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ABSTRACT. This paper analyses the evolution of city size distribution in the United 

States throughout the twentieth century. It tests the validity of two empirical regularities 

studied in urban economics: Zipf’s law (the rank-size rule), and Gibrat’s law or the law 

of proportionate growth. The main contribution of this work is the use of a new 

database with information on all the cities (understood as incorporated places), without 

size restrictions. Our results enable us to confirm that Gibrat’s law holds (weakly), and 

that Zipf’s law holds only if the sample is sufficiently restricted at the top, not for a 

larger sample.  
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1. Introduction 

The United States (US) became an urban nation in the second half of the 

nineteenth century and the early twentieth century. During this period, the percentage of 

the population living in cities grew to over 50%, with population growth in the cities 

strongly concentrated in the emerging industrial belt. As various historians show,  (Kim, 

2000, 2006; Kim and Margo, 2004), in the second phase of industrialization, from 1850 

to 1920, factory production rose in scale, became more mechanized, and spread to 

numerous industries and to the north-eastern region known as the manufacturing belt, 

where in turn, the growing urban population was concentrated.  

Industrialization and urbanization were strongly correlated in the US, although 

the direction of causality is disputed (the literature suggests industrialization led 

urbanization, see Kim and Margo, 2004). In any case, urbanization and industrialization 

went hand-in-hand. However, in the second half of the twentieth century, this trend 

seems to be reversed. The largest cities experienced a falling population in relative 

terms (from 1960 to 1990 the proportion of urban population representing the largest 

cities with populations of more than 250,000 decreased; see Kim, 2000), there was a 

substantial transition of employment from the industrial sector to services, and the 

influence of industrial employment in this period is found to be negative. For example, 

Glaeser et al. (1995) find that in the period 1960 to 1990, population growth in cities 

was negatively related to the initial share of employment in manufacturing. Their results 

suggest that cities followed the fortunes of the industries to which they were exposed 

initially. This negative effect had been maintained during the 1990s, as Glaeser and 

Shapiro (2003) observe.   

Some authors provide useful historical examples of how the rise or the decline of 

cities may be joined to their output. Jacobs (1970) provides anecdotal evidence about 

the role played by emerging industries in city growth. Between the late-nineteenth and 

mid-twentieth centuries, Rochester, New York, became the new capital of the US film 

industry and the duplication industry, in place of New York city, and these two 

industries came to represent an important part of Rochester’s employment. Other typical 

examples in the literature are the cases of Dalton, Georgia, which became America’s 

carpet industry capital (Krugman, 1991), and the jewellery industry of Providence, 

Rhode Island.  

More recently, Eeckhout (2004) highlighted the contrast between cities like 

Detroit and Philadelphia, which have seen a significant drop in population, while at the 

same time, experiencing a serious decline in their manufacturing industries; and cities in 

Silicon Valley that have seen higher-than-average population growth rates in the 1990s. 

He argues that in the last decades, Detroit experienced a decline in population as the 

manufacturing industry in the area suffered a severe downturn, while at the other 

extreme, when the high-technology industry was booming, villages, towns, and cities in 

the San Francisco Bay area experienced higher-than-average population growth. 

Another example is Glaeser (2005), who carries out an exhaustive survey of the 

evolution of Boston and finds that, although in 1980 Boston resembled many of the 

industrial hulks dotting the northeast and Midwest and its future outlook seemed similar 

to that of cities like Detroit, from 1980 to 2000, Boston was more like San Jose than 

Detroit. This is because it abandoned manufacturing and specialized in high technology, 

finance, and education-industries that required skilled workers and that did extremely 

well over the 1980-2000 period.  
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Throughout the twentieth century, there have been other economic and social 

events, which have had an undisputable influence on city size distribution. There have 

been waves of immigration (although more controlled than in earlier periods); periods 

of deep economic crisis, such as the Great Depression or the high-oil-prices era of the 

1970s, and periods of prosperity, such as the post-war boom (the golden era of 

American capitalism). Also, the shift of employment from the manufacturing sector to 

services (by the end of the twentieth century, the percentage of employment in services 

reached almost three times that of manufacturing; see Kolko, 1999), and specific 

industry cycles, such as the decline of the Rust Belt and the rise of the Sun Belt, have 

impacted on city size distribution. 

 All these factors have affected city size distribution. As shown by Dobkins and 

Ioannides (2000), new regions and cities have been brought into the US urban system 

during the nineteenth and twentieth centuries, older regions have grown and declined, 

and the spatial distribution of economic activity has undergone some remarkable 

changes. Figure 1 displays two maps, corresponding to the beginning and end of the 

century, showing the distribution of cities (with populations of more than 10,000) and 

the changes that took place during the century. Two facts stand out at first glance: (i) 

there has been a substantial increase in the number of cities (there are more cities), and 

(ii) the population of the cities has increased (there are more large cities). 

Against this background, the aim of this paper is to analyse the evolution of the 

city size distribution of the United States throughout the twentieth century. In particular, 

we are interested in testing the validity of two empirical regularities, well-known in 

urban economics: Zipf’s law, which postulates that the product between rank and size of 

a population is constant, and Gibrat’s law or the law of proportionate growth, according 

to which the growth rate of a variable is independent of its initial size. To achieve this, 

we use parametric and nonparametric methods. The main contribution of this work is 

the use of a new database with information on all the cities (understood as incorporated 

places), thus covering the entire distribution (without size restrictions). To our 

knowledge, we are the first to document the evolution of the size distribution of all US 

cities for over a century. 

These laws have already been studied for the American case with the most 

populous cities or with Metropolitan Statistical Areas (MSAs). The difference from 

earlier studies is that here the entire size distribution is studied, not just the upper tail.  

