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Abstract

This paper models a contest where several sellers compete for a contract with a single

buyer. There are several styles of possible designs with a subset of them preferred by the

buyer. We examine what happens when the buyer communicates information about his

preferences. If the sellers are unable to change their style, then there is no e¤ect on the

welfare of the sellers. If the sellers are able to make adjustments, extra information may

either boost or damage the sellers� pro�ts. While the chance that there will be a proposal

of a style preferred by the buyer cannot decrease, the buyer�s surplus may increase or

decrease.
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1 Introduction

Boeing and Airbus competed for a contract with the US Air Force to supply the next gen-

eration of aerial tankers. In this contest, Airbus won since they were able to supply a larger

tanker (based upon the Airbus A330). Boeing complained that the contest was unfair since

the preferences of the Air Force was not properly communicated (International Herald Tri-

bune, 2008).1 ;2

When �rms compete for a contract, often there may be many ways for the contract to be

ful�lled. The buyer�s preferences over design may not be known by the sellers. A seller can

expend signi�cant e¤ort trying to obtain a contract only to �nd out that there really was

little chance of winning (such as for geographic reasons).3 We ask two main questions. First,

how does the existence such preferences a¤ect the equilibrium behaviour and pro�ts of the

sellers. Second, would communication about these preferences be bene�cial or harmful to the

sellers.

To answer our questions, we use as a basis an all-pay auction with complete information

about the cost of e¤ort, value to winning and number of contestants (see Baye, Kovenock,

and de Vries, 1996). However, we modify the model in two important ways. First, a buyer

may favor one style of design over another and we introduce incomplete information about

this preferred style of the buyer. Second, we allow e¤ort in the contest phase to save in future

e¤ort in the contract phase.

This model has many applications. These include design contests such as with marketing

1�If they had been transparent and honest, they would have said, �We want a larger tanker�. We got a raw

deal,� Representative Norm Dicks, a Boeing ally (IHT, 2008).
2After several months, it was decided that the selection process was �awed. Plans are for the procurement

contest to be rerun (New York Times, 2009).
3Part of the inspiration for this paper was from personal experience where signi�cant e¤ort was invested

for a research contract. Afterwards, we discovered that it was all for naught due to geographic considerations

for which another bidder had an advantage.



and architecture. Information about preferences has been relevant in architecture design

contests for well over 100 years. For instance, in 1835, a Royal Commission was formed to

select a design to rebuild the Houses of Parliament. The preferred style was speci�ed to be

either Gothic or Elizabethan ruling out the then popular styles of Neoclassical and Italianate

(see Service, 1979). The model may also be applicable to other contests not involving design

such as competitions to hold the Olympics or other sporting events.

There are several related strands of literature. In auctions, there is a literature that ex-

amines the incentives for buyers to acquire information, for example, Lee (1985), Cremer and

Khalil (1992), Persico (2000), and Bergemann and Välimäki (2002). There are also papers

that consider the situation where the seller can a¤ect the information that the buyers re-

ceive. These include Milgrom and Weber (1982), Kaplan and Zamir (2000), Bergemann and

Pesendorfer (2007) and Eso and Szentes (2007), Gershkov (2009). In procurement, there is

an extensive body of economic literature (see McAfee and McMillan, 1988, and La¤ont and

Tirole, 1993, for overviews). Among this literature are models built speci�cally to analyze

particular problems. One example is Bajari and Tadelis (2001) who analyze the two main

types of contracts used in the construction industry. Like Bajari and Tadelis (2001), in this

paper we use a specialized structure to analyze the all-pay nature of procurement procedures

and how communication a¤ects the equilibrium. In a somewhat related theme to this paper,

Ganuza (2007) shows how poor alignment of incentives for the buyer to discover information

about the desired design is a possible explanation for cost overruns in procurements. Com-

parison between Ganuza (2007) and this paper allows interpretation of the communication

of information in this paper as choosing when information would become public: before the

sellers submit (prepare) bids or after the bid submission and during the selection of the win-

ning proposal. This is reasonable given the all-pay nature of the competition that we study

(the gap between these times is non-trivial).4 This comparison is furthered in the concluding

4 In addition, the buyer may learn about his preferences from the proposals themselves.
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remarks by a single toy model that captures the basic intuition and results of both papers.

The paper takes the following structure. In the next section, we will describe the basic

model. In Section 3, we �nd the equilibrium, describe our results about communication of

preferences. In addition, we expand the analysis to cover communication about identity of

the sellers. In Section 4, we conclude and discuss further possibilities of research.

2 Model

There is a buyer that is interesting in selecting a design. There are n sellers o¤ering possible

designs. Each proposed design has two characteristics: quality and style. We assume that

quality is simply the sunk e¤ort xi put into the proposal from seller i. The style of a

proposal from a particular seller is determined from his exogenously-determined, privately-

known type. Furthermore, the buyer�s preference over styles is unknown to the sellers. Denote

T = f1; : : : ; tg as the set of styles. Each seller�s style is independently and uniformly drawn

from this set.

The buyer strictly prefers a design in the set P to one in the set T=P where P � T . When

comparing a design within either P or T=P , the buyer looks at the quality of design. This

can be represented by the buyer having utility over the accepted proposal u(x; �) : R�T �!

R where x is the e¤ort put into the accepted proposal and � is the style. For this utility to

match the speci�ed environment u(x; �) = x + �; if the proposal � is from the preferred set

(� 2 P ); where constant � is the premium for a preferred design, and x otherwise (� 2 T=P ).5

(We will discuss shortly the constraint that � must be large enough.) The buyer selects his

5One can think of a buyer as an agent for procurement and the higher x makes the agent better protected

from possible future criticism. Along similar lines, there could be an exogenous chance of the design failing.

