ]
+

γι1
1− (βλ1)γ

¶

ω4 = −
µ
λ1y1
d

¶µ
θ3ι2

1− (βλ1)θ1

¶

ω5 = −
µ
λ1
d

¶µ
α

1− (βλ1)α

¶

56As applied to Pm1 and z, the Weiner-Kolmogorov prediction formula appear as:

∞X

i=0

λiEt(P
m
1,t+1+i) = U

(
λ−1

¡
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¢
"
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W1t
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s−1X
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Ã
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λl−kl ωl

!
L
k

#
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where: z ∈ (φ1, R1, V1); ω ∈ (γ,α, ρ); λ = βλ1; Θ(λ) = (I − Θ1λ − Θ2λ
2 − · · · − Θrλ

r); ω(λ) =
(1 − ω1λ − ω2λ

2 − · · · − ωsλ
s). When r = 2 and s = 1, these expressions reduce to those stated in

the text. For details regarding the derivation of the Weiner-Kolmogorov formula see Hansen and
Sargent (1980).
57In deriving ω0, the following equality is used:

∞X

i=0

(βλ1)
i =

1

1− (βλ1)
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ω6 = −
µ
λ1
d

¶µ
ρ

1− (βλ1)ρ

¶

Under the above assumptions, (A2.9) represents a closed form solution for the
decision rule for A1t. It expresses the optimal acreage allocation rule of the farm
household as a function of acreage allocated last period, current output price, current
and once-lagged ‘quota’ rate, and current actual and opportunity costs of cultivating
Crop 1. All of these variables are elements of the current information set of the
household. Note also that ω3 and ω4 jointly capture the direct and indirect effects of
the ‘quota’ rate described in section 2.3).

2 The GMM estimators

This section summarizes some of the features of the GMM estimators58. The discus-
sion focuses on an AR(2) model:

yit = κ1yi,t−1 + κ2yi,t−2 + κ3xit + κ4xi,t−1 + κ5xi,t−2 + uit (A3.1)

for i = 1, ..., N and t = 3, ..., T, where: κ1 + κ2 < 1, κ2 − κ1 < 1, κ2 > −1, and
uit = ηi + νit. Thus, the discussion is restricted to the relevant stationary model.
Following Blundell and Bond (1995), assume that59:

E(ηi) = 0, E(νit) = 0, E(ηiνit) = 0 (A3.2)

for i = 1, ...,N and t = 3, ..., T ;

E(νitνis) = 0 (A3.3)

for i = 1, ...,N and t 6= s; and

E(yi1νit) = 0, E(yi2νit) = 0 (A3.4)

for i = 1, ...,N and t = 3, ..., T.
Applying either the OLS estimator or the Within-groups estimator to (A3.1) re-

sults in biased parameter estimates [Nickell (1981), Hsiao (1986)]60. The source of
the problem for OLS is the correlation between (yi,t−1, yi,t−2) and uit via the individ-
ual specific effects, ηi. For the Within-groups estimator, which involves transforming
the variables by subtracting their time-means, the cause is the correlation between
(yi,t−1, yi,t−2) and the time-mean of νit. An alternative is to employ an instrumen-
tal variable (IV) estimator after first-differencing equation (A3.1) to eliminate the
individual-specific effects. More explicitly, it involves estimating:

∆yit = κ1∆yi,t−1 + κ2∆yi,t−2 + κ3∆xit + κ4∆xi,t−1 + κ5∆xi,t−2 +∆νit (A3.5)

58The characterization of the GMM(I) estimator follows Arellano and Bond (1991). The description
of GMM(II) adapts the presentation in Blundell and Bond (1995) to the case of an AR(2) model
with additional regressors.
59The specific details of the discussion of Blundell and Bond (1995) is restricted to an AR(1)

process without additional regressors. However, they note that the properties of the estimators
they consider extend to higher-order AR models. They also identify the further requirement that
should be satisfied in order to exploit their additional linear moment restrictions in the presence
of regressors. In the spirit of those remarks, assumptions (A3.2)-(A3.4) may be viewed as slightly
modified versions of the ones they make. Note also that for the GMM(I) estimator it is not necessary
to assume E(ηi) = 0, E(ηiνit) = 0, and (A3.4).
60The OLS estimator is also inconsistent. In contrast, the Within-groups estimator is consistent

