
Munich Personal RePEc Archive

The Taylor rule and interest rate

uncertainty in the U.S. 1970-2006

Mandler, Martin

University of Giessen

March 2007

Online at https://mpra.ub.uni-muenchen.de/18770/

MPRA Paper No. 18770, posted 20 Nov 2009 14:24 UTC



The Taylor Rule and Interest Rate Uncertainty in the U.S.

1970-2006

Martin Mandler

(University of Giessen, 35394 Giessen, Germany)

martin.mandler@wirtschaft.uni-giessen.de

Abstract

This paper shows how to estimate forecast uncertainty about future short-term interest rates by combining a

time-varying Taylor rule with an unobserved components model of economic fundamentals. Using this model I

separate interest rate uncertainty into economically meaningful components that represent uncertainty about

future economic conditions and uncertainty about future monetary policy. Results from estimating the model

on U.S. data suggest important changes in uncertainty about future short-term interest rates over time and

highlight the relative importance of the different elements which underlie interest rate uncertainty for the U.S.

Keywords: Monetary policy, reaction functions, state-space models, output-gap forecasts, inflation forecasts

JEL Classification: E52, C32, C53

Martin Mandler

University of Giessen

Department of Economics and Business

Licher Str. 62, D – 35394 Giessen

Germany

phone: +49(0)641–9922173, fax: +49(0)641–9922179

email: Martin.Mandler@wirtschaft.uni–giessen.de



1. INTRODUCTION

This paper presents an empirical analysis of time-variation in uncertainty about future short-

term interest rates in the U.S. Its main contribution is the decomposition of this uncertainty

in various components that can be interpreted economically as uncertainty about future be-

havior of the central bank, uncertainty about the future state of the economy and a residual

component.

Estimates of interest rate uncertainty are important for a wide range of financial market ap-

plications such as portfolio allocation, derivative pricing, risk management etc. Uncertainty

about short-term interest rates is also important for evaluating monetary policy as the most

important factors for the determination of money-market interest rates are interest rates set

by the central bank. For example, the extent of uncertainty about future money market rates

is an indicator of the credibility and predictability of the central bank’s monetary policy (e.g.

Caporale and Cippolini 2002, Swanson 2006). To keep this uncertainty low an important

goal of central banks’ communication policy is to “guide” expectations about its future policy

moves (e.g. Reinhart 2003, European Central Bank 2008). Rising uncertainty about how

interest rates will be set by the central bank in the future can have negative effects on eco-

nomic stability (e.g. Poole 2005). For example, an increase in the volatility of money market

rates can be transmitted through the yield curve (Ayuso, Haldane, and Restoy 1997) causing

the volatility of longer-term interest rates to rise as well which can have a negative effect on

growth and investment (e.g. Muellbauer and Nunziata 2004, Byrne and Davis 2005).

The empirical importance of time-variation in uncertainty about short-term interest rates

has been documented in many studies. However, measures of interest rate uncertainty have

usually been constructed from the time series of historical interest rate changes and, therefore,

are difficult to interpret economically. These measures have been derived either by estimating

ARCH/GARCH models (e.g. Chuderewicz 2002, Lanne and Saikkonen 2003), stochastic

volatility models (e.g. Caporale and Cipollini 2002) or regime switching models of volatility

(e.g. Sun 2005). A third approach uses derivative prices to estimate interest rate uncertainty

(e.g. Fornari (2005).

To derive economically interpretable measures of interest rate uncertainty the starting point

of this paper is the fact that monetary policy is the most important determinant of short-term

interest rates. Hence, for analyzing interest rate forecast uncertainty, I suggest an approach

based on the way financial markets perceive monetary policy to be made in response to
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changing economic conditions. (See Swanson (2006) for a similar argument.) By combining a

widely used interest rate rule with a structural economic model, various elements of interest

rate uncertainty can be separated and attributed to their economic sources.

The basis of the analysis is the famous Taylor rule (Taylor 1993) which is widely accepted as

an approximate description of how central banks set short-term interest rates in response to

(expected) economic conditions. Even though central banks certainly do not exactly follow the

Taylor rule when adjusting interest rates, financial market participants often use Taylor-type

rules as tools for forecasting future interest rates set by the central bank. Predicting interest

rates using such a rule requires forecasts of the economic conditions the central bank will have

to react to in the future. Hence, uncertainty concerning the forecasts of the information the

central bank is expected to act upon, is the first source of uncertainty about future interest

rates (fundamental uncertainty).

The second element of uncertainty is related to imperfect knowledge about the central bank’s

reaction to given future economic conditions. The reaction coefficients in simple interest rate

rules such as the Taylor rule have been shown to change over time (e.g. Cogley and Sar-

gent 2003, Boivin 2006, Kim and Nelson 2006). One reason for this is that the coefficients in

optimally derived monetary policy reaction functions depend on both, the central bank’s pref-

erences about output stabilization, inflation and possibly other goals as well as on structural

parameters of the central bank’s model of the economy (e.g. Svensson 1997). Changes in

preferences and changes in the structure of the economy will both affect the parameters in the

monetary policy reaction function. Furthermore, simple interest rate rules in general are only

crude approximations to an optimal monetary policy reaction function. Central banks base

their policy decisions on a much richer data set than, for example, (forecasts of) the output

gap and inflation accounted for in the Taylor rule. Consequently, situations with identical

(forecast) values of the output gap and inflation can be significantly different economically if

judged by the much larger optimal information set. Thus, the central bank does not neces-

sarily have to react to (apparently) identical economic situations in the same way and this

will lead to changes in the parameters of simple, i.e. not completely specified monetary policy

reaction functions. Finally, changes in the reaction coefficients can also result from fitting

a linear reaction function when the true reaction function is in fact non-linear. Forecasting

interest rates based on a simple monetary policy reaction function implies that changing coef-

ficients in this reaction function are a second source of uncertainty about future interest rates.