In related literature, both Krugman (1996) and Gabaix (1999) use data from 

metropolitan areas from the Statistical Abstract of the United States and conclude that 

for 1991 Pareto’s exponent is exactly equal to 1.005. This implies that Zipf’s law holds 

for this specific year. For a dynamic analysis, Ioannides and Overman (2003) use data 

from metropolitan areas from 1900 to 1990 and arrive at the conclusion that Gibrat’s 

law holds in the urban growth processes and that Zipf’s law is also fulfilled 

approximately well for a wide range of city sizes. However, their results suggest that 

local values of Zipf’s exponent can vary considerably with the size of cities. 

Nevertheless, Black and Henderson (2003) arrive at different conclusions for the same 

period (because they use different metropolitan areas). Zipf’s law holds only for cities in 

the upper third of the distribution, while Gibrat’s law would be rejected for any sample 

size. These results highlight the extreme sensitivity of conclusions to the geographical 

unit chosen and to sample size.  

To close the debate, Eeckhout (2004) demonstrates that the estimated parameter 

depends on the truncation point, so when he considers all the cities for the period 1990 
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to 2000, the city size distribution follows a lognormal rather than a Pareto distribution, 

and the value of Zipf’s parameter is not 1, as earlier works concluded, but is slightly 

above 21 , and also, Gibrat’s law holds for the entire sample. The shortcoming of this 

work is that this is a short term analysis, as only two decades are considered. The aim of 

the present study is to generalize this analysis for all of the twentieth century and extract 

long term conclusions. Section 2 presents the database, and sections 3 and 4 concern 

Zipf’s and Gibrat’s laws respectively. In section 5 we discuss the results and section 6 

concludes the paper. 

2. The database 

Any study that deals with issues relating to city size distribution faces the 

problem of what is meant by the term “city”, as there are various ways of defining a 

city. In this study, we identify cities as what the US Census Bureau denominates as 

incorporated places. They include governmental units classified under state laws as 

cities, towns, boroughs, or villages.
1
 Alaska, Hawaii, and Puerto Rico have not been 

considered due to data limitations. Our base, created from the original documents of the 

annual census published by the US Census Bureau, consists of the available data of all 

incorporated places without any size restriction, for each decade of the twentieth 

century. Eeckhout (2004) demonstrates the importance of considering the whole 

sample. If the underlying distribution is the lognormal distribution, then the estimate of 

the parameter of the Pareto distribution is increasing in the truncation city size and 

decreasing in the truncated sample population. 

We also use data from Metropolitan Statistical Areas (MSAs) in order to 

establish comparisons between both geographical units, and between our results and 

those of other studies.
2
 Both units of analysis have advantages. As Glaeser and Shapiro 

(2003) indicate, MSAs are multi-county units that are meant to capture labour markets. 

MSAs are attractive because they are more natural economic units. Incorporated places 

(true cities) are political units that lie within metropolitan areas. Moreover, some 

factors, such as human capital spillovers, are thought to operate at a very local level.  

Two special advantages arise from using data for incorporated places instead of 

MSAs. First, the US metropolitan areas usually comprise a group of counties that 

contain a central city with a population of at least 50,000 inhabitants (although this 

criterion has changed over the course of the twentieth century),
3
 meaning that only the 

largest cities are considered. Figure 2 shows empirical density functions for three 

representative periods (estimated using adaptive kernels) of the MSAs and our sample 

of incorporated places without size restrictions. The population is shown in relative 

terms to the US urban population for the corresponding period.
4
 As Eeckhout (2004) 

shows, the comparison makes it obvious that (i) due to the minimum population 

threshold the MSAs represent only the largest cities, and (ii) that by considering only 

the largest cities, the upper tail distribution, most of the cities in the distribution are 

excluded from the study.      

Second, the sample of incorporated places provides more information about one 

of the basic characteristics of the distribution of American cities. As Dobkins and 

                                                 
1 More details about data sources and definitions are discussed in Appendix. 
2 A third option, intermediate, involves taking the urbanized areas, defined by the US Census Bureau 

(Garmestani et al., 2008). An urbanized area comprises a central place and the urban fringe, which 

includes other places.  
3 MSAs data sources and definitions are also included in Appendix. 
4 US urban population according to US Census Bureau urban definition.  
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Ioannides (2001) point out, the US system is characterized by the entry of new cities. 

While other countries (such as European countries) have an already consolidated urban 

structure and new cities are rarely created (urban growth is produced by population 

increase in existing cities), in the US, urban growth has a double dimension: as well as 

increases in city size, the number of cities also increases, with potentially different 

effects on city size distribution. Figure 1, although showing only cities of more than 

10,000 inhabitants, illustrates this fact clearly by showing a large increase in the number 

of cities in the twentieth century. In fact, the number of incorporated places in the 

sample increased from 10,596 in 1900 to 19,296 in 2000. Table 1 presents the number 

of cities for each decade, the percentage that the incorporated places in the database 

represent of the total population of the US, and the descriptive statistics. A glance at the 

minimum values of each decade enables us to state that absolutely all incorporated 

places, for which data exist, are included, without size restrictions; even the smallest 

units. Although their urban character is debatable, Eeckhout (2004) suggested 

considering the whole distribution. In contrast, other authors impose a minimum 

population threshold. In any case, incorporated places with a population under 2,500 

represent only 17.62% of the population of our sample of incorporated places in 1900, 

and 5.61% in 2000 (8.27% and 3.45% in terms of the total US population in 1900 and 

2000, respectively).  

The sample reflects the urbanization process that took place throughout the 

twentieth century. Thus, the population of cities goes from less than half the total 

population of the US in 1900 (46.99%) to 61.49% in 2000. From the beginning of the 

century to 1930 there was a rapid increase both in the number of cities and in the 

percentage of the total population that they represent. This informs us of an urbanization 

process, which manifests in two ways: on the one hand, already existing cities that are 

capable of attracting new population (the mean value of inhabitants per city grows over 

time, as can be seen in Table 1) and on the other hand, growth in the number of cities. 