A higher x may help determine this earlier which may allow the buyer to save time rerunning the contest. We

assume the terms of the payments are dictated by an industry standard and hence not a factor in the buyer�s

utility.
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preferred design and in case of indi¤erence chooses randomly. The sellers know only p (#P )

and that each style has an equal chance of being in the preferred set.

We assume that once selected, the seller must complete the design. The amount of

additional e¤ort needed to complete the design is given by a(x) where a(x) is weakly de-

creasing in x and weakly positive. This represents the notion that a higher quality proposal

will have a lower amount of work needed to complete the project. We also assume that

a0(x) > �1. This ensures that holding o¤ e¤ort until one gets the contract never costs more

( = argminx�x+ a(x) for all  � 0; procrastinate if one can). Finally, the seller with the

winning design gets a reward (prize) worth V (there is some industry standard or regulation

keeping the prize �xed). To avoid a trivial solution, we assume that V > a(0). We have the

additional constraint that � > maxfzj z � V � a(z)g. This ensures that the premium � is

large enough such that in equilibrium the buyer will always strictly prefer a proposal in P

over a proposal in T=P .6 ;7

6The buyer prefers a incomplete design with e¤ort x1 in the preferred set to a more complete design with

e¤ort x2 that is not in the preferred set. We must have x2 < �; since if x2 � �; seller 2 would not make a

pro�t even if he wins since our assumption on � implies V �a(x2)�x2 < 0: Since x2 < �; we have x1+� > x2:
7We assume the buyer must select one of the proposals. Results should hold if the preferred designs are the

only ones that are selected. This may happen in some cases. For instance, in 1850, a Royal Commission was

formed to select a design for the Great Exhibition. Despite that 245 plans were submitted, none were selected.

The selection committee (which included Barry and Brunel) substituted their own design. Fortunately, they

realized the weakness in design by committee and convinced Joseph Paxton to submit plans, creating the

Crystal Palace (see Beaver, 1970).
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3 Results

3.1 Equilibrium

We look for an equilibrium which is denoted by an n-tuple of cumulative distribution func-

tions, CDFs, Fi(x), where each seller i puts forth e¤ort xi according to the CDF Fi(x); and

given that the other sellers do the same, each seller has no incentive to deviate. (Note a pure

strategy at x� can be represented by Fi(x) = 0 for x � x� and Fi(x) = 1 for x > x�:)

Lemma 1 In any equilibrium, the expected pro�t of a seller equals �(n; p
t
) � (p

t
) � (1 �

p
t
)n�1(V � a(0)):

Proof. In the Appendix.

We make use of Lemma 1 to derive the equilibrium and show that it is unique as long as

the preferred set is not trivial (neither equal to T nor empty).

Proposition 1 If P 6= T and P 6= ?, then the equilibrium is unique where all sellers use the

same CDF equal to F where F satis�es the following equation:

(V � a(x))

2
64(1�

p

t
)nF (x)n�1 +

n�1X

m=0

0
B@
n� 1

m

1
CA (

p

t
)m+1(1� p

t
)n�1�mF (x)m

3
75� x = �(n;

p

t
):

(1)

If P = T or P = ?, any equilibrium will have m � 2 sellers actively bidding and n�m sellers

always choosing 0. All active sellers will use the same CDF equal to F where F solves.

(V � a(x))F (x)m�1 � x = 0:

Proof. In the Appendix.

This uniqueness is unusual compared to the more standard all-pay auctions with complete

information where there are multiple equilibria (see Kaplan, Luski and Wettstein, 2003). For

instance, take a standard all-pay auction with three bidders and a prize worth 1. There is an
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equilibrium with all three bidders using Fi(x) =
p
x: There is also an equilibrium with one

bidder i always choosing 0 and the other two bidders choosing Fj(x) = x (where j 6= i).

Now let us look at an example to further understand the mixed-strategy equilibrium.

Example 1 n = 2, V = 2, a(x) = 1� x=2, t = 2; p = 1.

Here the pro�t would be �(n; p
t
) = �(2; 12) = (p

t
) � (1 � p

t
)n�1(V � a(0)) = (12) � (1 �

1
2)(2 � 1) = 1

4 : Using equation (1), the equilibrium distribution function is given by (1 +

x
2 ) [(1=2)F (x) + 1=4]� x = 1

4 ; which implies

F (x) = 2

�
2x+ 1=2

x+ 2
� 1
4

�
=

7x

2x+ 4
:

Notice that the top bid a seller will place is at x = 4=5. Thus, for the buyer to prefer a bid

of 0 in the preferred set to a bid of 4=5 in the non-preferred set, we must have � > 4=5: We

assumed that � > maxfzj a(z) + z � V g = maxfzj 1 + z=2 � 2g = 2, so this is satis�ed. �

3.2 Communication

In the auction literature, Milgrom and Weber (1982) show when values are a¢liated, a seller

should always release information. This would increase the seller�s pro�ts and hurt the buyers�

pro�ts. Gershkov (2009) shows the optimal auction involves full disclosure when values are

a combination of private and common values. On the other hand. Kaplan and Zamir (2000)

show in a particular auction design partial information release could be optimal. In our

framework, we deal with a similar question about the release of information. The notable

di¤erence (besides reversing the buyer�s and sellers� roles) is that here the buyer is choosing

between potentially heterogeneous objects and the information is about the di¤erences in the

values of these objects to the buyer rather than information about the costs of a single object

to the sellers.