The third element of interest rate uncertainty is due to the fact that the estimated reaction

function is an approximation. It is embodied in the error term in the empirically estimated in-

2



terest rate rule and represents the approximation error of the rule relative to actual monetary

policy.

This paper presents an empirical model of U.S. monetary policy that identifies these different

components of uncertainty about future interest rates. The model consists of a Taylor rule

with time-varying coefficients combined with an unobserved components model of output,

inflation, and the output gap which is used to generate forecasts of the variables entering the

Taylor rule.

The model opens a new field of applications for the growing empirical literature on time-

varying monetary policy rules: the study of uncertainty about future monetary policy. Pre-

vious analyses have focused on ex-post descriptions of Federal Reserve policy: For example,

Clarida, Galì and Gertler (2000) provide evidence of pronounced changes in Taylor-type in-

terest rate rules for the U.S. using split-sample regression analysis. They show a strong shift

in the Fed’s reaction function related to the appointment of Fed Chairman Volcker in 1979.

More recently Boivin (2006) and Kim and Nelson (2006) estimate forward-looking Taylor rules

with time-varying parameters and report sizeable but more gradual changes in the coefficients.

Trecroci and Vassali (2006) show that time-varying monetary policy reaction functions for the

U.S., the U.K., Germany, France and Italy perform superior to constant parameter rules in

accounting for observed changes in interest rates. Time-varying Taylor rules have also been

estimated for the Deutsche Bundesbank by Kuzin (2005) and using a regime-switching model

by Assenmacher-Wesche (2008).

The paper is structured as follows: Section 2 outlines the empirical models for the monetary

policy reaction function and for the economic fundamentals that enter into it. Section 3

discusses the results from estimating the models and Section 4 presents the results for the

uncertainty about future interest rates.

2. A MODEL OF POLICY AND ECONOMIC FUNDAMENTALS

2.1 The Taylor rule

The standard approach to model the setting of the short-term interest rate by the central

bank is the specification of an interest rate rule that relates the monetary policy instrument,

i.e. the short term interest rate, to a limited number of economic variables. The most widely

used interest rate rule is the Taylor rule which assumes that the central bank’s target value
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for the monetary policy instrument responds to current or expected values of inflation and

the output gap

i∗t = a0,t + aπ,tEtπt+j + az,tEtzt+k, (1)

where i∗t is the target short-term interest rate. πt+j is the inflation rate j periods in the future

and zt+k is the output gap j periods ahead. Et denotes expectations formed conditional on

information at time t. Equation (1) allows for time variation in the coefficients a0,t, aπ,t and

az,t.

The actual interest rate is adjusted gradually towards the target interest rate given by (1),

i.e.

it = (1 − ρt)i
∗
t + ρtit−1 + ǫt, 0 < ρt < 1, (2)

where ǫt is a random disturbance term which captures the non-systematic component of mon-

etary policy and the approximation error of the Taylor rule relative to the actually observed

interest rate.

Assuming the time-varying Taylor rule coefficients to follow random walks and imposing the

restriction 0 < ρt < 1 leads to the following time-varying policy rule

it = (1 − ρt)a0,t + aπ,tEtπt+j + az,tEtzt+k) + ρtit−1 + ǫt

= β0,t + βπ,tEtπt+j + βz,tEtzt+k + ρtit−1 + ǫt (3)

ρt =
1

1 + exp(−βρ,t)
(4)

βt+1 = βt + wt+1, wt ∼ i.i.dN(0, Σw), (5)

with β0,t = (1 − ρt)a0,t, βπ,t = (1 − ρt)aπ,t, βz,t = (1 − ρ)az,t,

βt = [β0,t βπ,t βz,t βρt
]′, wt = [w0,t wπ,t wz,t wρt

]′ and Σw as a diagonal matrix.

Various assumptions about j and k have been used in the literature. Here, I assume j = k = 2.

Due to the high degree of autocorrelation of the forecasts the choice of the forecast horizon has

only modest effects on the results (e.g. Boivin 2006). Several studies have documented drastic

changes in the variance of the interest-rate shock ǫ (e.g. Stock and Watson 2002, Cogley and

Sargent 2003). Ignoring these changes may lead to incorrect estimates of the time-varying
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parameters in the Taylor rule. To account for time variation in the variance of the interest

rate shock, the variance of the disturbance term ǫt is approximated by a GARCH(1,1) process

ǫt|Ψt−1 ∼ N(0, σ2
ǫ,t) (6)

σ2
ǫ,t = κ0 + κ1ǫ

2
t−1 + κ2σ

2
ǫ,t−1, (7)

where Ψt−1 is the period t − 1 information set.

2.2 Output gap and inflation forecasts

The output gap which enters the Taylor rule (3) is an unobservable variable and can only

be inferred indirectly from observed output dynamics. Various empirical decompositions of

actual output into a long-run trend component (potential output) and a short-run cyclical

component (output gap) have been proposed in the literature. These include the Hodrick-

Prescott filter, linear or quadratic detrending as well as decompositions suggested by Watson

(1986) and Clark (1989).

The output gap is also likely to be linked to the inflation rate by a Phillips curve-type rela-

tionship. To exploit both sources of information on the output gap, it is preferable to jointly

model the dynamics of inflation and of the output gap as suggested in Kuttner (1994): The

output equation is based on Watson (1986) and decomposes the log of real GDP (y) into a

random walk and a stationary AR(2) component

yt = nt + zt (8)

zt = φ1zt−1 + φ2zt−2 + ez
t (9)

nt = µy + nt−1 + en
t . (10)

n is the trend component and follows a random walk with drift µy while z is the (log) deviation

of real GDP from potential output, i.e. the output gap.