After this decade, growth slows and stabilizes at around 64% until the last decades 

(from 1970 to 2000) when it falls to 61.49%.  

As Kim (2000) indicates, data for metropolitan areas provide a different picture 

of US urban development than that painted above, as the percentage of population in the 

MSAs grows constantly during the second half of the twentieth century, from 56.55% in 

1950 to 82.64% in 2000.  

The percentage of the total US population, which our sample of incorporated 

places represents, can appear low when compared to other studies using MSAs. 

However, it is similar to that of other works using cities.
5
 The population excluded from 

the sample is what the US Census Bureau calls population not in place. Incorporated 

places and census designated places (CDPs) do not exhaust the territory of the US. 

There is quite a bit of territory that is not included in any recognized place. For 

example, there were more than 74 million people living in a territory that was not in a 

place in 2000,
6
 26.64% of the total US population in this year. In turn, most of this 

population not in a place is rural population (61.58% in 2000).  

These people living outside incorporated places are excluded from our sample, 

but they are included in some MSAs, as the MSAs are multi-county units and this 

                                                 
5 For example, see Kim (2000) and Kim and Margo (2004), where city is defined as an area having a 

population of greater than 2,500. 
6 Census 2000 data on the population in places and not in places can be found in Table 9 of PHC-3 (US 

Summary, part 1), available online at: http://www.census.gov/prod/cen2000/index.html 
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population is counted as inhabitants of the counties. MSAs cover huge geographic areas 

and include a large population living in rural areas, which are not counted as places. 

This explains why the percentage of total population represented by MSAs is higher 

than our sample of incorporated places. However, despite the sample of incorporated 

places covering a lower percentage of the total US population, the population of 

incorporated places is almost entirely urban, 94.18% in 2000, compared to 88.35% of 

urban population in the MSAs. 

3. Zipf’s law 

The aim of this work is to study the temporal evolution of American city size 

distribution during the twentieth century. For this we will use Pareto’s distribution 

(1896) as a statistical approximation, also known as power law, originally used to study 

income distribution. If we use s  to denote the relative size of the city
7
 and R  for its 

rank, a power law links the relative size of the city and rank as follows: 

     
a

AssR
−=)( ,    (1) 

where A  and a  are parameters. This expression is applied to the study of very varied 

phenomena, such as the distribution of the number of times different words appear in a 

book, the intensity of earthquakes or the flow of rivers. It has been used extensively in 

urban economics to study city size distribution (see, for example, Eeckhout, 2004, and 

Ioannides and Overman, 2003, for the US case). It has also been used recently to study 

country size distribution (Rose, 2006; González-Val and Sanso-Navarro, 2009). 

Zipf’s law is an empirical regularity, which appears when Pareto’s exponent of 

the distribution is equal to the unit ( 1=a ). The term was coined after a work by Zipf 

(1949), which observed that the frequency of the words of any language is clearly 

defined in statistical terms by constant values. Or, applied to our variable, when ordered 

from largest to smallest, the relative size of the second city is half that of the first, the 

relative size of the third is a third of the first, and so on. 

The expression (1) of Pareto’s distribution is usually estimated in its logarithmic 

version:  

     saKR lnln −= ,   (2) 

where K  is a constant. 

It is useful to test whether Pareto’s parameter is more or less than 1 and what is 

the evolution of this coefficient in time. The greater the coefficient, the more 

homogeneous are the relative city sizes. Also, a growing evolution would mean a 

process of convergence in city sizes. And the opposite, the smaller the coefficient the 

less homogeneous are the relative city sizes, and a decreasing evolution would mean a 

process of divergence in city sizes. 

                                                 
7 In a long term temporal perspective of stationary equilibrium, it is necessary to use a relative measure of 

size. The chosen measurement is the relative size, defined as: 
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Equation (2) can be represented as a graph. Figure 3 shows the Zipf plots for 

three periods: 1900, 1950, and 2000. The behaviour of other decades, which is not 

shown, is similar. Results are shown for incorporated places and for MSAs. Data are 

fitted by a power law and its exponent is estimated by using the OLS estimator. 

Moreover, the top 100 data from the incorporated places are also fitted by a power law 

and its exponent is estimated by using the Hill’s estimator (proposed by Gabaix and 

Ioannides, 2004). Also shown is the fit by lognormal distribution for the entire range 

based on the maximum likelihood estimation. 

If Zipf’s law were fulfilled, the points would represent a decreasing straight line 

with a slope equal to minus one. This is the case for the MSAs, for which the power law 

provides a very good fit to the real behaviour of the distribution with an estimated 

Pareto exponent always very close to the unit (the value one is always within the 

estimation by interval). However, a non-linear and clearly concave behaviour is 

observed for the incorporated places. In this case, the lognormal distribution provides 

the better fit for most of the distribution, and the fit improves over time. Although the 

largest cities’ behaviour is similar to that of the MSAs and the rank-size relationship 

remains almost linear, so that a power law is also a good description of the behaviour of 

the upper tail distribution.    

Table 2 shows the results of the OLS estimation
8
 of Pareto’s exponent. The 

residues resulting from this regression usually present problems of heteroskedasticity. 

So, to analyse the significance of the parameters, the corrected standard error proposed 

by Gabaix and Ioannides (2004) is used: ( ) 21
2ˆ s.e. GI Na ⋅= , where N  is the sample 

size. 

The results indicate that when the entire sample is taken, Pareto’s exponent is 

always less than one. Also, the estimates decrease over time when we consider all 

incorporated places, which would indicate that for the entire sample (including all the 

cities for each year) a divergent behaviour was produced. However, if we consider 

different cross-sections of the sample we can observe different behaviours. Thus, for the 

1,000 biggest cities, the exponent grows over time, so that we can state that for the 

biggest cities, the trend has been convergence: they have become closer in relative size. 

For the 5,000 biggest cities, the exponent remains stable, and from there the exponents 

decrease in time for different sample sizes. 