More speci�cally, in our model, the information that the buyer possesses is about his

preferences for the various contracts. In many cases, he may only learn his complete prefer-
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ences after the proposals are o¤ered or they may be expensive to learn beforehand. This may

very well be the case with architecture contests, but it is quite possible that he may know

his preferences partially before as in the case with Boeing and Airbus. For example, take a

university holding a competition for a building design. The university may have preferences

about the arrangement of o¢ces and know this beforehand. For instance, the university may

prefer o¢ces be built around an open atrium over being built in more secluded hallways.

Because of this, information released may a¤ect the sellers� belief over which type of o¢ce

arrangement is preferred.

As we see from the university example, architecture �rms may be able to submit a proposal

that is contingent on the information released. In the competition to rebuild the Houses of

Parliament, the winner out of 97 proposals, Charles Barry, was known for his Italianate

style, but for the competition he was able to switch to a Gothic design. In the case of Boeing

versus Airbus, the contest will be rerun with the additional information about the Air Force�s

preferences. Boeing plans to switch to a design based upon the larger 777 from the smaller

767 (New York Times, 2009). This would match the size of the current Airbus proposal.

However, Boeing would not be able to match a proposal (in size of aircraft) if Airbus based

its plans on the new A380.

The buyer releases information by sending a signal s 2 S that depends upon his pref-

erences; namely, a function g : P ! �(S); where P = fP � T : #P = pg. The way that

information is released, the g used by the buyer, is known to the sellers in advance. They then

use Bayes rule to infer likelihood of each possible set of preferred styles and in particular, the

likelihood that they are in that set. Not releasing information is equivalent to sending the

same signal for each possible preferences: using a function such as g(P ) = s1 for all P 2 P.

The g function can also incorporate cases where the buyer does not fully learn his preferences

beforehand. For instance if T = f1; 2; 3g, p = 1 and the buyer cannot distinguish between

P = f1g and P = f2g but can between P = f3g and P = f1g (and between P = f3g and
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P = f2g), then we are constrained by g(f1g) = g(f2g), but can have g(f3g) 6= g(f1g).

To begin to examine the e¤ect of a release of information, we must �rst under what case,

the sellers� pro�ts are maximized. We do so in the following lemma.

Lemma 2 Given there are n sellers, the sellers� pro�ts are maximized when p
t
= 1

n
:

Proof. Denote p
t
as f:We have �(n; f) = f �(1�f)n�1(V �a(0)): The �rst-order condition

with respect to f is (1 � f)n�1 = (n � 1) � f(1 � f)n�2: Solving yields f = 1=n. Note that

�ff � 0 (�ff < 0 for interior f) so the second-order condition is satis�ed.

Note that a p
t
that is too low makes is very unlikely that any seller�s style will be in the

preferred set. A p
t
that is too high will make it too likely that two or more sellers will have a

style in the preferred set. When p
t
= 1

n
; the balance between these two forces is at an optimal.

We can make use of the above lemma and see, for one, if it would ever improve sellers� pro�ts

to communicate information about a buyer�s preferences.

Proposition 2 (i) If the sellers are unable to change their style, then communicating infor-

mation about preferences will have no e¤ect on sellers� expected pro�ts nor the chance of the

winning proposal�s style being in the buyer�s preferred set, but it may increase or lower the

buyer�s expected surplus.

(ii) If the sellers can change their style, then communicating information about preferences

would always increase the chance the winning proposal will be in the preferred set, but is

sometimes bene�cial and sometimes damaging to the sellers and buyer.

Proof. In the Appendix.

We see from the Proposition that the release of information about preferences can have

di¤erent e¤ects on the sellers� pro�ts. This for the most part depends upon the �exibility of

the sellers, the number of sellers, and the re�neness of information released. If �rms are fully

�exible and the information fully reveals P , then the information will only hurt the sellers.
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Likewise, if p
t
� 1

n
, then extra information will only hurt sellers (it will e¤ectively reduce t).

On the other hand, if p
t
< 1

n
; then the chance of a seller being a unique seller in the preferred

set is too small for maximal pro�ts. The release of either a small amount of information or

a limited amount of �exibility will increase p
t
to a more desirable level.

Example 2 n = 2, V = 2, a(x) = 1 � x=2, T = f1; 2g; P = ff1g; f2gg; S = f1; 2g,

g(f1g) = 1, g(f2g) = 2.

Let us �rst look at the case when sellers cannot change style. With this g; the information

sent allows the seller knows whether or not he is in the preferred set. If the seller is in P ,

then there is a 1=2 chance that the other seller is in P=T . Denote the strategy of a seller

with a style in P as F p and the strategy of a seller with a style in P=T as Fnp:We then have

two indi¤erence equations. A seller in P must be indi¤erent to all strategies in his support.

Thus, �
1

2
F p(x) +

1

2

�
(2� a(x))� x = 1

2
:

Likewise, if the seller is in P=T , we have

�
1

2
Fnp(x)

�
(2� a(x))� x = 0:

This yields F p(x) = 3x
2+x and F

np(x) = 4x
2+x : Note the ex-ante expected pro�t of the sellers

is still 1=4 and the equilibrium CDF without information being released is F (x) = 7x
4+2x .

Now let us look at the case when sellers can costlessly change their styles to any style in

T: Here, both sellers will switch to the preferred style. We then have a single indi¤erence

condition:

F (x)(2� a(x))� x = 0:

This condition implies F (x) = 2x
x+2 with ex-ante expected seller pro�ts of 0. �

We now wish to use an example where depending upon the parameters, a buyer may gain

from sending information or not gaining from sending information.
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Example 3 n = 2, V = 2, a(x) = 1, # P = # S; for all P1; P2 2 P if P1 6= P2; then

g(P1) 6= g(P2).