Inflation dynamics are modelled as an ARIMA process in which the change in the rate of

inflation depends on the lagged output gap. (Preliminary unit-root tests strongly reject the

hypothesis of a stationary inflation rate and suggest a model in first differences.)

5



α(L)∆πt = µπ + γ(L)zt−1 + δ(L)νt, (11)

where α(L), γ(L), and δ(L) are polynomials in the lag operator of order p, r, and q. µπ is a

constant and ν is a normally i.i.d error term.

The model (8 - 11) can be written in state-space form leading to the observation equation

(see Appendix A)

Yt = µ + Hx̃t + A(L)Yt−1 + et, (12)

and the transition equation for the state variables

x̃t+1 = Fx̃t + ζt+1. (13)

From this model I generated inflation and output gap forecasts to estimate the Taylor rule.

Since output and inflation cannot be observed within the current period the forecasts are

based on information up to period t − 1. Hence, the predicted output gap for period t + 2 is

zt+2|t−1 = 1′zFFF · x̃t|t−1, (14)

where 1z is a unit vector for the first element of x̃. A forecast of inflation in t + 2 based on

data up to t − 1 is

πt+2|t−1 = πt−1 + 1′π

[

3µ + H(I + F + FF )x̃t|t−1 +
2

∑

i=0

A(L)Yt+i−1|t−1

]

. (15)

These forecasts enter the Taylor rule equation (3) by replacing Etπt+2 and Etzt+2 with πt+2|t−1

and zz+2|t−1.

Kim and Nelson (2006) used actual values of inflation and the output gap derived from

the Congressional Budget Office estimates of potential output to estimate the time-varying

Taylor rule. While this allows them to estimate the time-varying coefficients, constructing the

interest rate forecasts needed to compute the measures for interest rate uncertainty requires a

forecasting model for the economic fundamentals in the Taylor rule. It is feasible to estimate

the time-varying Taylor rule coefficients as in Kim and Nelson (2006) in combination with

some other forecasting model for the output gap and the inflation rate. However, from the
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point of view of financial market participants who try to predict future monetary policy based

on forecasts about the future state of the economy it is more consistent to use the same forecast

both for estimating the Taylor rule parameters and in deriving the interest rate uncertainty

estimates. A possible drawback of this approach is that measurement errors in the forecasts

relative to the forecasts actually used by the Fed might lead to biased estimates of the Taylor-

rule coefficients. However, I corrected my estimates for this by using the Heckman-type (1976)

procedure suggested in Kim and Nelson (2006, 1951-1954). (A similar two-step approach to

estimate an interest rate rule, however without a bias correction, is used in Cogley and Sargent

(2003) who construct forecasts from a vector autoregression.)

3. ESTIMATION AND RESULTS

The parameters in (12) and (13) were estimated by maximum likelihood using the Kalman

filter. The data consists of quarterly observations on real GDP and the GDP deflator in the

U.S. from 1960Q1 to 2006Q4 obtained from FRED II. The inflation rate is defined as 100

times the first log difference of the GDP deflator.

The inflation equation (11) was specified as an ARIMA(|4|,1,3)-model with two lags of the

output gap and with µπ restricted to zero. (To check the robustness of the results I repeated

the complete analysis for different ARIMA-models with very similar results.)

Table 1 shows the coefficient estimates for the output gap/inflation model. Tables 2 and 3

present the results of a number of diagnostic tests. There is no evidence of missing inflation

and output terms and autocorrelation in the residuals. (I also estimated a specification which

allows for a direct effect of output growth on the change in the inflation rate. In contrast to

Kuttner (1994), the relevant coefficient always turned out to be insignificant.)

« insert Table 1»

« insert Table 2»

« insert Table 3»

Using the estimates from the output gap/inflation model to estimate the reaction function

parameters requires the forecasts of inflation and the output gap to be uncorrelated with the

error term ǫt. This assumption is violated if the forecasts used to estimate the Taylor rule

differ from the forecasts actually used by the Fed. To arrive at bias corrected estimates of the
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Taylor rule coefficients I applied the Heckman-type two-step estimation procedure presented in

Kim and Nelson (2006). As instruments I used four lags of the following variables: the output

gap as measured by the Congressional Budget Office, the inflation rate, oil price inflation, and

the growth rate of M2. (The oil price variable is the spot price of West Texas Intermediate.

All variables were obtained from FRED II except for the output gap.)

Figure 1 displays the estimated output gap along with bounds of 1.96 standard deviations.

The output gap is the one-sided estimate from the Kalman-Filter algorithm and only based on

observations up to period t. The error bounds are constructed using the Monte Carlo approach

from Hamilton (1994) and reflect both the Kalman filter uncertainty and the uncertainty about

the model parameter estimates.

« insert Figure 1 »

The two-period inflation forecast πt+2|t−1 is shown in Figure 2 together with the actual infla-

tion rate.

« insert Figure 2 »

From the time series for zt+2|t−1, the inflation forecasts πt+2|t−1 and observations on the

Federal Funds Rate I estimated the parameters of the time-varying Taylor rule. Since the

Federal Funds Rate cannot be used as the principal indicator for the Fed’s monetary policy

before 1966 the estimation starts in 1966Q1 (e.g. Lansing 2002). (The log-likelihood function

was evaluated over the period 1970Q1 to 2006Q4. The first 20 observations from 1966Q1

on were used to obtain initial values for the time-varying parameters.) Table 4 presents the

estimated parameters of the time-varying Taylor rule. The bias correction coefficients ϑ1 and

ϑ2 are relatively small indicating that there is no substantial bias caused by the generated

regressors.