as T →∞.
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for i = 1, ..., N and t = 4, ..., T, where ∆ represents the first-difference operator
with ∆zit = zit − zi,t−1. As long as νit are serially uncorrelated and the x’s are
exogenous, estimating (A3.5) using (yi,t−2, yi,t−3) or (∆yi,t−2, ∆yi,t−3) as instruments
results in consistent estimates of the parameters. That (yi,t−2, yi,t−3) and (∆yi,t−2,
∆yi,t−3) are valid instruments, and thus lead to the consistency of the corresponding
estimates, follows from the fact that they are not correlated with ∆νit [Anderson
and Hsiao (1982), Hsiao (1986)]. However, this IV estimation does not necessarily
produce efficient estimates since it does not exploit all the linear moment conditions
possible [Arellano and Bond (1991)]. As an alternative Arellano and Bond (1991)
develop a more efficient linear Generalized Method of Moments (GMM) estimator.
Below, this estimator is referred to as GMM(I).

2.1 the GMM(I) estimator

The GMM(I) estimator involves the identification and use of valid instruments for
estimating dynamic panel data models consistently and efficiently. The initial step in
that process is first-differencing the levels equation to take out the individual effects.
Doing so in the present case generates (A3.5). The second step is to exploit the
assumptions of the model and the properties of the regressors to identify instruments.
Assume that the regressors xis are predetermined variables correlated with ηi

61. In
other words, current and past x’s are elements of the current information set Ωt.
This assumption, combined with the assumptions E(νit) = 0 and E(νitνis) = 0
above, imply the following linear moment restrictions:

E(yi,t−k∆νit) = 0 (A3.6a)

for k = 3, · · · , t− 2 and t = 4, · · · , T ; and
E(xis∆νit) = 0 (A3.6b)

for (s ≤ t− 1). These moment restrictions can be stated more compactly as

E(Z
0
iνi) = 0

where: νit = ∆νit, νi =
£
νi4 νi5 · · · νiT

¤0
, expresses, for each i, the (T − 3)× 1

vector of the errors in the first-differenced equation, and Zi represents the (T − 3)×
[(T − 3)(T + 1)] matrix of valid instruments for each i over t, i.e.:

Zi =

⎡
⎢⎢⎢⎣

yi1 yi2 xi1 xi2 xi3 0 0 0 0 · · · 0 0
0 0 0 0 0 yi1 yi2 yi3 xi1 · · · xi4 · · · 0 0
...

. . .

0 0 0 0 0 0 0 0 0 · · · yi1 · · · yi,T−2 xi1 · · · xi,T−1

⎤
⎥⎥⎥⎦

61This assumption reflects one of the features of the equations of motion of the endogenous vari-
ables. Specifically, recall that the equations for Ait and Pit contain arguments (other than the
respective lagged endogenous variable) all of which belong to the relevant information set. In line
with that, for the purpose of estimation, these additional regressors are treated as predetermined,
i.e., it is assumed that:

E(xisνit) = 0, t ≥ s
6= 0, t < s

Past and current x are not correlated with current and future shocks. However, past shocks may be
correlated with current x.
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(A3.7)

Stacking equation (A3.5) first by t for each i, and then by i leads to a compact
expression. To do so define:

wit =
£
yi,t−1 yi,t−2 xit xi,t−1 xi,t−2

¤
, wit = ∆wit, yit = ∆yit

νit = ∆νit, κ=
£
κ1 κ2 κ3 κ4 κ5

¤0

Then (A3.5) for all i and t ≥ 4 can be summarized as:

y =Wκ+ν (A3.8)

where:

y =
£
y01 y02 · · · y0N

¤0
, yi =

£
yi4 yi5 · · · yiT

¤0

W =
£
w01 w02 · · · w0N

¤0
, wi =

£
wi4 wi5 · · · wiT

¤0

ν =
£
ν 01 ν02 · · · ν 0N

¤0
, νi =

£
νi4 νi5 · · · νiT

¤0

Note that y and ν are N(T − 3) × 1 vectors, while W is an N(T − 3) × 5 matrix.
Similarly stacking the instruments matrix produces:

Z =
h
Z
0
1 Z

0
2 · · · Z

0
N

i0

where Zi is as defined in (A3.7). With these definitions, the GMM estimator of κ
can be identified as [Arellano and Bond (1991), Davidson and MacKinnon (1993)]:

bκ =argmin
κ

¡
ν0Z

¢
AN

³
Z
0
ν
´

where AN is a (T − 3)(T + 1) symmetric positive-definite matrix. Substituting for ν
from (A3.8), and solving the first-order conditions yields:

bκ = (W 0
ZANZ

0
W )−1(W

0
ZANZ

0
y)

Arellano and Bond (1991) obtain the one-step GMM estimator of κ using the sample
analogues of the moments and the moment restrictions above, and setting:

AN =

Ã
N−1

NX

i=1

Z
0
iHZi

!−1

where H is a (T −3) square matrix which has 2’s in its principal diagonal, -1’s in the
first sub-diagonals, and zeros elsewhere, i.e.62:

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 −1

−1 2
. . .

. . .
. . . −1

0 −1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

62The structure of H reflects the fact that νit is a first-order moving average (MA(1)) process with
a unit root.
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These are the GMM(I) estimates reported in the text. Note, however, that another
estimator is obtained if the following AN is used instead:

AN = N
−1
Ã
X

i

Z
0
i
bνibν

0
iZi

!

where bνi is the differenced residuals from a preliminary consistent estimator of κ.
This is the two-step GMM estimator of Arellano and Bond (1991). It is nted here
because the reported Sargan test of the overidentifying (moment) restrictions is based
on the two-step estimates.

2.2 the GMM(II) estimator

Blundell and Bond (1995) note that the GMM(I) estimator performs poorly when
the parameter(s) of the lagged endogenous variable is relatively large and the num-
ber of time-series observations is relatively small. Under such circumstances lagged
levels are week instruments for first differences. Specifically, they demonstrate, via
a Monte Carlo analysis, that the GMM(I) estimator suffers from a large downward
bias and very low precision. To alleviate these problem without involving non-linear
restrictions, they propose a linear GMM estimator in a system of first-differenced and
levels equations. In order to obtain the requisite linear moment conditions Blundell
and Bond (1995) introduce restrictions on the initial conditions process. The addi-
tional moment conditions thus obtained allow the use of lagged first differences as
instruments in the equations in levels. The resulting estimator has much improved
precision and substantially lower finite sample bias. Here, this system estimator is
referred to as the GMM(II) estimator. Below, the framework of Blundell and Bond
(1995) is adapted to this paper’s AR(2) model with regressors.

Begin by restating the levels equation (A3.1) for t ≥ 4 :

yit = κ1yi,t−1 + κ2yi,t−2 + κ3xit + κ4xi,t−1 + κ5xi,t−2 + uit (A3.1
0
)

The objective is to exploit (∆yi,t−1,∆yi,t−2,∆xi,t,∆xi,t−1,∆xi,t−2) as instruments in
(A2.1)

0
for (yi,t−1, yi,t−2, xi,t, xi,t−1, xi,t−2). To do so without violating the consistency

of the estimates, it is necessary to have:

E(uit∆yi,t−1) = E(uit∆yi,t−2) = 0 (A3.9a)

E(uit∆xi,t) = E(uit∆xi,t−1) = E(uit∆xi,t−2) = 0 (A3.9b)

for t ≥ 4.
Consider (A3.9b) first. Decomposing uit and rearranging implies:

E(uit∆xi,t−τ ) = E(ηi∆xi,t−τ ) +E(νit∆xit−τ ), τ = 0, 1, 2

That xit are predetermined implies that:

E(νit∆xis) = 0 (A3.10a)

for all s ≤ t. Therefore, condition (A3.9b) reduces to:

E(ηi∆xit) = 0 (A3.10b)
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for all t. (A3.10b) states that changes in xit are uncorrelated with the individual
effects63. This assumption is made here.

A number of steps are involved in the process of identifying the restrictions that
validate the moment conditions (A3.9a). First, recalling that the model is stationary,
rewrite equation (A3.1) using the lag operator L :

yi,t =
1

(1− κ1L−κ2L2)
[κ(L)xit + ηi + νit] (A3.1

00
)

where: κ(L) =
¡
κ3 + κ4L+ κ5L

2
¢
. By long division it can be shown that64:

1

(1− κ1L−κ2L2)
=
∞X

s=0

δsL
s

where: δ0 = 1, δ1 = κ1, and δs = κ1δs−1 + κ2δs−2, for all s ≥ 2. Similarly:

