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ABSTRACT 

 
The Block DCC model for determining dynamic correlations within and between groups of 

financial asset returns is extended to account for asymmetric effects.  Simulation results show 

that the Asymmetric Block DCC model is competitive in in-sample forecasting and performs 

better than alternative DCC models in out-of-sample forecasting of conditional correlation in 

the presence of asymmetric effect between blocks of asset returns.  Empirical results 

demonstrate that the model is able to capture the asymmetries in conditional correlations of 

some blocks of currencies in East Asia in the turbulent years of the late 1990s. 
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I.  INTRODUCTION 

 

By now, the GARCH model of Bollerslev (1986) has been extended to several classes of 

multivariate GARCH models (see Bauwens, Laurent and Rombouts (2006)).  GARCH itself 

has come a long way since Robert Engle’s (1982) pioneering paper on the ARCH.  

Multivariate GARCH (MGARCH) research focuses on ways of simplifying the variance-

covariance matrix where the number of parameters to be estimated explodes for higher 

dimensions making estimation costly and computationally intractable.  The approaches to 

simplify the estimation of the parameters of the variance-covariance matrix are now well-

developed although suggestions have been made to come up with models that account for 

economic theory as a basis for simplifying this matrix, Diebold (2004). 
 

It is widely held in financial econometrics that the returns of financial assets move together.  

The behavior of returns can be investigated using volatility models.  Although models of 

MGARCH have accounted for the stylized fact that returns of similar assets move together 

there are other salient features of financial assets that need to be considered.  Dissimilar 

assets have varying degrees of return correlation and one set of assets serves as a leading 

source of volatility for other sets of assets.  Conditional correlation research has gained 

momentum only in recent years but its unconditional counterpart is the most common input to 

models being used by a typical investor. 

 

The differences in types of financial assets result in certain groups of asset returns to be more 

correlated with each other than they are relative to others (see Kroner and Ng (1998), Billio, 
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Caporin and Gobbo (2003)).  Examples of these groups are the property, food and beverage, 

energy, banking and finance, mining sectors in a stock market.  Stock price returns within 

each sector are highly correlated with each other and the degree and direction of correlations 

between sectors are known to vary.  It has been observed that the impact of bad news on 

stock price return correlations is asymmetric between small and large firms.  It is greater on 

small firms when bad news occur with large firms but not vice-versa, Kroner and Ng (1998).  

This is important in asset allocation where investors decide what proportion of different types 

of instruments should comprise their portfolio to lower the risk of their overall holdings while 

at the same time maximize their returns.  This asymmetric behavior when applied to asset 

allocation modeling leads to economically significant gains in an investor’s portfolio 

according to Patton (2004). 

 

Asymmetric effect occurs when unexpected downward movements in the price of an asset 

raise the conditional volatility of returns more than when there are unexpected upward 

movements (see Nelson (1991) and Engle and Ng (1993)).  The asymmetric effect was 

confirmed by empirical investigations of French, Schwert and Stambaugh (1987), Schwert 

(1990) and Nelson (1991) among others.  In the stock market studies, Erb, Harvey and 

Viskanta (1994), Ang and Chen (2001), Longin and Solnik (2001) have shown that there is 

greater dependence between returns during market downturns. 

 

Asymmetric effect in groups or blocks of financial asset returns were also observed by Lo 

and MacKinlay (1990) and Conrad, Gultekin and Kaul (1991).  The lead-lag effect in 

portfolio returns by Lo and MacKinlay (1990) states that small firm portfolio returns lag large 

firm portfolio returns but not the other way around while the volatility spill-over hypothesis 

by Conrad, Gultekin and Kaul (1991) claims that volatility spills over large to medium and 

medium to small firms but not in the opposite way.  Milunovich (2003) confirmed these 

asymmetric behaviors in stock prices of blocks of small, medium and large firms using a 

structural MGARCH model. 