« insert Table 4»

4. INTEREST-RATE UNCERTAINTY

4.1 The one-period case

Uncertainty about the Federal Funds Rate in the next quarter can be defined as
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Et

[

(it+1 − ît+1|t)
2|Ωt

]

. (16)

Define bt = (β0,t βπ,t βz,t ρt)
′ and xt = (1 πt+2|t−1 zt+2|t−1 it−1), then

ît+1|t = Et [it+1|Ωt] = Et

[

x′
t+1bt+1|Ωt

]

. (17)

Ωt represents the information available to market participants immediately after the interest

rate is set at time t. The information set contains the estimated coefficients in Tables 1 and

4, all past values of y and π but not their current values yt and πt which cannot be observed

contemporaneously. It also contains past and current values of i and the current values of the

central bank’s estimates of the output gap zt|t−1 and of the inflation rate πt|t−1.

Since b and x are uncorrelated the one-step-ahead forecast of the Federal Funds Rate is,

ît+1|t = Et

[

x′
t+1|Ωt

]

Et [bt+1|Ωt] = x̂′
t+1|tbt+1|t. (18)

Note that since xt = (1 πt+2|t−1 zt+2|t−1 it−1), the forecast of xt+1 based on Ωt, is x̂t+1|t =

(1 πt+3|t−1 zt+3|t−1 it). However, the forecast of bt+1 based on Ωt is bt+1|t, as it is part

of the information set. The forecast (18) is shown in Figure 3

« insert Figure 3»

Combining (16), (17) and (18) leads to (see Appendix B)

Et

[

(it+1 − ît+1|t)
2|Ωt

]

= Et

[

(x′
t+1bt+1 − x̂′

t+1|tbt+1|t)
2|Ωt

]

= x̂′
t+1|tPb,t+1|tx̂

′
t+1|t + b′t+1|tPx,t+1|tbt+1|t + σ2

ǫ . (19)

Pb,t+1|t = Et

[

(bt+1 − bt+1|t)(bt+1 − bt+1|t)
′
]

is obtained from the Kalman filter as the forecast

variance of the unobserved coefficients in t+1 based on period-t information. The first term in

(19) is the component of the overall interest rate forecast uncertainty due to possible changes

in the way the Fed responds to the fundamental variables in its reaction function.

Px,t+1|t = Et

[

(xt+1 − xt+1|t)(xt+1 − xt+1|t)
′|Ωt

]

represents the uncertainty about the forecast

of the economic variables the interest rate responds to. A detailed derivation of this expression
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can be found in Appendix B. The last term in equation (19) is uncertainty due to the Taylor

rule residual ǫ.

The results from (19) are presented in Figure 4 which shows the three elements of interest

rate uncertainty.

« insert Figure 4 »

The Figure shows some pronounced peaks in uncertainty about the future coefficients in the

Fed’s reaction function in the mid 1970s, the early, the mid and late 1980s. Except for

some small increases in the mid 1990s and in 2001 uncertainty about the Fed’s reactions

in the next quarter was much lower since 1990 compared to the 1970s and 80s. Relative

to uncertainty about the reaction coefficients uncertainty about future inflation and output

gap is very moderate through all of the sample period. It rises above uncertainty about the

reaction coefficients only in the late 1990s. Uncertainty caused by the approximation error

in the Taylor rule (residual uncertainty) contributed strongly to Federal Funds Rate forecast

uncertainty in the mid 1970s, early 1980s and in 2004 but was very modest over the rest of

the time period. Extreme values for this residual uncertainty are a result of the deteriorating

fit of the Taylor rule in these episodes which also leads to the strong increases in uncertainty

about the policy rule coefficients.

While these empirical results do not provide any indication of a systematic decrease in forecast

uncertainty about the output gap and the inflation rate after 1985 uncertainty about the Fed’s

reaction function coefficients is markedly lower than before. Similar results about increased

predictability of the Fed’s monetary policy have also been documented in other studies (e.g.

Sellon 2008) and have been cited as one possible explanation for the recent decline in economic

volatility (e.g. Stock and Watson 2002, Gordon 2005).

4.2 The two-period case

Forecast uncertainty about the short-term interest rate that will be set two periods in the

future is

Et

[

(it+2 − ît+2|t)
2|Ωt

]

, (20)
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where

ît+2|t = Et [(it+2|Ωt] = Et

[

x′
t+2bt+2|Ωt

]

(21)

= Et

[

x′
t+2|Ωt

]

Et [bt+2|Ωt] = x̂′
t+2|tbt+2|t,

Expanding (21) yields

Et

[

(it+2 − ît+2|t)
2|Ωt

]

= Et

[

(x′
t+2bt+2 − x̂′

t+2|tbt+2|t)
2|Ωt

]

= x̂′
t+2|tPb,t+2|tx̂

′
t+2|t + b′t+2|tPx,t+2|tb

′
t+2|t + σ2

ǫ . (22)

Pb,t+2|t = Et

[

(bt+2 − bt+2|t)(bt+2 − bt+2|t)
′|Ωt

]

can be computed as Pb,t+2|t = Pb,t+1|t + Σw.

(For the derivation of Px,t+2|t refer to Appendix B.)

Figure 5 shows the various elements of the two-period forecast uncertainty about the Federal

Funds Rate. The time series of uncertainty about the reaction function coefficients is very

similar to the one shown in Figure 4. Uncertainty about the output gap and inflation in the

future is markedly higher than for the one-period forecasts. It peaks in the mid 1970s, the

early 1980s, the early 1990s and again in the late 1990s. In 2005 and 2006 it rises again.