We also need to point out that when we consider only the cities in the upper tail 

distribution the value 1 is always within the estimation by interval, finding evidence in 

favour of the fulfilment of Zipf’s law in the largest cities. Despite the lognormal 

distribution gives a better fit for the entire city size distribution (as we see in Figure 3), 

as noted by Eeckhout (2009), for the largest cities the lognormal tail and the Pareto tail 

are hard to distinguish.     

There are two possible explanations for the decreasing evolution presented by 

the estimated coefficients when we consider all the incorporated places. First, part of the 

decrease is purely statistical. As Eeckhout (2004) showed in theory, if the underlying 

distribution is lognormal the estimated value of Pareto’s exponent depends negatively 

on the cut-off point, so that, as we increase the sample size and include ever smaller 

                                                 
8 Gabaix and Ioannides (2004) show that the Hill (Maximum Likelihood) Estimator is more efficient if 

the underlying stochastic process is really a Pareto distribution. This is not the distribution that the data 

follow, and so we use the OLS estimator. While the OLS estimate also presents some problems, see 

Goldstein et al. (2004) and Nishiyama et al. (2008).   
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cities, the estimated coefficient decreases (but not always; in principle, starting with a 

small sample and going on to a slightly larger one, as for example from 100 cities to 

500, the coefficient can grow). 

Secondly, part of this divergence would be explained by the appearance of new 

cities that enter with very small relative sizes. This second statement implies that (i) 

cities entering the sample present a relative size lower than the other cities in the sample 

(on average), and (ii) that greater inequality in the distribution is produced.  

Figure 4 shows the empirical density functions of the new entrants (normalized 

by the average size of the cohort of the entire distribution) in 1910 (the first period of 

our sample in which new cities appear) and 2000. New entrant cities are those 

incorporated places that appear in the sample after the first period, 1900. We observe 

that the estimated density function for the new cities appears to the left of the function 

for the whole sample, indicating that the new cities enter with smaller relative sizes. 

However, this difference is greater in the first period, 1910, than in 2000. This is 

because most cities entering the sample do so in the first decades of the century, in the 

period 1900 to 1930 (Table 1), so that for 2000, after several decades, their size has 

become closer to that of all cities in the sample.  

We have also run the two-sample Wilcoxon rank-sum test,
9
 rejecting, in both 

periods, the null hypothesis that both samples (new entrants and all cities) are the same. 

The test also enables us to accept the null hypothesis that the relative size of 

incorporated places of the whole sample is greater than that of the new cities
10

 in both 

periods. The fact that the sample corresponding to the whole distribution is located to 

the right and that the difference between both density functions is significant, indicates 

that, on average, cities enter the sample with a lower relative size.  

Regarding the degree of evenness or unevenness of the distribution, Table 3 

presents the Gini coefficients for different sample sizes. The Gini coefficients have the 

advantage of not imposing a specific size distribution (Pareto for rank-size coefficients). 

It is interesting to note that the coefficients group for the largest cities decreases over 

time, indicating a convergent behaviour in these subgroups of the upper tail distribution; 

yet for the whole sample (including the cities entering the sample in each decade) the 

coefficient goes from 0.822 in 1900 to 0.851 in 2000. This indicates that the evolution 

of the whole distribution is divergent: inequality among the relative sizes of the 

incorporated places has increased.  

However, the evolution of the Gini coefficient is not monotonic. There are 

periods in which the distance between the relative sizes of incorporated places increases 

(1900-1930, 1940-1950, 1980-2000), and other periods in which the unevenness of 

distribution is reduced (1930-1940, 1960-1980). While it is beyond the scope of this 

paper to estimate the specific determinants of these changes in size distribution 

(unfortunately we only have data on the population of the cities), we can note some 

possible causes, taking into account the historical context.  

                                                 
9 The two-sample Wilcoxon rank-sum test is a nonparametric test for assessing whether two samples of 

observations come from the same distribution. The null hypothesis is that the two samples are drawn from 

a single population, and therefore that their probability distributions are equal. Wilcoxon’s test has the 

advantage of being appropriate for any sample size. 
10 Wilcoxon rank-sum test results: 

Prob{All cities empirical density function in 1910 > New entrants empirical density function in 1910}= 

0.654 

Prob{All cities empirical density function in 2000 > New entrants empirical density function in 2000}= 

0.559. 
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Table 1 shows how the beginning of the century (1900-1930) is characterized by 

a marked increase in the number of cities (which enter the size distribution with lower 

average relative sizes than the rest of the sample) and in the percentage of the urban 

population which they represent; to this can now be added a rapid increase in 

unevenness in city distribution. This is the period that Kim (2000) calls “the era of 

industrial cities”, in which urban growth went hand-in-hand with industrialization 

(particularly in the manufacturing belt), ending in 1920, a few years before the Great 

Depression (1929-1941). During this decade of economic crisis (1930-1940) both the 

number of cities and the percentage of population they represent remain stable (Table 

1). Additionally, the Gini coefficient indicates that unevenness in the distribution is 

reduced, suggesting that there is some redistribution of the population among the cities. 

Unevenness also decreased from 1960 to 1980, a period in which the percentage of 

population in cities peaked at almost 65%, coinciding with the end of the post-war 

boom and the oil supply shocks of 1973 and 1979. From then, until the last decades of 

the century (1980-2000), unevenness within the size distribution again increased, 

although only slightly.  

It is notable that if we consider the group of largest cities (the upper tail) the 

behaviour is the opposite, as the trend, especially during the second half of the century, 

is clearly convergent; it brought the relative sizes of the largest cities closer together. 

This convergence coincides in time with a loss of importance for the largest cities. As 

Kim (2000) points out, in the second half of the twentieth century, urban development 

in the US was characterized by a decrease in the percentage of the urban population 

represented by the largest cities, as from 1960 to 1990 the percentage of population in 

the cities of 250,000 inhabitants or more decreased from 22% to 17.8%. 