1

(1− κ1−κ2)
=
∞X

s=0

δs

where δs is defined as above. Using these results, and recalling that ηi is time-
invariant, (A3.1

00
) can be stated as:

yi,t =
ηi

(1− κ1−κ2)
+ κ(L)

∞X

s=0

δsxi,t−s+
∞X

s=0

δsνi,t−s

=
ηi

(1− κ1−κ2)
+ κ(L)

∞X

s=−1
δs+1xi,t−(s+1)+

∞X

s=−1
δs+1νi,t−(s+1)

(A3.11)

where the fact that
∞P
s=0

δszt−s =
∞P

s=−1
δs+1zt−(s+1) have been used to get the second

line of (A3.11). Applying (A3.11) to t = 1 and t = 2, yields:

yi1 =
ηi

(1− κ1−κ2)
+ κ(L)xi1 + ui1

yi2 =
ηi

(1− κ1−κ2)
+ κ(L)xi2 + ui2 (A3.12)

where:

xi1 =
∞X

s=−1
δs+1xi,−s, xi2 =

∞X

s=−1
δs+1xi,1−s

ui1 =
∞X

s=−1
δs+1νi,−s, ui2 =

∞X

s=−1
δs+1νi,1−s

Second, rewrite (A3.5) by successively substituting for (∆yi,t−1,∆yi,t−2) for t ≥ 4.
This yields:

∆yit = δ1,t−4∆yi3 + δ2,t−4∆yi2 + κ(L)
t−4X

s=0

δ3s∆xi,t−s+
t−4X

s=0

δ3s∆νi,t−s (A3.13)

63Indeed, this is the condition that Blundell and Bond (1995) identify (without providing details)
as the further requirement which should be met in models with additional regressors.
64See, for instance, Sargent (1987:183 ).
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where: δ10 = κ1, δ11 = (κ
2
1 + κ2), δ20 = κ2, δ21 = κ1κ2, and:

δjs = κ1δj,s−1 + κ2δj,s−2, j = 1, 2, s = t− 4, t > 5

and δ30 = 1, δ31 = κ1, with δ3s = κ1δ3,s−1 + κ2δ3,s−2, for s ≥ 2.
Now it is possible to have a closer look at the moment conditions (A3.9a). Given

assumptions (A3.2)-(A3.3) and (A3.10), and equation (A3.13) those conditions reduce
to:

E(uit∆yi3) = E(uit∆yi2) = 0

Since ∆yi3 and ∆yi2 are observed at t = 4, the following two additional restrictions
apply65:

E(ui4∆yi3) = 0

E(ui4∆yi2) = 0 (A3.14)

Substituting for ∆yi3 and ∆yi2 from (A3.13), using (A3.12) and (A3.1
0
), exploiting

assumptions (A3.2)-(A3.4) and (A3.10a), and manipulating provides the conditions
necessary for the validity of the restrictions (A3.14). These are:

E(ηixi2) = E(ηixi1) = 0

E(ηiui2) = E(ηiui1) = 0 (A3.15)

E(νi4ui2) = E(νi4ui1) = 0

These are restrictions on the initial condition process generating yi1 and yi2. They are
analogous to the restriction that Blundell and Bond (1995) impose on that process
in an AR(1) model without additional regressors.

The GMM estimator exploiting restrictions (A3.9)-(A3.10) and (A3.14) requires
a stacked system composed of (T − 3) equations in first differences and (T − 3) levels
equations for periods t ≥ 4 (the lagged first differences are available as instruments
only beginning t = 4). The corresponding instrument matrix for each i (Zi) can be
written as:

Zi =

⎡
⎢⎢⎢⎣

Zi 0
0 ∆wi4 0

. . .

0 ∆wi,T

⎤
⎥⎥⎥⎦ (A3.16)

where Zi represents the instruments for the first differenced equations as defined by
(A3.7) above, and ∆wit =

£
∆yi,t−2 ∆yi,t−1 ∆xi,t−2 ∆xi,t−1 ∆xit

¤
, for t ≥ 4.

The computation of the one-step estimator follows the same steps briefly noted for
the GMM(I) estimator. One difference should be noted, however. The weighting
matrix H has to be modified [see Blundell and Bond (1995)]. The two-step estimator
is also identified in a similar fashion.

65These are analogous to the single additional restriction that Blundell and Bond (1995) identify
in an AR(1) model with no additional regressors, namely:

E(ui3∆yi2) = 0
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