Throughout the 1990s this uncertainty about the future state of the economy is much higher

than uncertainty about the reaction function coefficients. Uncertainty about the approxima-

tion error is always small compared to the two other sources of uncertainty. The low impact

of the approximation error is caused by the low estimate of κ2 which implies a quick reduction

of the conditional variance in the GARCH process.

« insert Figure 5 »

5. SUMMARY AND CONCLUSIONS

Using a simple model based on a Taylor rule I estimated the forecast uncertainty about the

future Federal Funds Rate and separated it into uncertainty about the state of the economy

in the future, uncertainty about how the Fed will react to future economic conditions, and

uncertainty about the quality of the Taylor rule as an approximation of the Fed’s monetary

policy.

The results showed considerable variation in uncertainty about the Federal Funds Rate in the

next quarter with marked peaks in the mid 1970s and the early, mid and late 1980s. In some
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of these episodes the quality of the approximation of actually observed monetary policy by

the Taylor rule deteriorated strongly. For a forecast horizon of one quarter uncertainty about

the coefficients in the Fed’s reaction function dominated uncertainty about the future state

of the economy. For a longer forecast horizon however, uncertainty about future economic

fundamentals was higher than uncertainty about reaction coefficients throughout the 1990s.

APPENDIX A: THE STATE-SPACE MODEL OF OUTPUT GAP AND INFLATION

The observation equation (9) is

Yt = µ + Hx̃t + A(L)Yt−1 + et, (A1)

with

Yt =

⎡

⎣

∆yt

∆πt

⎤

⎦ , µ =

⎡

⎣

µy

µπ

⎤

⎦ , et =

⎡

⎣

en
t

0

⎤

⎦

A4 =

⎡

⎣

0 0

0 α4

⎤

⎦

H =

⎡

⎣

1 −1 0 0 0 0 0

0 γ1 γ2 1 δ1 δ2 δ3

⎤

⎦

Eete
′
t = ΣY =

⎡

⎣

σ2
e,n 0

0 0

⎤

⎦ ,

where the matrices A1 to A3 of the autoregressive coefficients have been set equal to zero as in

the preferred model specification in the paper. The transition equation for the state variables

can be written as

x̃t+1 = Fx̃t + ζt+1, (A2)

with

x̃t =
[

zt zt−1 zt−2 νt νt−1 νt−2 νt−3

]′
,

ζt =
[

ez
t 0 0 eν

t 0 0 0
]′

,
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F =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

φ1 φ2 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Eζtζ
′
t = Σζ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

σ2
e,z 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 σ2
e,ν 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The shocks eν , en and ez are assumed to be serially and mutually uncorrelated.

APPENDIX B: UNCERTAINTY MEAUSURES

B.1 Uncertainty in the one-period case

Derivation of (19):

Et

[

(it+1 − ît+1|t)
2|Ωt

]

= Et

[

(x′
t+1bt+1 − x̂′

t+1|tbt+1|t)
2|Ωt

]

= Et

[

b′t+1xt+1x
′
t+1bt+1|Ωt

]

− b′t+1|tx̂t+1|tx̂
′
t+1|tbt+1|t

+σ2
ǫ,t+1|t (B1)

I use a Taylor-Approximation to write

E
[

b′t+1xt+1x
′
t+1bt+1|Ωt

]

≈ b′t+1|tx̂t+1|tx̂
′
t+1|tbt+1|t (B2)

+x̂′
t+1|tE

[

(bt+1 − bt+1|t)(bt+1 − bt+1|t)
′|Ωt

]

x̂t+1|t

+b′t+1|tE
[

(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|Ωt

]

bt+1|t.
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Substituting this expression into (B1) yields (19)

Et

[

(it+1 − ît+1|t)
2|Ωt

]

= x̂′
t+1|tEt

[

(bt+1 − bt+1|t)(bt+1 − bt+1|t)
′|Ωt

]

x̂t+1|t

+b′t+1|tEt

[

(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|Ωt

]

bt+1|t

+σ2
ǫ,t+1|t

= x̂′
t+1|tPb,t+1|tx̂

′
t+1|t + b′t+1|tPx,t+1|tbt+1|t + σ2

ǫ,t+1|t, (B3)

with Pb,t+1|t = Et

[

(bt+1 − bt+1|t)(bt+1 − bt+1|t)
′
]

and

Px,t+1|t = Et

[

(xt+1 − xt+1|t)(xt+1 − xt+1|t)
′|Ωt

]

.

Since xt+1 = (1 πt+3|t zt+3|t it) and x̂t+1 = (1 πt+3|t−1 zt+3|t−1 it) I can write

Px,t+1|t = Et

[

(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
′|Ωt

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 pπ,π,t+1 pπ,z,t+1 0

0 pπ,z,t+1 pz,z,t+1 0

0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B4)

where pπ,π,t+1 = E
[

(πt+3|t − πt+3|t−1)
2|Ωt

]

, pz,z,t+1 = E
[

(zt+3|t − zt+3|t−1)
2|Ωt

]

,

and pπ,z,t+1 = E
[

(πt+3|t − πt+3|t−1)(zt+3|t − zt+3|t−1)|Ωt

]

.