As it has been proven that a power law does not give a good fit for the entire 

sample of incorporated places, the question is, what distribution best fits the data? For 

this, we estimate the empirical distribution of the data using an adaptive kernel. 

Figure 5 shows the results for three representative decades (the difference from 

Figure 2 is that now, the population of incorporated places is represented in relative 

size). It is observed that, starting in 1900, from a very leptokurtic distribution with much 

density concentrated in the mean value of the distribution, the distribution loses kurtosis 

and concentration decreases until it reaches a distribution very similar to lognormal,
11

 

which it maintains until 2000. This evolution can also be seen in the graph on the right 

of Figure 5, which shows the empirical cumulative density functions estimated for 1900 

and for 2000. It can be observed that in the year 2000, probability accumulates much 

more slowly than in 1900, which indicates a change to a less concentrated distribution. 

Additionally, as the concentration of the distribution decreases, unevenness increases 

(the same result obtained in the parametric analysis of the section above); the loss of 

kurtosis of the centre of the distribution means that the tails gain weight.      

4. Gibrat’s law 

The above section shows what we consider to be a snapshot of the distribution of 

American cities during the twentieth century. For different decades we obtained the 

graphic representation of the distribution and the estimated coefficients of Pareto’s 

exponent for different sample sizes, which enabled us to conclude if there had been 

important variations in the distribution, or if concentration had increased or decreased. 

                                                 
11 The results (not shown) of the Wilcoxon rank-sum test indicate that for a 1% confidence level, the null 

hypothesis of lognormality would only be rejected in 1920 and 1930. 
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However, a more rigorous dynamic analysis demands that we work with growth rates. 

We are particularly interested in seeing if there is fulfilment of Gibrat’s law or the law 

of proportionate growth, which postulates that the growth of a variable is independent 

of its initial size; Gibrat (1931) observed that the size distribution (measured by sales or 

the number of employees) of firms tends to be lognormal, and his explanation was that 

the growth process of firms could be multiplicative and independent of the size of the 

firm.  

In the field of urban economics, Gibrat’s Law, especially since the 1990s, has 

given rise to numerous empirical studies contrasting its validity for city size 

distributions, arriving at a majority consensus, though not absolute, that it holds in the 

long term. It is useful to test this over the entire twentieth century, from a long term 

perspective with our sample of all incorporated places. 

We will use the methodology followed by Ioannides and Overman (2003) and 

Eeckhout (2004). It consists of taking the following specification: 

     ( ) iii smg ε+= ,    

where ig  is the normalized growth rate
12

 (subtracting the mean and dividing by the 

standard deviation) and is  is the logarithm of relative size, and instead of making 

suppositions about the functional relationship of m  and supposing a linear relationship, 

( )sm̂  is estimated as a local average around point s  and is smoothed using a kernel, 

which is a symmetrical, weighted, and continuous function around s . 

In order to analyse the entire period 1890 to 2000, all the growth rates are taken 

between consecutive periods. And the Nadaraya-Watson method is used, exactly as it 

appears in Härdle (1990), based on the following expression:
13
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12 Taking normalized growth rates will mean that the choice of the unit of measurement, size, size relative 

to the average, or share of the total, is indifferent, as it means only a change of scale; the results regarding 

growth are robust. 
13 The calculation was done with the KERNREG2 Stata module, developed by Nicholas J. Cox , Isaias H. 

Salgado-Ugarte, Makoto Shimizu and Toru Taniuchi, and available online at: 

 http://ideas.repec.org/c/boc/bocode/s372601.html  

This programme is based on the algorithm described by Härdle (1990) in Chapter 5. 
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The estimator is very sensitive, both in mean and in variance, to atypical values. 

Thus, the growth rate, both in mean and in variance, of the smallest cities usually has 

much higher values than for the rest. If we examine the smallest 5% of cities, the 

differences are even greater.
14

 Thus, we decided to eliminate this 5% of the smallest 

distribution observations, as they are characterized by very high dispersion in mean and 

in variance, and they distort the results.   

Gibrat’s law implies that growth is independent of size in mean and in variance. 

As growth rates are normalized, if Gibrat’s law were strictly fulfilled and growth were 

independent of size, the estimated kernel would be a straight line on the zero value. 

Values different to zero involve deviations from the mean. And variance would also be 

a straight line, supposing that variance does not depend on the size of the variable 

analysed. 

Figure 6, shows the estimated kernels of growth and the variance of growth for 

all the twentieth century (a pool of 162,403 observations). Bootstrapped 95% 

confidence bands, calculated using 500 random samples with replacement, are also 

displayed. It is noticeable that the estimation of growth is nearly a straight line around 

zero, meaning that on average, we can accept that during the whole period, growth was 

independent of size and Gibrat’s law holds. Regarding variance, even if the smallest 5% 

of observations are eliminated, the smallest cities present greater variance than the rest 

of the sample. However, it should be noted that starting from the zero value (in a 

logarithmic scale, this corresponds to a city relative size equal to 1, i.e., cities of a size 

that is equal to the contemporaneous mean), variance stabilizes, becoming much more 

homogenous, indicating that the variance of growth is independent of size for cities with 

a population equal to or greater than the mean (a little over 3,000 inhabitants at the 

beginning of the century and almost 9,000 at the end). 

Our results, obtained with our sample of all incorporated places without any size 

restriction, are similar to those obtained by Ioannides and Overman (2003), with their 

database of MSAs.
15

 The main difference stems from the estimation of variance, much 

higher in our sample of incorporated places for the smallest cities. The estimated kernels 

show that while average growth appears to be independent of size, variance in growth 

seems to depend negatively on size: the smallest cities present a variance that is clearly 

higher than the rest. This points to Gibrat’s Law holding weakly (growth is 

proportionate on average, but not in variance).  