 

In the study of worldwide linkages in the dynamics of volatility and correlations of bonds and 

equity markets Capiello, Engle and Sheppard (2003) showed that there were strong 

asymmetries in conditional volatility of equity index returns while bond index returns have 

little evidence of this behavior.  Cappiello, Engle and Sheppard (2003) estimated the 

correlations of stock and bond indices of four major regions assuming the same dynamic 

condition for the correlations.  On the other hand, Billio, Caporin and Gobbo (2003) 

introduced Block Dynamic Conditional Correlation (BDCC) which assumes different 

dynamic condition for correlation of assets within a certain block of assets.  But Billo, 

Caporin and Gobbo’s (2003) BDCC does not account for asymmetries between blocks while 

the Asymmetric DCC (ADCC) model of Cappiello, Engle and Sheppard (2003) does not 

consider the asymmetric correlations between blocks of assets per se.  Cappiello, Engle and 

Sheppard (2003) only took the average dynamic correlations of individual indices to 

represent regional dynamic conditional correlations. 

 

This paper will extend the BDCC by introducing asymmetric effects of conditional 

correlation between blocks of asset returns.  Billio, Caporin and Gobbo (2003) noted the 

possible extension of their model that would include an asymmetric component but did not 

pursue this and thus the motivation for this study.  In Section II of this paper the proposed 

model is presented including its relation to the relevant models in the literature and its 

estimation procedure.  In Section III Monte Carlo simulation results are presented, in Section 
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IV the model is applied to East Asian currency returns and in the last section is the 

conclusion. 

 

 

II.  THE MODEL 

 

This paper proposes a new model called Asymmetric Block Dynamic Conditional Correlation 

(ABDCC) MGARCH.  A missing element in the DCC literature is the asymmetric effect in 

the conditional correlation between blocks of asset returns and this is the contribution of 

ABDCC.  Actually, Cajigas and Urga (2005) have accounted for this kind of asymmetry in 

their Asymmetric Generalized DCC (AGDCC) but theirs is a special case of the proposed 

model.  DCCs belong to the nonlinear class of MGARCH models that aims to reduce the 

dimensionality of the conditional variance-covariance matrix, tH , by specifying the 

conditional correlation matrix.  Bauwens, Laurent and Rombouts (2006) provide the most 

recent and comprehensive survey of the different classes of MGARCH models. 

 

The general representation of the MGARCH model is 

ttty εµ +=  

ttt zH
2/1=ε  where  tz ~ ),0( IN   (1) 

1| −ℑttε ~ ),0( tHN  

where ty  is the 1×N  vector of asset returns and 1−ℑt  is a sigma algebra of information up to 

time 1−t .  Without loss of generality tµ  is assumed to be zero.  The ABDCC model has the 

following specification for the NN ×  conditional variance-covariance matrix tH : 

( )tjjtiitijtttt hhDRDH ,,,ρ==   (2) 

as in Engle’s (2002) DCC model where ( )2/1

,

2/1

,11 tNNtt hhdiagD �= .  1*1* −−= tttt QQQR  is the 

NN ×  matrix of dynamic conditional correlation driven by the evolution process ( )tijt qQ ,=  

where ( )tiit qdiagQ ,

* = .  The ABDCC has the following specification for tQ : 

( ) )'()()()'()()()()( **

tttttt nnLQLLNLQLQLQQ ������ ηβεεαηβα +++−−−=  (3) 

where �  indicates the Hadamard product, ]'[ **

ttEQ εε=  with sample equivalent 

T
Q

T

t

tt�
== 1

** '
ˆ

εε

 that serves as estimator of Q , *

tε ~ ),0( tRN  is an 1×N  vector of residuals 

standardized by their conditional standard deviation, [ ]'ttnnEN =  with sample equivalent 

T

nn

N

T

t

tt�
== 1

'
ˆ  that serves as estimator of N , ** ][ ttt In ετε �<=  is the asymmetric component 

where τ  is a time-varying threshold of asymmetry that is typically set to zero.  The )(Lα , 
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)(Lβ  and )(Lη  are NN ×  parameter matrices where the N  asset returns series are grouped 

in w  sets of wmmm ,...,, 21  -dimensional vectors and  

  �
=

=
q

i

i

i LL
1

)( αα ,  �
=

=
p

j

j

j LL
1

)( ββ ,  �
=

=
r

k

k

k LL
1

)( ηη . 