For this example, the sellers can correctly distinguish the buyer�s preferred set but cannot

switch styles.

Without information transmitted, i.e., g(P ) = s for all P 2 P; a seller will use F (x) such

that �
p

t

�
1� p

t

�
+

��p
t

�2
+
�
1� p

t

�2�
F (x)

�
� x = p

t

�
1� p

t

�
:

This implies that

F (x) =
x

�
p
t

�2
+
�
1� p

t

�2 :

The buyer�s expected surplus is 2p
t

�
1� p

t

� R
xdF+

��
p
t

�2
+
�
1� p

t

�2� R
xdF 2: Since F is uni-

form, we have the buyer�s surplus equal to p
t

�
1� p

t

� ��
p
t

�2
+
�
1� p

t

�2�
+2
3

��
p
t

�2
+
�
1� p

t

�2�2
:

With information, a seller knows whether he is in the preferred set or not. If he is in the

preferred set, a seller will use F p(x) that solves

�
1� p

t
+
�p
t

�
F p(x)

�
� x = 1� p

t
:

This implies F p(x) = x=(p=t): If a seller is not in the preferred set, he will use Fnp that solves

�
1� p

t

�
Fnp(x)� x = 0:

This implies Fnp(x) = x=(1�(p=t)). The buyer�s surplus is 2p
t

�
1� p

t

� R
xdF p+

�
p
t

�2 R
xd (F p)2+

�
1� p

t

�2 R
xd (Fnp)2 : Since both F p and Fnp are uniform, this surplus equals

�
p
t

�2 �
1� p

t

�
+

�
2
3

� ��
p
t

�3
+
�
1� p

t

�3�
: There are four solutions to where the two buyer surpluses (with and

without information) are equal: p
t
= �1; 0; 12 ; 1: When

p
t
= 1

4 ; without information yields

higher surplus. When p
t
= 3

4 ; with information yields higher surplus. Thus, for 0 <
p
t
< 1

2 ,

the buyer strictly prefers to withhold information and for 12 <
p
t
< 1; strictly prefers to send

information. �
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We see here that the extra information can e¤ect the buyer�s expected surplus either way.

This happens even when the sellers cannot switch styles and the chance the proposal is in

the preferred set is unchanged. In such a case, sellers are not a¤ected in terms of expected

pro�ts. The buyer is e¤ected since the buyer cares about the winning e¤ort and while the

sellers expected pro�ts are not changed, their strategies are. One note about e¢ciency. The

ambiguity in the buyer�s surplus causes the sum of the buyer�s expected surplus and the

sellers� expected surpluses to also be ambiguous. Thus, it isn�t clear which is more e¢cient.8

3.3 Information about the Sellers

Above we assumed that the sellers competing for the contract do not know each other. In

many situations, this may very well be the case. In other situations, sellers may know who

they are competing against. For instance, the contract selection may be in two stages. In

the �rst stage there is a call to see who is interested. In the second stage, a longer proposal

(bid) is required. It is after this �rst stage that information can be communicated about who

is competing.9 We now analyze the e¤ect of such communication about the identity of the

sellers (which would be more pertinent to situations with less sellers).

Before continuing, we need to be more speci�c about the sellers� types when there is a

possibility of changing styles. We de�ne a seller i�s type to be a default style ti and a set of

styles Ti to which the seller can costlessly switch to (where ti 2 Ti � T ). A seller is unable

to change his style if Ti = ftig: Being consistent with the prior sections, we assume that each

style has an equal chance of being the default style and there is symmetry with respect to

the sets of styles. For example, if there are three styles, two sellers and there is a 1/10 chance

8An e¢cient allocation would have select one seller (�rst selection from any sellers with a possible style in

the preferred set). There will be some optimal level of e¤ort by this selected seller. (To avoid corner solutions,

we would either need to make the seller�s cost of e¤ort be convex rather than linear or make the buyer�s utility

of e¤ort be concave in e¤ort.)
9 It is possible that after the �rst stage, the competing sellers are invited for a meeting together.
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that T1 = f1; 2g, then there is also a 1/10 chance of T1 = f1; 3g or T1 = f2; 3g. In addition,

for seller 2, there would also be a 1/10 chance of T2 being any of these sets.

Formally, each seller i�s set of styles must be drawn from Ti � 2T and the set of all

possible sellers� types is T � Tn � T1 � T2 : : :� Tn: The probability of each set occurring is

given by � : T! R
+: For feasibility � (fti; Tig) > 0 only if ti 2 Ti 8i. For symmetry, for any

reordering of sellers o : f1; : : : ; ng ! f1; : : : ; ng; we have � (fti; Tig) = �
�
feti; eTig

�
if ti 2 Ti,

eti 2 eTi 8i and #Ti = # eTo(i). This setup results in two properties. First, an individual�s

type is independent of another�s individual type. Thus, one infers nothing about the other�s

types from one�s own type. Second, there is an equal chance of all types occurring. This is

consistent with the rest of the paper.

Note that without information, there is an equilibrium where all sellers stick with their

default style. This is because for each possible style in a seller�s choice set, there is an equal

chance of another seller having that style as a default. We call this equilibrium, the default

equilibrium.

Proposition 3 (i) If the sellers are unable to change their style, that is, Ti = ftig, then mak-

ing the sellers� types public information will have no e¤ect on sellers� expected pro�ts nor e¤ect

the chance that the winning proposal will be in the preferred set.