5. Discussion 

City size distribution has been the subject of numerous empirical investigations 

by urban economists, statistical physicists, and urban geographers. From the point of 

view of urban economics, this interest in city size distribution stems from two essential 

points. First, city size distribution defines the resulting economic landscape, and has 

direct consequences on the spatial distribution of income, on whether or not there is 

public investment in infrastructure of various kinds in certain areas, and most definitely 

on imbalances between territories. On this subject, Abdel-Rahman (2002) presents a 

model linking income disparities, social welfare, and the structure of the urban system. 

Secondly, city size distribution is susceptible to change over time, according to 

certain incentives, which are essentially economic (although not exclusively; social 

factors such as aging population can affect the urban system; see Gaigné and Thisse, 

                                                 
14 The specific values are available from the author on request. 
15 See Ioannides and Overman (2003), Figure 2. 
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2009), which can be modified by public policies. For example, recently the effect that 

property taxes (Song and Zenou, 2009) or transportation subsidies (Su and DeSalvo, 

2008) can have on city size have attracted attention. 

Therefore, it is important to have a good empirical description of city size 

distribution. There is debate concerning the laws governing the size distribution. The 

debate has converged recently (explaining for example that a Pareto upper tail of the 

distribution can be reconciled with a lognormal distribution for the entire sample; see 

Eeckhout, 2009), and our results clearly contribute to making that point. In addition, 

given the novelty of the early data, our work also establishes the robustness of the 

findings. 

Specifically, our database of all incorporated places enables us to confirm, from 

a long term perspective that: 

(1) Gibrat’s law holds (weakly). Growth is proportionate on average but not in variance. 

Although the variance of growth is independent of size for cities with a population 

equal to or greater than the contemporary mean, the smallest cities present a variance 

clearly higher than the rest. This possibility has already been considered theoretically, 

both by Gabaix (1999), who examines the case in which cities grow randomly with 

expected growth rates and standard deviations that depend on their sizes, and by 

Córdoba (2008), who introduces a parsimonious generalization of Gibrat’s law that 

allows size to affect the variance of the growth process but not its mean. 

(2) Proportionate growth implies a lognormal distribution, and this is a statistical 

relationship (Gibrat, 1931; Kalecki, 1945; Eeckhout, 2004). City size distribution 

follows a lognormal when we consider all cities without any size restriction.  

(3) Zipf’s law holds only if the sample is sufficiently restricted at the top, not for a 

larger sample. For the largest cities the lognormal tail and the Pareto tail are hard to 

distinguish. In contrast, if we consider the whole sample, the Rank-Size plots (Figure 3) 

show a non-linear and clearly concave behaviour. Recently, Duranton (2007) presents 

an economic model which can explain and reproduce that concave behaviour. This 

model offers detailed microeconomic foundations for technology shocks, which are the 

fundamental drivers of the distribution of city sizes in steady state. 

  (4) The incorporation of new cities to the sample, together with other social and 

economic factors, throughout the twentieth century, leads to rising unevenness in city 

size distribution. These new cities appear with a smaller relative size (on average) than 

the rest of the cities in the sample.   

Underlying these empirical regularities are the changes that city size distribution 

has undergone during the twentieth century. For example, in terms of actual cities 

(incorporated places), what does it mean that the rank-size rule does not hold when we 

consider the whole size distribution, but Gibrat’s law does hold? The size distribution 

being lognormal is a statistical consequence of the proportionate growth process. In 

turn, growth being proportionate imposes a high degree of persistence in city size 

distribution, although this does not mean that distribution remains static. In section 3 we 

have obtained the conclusion that, in the twentieth century, the level of unevenness in 

the distribution increased, something that we associated with the appearance of new 

cities with smaller relative sizes (on average) than the rest of the sample, but which 

undoubtedly relates to city growth rates. How does this result relate to proportionate 

growth? 
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Proportionate growth does not mean that all cities grow the same way. The 

evolution over time of city growth rates (and of the total population) depends on the 

historical and social context. Table 4, shows both the mean growth rates for the whole 

period ( )
pg , calculated from gross growth rates, defined as 

1

1

−

−−
=

it

itit
it

S

SS
g , where itS  is 

the population of the city i  in the year t , and the annual mean growth rates ( )ag , which 

are calculated from the mean growth rates for the whole period applying that 

( ) ( )
pa gg +=+ 11

10
. It can be observed that indeed, the first decades of the century saw 

strong growth rates for city sizes, as well as a marked increase, both in the number of 

cities (which entered the size distribution with average relative sizes below the rest of 

the sample) and in unevenness within the distribution. However, this period of growth 

came to an end in 1920-1930. Between 1940 and 1980, the high growth rates seem to 

recover, and then fall in the last two decades. The two periods of lowest growth, 1930-

1940 and 1980-1990, coincide with the two periods of lowest growth of the total 

population in US history
16

, 7.3% and 9.8%, respectively, and are very close to two 

profound economic crisis (the Great Depression and the second oil supply shock in 

1979).   

If we disaggregate these growth rates we find interesting differences according 

to period. As pointed out by Gabaix and Ioannides (2004), the casual impression of the 

authors is that in some decades, large cities grow faster than small cities, but in other 

decades, small cities grow faster. This would suggest that Gibrat’s law for means holds 

only as a long-run average (with periods in which urban growth may be convergent or 

divergent). Figure 7, shows growth rates by distribution quartiles, which corroborate 

this assertion. Despite Gibrat’s law holding over the long term when considering all the 

twentieth century, we can find differentiated behaviour in each decade. When 

distinguishing the growth rates of groups, we see how periods in which the cities with 

most growth are the largest incorporated places (1910-1930, 1940-1970, 1980-2000) are 

interspersed with others in which the very small communities of the distribution take the 

lead (1900-1910, 1930-1940, 1970-1980). It is notable that in periods of high economic 

growth, the largest cities are the ones that gain most in population, while in periods of 

crisis the smallest cities are the ones that grow most.
17

 In contrast, the medium-sized 

incorporated places, the cities in the two middle quartiles of the distribution (Q2 and 

Q3), present a much more stable evolution, with growth rates very close to each other 

and to the total average for the period.  