The individual elements can be derived as follows: The inflation forecast the central bank will

react to in the next period is πt+3|t = πt−1 + ∆πt +
∑

3

i=1
∆πt+i|t while the forecast of this

variable based on information dated t − 1 is πt+3|t−1 = πt−1 +
∑

3

i=0
∆πt+i|t−1. Hence, using

(A1) the forecast error is

πt+3|t − πt+3|t−1 = = (∆πt − ∆πt|t−1) +

3
∑

i=1

(∆πt+i|t − ∆πt+i|t−1)

= 1
′
2

[

(Yt − Yt|t−1) +
3

∑

i=1

(Yt+i|t − Yt+i|t−1)
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et +
3

∑

i=1

H(x̃t+i|t − x̃t+i|t−1)
]

(B5)

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(F + FF + FFF )(x̃t|t − x̃t|t−1)
]

,

with 12 = (0 1)′.
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At the time the policy rate in period t is announced, uncertainty about πt+3|t, the estimate

of inflation the central bank will react to in the next period stems from two sources: First,

(∆πt − ∆πt|t−1) is the error made in estimating the change in the inflation rate from the

previous to the current period. Second,
∑

3

i=1
(∆πt+i|t − ∆πt+i|t−1) is the difference between

the changes in inflation from period t + 1 to t + 3 forecast by the central bank at the time it

has to set it+1 – and thus formed with knowledge of πt – and the forecast of the changes in

inflation made by the public in t − 1 without knowing πt.

Use of the Kalman-filter updating equations results in

πt+3|t − πt+3|t−1 = 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(F + FF + FFF )Kt|t−1(H(x̃t − x̃t|t−1)

+et)
]

= 1
′
2

[

H(I + (F + FF + FFF )Kt|t−1H)(x̃t − x̃t|t−1) (B6)

+(I + H(F + FF + FFF )Kt|t−1)et

]

,

with Kt|t−1 = Px̃,t|t−1H
′
[

HPx̃,t|t−1H
′ + ΣY

]−1
. This can be written as

πt+3|t − πt+3|t−1 = 1
′
2

[

D1,x̃(x̃t − x̃t|t−1) + D1,et
et

]

. (B7)

Using this expression the result for pπ,π,t+1 is

pπ,π,t+1 = E
[

(πt+3|t − πt+3|t−1)
2|Ωt

]

= 1
′
2

[

D1,x̃Px̃,t|t−1D
′
1,x̃ + D1,et

ΣY D′
1,et

]

12. (B8)

zt+3|t is the (1,1) element of x̃t+3|t = FFFx̃t|t, while zt+3|t−1 is the (1,1) element of x̃t+3|t−1 =

FFFx̃t|t−1. Hence,

zt+3|t − zt+3|t−1 = 1
′
1FFF (x̃t|t − x̃t|t−1)

= 1
′
1FFFKt|t−1(H(x̃t − x̃t|t−1) + et), (B9)

where the last step makes use of the Kalman filter updating equation for x̃.

15



Defining

zt+3|t − zt+3|t−1 = 1
′
1

[

B1,x̃(x̃t − x̃t|t−1) + B1,et
et

]

, (B10)

with the respective coefficients shown in (B9) leads to

pz,z,t+1 = E
[

(zt+3|t − zt+3|t−1)
2|Ωt

]

= 1
′
1E

[

(x̃t+1|t − x̃t+1|t−1)(x̃t+1|t − x̃t+1|t−1)
′|Ωt

]

11

= 1
′
1

[

B1,x̃Px̃,t|t−1B
′
1,x̃ + B1,et

ΣY B′
1,et

]

11, (B11)

with 11 = (1 0 0 0 0 0 0)′. Uncertainty about the central bank’s forecast for the

output gap is due to the fact that when policy is set next period additional information in

form of observations of πt and yt will be available.

Finally, combining (B7) with (B10) yields

pπ,z,t+1 = E
[

(πt+3|t − πt+3|t−1)(zt+3|t − zt+3|t−1)|Ωt

]

= 1
′
2

[

D1,x̃Px̃,t|t−1B
′
1,x̃ + D1,et

ΣY B′
1,et

]

11. (B12)

All these expressions can be evaluated using the parameter estimates from section 3 and the

results from the Kalman filter algorithm applied to model from Appendix A.

B.2 Uncertainty in the two-period case

(22) in the paper is derived analogous to (19). To evaluate (22) the following expression is

required

Px,t+2|t = Et

[

(xt+2 − x̂t+2|t)(xt+2 − x̂t+2|t)
′|Ωt

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 pπ,π,t+2 pπ,z,t+2 pπ,i,t+2

0 pπ,z,t+2 pz,z,t+2 pi,z,t+2

0 pπ,i,t+2 pi,z,t+2 pi,i,t+2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (B13)
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where

pπ,π,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)
2|Ωt

]

,

pz,z,t+2 = E
[

(zt+4|t+1 − zt+4|t)
2|Ωt

]

,

pπ,z,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)(zt+4|t+1 − zt+4|t)|Ωt

]

,

pi,i,t+2 = E

[

(it+1 − ît+1|t)
2|Ωt

]

,

pπ,i,t+2 = E

[

(πt+4|t+1 − πt+4|t−1)(it+1 − ît+1|t)|Ωt

]

,

pi,z,t+2 = E

[

(it+1 − ît+1|t)(zt+4|t+1 − zt+4|t)|Ωt

]

.