(ii) If the sellers are able to change their style, the buyer�s surplus may increase or decrease.

(iii) If there are two sellers and they can change their style, then making the sellers� types

public information would increase the sellers� pro�ts compared to those in the default equilib-

rium.

Proof. In the Appendix.

Example 4 n = 2, V = 2, a(x) = 1� x=2, t = 2; p = 1, Ti = ftig:

Here, the ex-ante pro�ts without information is the same as before: 1=4. When the sellers�
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identities are disclosed, the expected pro�t is 0 when t1 = t2 and 1=2 when t1 6= t2: Since

each possibility happens half the time, the overall expected pro�ts is 1/4. �

Example 5 n = 2, V = 2, a(x) = 1 � x=2, t = 3; p = 1, �(ff1; f1; 2gg; f2; f2; 3gg) =

�(ff2; f1; 2gg; f3; f2; 3gg) = : : : = 1=36:

The ex-ante expected seller pro�ts without information about the other seller�s type is

1
3 � 23 = 2

9 : Each would use a CDF that satis�es

(
2

9
+
5

9
F (x))(2� a(x))� x = 2

9
.

This implies

F (x) =
16x

10 + 5x
.

Now let us look at the equilibrium when all the sellers� types become public knowledge.

When T1 6= T2; for instance, when T1 = f1; 2g and T2 = f2; 3g: Any equilibrium would have

them choosing di¤erent styles for their bids. If seller 1 in equilibrium selected style 2 and

there was a possibility that seller 2 also would select style 2, then seller 1 can do strictly better

by choosing the same e¤ort but style 1. Thus, when T1 6= T2; the sellers� choose di¤erent

styles. Since p = 1, there is a 1=3 chance they both will not be in the preferred set. Hence,

their indi¤erence condition is

�
1

3
+
1

3
F (x)

�
(2� a(x))� x = 1

3
:

This implies

F (x) =
5x

x+ 2
:

When T1 = T2, it is an equilibrium for seller i to randomly choose (with equal chance)

between the two styles in the set Ti. Doing so will give them 1=2 probability of submitting the

same style and 1=6 probability of being unique in the preferred set yielding expected payo¤

of 1=6. The equilibrium CDF is F (x) = 11x=(x + 2): This equilibrium will yield the lowest
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payo¤. The chance of T1 = T2 is 1/3. Therefore, the expected pro�t is
2
3 � 13 + 1

3 � 16 = 5
18 : Note

that this is still higher than the non-disclosure equilibrium. The equilibrium with the highest

payo¤ would involve everyone choosing a separate style. This yields an expected payo¤ of

1=3. �

Proposition 3 is comparable to Proposition 2, but where the potential increase of infor-

mation is about the sellers� types rather than the buyer�s preferences. While the results

are similar when the sellers cannot make changes, they di¤er when the information is about

the sellers� types rather than the buyer�s preferences. Namely, when sellers can alter their

style, communication about the sellers� types helps their pro�ts, but communication about

the buyer�s preferences can help or hurt sellers� pro�ts. The reason for this is when the in-

formation is about types, the sellers want to di¤erentiate themselves, but when it is about

the buyer�s preferences, they want to increase the likelihood of having a preferred style which

may hurt di¤erentiation.

These results should still hold if we adding switching cost to switching styles. Sellers

would not be harmed by the communication of information, but now when it is advantageous

to switch, the sellers will weigh the gains against the potential cost and thus switch less

frequently. Also, if information about the sellers is about the number of sellers competing

rather than their types, the situation would be comparable to that where sellers cannot switch

styles and such communication will have no e¤ect in expected payo¤s.

4 Concluding remarks

In this paper, we considered the case of sellers trying to win a contract with a buyer where

a buyer has preferences over styles of designs. Interestingly, while a losing seller may always

complain about how the buyer did not properly communicate his preferences, that seller�s

expected pro�ts ex-ante may have been higher thanks to this lack of communication (as

14



possible in the case when sellers can switch styles).

Although a very di¤erent model, Ganuza (2007) presents a case where the release of

additional information about the buyer�s preferences can be bene�cial to the sellers. The

extra information creates a local monopoly for a seller whose product is closest to the buyer�s

preferences.10 This di¤erence to our model can be explained by the following toy model that

combines features of both models. There is a buyer and two sellers: one that sells type A

objects and the other of type B objects. With equal probability, the buyer either values object

A at v and object B at 0 or values object B at v and object A at 0. A seller can produce the

other type of object at cost c otherwise the cost is 0. A buyer can choose to discover his type

before issuing the contract. If this type is discovered before, it becomes public information.

Otherwise, the type is discovered after the contract is signed but before the work is �nished,

allowing the seller to switch types at cost c. If the type is discovered before, the buyer with

the correct type wins an auction and receives c. The buyer�s expected pro�ts is v � c. If the

type is not discovered, we assume that in the second stage the buyer has bargaining power.

In this case, both �rms compete away pro�ts and the buyer receives the good for a price of 0.

However, there is a 50% chance that the buyer will have to pay c. Thus, his expected pro�ts

is v� c
2 : Hence, the buyer does better without discovering the information. In our model, the

buyer knows the information before choosing a contract and can decide whether or not to

reveal it to the buyers. In this toy model, not revealing information will change the behavior

compared to not having information since the buyer can still make use of this information in

selecting a contract. Bidding c is now the equilibrium with the buyer selecting the correct

�rm. The expected pro�t of the buyer will be again v � c.