6. Conclusion 

This paper uses new data on the US size distribution for the entire range of city 

sizes. As far as we know, we are the first to document the evolution of the size 

distribution over a century of all US cities (understood as incorporated places). 

Our results shed some light on the laws governing the city size distribution. 

From a long term perspective, we find that Gibrat’s law holds (weakly; growth is 

proportionate on average but not in variance, as the smallest cities present a clearly 

higher variance). Additionally, Zipf’s law holds only if the sample is sufficiently 

restricted at the top, not for a larger sample, because city size distribution follows a 

lognormal when we consider all cities with no size restriction.  

                                                 
16 Source: http://www.census.gov/population/censusdata/table-4.pdf  
17 The role of small cities has received little attention in the literature. One exception is Partridge et al. 

(2008). 
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Underlying these empirical regularities are the changes which city size 

distribution has undergone during the twentieth century. Behind the long term trend 

represented by Gibrat’s law, we find that periods in which the cities with most growth 

are the largest incorporated places alternate with others in which the very small 

communities of the distribution take the lead. In addition, the unevenness of the 

distribution has increased over the century, especially the first decades in which a large 

number of new cities appear with a smaller relative size (on average) than the rest. In 

contrast, the last decades are characterized by stability in the number of cities and the 

percentage of the US total population they represent, indicating a shift to a stable city 

size distribution and a more consolidated urban landscape.  
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APPENDIX: Data definitions and sources 

Cities, 1900-2000 

In the same way as Eeckhout (2004), we identify cities as what the US Census 

Bureau denominates as places. This generic denomination, since the 2000 census, 

includes all incorporated and unincorporated places. 

The US Census Bureau uses the generic term incorporated place to refer to a 

type of governmental unit incorporated under state law as a city, a town (except the 

New England states, New York, and Wisconsin), a borough (except in Alaska and New 

York city), or a village and having legally prescribed limits, powers, and functions. On 

the other hand, there are unincorporated places (which were renamed Census 

Designated Places, CDPs, in 1980), which designate a statistical entity, defined for each 

decennial census, according to Census Bureau guidelines, comprising a densely settled 

concentration of population that is not within an incorporated place, but is locally 

identified by a name. They are the statistical counterpart of the incorporated places. The 

difference between them, in most cases, is merely political and/or administrative. Thus, 

for example, due to a state law of Hawaii, there are no incorporated places; they are all 

unincorporated. 

The unincorporated places began to be accounted for from 1950. The US Census 

Bureau established size restrictions for their inclusion (except in 2000, when they were 

all counted). However, these settlements did exist earlier, so their inclusion presents a 

problem of inconsistency in the sample. As a result, we decided to exclude 

unincorporated places from the sample, in order to carry out a long term analysis of the 

twentieth century with a homogenous sample. Also, their elimination is not 

quantitatively important; in fact there were 1,430 unincorporated places in 1950, 

representing 2.36% of the total population of the US, which, by 2000, would increase to 

5,366 places and 11.27%. 

Our base, created from the original documents of the annual census published by 

the US Census Bureau, consists of the available data of all incorporated places without 

any size restriction, for each decade of the twentieth century. While the data of only the 

last two decades are computerized (US Bureau of the Census, County and City Data 

Book, Washington DC), the data corresponding to other decades is available in the 

original documents (US Bureau of the Census, Census of Population, Washington DC). 

We have created our database from these. 

Source: http://www.census.gov/prod/www/abs/decennial/  

MSAs, 1900, 1950, and 2000 

The definition of a metropolitan area is from the Office of Management and 

Budget (OMB), based on data provided by the US Census Bureau. Standard definitions 

of metropolitan areas were first issued in 1949 by the then Bureau of the Budget 

(predecessor of OMB), under the designation “standard metropolitan area” (SMA). The 

term was changed to “standard metropolitan statistical area” (SMSA) in 1959, and to 

“metropolitan statistical area” (MSA) in 1983. The term “metropolitan area” (MA) was 

adopted in 1990 and referred collectively to metropolitan statistical areas (MSAs), 

consolidated metropolitan statistical areas (CMSAs), and primary metropolitan 

statistical areas (PMSAs). Finally, the term “core based statistical area” (CBSA) became 

effective in 2000 and refers collectively to metropolitan and micropolitan statistical 

areas. 
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Without entering into each definition (these can be consulted at 

http://factfinder.census.gov), what interests us is the basic criterion used to define a 

MSA, as CMSAs and PMSAs are still MSAs, which fulfil certain conditions. Thus, 

according to the OMB definition, qualification as an MSA requires the presence of a 

city with 50,000 or more inhabitants, or the presence of an urbanized area and a total 

population of at least 100,000 (75,000 in New England) – an urbanized area, according 

to the Census Bureau, consists of a central place(s) and adjacent territory with a general 

population density of at least 1,000 people per square mile of land area that together 

have a minimum residential population of at least 50,000 people. However, this 

criterion has changed over the course of the twentieth century. Thus, the original 

criterion of 1950 only required a city of 50,000 inhabitants. 

For the years 1900 and 1950 we use the data of Bogue’s Standard Metropolitan 

Areas (1953). He took the definitions of SMAs for 1950 and reconstructed the 

population of these areas for the period 1900 to 1940. The problem is that applying the 

1950 definitions to 1900 means that some of these SMAs are much smaller than the 

minimum threshold of 50,000 inhabitants. For this reason, for 1900, we exclude all 

SMAs that do not reach this minimum threshold, reducing the sample size of 162 

SMAs in 1950 to 112 in 1900.  