Furthermore, iα , jβ  and kη  have the following structure 

�
�
�
�

�

�

�
�
�
�

�

�

=

)'()()'()()'()(

)'()()'()()'()(

)'()()'()()'()(

,22,11,

22,2222,1221,

11,2112,1111,

wwwwiwwiwwi

wwiii

wwiii

i

mimimimimimi

mimimimimimi

mimimimimimi

ααα

ααα

ααα

α

�

����

�

�

 

 

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

)'()()'()()'()(

)'()()'()()'()(

)'()()'()()'()(

,22,11,

22,2222,1221,

11,2112,1111,

wwwwjwwjwwj

wwjjj

wwjjj

j

mimimimimimi

mimimimimimi

mimimimimimi

βββ

βββ

βββ

β

�

����

�

�

 

 

�
�
�
�

�

�

�
�
�
�

�

�

=

)'()()'()()'()(

)'()()'()()'()(

)'()()'()()'()(

,22,11,

22,2222,1221,

11,2112,1111,

wwwwkwwkwwk

wwkkk

wwkkk

k

mimimimimimi

mimimimimimi

mimimimimimi

ηηη

ηηη

ηηη

η

�

����

�

�

 

 

where )( gmi  is a column vector of ones with dimension gm  and },...,2,1{ wg = .  iL  is the 

time lag of order i . 

 

Parameter estimation of the ABDCC model invokes the concept of variance targeting 

introduced by Engle and Mezrich (1996).  Variance targeting assumes that in the long run the 

tQ  approaches the sample variance-covariance matrix.  In order to ensure that the estimation 

is conducted within a valid parameter space, ABDCC must be specified by maintaining the 

positive definiteness of the conditional correlation matrix, tR .  This can be done if tQ  is 

positive definite.  The following conditions ensure the positive definiteness of tQ : 

1. ( )NLQLQLQ ��� )()()( ηβα −−−   must be positive definite; 

2. ( )')( **

ttL εεα �  must be positive semidefinite; 

3. tQL �)(β  must be positive definite; and 

4. ( )')( ttnnL �η  must be positive semidefinite. 
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In the optimization, these conditions make the location of the maximum of the likelihood 

function difficult.  According to Engle and Sheppard (2001), a sufficient but not necessary 

condition for tQ  to be positive definite is for all the parameters to be positive; and, a 

minimum condition to ensure the positive definiteness of tQ  is for the first condition to be 

satisfied as shown by Engle and Mezrich (1996). 

 

An alternative model of ABDCC is  

     ( ) )'()()()'()()()()( **

tttttt nnLQLLQLLLIQ ���� ηβεεαηβα +++−−−= , (4) 

but this specification no longer satisfies variance targeting.  Conditions 1 to 4 above still 

apply to this alternative model where in the first condition 

( )NLQLQLQ ��� )()()( ηβα −−−  is replaced by ( ) QLLLI �)()()( ηβα −−− . 

 

The ABDCC, Eq. (3), regresses to the following models: 

1. Engle’s (2002) DCC if the elements of )(Lα , )(Lβ  and )(Lη  have aij =α  in )(Lα , 

bij =β  in )(Lβ , and 0)( =Lη , for all { }Nji ,...,1, ∈ ; 

2. Billio, Caporin and Gobbo’s (2003) BDCC if 0)( =Lη ; 

3. Cappiello, Engle and Sheppard’s (2003) ADCC if the elements of )(Lα , )(Lβ  and 

)(Lη  have ( )2

aij =α  in )(Lα , ( )2

bij =β  in )(Lβ , and ( )2

gij =η  in )(Lη , for all 

{ }Nji ,...,1, ∈ ; 

4. Cajigas and Urga’s (2005) AGDCC, if the elements of )(Lα , )(Lβ  and )(Lη  have 
2

iiii a=α  and jjiiij aa=α  in )(Lα , 2

iiii b=β  and jjiiij bb=β  in )(Lβ , 2

iiii g=η  and 

jjiiij gg=η  in )(Lη , for all { }Nji ,...,1, ∈  where ji ≠ . 

for time lag of order 1.  These can be easily generalized to higher orders of time lag.  While 

the alternative ABDCC, Eq. (4), regresses to Cajigas and Urga’s (2005) alternative AGDCC 

if the same conditions in No.4 are satisfied. 