The inflation forecast the central bank will react to two periods in the future is

πt+4|t+1 = πt−1 + ∆πt + ∆πt+1 +
∑

4

i=2
∆πt+i|t+1,

while πt+4|t−1 = πt−1 + ∆πt|t−1 + ∆πt+1|t−1 +
∑

4

i=2
∆πt+i|t−1. Thus,

πt+4|t+1 − πt+4|t−1 = (∆πt − ∆πt|t−1) + (∆πt+1 − ∆πt+1|t−1)

+
4

∑

i=2

(∆πt+i|t+1 − ∆πt+i|t−1)

= 1
′
2

[

(Yt − Yt|t−1) + (Yt+1 − Yt+1|t−1) +
4

∑

i=2

(Yt+2|t+1 − Yt+2|t−1)
]

= 1
′
2

[

H(x̃t − x̃t|t−1) + et + H(x̃t+1 − x̃t+1|t−1) + et+1

+

4
∑

i=2

H(x̃t+i|t+1 − x̃t+i|t−1) + A4(Yt − Yt|t−1)
]

= 1
′
2

[

(A4 + I)H(x̃t − x̃t|t−1) + (A4 + I)et + H(x̃t+1 − x̃t+1|t−1)

+et+1 + H(F + FF + FFF )(x̃t+1|t+1 − x̃t+1|t−1)
]

= 1
′
2

[

(A4 + I)H(x̃t − x̃t|t−1) + (A4 + I)et + H(x̃t+1 − x̃t+1|t−1) + et+1

+H(F + FF + FFF )(x̃t+1|t+1 − x̃t+1|t + F (x̃t|t − x̃t|t−1))
]

, (B14)

with 12 = (0 1)′ and using the fact that (Yt − Yt|t−1) = H(x̃t − x̃t|t−1) + et Using (12) and

(13) and the updating equations from the Kalman-filter algorithm leads to

πt+4|t+1 − πt+4|t−1 = 1
′
2

[

(A4 + I)H(x̃t − x̃t|t−1) + (A4 + I)et + H(F (x̃t − x̃t|t−1) + ζt+1)

+et+1

+H(F + FF + FFF )[Kt+1|t(H(x̃t+1 − x̃t+1|t) + et+1)

+FKt|t−1(H(x̃t − x̃t|t−1) + et))]
]
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πt+4|t+1 − πt+4|t−1 = 1
′
2

[

(

A4H + H(I + F + (F + FF + FFF )[Kt+1|t(HF (I − Kt|t−1H))

+FKt|t−1H])
)

(x̃t − x̃t|t−1)

+(A4 + I + H(F + FF + FFF )(FKt|t−1 − Kt+1|tHFKt|t−1))et

+(I + H(F + FF + FFF )Kt+1|t)et+1 (B15)

+H(I + (F + FF + FFF )Kt+1|tH)ζt+1

]

,

Define

πt+4|t+1 − πt+4|t−1 = 1
′
2

[

D2,x̃(x̃t − x̃t|t−1) + D2,et
et + D2,et+1

et+1 (B16)

+D2,ζζt+1

]

,

where the respective coefficients are shown in (B15). This leads to

pπ,π,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)
2|Ωt

]

(B17)

= 1
′
2

[

D2,x̃Px̃,t|t−1D
′
2,x̃ + D2,et

ΣY D′
2,et

+ D2,et+1
ΣY D′

2,et+1
+ D2,ζΣζD

′
2,ζ

]

12.

zt+4|t+1 is the (1,1) element of x̃t+4|t+1 = FFFx̃t+1|t+1, while zt+4|t−1 is the (1,1) element of

x̃t+4|t−1 = FFFx̃t+1|t−1. Hence,

zt+4|t+1 − zt+4|t−1 = 1
′
1FFF (x̃t+1|t+1 − x̃t+1|t−1)

= 1
′
1FFF (x̃t+1|t+1 − x̃t+1|t + x̃t+1|t − x̃t+1|t−1)

= 1
′
1

[

FFF [Kt+1|tHF (I − Kt|t−1H) + FKt|t−1H](x̃t − x̃t|t−1)

+FFF [FKt|t−1 − Kt+1|tHFKt|t−1]et

+FFFKt+1|tet+1 + FFFKt+1|tHζz+1

]

, (B18)

Define

zt+4|t+1 − zt+4|t−1 = 1
′
1

[

B2,x̃(x̃t − x̃t|t−1) + B2,et
et + B2,et+1

et+1 (B19)

+B2,ζζt+1

]

,
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with the respective coefficients shown in (B18). Hence

pz,z,t+2 = E
[

(zt+4|t+1 − zt+4|t−1)
2|Ωt

]

(B20)

= 1
′
1E

[

B2,x̃Px̃,t|t−1B
′
2,x̃ + B2,et

ΣY B′
2,et

+ B2,et+1
ΣY B′

2,et+1
+ B2,ζΣζB

′
2,ζ

]

11.

From (B16) and (B19) it follows that

pπ,z,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)(zt+4|t+1 − zt+4|t−1)|Ωt

]

(B21)

= 1
′
2

[

D2,x̃Px̃,t|t−1B
′
2,x̃ + D2,et

ΣY B′
2,et

+ D2,et+1
ΣY B′

2,et+1
+ D2,ζΣζB

′
2,ζ

]

11.

Next are the correlations of the forecast errors for the output gap and inflation with the

forecast error for the interest rate. The latter one is

it+1 − ît+1|t = x′
t+1bt+1 − x̂′

t+1|tbt+1|t + ǫt+1

= x′
t+1(bt + vt+1) − x̂′

t+1|tbt|t + ǫt+1

= (xt+1 − x̂t+1|t)
′bt|t + x′

t+1(bt + vt+1 − bt|t) + ǫt+1, (B22)

with vt being the vector of innovations to the Taylor rule coefficients. The first three elements

of v are the first three innovations in wt in (5) with the fourth being the innovation to ρt.