For the year 2000, we take the data of the Metropolitan Statistical Areas 

corresponding to the 2000 census of the US Census Bureau, available at: 

http://www.census.gov/population/cen2000/phc-t29/tab03a.xls. 
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Table 1. Size of the Database and Descriptive Statistics 

 

Year Cities 

Percentage of 

total US 

population 

(%) 

Mean 
Standard 

deviation 
Minimum Maximum 

1900 10,596 46.99 3,376.04 42,323.896 7 3,437,202 

1910 14,135 54.90 3,560.92 49,351.239 4 4,766,883 

1920 15,481 58.62 4,014.81 56,781.645 3 5,620,048 

1930 16,475 62.69 4,642.02 67,853.648 1 6,930,446 

1940 16,729 63.75 4,975.67 71,299.371 1 7,454,995 

1950 17,113 63.48 5,613.42 76,064.402 1 7,891,957 

1960 18,051 64.51 6,408.75 74,737.618 1 7,781,984 

1970 18,488 64.51 7,094.29 75,319.588 3 7,894,862 

1980 18,923 61.78 7,395.64 69,167.914 2 7,071,639 

1990 19,120 61.33 7,977.63 71,873.911 2 7,322,564 

2000 19,296 61.49 8,968.44 78,014.749 1 8,008,278 

              

Excluding Alaska, Hawaii and Puerto Rico    
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Table 2. Pareto Coefficients Estimated by Decade 
 

Truncation point ( N ) 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 

100 1.050 1.086 1.095 1.101 1.095 1.096 1.167 1.201 1.271 1.313 1.320 

 (0.148) (0.153) (0.154) (0.155) (0.154) (0.154) (0.165) (0.169) (0.179) (0.185) (0.186) 

500 1.063 1.060 1.047 1.062 1.088 1.101 1.198 1.233 1.278 1.315 1.341 

 (0.067) (0.067) (0.066) (0.067) (0.068) (0.069) (0.075) (0.078) (0.08) (0.083) (0.085) 

1,000 1.034 1.060 1.022 1.030 1.065 1.078 1.190 1.211 1.265 1.293 1.319 

 (0.046) (0.047) (0.045) (0.046) (0.047) (0.048) (0.053) (0.054) (0.056) (0.058) (0.059) 

5,000 0.967 0.978 0.954 0.924 0.941 0.939 0.947 0.949 0.975 0.962 0.963 

 (0.019) (0.019) (0.019) (0.018) (0.018) (0.018) (0.018) (0.018) (0.019) (0.019) (0.019) 

10,000 0.831 0.889 0.884 0.845 0.839 0.828 0.797 0.793 0.806 0.784 0.773 

 (0.011) (0.012) (0.012) (0.012) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) 

14,000  0.770 0.810 0.785 0.773 0.752 0.716 0.709 0.719 0.695 0.683 

  (0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.008) (0.008) (0.008) (0.008) 

15,000   0.776 0.763 0.752 0.729 0.695 0.687 0.697 0.673 0.661 

   (0.009) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.007) 

16,000    0.732 0.724 0.702 0.673 0.665 0.675 0.651 0.639 

    (0.008) (0.008) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 

16,700     0.683 0.676 0.656 0.647 0.658 0.634 0.623 

     (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) (0.007) 

17,100      0.642 0.644 0.636 0.648 0.624 0.613 

      (0.007) (0.007) (0.007) (0.007) (0.006) (0.006) 

18,100       0.599 0.600 0.617 0.595 0.585 

       (0.006) (0.006) (0.006) (0.006) (0.006) 

18,400        0.580 0.605 0.584 0.575 

        (0.006) (0.006) (0.006) (0.006) 

18,900         0.572 0.560 0.555 

         (0.005) (0.005) (0.006) 

19,100          0.542 0.545 

          (0.005) (0.005) 

19,200           0.537 

                      (0.005) 

(GI s.e.) Gabaix-Ioannides (2004) corrected standard error. All coefficients are significantly different from zero at the 0.05 level.    
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Table 3. Incorporated Places (Relative Size) Gini’s Coefficients  

 

Year Top 100 Top 500 Top 5000 All 

1900 0.598 0.669 0.768 0.822 

1910 0.583 0.668 0.767 0.833 

1920 0.575 0.663 0.771 0.844 

1930 0.576 0.656 0.776 0.859 

1940 0.578 0.648 0.760 0.855 

1950 0.567 0.637 0.754 0.858 

1960 0.527 0.589 0.717 0.855 

1970 0.509 0.568 0.708 0.854 

1980 0.488 0.544 0.685 0.844 

1990 0.474 0.527 0.683 0.850 

2000 0.473 0.516 0.674 0.851 
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Table 4. Average Growth Rates of the Sample 
 

Period N Period mean Annual mean 

1890-1900 7,531 31.52% 2.78% 

1900-1910 10,502 30.53% 2.70% 

1910-1920 13,578 19.08% 1.76% 

1920-1930 15,310 14.99% 1.41% 

1930-1940 16,211 10.47% 1.00% 

1940-1950 16,420 16.25% 1.52% 

1950-1960 17,075 20.77% 1.91% 

1960-1970 17,832 17.29% 1.61% 

1970-1980 18,321 19.13% 1.77% 

1980-1990 18,991 2.06% 0.20% 

1990-2000 19,179 12.44% 1.18% 
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Figure 1. US Cities by Population Size 

  

Source: US Census Bureau: www.census.gov/dmd/www/map_1900p.pdf, http://www.census.gov/dmd/www/map_2000.pdf   
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Figure 2. Adaptive Kernels of the Share of US Urban Population (ln scale) by Incorporated Places or MSAs 
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Figure 3. Rank-Size Plots (ln scale) 
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Figure 4. Empirical Density Functions of the New Entrants 
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Figure 5. Empirical Density and Cumulative Density Functions (ln scale) 
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Figure 6. Kernel Estimates (Bandwidth 0.5), (US, 1900-2000), 162,403 Observations 
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Figure 7. Decennial Growth Rates by Quartiles 
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