 

The likelihood function of ABDCC is derived under the assumption that the underlying 

distribution of the vector of returns is multivariate normal.  Limited information maximum 

likelihood (LIML) is utilized here.  In a two-stage LIML parameter estimation procedure the 

set of parameters is divided into two.  The likelihood function is maximized with respect to 

the first set of parameters then the parameter estimates of the first set serve as inputs to the 

second stage where the next set of parameters are then estimated.  The likelihood function of 

the model is 

( ) �
�

�

�

�
�

�

�
Π=

−−

=

'
2

1

1

1

2
1

2

1
)|,(

ttt yHy

t

N

T

t
t e

H
yL

π
ϕϑ .    (5) 

The vector ϑ  consists of univariate GARCH parameters for each element of the N -

dimensional ty  vector of asset returns and vector ϕ  consists of the parameters of tQ .  Engle 

and Sheppard (2001) have shown the consistency and asymptotic normality of this two-stage 

procedure.  Now, taking the natural logarithm of the likelihood function 
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( )( )�
=

−++−=
T

t

ttttt yHyHNyL
1

1 'log2log
2

1
)|,(log πϕϑ  

( )( )�
=

−−−+++−=
T

t

ttttttt yDRDyDRN
1

111'log2log2log
2

1
π                  (6) 

where tttt DRDH =  and ( )2/1

,

2/1

,11 tNNtt hhdiagD �= .  As shown by Engle and Sheppard (2001), if 

tR  is assumed to be an identity matrix in the first stage estimation, 

( )( )�
=

−−−+++−=
T

t

ttNtttNt yDIDyDINyL
1

111'log2log2log
2

1
)|(log πϑ  (7) 

     )]|(max[logargˆ
tyL ϑϑ =  (8) 

turns out to be the univariate estimation of the individual GARCH models of asset returns of 

ty .  The second stage estimation will have 

 ( )( )�
=

−−−+++−=
T

t

tttttttt yDRDyDRNyL
1

111 ˆˆ'ˆlog2log2log
2

1
),ˆ|(log πϑϕ   (9) 

where ttt yD
1* ˆ −=ε .  And since 1*1* −−= tttt QQQR  where ( )

iitt qdiagQ =*  

( )( )�
=

−−−−− +++−=
T

t

tttttttttt QQQDQQQNyL
1

*11*1**1*1* )('ˆlog2log2log
2

1
),ˆ|(log εεπϑϕ . 

Excluding the constant terms in the loglikelihood function we have 

( )�
=

−−−−− +−=
T

t

ttttttttt QQQQQQyL
1

*11*1**1*1* )('log
2

1
),ˆ|('log εεϑϕ              (10) 

          )],ˆ|('max[logargˆ
tyL ϑϕϕ = .               (11) 

Expanding the 2
nd

 stage loglikelihood function 

),ˆ|('log tyL ϑϕ                     (12) 

( )( ){�
=

−− +++−−−−=
T

t

ttttttt QnnLQLLNLQLQLQQ
1

1***1* )'()()()'()()()()(log
2

1
������ ηβεεαηβα

( )( )( ) }*11***1**' )'()()()'()()()()( ttttttttt QnnLQLLNLQLQLQQ εηβεεαηβαε
−−− +++−−−+ ������

 

where ( ) )'()()()'()()()()( **

tttttt nnLQLLNLQLQLQQ ������ ηβεεαηβα +++−−−= , 

is a long expression and tedious for large dimensional vector of asset returns.  In the 

optimization process the variance targeting constraint of Engle and Mezrich (1996) is 

invoked. 
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III.  SIMULATION RESULTS 
 

Monte Carlo simulations were conducted to determine the consistency of the MLE estimator 

as the sample size is increased for the ABDCC in the case of a 4-dimensional vector return 

series, partitioned into two 2-dimensional vectors where lag orders q , p  and r  of L  are all 

equal to 1 or ABDCC(2,2;1,1,1).  The general notation of the model is 

( )rqpmm w ,,;,,ABDCC 1 � .  Three cases were considered:  nonpersistent-nonpersistent, 

persistent-nonpersistent and persistent-persistent blocks of volatility series where each block 

consists of two series.  A GARCH(1,1) process, 1,1

2

1,11, −− ++= tiititii hh βεαω , is considered 

persistent if 80.011 ≥+ βα , the parameters 1α  and 1β  are the impact and persistence of the 

process. Similarly, the evolution process, tQ , of the conditional correlation consists of 

impact, persistence and asymmetric effect parameters ijα , ijβ  and ijη , respectively.  