We now conclude with several suggestions for future work. One possibility is to have

smooth preferences such as in the Hotelling (1929) or Salop (1979) models. This type of

10 It also leads to the buyer underinvesting in acquiring information and choosing the wrong product more

often then in an e¢cient world. This wrong product choice leads to extra adjustments: overruns.
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preference structure was used in the aforementioned Ganuza (2007) model and has promise

(though keeping in mind that from the above discussion it is not obvious that the results will

change).

One may consider that in the contest stage there is no advantage to design that exceeds

the necessary work. In such a case, the c such that a(c) = 0 will serve as a bid cap and the

buyer will randomly select among those putting e¤ort at the cap. In this case, the equilibrium

will be similar to that in Che and Gale (1998). However, Kaplan and Wettstein (2006) give

arguments why such a cap should be considered soft as whereby the equilibrium would not

qualitatively be di¤erent to the one in this paper.

One can also investigate teams of sellers as we see that often in contract contests, parties

submit joint bids. Studying such mergers in our framework adds the interesting element that

merging lower the chance of having a preferred style. Finally, it would be worthwhile to

examine the same issues but with a di¤erent foundation for the model. For example, one can

model the all-pay auction as one of incomplete information about values or costs of e¤ort as

in Amann and Leininger (1996) or using a Tullock (1980), rent-seeking success function.

5 Appendix

Proof of Lemma 1.

We �rst show that there cannot be an atom (discontinuous jump in Fi) in the mixed

strategy equilibrium at any strictly positive point. We show this by contradiction. Denote the

probability seller i winning by choosing x asWi(x): Suppose there is an atom played by seller i

at x� > 0. For this to happen, there must be a strictly positive probability of seller i winning at

that point, that is, Wi(x
�) > 0, since choosing x� > 0 is costly. In addition, choosing any y <

x� must yield a strictly lower probability of winning,Wi(y) < Wi(x
�) for all y 2 [0; x�). This is

because from our assumptions on a(x), it pays to procrastinate if it does not hurt one�s chance
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of winning, that is, for any constant c > 0, we have minx2X c � (V � a(x)) � x = minx2X x:

Since choosing y < x� yields a lower probability of winning, for any set X�(z) � [z; x�) where

z 2 [0; x�); there must be some seller j choosing a y in X�(z) (there exists a j where y is

in the support of Fj). However, choosing x
� + " will yield a discreet jump in probability of

winning for seller j. Thus, for large enough z, we will get a contradiction. (There exists a

z 2 [0; x�) and " > x�� z such that Wj(y)(V � a(y))� y < Wj(z+ ")(V � a(z+ "))� z+ ":)

We now show that if p=t 2 (0; 1); seller i cannot be bidding an atom at 0 by way of

contradiction. Say that seller i is choosing an atom at 0 of magnitude m 2 (0; 1]. This implies

that Fi(x) � m > 0 for all x > 0: If seller i is the only seller choosing an atom at 0, seller i�s

pro�ts must be equal to the chance that i is the unique seller in the preferred set times the

pro�t of winning with a zero e¤ort, namely, (p
t
)�(1� p

t
)n�1(V �a(0)). All other sellers can bid

" and obtain pro�t that approaches (p
t
) �(1� p

t
)n�1(V �a(0))+m(p

t
)2 �(1� p

t
)n�2(V �a(0)) as

"! 0. Since this is a mixed-strategy equilibrium, a seller j is indi¤erent to bidding between

any two points in the support of Fj . Since there are no atoms above zero, seller i can bid

at the top of j�s support and win with certainty. This should be the same pro�t that seller

j earns since at the top of j�s support, seller j also wins with certainty. However, seller j�s

pro�ts is strictly higher than seller i�s pro�ts since p=t is strictly between 0 and 1. Thus, seller

i would have incentive to deviate and would not place an atom at 0. If there is more than

one seller placing an atom at 0 and p=t is strictly between 0 and 1, then any seller choosing

an atom would have incentive to bid " since the probability of winning will jump discretely.

Now we know that if p=t 2 (0; 1); an equilibrium will not contain atoms anywhere. We

will now show that zero must be the lowest point in the support of all sellers. Suppose zi > 0

is the lowest point of the support of player i. Let z = mini zi: Since in equilibrium there are

no atoms, the probability of winning at z must be the same as the probability of winning at

0 for all sellers, that is, Wi(z) = Wi(0) for all i. The seller j whose support Fj includes z

also has Wj(z) =Wi(0); however, j can then improve pro�ts by choosing 0. Thus, z = 0:
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The probability of j winning by bidding 0, Wj(0); must be the probability of that one is

the only seller in the preferred set, (p
t
) � (1� p

t
)n�1: Hence, the pro�t of a seller j that bids 0

must be (p
t
) � (1� p

t
)n�1(V �a(0)): Another seller k cannot achieve higher pro�t since a seller

j bidding 0 can simply bid at the top of k�s support and achieve at least k�s expected pro�ts

(it can be strictly higher if Fj(z) < 1 where z is the highest point in k�s support.) Another

seller k cannot have lower pro�ts since k can simply bid 0 and receive pro�ts equivalent to

that of seller j. Hence, all sellers must have pro�ts equal to (p
t
) � (1� p

t
)n�1(V � a(0)).

If, p=t = 0 or 1; the pro�t would be zero as in all the possible equilibria in a standard

all-pay auction with incomplete information (see Baye, Kovenock, and de Vries, 1996, and

Kaplan, Luski, Wettstein, 2003). This is consistent with our formula for expected pro�ts. �

Proof of Proposition 1.