Since x′
t+1 = (1 πt+3|t zt+3|t it) and x̂′

t+3|t = (1 πt+3|t−1 zt+3|t−1 it) the above ex-

pression can be expanded to

it+1 − ît+1|t = (πt+3|t − πt+3|t−1)βπ,t|t + (zt+3|t − zt+3|t−1)βz,t|t

+(β0,t − β0,t|t) + πt+3|t(βπ,t − βπ,t|t)

+zt+3|t(βz,t − βz,t|t) + it(ρt − ρt|t)

+x′
t+1vt+1 + ǫt+1. (B23)

The inflation forecast made in period t + 1 is
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πt+3|t = πt−1 + ∆πt +
3

∑

i=1

∆πt+i|t

= πt−1 + 1
′
2

[

4µ + H(I − Kt|t−1H + (I + F + FF + FFF )Kt|t−1H)

(x̃t − x̃t|t−1) + (I − HKt|t−1 + H(I + F + FF + FFF )Kt|t−1)et

+H(I + F + FF + FFF )x̃t|t−1 + A4

3
∑

i=0

Yt+i−4

]

, (B24)

and (πt+3|t − πt+3|t−1) is shown in (B7).

zt+3|t = 1
′
1x̃t+3|t

= 1
′
1FFFx̃t|t

= 1
′
1FFF (x̃t|t−1 + Kt|t−1(H(x̃t − x̃t|t−1) + et))

= 1
′
1

[

FFFKt|t−1H(x̃t − x̃t|t−1) + FFFKt|t−1et + FFFx̃t|t−1

]

, (B25)

and (zt+3|t − zt+3|t−1) is shown in (B9).

Hence, using (B7), (B10), and (B23)-(B25)

pπ,i,t+2 = E
[

(πt+4|t+1 − πt+4|t−1)(it+1 − it+1|t)|Ωt

]

= 1
′
2

[

D2,x̃Px̃,t|t−1D
′
1,x̃βπt|t

+ D2,et
ΣY D′

1,et
βπt|t

]

12, (B26)

+1
′
2

[

D2,x̃Px̃,t|t−1B
′
1,x̃βzt|t

+ D2,et
ΣY B′

1,et
βzt|t

]

11.

and

pi,z,t+2 = E
[

(zt+4|t+1 − zt+4|t−1)(it+1 − it+1|t)|Ωt

]

= 1
′
1

[

B2,x̃Px̃,t|t−1D
′
1,x̃βπt|t

+ B2,et
ΣY D′

1,et
βπt|t

]

12, (B27)

+1
′
1

[

B2,x̃Px̃,t|t−1B
′
1,x̃βzt|t

+ B2,et
ΣY B′

1,et
βzt|t

]

11.

Finally, pi,i = E

[

(it+1|t − ît+1|t−1)
2|Ωt

]

is known from the one-step-ahead forecast uncer-

tainty.
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Table 1: Parameter estimates for the output gap - inflation model

output equation inflation equation gap equation

µy 0.82 (0.05) γ1 0.36 (0.12) φ1 1.55 (0.09)
γ2 -0.31 (0.11) φ2 -0.60 (0.07)
δ1 -0.93 (0.11)
δ2 0.29 (0.07)
δ3 -0.03 (0.01)
α4 0.20 (0.07)

σe,n 0.63 (0.06) σe,ν 0.82 (0.08) σe,z 0.43 (0.08)
SE 0.49 SE 0.63

NOTE: Standard errors in parentheses. Estimation from 168 quarterly ob-

servations from 1960:1 to 2006:4. Log-likelihood value: -322.23.

Table 2: Diagnostic tests for output equation

residual auto- missing ∆π-terms
correlation (order)

1 2 3 4 ∆πt−1 ∆πt−2

1.99 1.71 1.30 0.73 0.44 1.53
(0.37) (0.30) (0.43) (0.33) (0.51) (0.22)

NOTE: The LM-statistics are distributed as χ2 with

degrees of freedom equal to the number of restrictions.

p-values in parentheses.

Table 3: Diagnostic tests for inflation equation

residual auto- missing ∆y

correlation (order) and ∆π-terms

1 2 3 4 ∆yt−1 ∆yt−2 ∆πt−1 ∆πt−2

0.60 0.60 0.39 1.68 0.19 0.20 0.37 0.48
(0.74) (0.74) (0.82) (0.43) (0.67) (0.91) (0.54) (0.79)

NOTE: The LM-statistics are distributed as χ2 with degrees of freedom

equal to the number of restrictions. p-values in parentheses.
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Table 4: Parameter estimates for monetary policy reaction function

A. innovations

σw,0 σw,π σw,z σw,i

0.11 0.16 0.33 0.04
(0.15) (0.06) (0.17) (0.03)

B. GARCH parameters

κ0 κ1 κ2

0.01 1.06 0.13
(0.01) (0.20) (0.11)

C. correction parameters

ϑ1 ϑ2

-0.03 -0.01
(0.03) (0.01)

NOTE: Standard errors in parenthe-

ses. Standard error of estimate is

1.02. Estimation on quarterly ob-

servations from 1970Q1 to 2006Q4.

Log-likelihood: -136.27
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Figure 1: Estimated output gap with 1.96 standard deviation bands.
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Figure 2: Inflation forecast and forecast errors. Solid: inflation rate. Dashed: inflation
forecast t + 2|t − 1. Dotted: forecast error.
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Figure 3: Federal Funds Rate (FFR) forecasts and forecast errors. Solid: Federal Funds Rate.
Dashed: Federal Funds Rate forecast t + 2|t − 1. Dotted: forecast error.
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Figure 4: Uncertainty about one-quarter ahead Federal Funds Rate. Solid: uncertainty about
future central bank reaction coefficients. Dashed: uncertainty about future fundamentals.
Dotted: uncertainty about approximation error.
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Figure 5: Uncertainty about two-quarter ahead Federal Funds Rate. Solid: uncertainty about
future central bank reaction coefficients. Dashed: uncertainty about future fundamentals.
Dotted: uncertainty about approximation error.
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