Conditional correlation is considered persistent within a block if 80.0≥+ iiii βα  and between 

blocks if 80.0≥+ ijij βα .  The specifications of the model are given below. 
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Persistent-Nonpersistent case: 

1,44

2

1,4,44
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1,3,33
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Persistent-Persistent case: 

1,44

2

1,4,44

1,33

2

1,3,33

1,22

2

1,2,22

1,11

2

1,1,11

64.022.008.0

67.020.009.0

81.014.011.0

73.017.012.0

−−

−−

−−

−−

++=

++=

++=

++=

ttt

ttt

ttt

ttt

hh

hh

hh

hh

ε

ε

ε

ε

 

08.0

79.0

15.0

11

11

11

=

=

=

η

β

α

 

09.0

65.0

19.0

22

22

22

=

=

=

η

β

α

 

13.0

61.0

12.0

2112

2112

2112

==

==

==

ηη

ββ

αα

 

 

Table 1 summarizes the bias and MSE of the estimates in 500 Monte Carlo runs of all the 

parameters for series lengths of 500, 1,000, and 1,500 in the three different cases.  As the 

sample size is increased the resulting bias of the estimates is mixed for the different 

parameters although the magnitudes of the bias for all the parameters are tolerable.  Tse and 

Tsui (2002) considered such bias small in their paper where bias is typically 10% or less of 

the actual value.  The bias is expected for parameters that are constrained in the parameter 

space 9Θ where )1,0(∈Θ .  Engle and Sheppard (2001) placed such constraint as a sufficient 
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condition for the evolution process, tQ , to remain positive definite.  As the sample size is 

increased, the MSE dropped for all the parameters in all cases considered and so confirms the 

consistency of the maximum likelihood estimator for the model. 

 

In order to assess how well the ABDCC model performs in in-sample and out-of-sample 

forecasting of conditional correlation between blocks of asset returns, in the absence and 

presence of asymmetric effects within and between conditional correlation of blocks, its 

performance vis-à-vis the other dynamic conditional correlations models DCC, BDCC, 

ADCC and AGDCC is compared.  Below are specifications for three main cases:  Case A 

nonpersistent-nonpersistent, Case B persistent-nonpersistent and Case C persistent-persistent 

conditional correlations between blocks of assets for a series of 1,000 observations.  There 

were nine cases considered in these simulations and for each 500 Monte Carlo runs were 

conducted.  Cases 1, 2 and 3 consists of cases A, B and C, respectively, but with zero 

asymmetric effects, that is, 0122211 === ηηη .  Cases 4, 5 and 6 follow the exact 

specifications of A, B and C which have small between block asymmetric effects, 12η ’s.  

While cases 7, 8 and 9, on the other hand, have the same specification as A, B and C but with 

larger 12η ’s of 0.12, 0.15 and 0.15, respectively. 
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Case B: 
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Case C: 

1,11

2

1,1,11 90.006.005.0 −− ++= ttt hh ε  
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2

1,2,22 85.008.010.0 −− ++= ttt hh ε  
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Table 2 shows the in-sample forecast performance of the different models in capturing 

simulated conditional correlations between two blocks of asset returns.  The results show that 

the ADCC of Cappiello, Engle and Sheppard (2003) outperformed all the other DCC models 

for cases 4 to 9 in terms of the lowest average root mean squared error (RMSE) criterion in 

forecasting each of the 500 generated series.  ADCC is best in in-sampling forecast 

performance for those with persistent and nonpersistent conditional correlations with small 

and large asymmetric effects.  The ABDCC follows next for cases 5 to 9.  However, the 

simple DCC is competitive compared to the other models with regard to nonpersistent blocks 

with small asymmetric effects, as seen in case 4; and it outperforms more parameterized 

models in nonpersistent and persistent cases without asymmetric effects as evidenced by 

cases 1 to 3. 