First, we will show that any equilibrium must be symmetric. Assume that in equilibrium

there is an j, k and z where z is in the support of j and k, but Fj(z) 6= Fk(z). Since z

is in the support of j and k, we must have Wj(z)(V � a(z)) � z = Wk(z)(V � a(z)) � z =

(p
t
) � (1� p

t
)n�1(V � a(0)) which implies that Wj(z) =Wk(z). However, Wj(z) = Fk�i6=j;kFi

and Wk(z) = Fj�i6=j;kFi this implies we must have Fj(z) = Fk(z): This leaves the only

possibility if sellers j and k do not use the same strategy then supports of Fj and Fk are

disjoint. Now notice that in equilibrium there cannot be any gaps in �Fi (since there are no

atoms in equilibrium and a seller at the top of a gap would have incentive to lower his bid).

Thus, if there are two points zj and zk where zj < zk and zj is in the support of Fj and zk

is in the support of Fk, then Fj(zj) < Fk(zk). It then follows that there cannot be a gap in

an individual Fi�s support. This implies that the supports of all sellers coincide and hence so

do all the Fi�s. We denote this common CDF as F .

All the points in the support must yield the same expected pro�t. This pro�t must equal

the gains from winning (V � a(x)) times the probability of winning minus the e¤ort x. The

probability of winning is the chance that all sellers are set T=P and put forth lower e¤ort,
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(1� p
t
)nF (x)n�1; plus the chance that the particular seller is in P and all the other sellers (if

any) that are in P put forth lower e¤ort. This latter expression is slightly more complicated

and equal to

p

t
�
n�1X

m=0

0
B@
n� 1

m

1
CA (

p

t
)m(1� p

t
)n�1�mF (x)m:

Combining yields equation (1) which for each x has a unique solution for F (x). The

second half of the proposition has the problem reduce to that of one with bid-dependent

rewards, an environment studied by Kaplan, Luski and Wettstein (2003). Here, there is a

possibility of an atom at zero. However, similar to the above, there is a unique equilibrium

among active participants (a seller i is active if there exists an xi > 0 where Fi(x) < 1). �

Proof of Proposition 2.

(i) Remember that the expected seller pro�t without information release (Lemma 1) is

�(n; p
t
). The ex-ante expected pro�t for a particular seller i in the case of information release

is 1
t

P
ti2T

P
s2S r(s)�

i(ti; s) where �
i(ti; s) is the expected pro�t for seller i of style ti after

the information s is released and r(s) as the probability s would be sent. This probability

depends upon the function g used and equals r(s) =
X

P2P

gs(P )
#P where gs(P ) represents the

probability s is sent when the true preferences are P .

After the information is released, for the same reasons as in Lemma 1, there can�t be atoms

in the distribution. For this reason, the e¤ort of zero must be in the support (otherwise, if one

will have the lowest e¤ort in any case, it might as well be zero). Since it is a mixed strategy,

the expected pro�t must be equal for all points in the support including zero. Hence, we can

look at the expected pro�t for an e¤ort of zero. This is simply V �a(0) times the probability of

being the only preferred seller. The probability equals �i(ti; s)(1� p
t
)n�1 where �i(ti; s) is the

probability of a seller of style ti is in P when signal s is sent. Denote P(ti) � fP 2 P : ti 2 Pg.

We can then write �i(ti; s) =
X

P2P(ti)

gs(P )
#P�r(s) : Hence, �

i(ti; s) = �i(ti; s)(1� p
t
)n�1 (V � a(0)) :
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However, 1
t

P
ti2T

P
s2S r(s)�

i(ti; s) =
1
t

P
ti2T

P
s2S r(s)

0
@

X

P2P(ti)

gs(P )
#P�r(s)

1
A (1�p

t
)n�1 (V � a(0)).

We now can make a further simpli�cation:

1
t

P
ti2T

P
s2S r(s)

0
@

X

P2P(ti)

gs(P )
#P�r(s)

1
A = 1

t

P
ti2T

P
s2S

0
@

X

P2P(ti)

gs(P )
#P

1
A =

1
t

P
ti2T

0
@

X

P2P(ti)

P
s2S gs(P )

#P

1
A = 1

t

P
ti2T

0
@

X

P2P(ti)

1
#P

1
A = 1

t

P
ti2T

�
#P(ti)
#P

�
:

Now note that #P =
�
t
p

�
and #P(ti) =

�
t�1
p�1

�
: Thus, 1

t

P
ti2T

�
#P(ti)
#P

�
=
�
t�1
p�1

�
=
�
t
p

�
= p

t
:

Hence, we have 1
t

P
ti2T

P
s2S r(s)�

i(ti; s) = (
p
t
) � (1� p

t
)n�1 (V � a(0)) = �(n; p

t
):

Since the sellers cannot switch styles, then the probability that the buyer will get a

proposal in the preferred style will not change. We show in Example 3 that the e¤ect on the

buyer�s surplus can go either direction.

(ii) To show that the information can be damaging when sellers can switch their style, let

us look at an example. Let us say that there are two sellers, p = 1 and t = 2. Pro�t for each

seller is �(2; 12) =
1
4 (V � a(0)) : Now let us say the sellers are full �exible in switching style. If

the buyer communicates his preferences by mentioning exactly which style is preferred, then

each seller would switch to the preferred style and pro�t will equal zero (which is �(2; 1)).

Hence, we see that pro�t can go down by the release of information.