 

For out-of-sample forecast evaluation, 500 Monte Carlo runs of 1,200 series lengths of 

between block conditional correlations were generated for the nine cases.  The last 200 

observations serve as the hold-out sample that all the models will forecast 200-step-ahead 

out-of-sample.  Table 3 presents the average mean squared errors (MSEs) for the 500 forecast 

series of each of the model for each case.  The DCC and BDCC models dominate those cases 

without asymmetric effects, cases 1 to 3; and, these can compete fairly with the others for the 

case of nonpersistent-nonpersistent and persistent-persistent blocks with small asymmetric 

effects, respectively, as seen in cases 4 and 6.  But clearly, in the presence of a persistent 

block or blocks with small and large asymmetric effects ABDCC outperforms the rest with 

ADCC coming in next.  These results lend support to the ABDCC model as the model of 

choice in out-of-sample forecasting of persistent conditional correlation between blocks of 

asset returns with asymmetric effects.  This behavior is widely observed in portfolios of 

stocks providing a venue for practical application of ABDCC in asset allocation models. 

 

To test whether there is a significant difference in forecast accuracy of the two models in 

Table 3 with the lowest average MSEs, the Diebold and Mariano (1995) test or DM test for 

forecasting accuracy and the modified DM test (MDM) of Harvey, Leybourne and Newbold 

(1997) were used to evaluate the performance of these two tests.  Table 4 shows the 

proportion of rejection of the null hypothesis of equal forecast accuracy in each test 

conducted on the 500 corresponding MSEs of the two models.  The DM and MDM tests 

rejected the null hypothesis in 81% to 85% of the 500 comparisons in favor of the DCC 
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model compared to BDCC and ABDCC for cases 2 and 4, respectively.  While the BDCC 

performed 90% of the time better than DCC in case 1 but did poorly for case 3 with respect to 

ABDCC at 65%.  The ABDCC edged out ADCC in cases 5 and 7 to 9 by 83% to 97% of the 

time, while it did not do as well with BDCC at 73% in case 6. 

 

The DM and MDM tests of forecast accuracy confirmed that, in general, when persistence of 

conditional correlation and asymmetric effect exist within and between blocks of asset returns 

the ABDCC model is expected to perform better than the rest in out-of-sample forecasting.  

At the same time, the test results favor the parsimonious DCC and also the BDCC in cases 

where asymmetric effect is absent.  This is expected since DCC and BDCC models assume 

symmetry in the conditional correlations. 

 

 

IV.  APPLICATION TO EAST ASIAN FOREX RETURNS 
 

The data was derived from FXHistory in oanda.com.  These are 1,279 daily average 

exchange rates with respect to the U.S. dollar from 1996 to 2000 of the Philippine peso 

(PHP), Thailand baht (THB), Malaysian ringgit (MYR), Singapore dollar (SGD), Hong Kong 

dollar (HKD) and China yuan (CNY).  Adjustments have been made to account for holidays.  

An ABDCC(2,2;1,1,1) was used to model the following blocks:  PHP-THB, MYR-SGD and 

HKD-CNY.  The Philippine peso and Thailand baht are considered as a block because these 

two economies are regarded as twins in the ASEAN.  On the other hand, Malaysian ringgit 

and Singaporean dollar are in another block given that these two economies are relatively 

larger compared to Philippines and Thailand.  Hong Kong dollar and Chinese yuan belong to 

a block for these two economies are reasonably linked since Hong Kong became a special 

administrative region of China in July of 1997.  Asset return here is defined as the negative of 

the difference in daily logarithmic forex rate. 

 

Tables 5, 6 and 7 show the conditional correlations of the blocks of currencies.  All the 

parameters are significant at the 0.05 level except for the asymmetric effect parameter 

between the PHP-THB and MYR-SGD blocks as shown in Table 5.  This implies that there is 

no significant asymmetric correlation in the volatilities of the peso-baht and ringgit-SG dollar 

although the conditional correlations are highly persistent between these two blocks.  

Asymmetry in conditional correlations is present for these two blocks when compared with 

the HK dollar-yuan block as presented in Tables 6 and 7.  Table 7 further shows that the 

correlation of volatility is persistent between HK dollar-yuan and ringgit-SG dollar owing 

largely to the level of development and relative stability of the financial markets in Hong 

Kong and Singapore while HK dollar-yuan and peso-baht correlation of volatility are not as 

persistent.  There is also a higher asymmetry in the conditional correlation of HK dollar-yuan 

and peso-baht.   

 

To determine the conditional correlation between blocks, the estimated conditional variances, 

tijq ,
ˆ ’s, within a block were pooled to get the estimated pooled conditional variance for that 

block.  The estimated pooled conditional covariance was also computed between blocks.  

Figures 1, 2 and 3 show the conditional correlations between blocks.  The asymmetric block 

DCC is clearly positive for the peso-baht and ringgit-SG dollar in Figure 1 for the period 

considered which indicate the linkage of the economies of these four ASEAN countries.  At 
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the same time, there was a sharp rise in the conditional correlation of the two blocks during 

the 1997-98 Asian Financial Crisis.  The drop in the conditional correlation occurred in 

September of 1998 when Malaysia imposed capital controls to discourage speculators against 

its currency.  In Figures 2 and 3, the conditional correlations of peso-baht and ringgit-SG 

dollar against HK dollar-yuan is fluctuating around zero which indicate periods of positive 

and negative conditional correlations.  But in Figure 3, the 1997-98 period resulted in higher 

volatility of the conditional correlation between ringgit-SG dollar and HK dollar-yuan and 

this volatility in conditional correlation relatively mellowed after 1998 when the ringgit 

exchange rate was pegged and the SG-dollar has stabilized.  This is dissimilar to the pattern 

between peso-baht and HK dollar-yuan where the relatively stable exchange rates of the HK 

dollar and the yuan are fluctuating similarly across the period against the peso-baht. 

 

The significant asymmetries of the ASEAN blocks with respect to the HK dollar-yuan block 

may be explained by the relatively stable movement of these two currencies compared to 

their ASEAN counterparts in the period considered.  Hong Kong operates a form of currency 

board system which composes a pegged exchange rate against the U.S. dollar.  The Chinese 

yuan is also pegged to a tight band since 1994.  It follows that whatever pressure to 

depreciation on non-pegged currencies will not impact the pegged ones.  And this is evident 

in the asymmetries that are observed here with respect to the HKD-CNY block.  The 

insignificant asymmetry between the ASEAN blocks implies that although the correlation of 

the volatilities of the peso-baht and the ringgit-SG dollar is persistent there is no asymmetric 

effect in the dynamic conditional correlation of the returns between the two blocks. 

 

 

V.  CONCLUSION 
 

The Asymmetric Block Dynamic Conditional Correlation model, a new model which extends 

the Block DCC of Billio, Caporin and Gobbo (2003), introduces the asymmetric effect in the 

evolution process between blocks of asset returns.  The two-stage maximum likelihood 

estimation procedure utilizing the limited information maximum likelihood approach is 

shown to be consistent in estimating the parameters of the ABDCC model.  Furthermore, 

simulation results support the ABDCC as a better model compared to other DCCs in out-of-

sample forecasting of conditional correlations in the presence of asymmetric effect in 

dynamic conditional correlation between blocks of asset returns. 