Now we also show that the sellers� pro�ts can go up by way of example. Let us say that

there are two sellers, p = 1 and t = 4. Without communication, the sellers� pro�ts would

be �(2; 14): For an example, let us return to that of a university building with two possible

designs for o¢ces: around an atrium or secluded. The building style can also be modern or

classic. This makes a possible four types. There are two architecture �rms competing for the

design. They can�t switch their style of architecture easily, but it is not di¢cult to change

the layout. If the university announces it�s preference for o¢ce layout, then both �rms would

switch to that style. In both cases of preference, then the pro�t would be �(2; 12), which is

the highest pro�t. Note that announcing also building style will have no further e¤ect as in
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part (i).

Since the sellers have the ability to switch styles, communicating information about pref-

erences to them only increases the probability that there will be a proposal in set P . This

improves the buyer�s surplus. �

Proof of Proposition 3.

(i) This can be shown in a similar manner to that in the proof in Proposition 2 (i).

The key is that now the information release is about the sellers� types and not the buyer�s

preferences. Since information about types is fully revealed and Ti = ftig for all i, the set of

possible states sent is S = Tn. Denote s as the actual information announced and si as the

type of seller i: The overall pro�t is
P
s2S r(s)�

i(s) and the pro�t for each case of information

release is �i(s) = �i(s) (V � a(0)) where �i(s) is the probability of seller i being unique in

the preferred set when the state is s. The probability of each state occurring r(s) is simply

1=#S = 1=(T �n): The probability of being unique in the preferred set �i(s) = 0 if there exists

a j 6= i, where ti = tj . The odds of this occurring is 1�( t�1t )n�1:If this is not the case and for

all j 6= i, we have ti 6= tj ; then E[�i(s)jti 6= tj ] = p
t
� (1� p�1

t�1 )
n�1. The odds of this occurring

is ( t�1
t
)n�1. Overall, we have

P
s2S r(s)�

i(s) = ( t�1
t
)n�1 � p

t
� (1 � p�1

t�1 )
n�1 (V � a(0)) =

p
t
� (1� p

t
)n�1 (V � a(0)) = �(n; p

t
):

(ii) Let us �rst look an example where seller information helps the buyer�s surplus. When

a(x) = 0; n = 2, p = 1 and Ti = ftig: Without information, sellers choose e¤ort according to

V
�
1
4 +

1
2F (x)

�
� x = 1

4V =) F (x) = 2x=V: There is a 1=2 chance that the sellers have the

same style. When this is the case, we look at the expected maximum of V=3. When they

have di¤erent styles, we look at the average of V=4. Overall, the expected surplus is (7=24)V .

In the case when sellers� types become public knowledge, when the sellers have the same

style, they use G according to V �G(x)� x = 0: This implies G = x=V , which is uniform on

[0; V ]. The expected maximum e¤ort is then 2=3. When the sellers have di¤erent styles they

choose zero e¤ort since either they are unique in the preferred set or the other seller is in the
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preferred set. Since each possibility occurs half the time, overall the expected e¤ort is 1=3.

This is higher than when there is no information.

For an example where the buyer surplus is higher without seller information, take the

previous example, but change the possible seller types. Now the possible types are f1; f1gg;

f2; f2gg; f1; f1; 2gg; f2; f1; 2gg with an equal chance of each. Whenever, T1 = T2 = f1; 2g, it

is an equilibrium to randomly choose one�s type. This has the same payo¤ as the equilibrium

without information being passed and sellers can�t switch. It occurs 1=4 of the time. For

all the cases when #T1 = #T2 = 1, we have the same expected payo¤ as the case when

information is passed and sellers cannot switch. When #T1 6= #T2; the equilibrium is for

sellers to have di¤erent styles. This generates 0 e¤ort. The expected e¤ort is 14 � 724+ 1
4 � 13 = 5

32 .

This happens 1=2 the time. In this case, without switching the there is a seller with a

preferred style 3=4 of the time. With switching, there is a preferred style all the time. Thus,

with information, there is a surplus increase of �=8 from a preferred style of being more likely.

Not sending information yields higher buyer surplus if 7
24 >

5
32 +

�
8 or � <

13
12 : Since we only

require � to be greater than 1, this is possible.

(iii) Here the equilibrium requires sellers choosing both a style in their set and an e¤ort.

When choosing the style, sellers maximize pro�t if they are able to di¤erentiate themselves

from one another. This increases the chance that they will be the sole seller in the preferred

set. (There is still an equal chance for each style to be preferred by the buyer.) If T1 6= T2,

then the equilibrium choice of style will be di¤erent even if the original default styles were

the same (t1 = t2): This is because seller i can chose a eti 2 Ti=T�i where it is certain that the

other seller will choose. By doing so, seller i maximizes the chances that he would be alone

in the preferred set. It is less clear what will happen if T1 = T2. To illustrate this assume

that T1 = T2 = f1; 2g, t1 = 1 and t2 = 2. This is a standard coordination game. While

initially they are on di¤erent styles and it is an equilibrium to stay with the defaults, there

is another equilibrium where they choose between 1 and 2 with equal probability. In such
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a game, this mixing yields the lowest equilibrium payo¤. From this we see that the lowest

possible equilibrium payo¤ for the sellers happens when they choose with equal probability

each style in their set whenever T1 = T2:

How does this compare to pro�t in the default equilibrium? Notice that pro�ts in the

default equilibrium are the same as when all sellers choose with equal chance among all

the possible styles in their set� there is still the same chance of another seller having the

same style. Let us now use this as a baseline and look at the case when the sellers� types

are made public. Whenever T1 = T2; the lowest possible new payo¤s are the same as our

baseline. Whenever, T1 6= T2 the payo¤s strictly increase compared to the baseline. Hence,

the addition of such information is bene�cial to the sellers. �
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