 

The model was able to capture the behavior of six Asian currency returns considered to 

reflect the turbulent times of the Asian Financial Crisis in 1997-98.  The peso-baht and 

ringgit-SG dollar blocks are positively conditionally correlated, this conditional correlation 

rose sharply during the 1997-98 Asian Financial Crisis.  The conditional correlation of peso-

baht and ringgit-SG dollar blocks volatilities is highly persistent but not asymmetric which 

confirms the linkage of these ASEAN currencies.  On the other hand, the HK dollar-yuan 

block saw periods of highly positive and highly negative conditional correlation with respect 

to the peso-baht and ringgit-SG dollar blocks and the model has shown the presence of 

asymmetry in the block volatilities of the HK dollar-yuan with the ASEAN blocks due to the 

generally pegged HK dollar-yuan rates with the U.S. dollar.  Also, the volatility of the HK 

dollar-yuan is highly asymmetric against the peso-baht and is highly persistent with the 

ringgit-SG dollar.  The conditional correlation between the HK dollar-yuan and ringgit-SG 

dollar blocks are especially high during the crisis years. 
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Table 1.1. Monte Carlo Simulation Results for Varying Sample Sizes of ABDCC(2,2;1,1,1) 

Model:  Nonpersistent-Nonpersistent Blocks 

Block Actual Value 

Series 

Length Bias MSE 

Within Block 1         

500 -0.003809 0.000166 

1000 -0.004972 0.000084 11α  0.08 

1500 -0.005246 0.000065 

500 0.004801 0.004376 

1000 -0.001105 0.001664 11β  0.43 

1500 -0.005583 0.001024 

500 -0.000749 0.000262 

1000 -0.000026 0.000110 11η  0.04 

1500 -0.000043 0.000067 

Within Block 2         

500 0.003376 0.000114 

1000 0.002025 0.000047 22α  0.05 

1500 0.001844 0.000026 

500 0.054681 0.010422 

1000 0.031651 0.003922 22β  0.40 

1500 0.019816 0.002329 

500 -0.002382 0.000143 

1000 -0.002701 0.000069 22η  0.03 

1500 -0.002479 0.000045 

Between Blocks 1 & 2       

500 -0.003043 0.001135 

1000 -0.004683 0.000529 12α  0.06 

1500 -0.004768 0.000332 

500 -0.068321 0.050844 

1000 -0.043553 0.024045 12β  0.47 

1500 -0.030205 0.014946 

500 -0.007086 0.001877 

1000 -0.004606 0.000804 12η  0.02 

1500 -0.005783 0.000558 
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Table 1.2. Monte Carlo Simulation Results for Varying Sample Sizes of ABDCC(2,2;1,1,1) 

Model:  Persistent-Nonpersistent Blocks 

Block Actual Value 

Series 

Length Bias MSE 

Within Block 1         

500 -0.008456 0.000151 

1000 -0.007377 0.000096 11α  0.14 

1500 -0.007061 0.000080 

500 -0.017922 0.000522 

1000 -0.016023 0.000338 11β  0.73 

1500 -0.014865 0.000286 

500 0.005639 0.000195 

1000 0.005305 0.000119 11η  0.08 

1500 0.005888 0.000107 

Within Block 2         

500 0.005026 0.000101 

1000 0.004404 0.000052 22α  0.07 

1500 0.004175 0.000036 

500 0.028977 0.003126 

1000 0.014804 0.001173 22β  0.48 

1500 0.007542 0.000703 

500 -0.003247 0.000123 

1000 -0.003380 0.000059 22η  0.04 

1500 -0.003330 0.000043 

Between Blocks 1 & 2       

500 -0.007472 0.000482 

1000 -0.008521 0.000255 12α  0.11 

1500 -0.008505 0.000194 

500 -0.041871 0.005670 

1000 -0.038906 0.003129 12β  0.54 

1500 -0.036490 0.002362 

500 -0.002862 0.000574 

1000 -0.000277 0.000260 12η  0.07 

1500 -0.000180 0.000186 

 

 

 

 

 

 

 

 

 



96   Vargas: An Asymmetric Block Dynamic  
Conditional Correlation Multivariate 

 GARCH Model 

 

Table 1.3. Monte Carlo Simulation Results for Varying Sample Sizes of ABDCC(2,2;1,1,1) 

Model:  Persistent-Persistent Blocks 

Block Actual Value 

Series 

Length Bias MSE 

Within Block 1         

500 -0.002340 0.000040 

1000 -0.001537 0.000016 11α  0.15 

1500 -0.001145 0.000010 

500 -0.000861 0.000036 

1000 0.000217 0.000013 11β  0.79 

1500 0.000200 0.000007 

500 0.001164 0.000077 

1000 0.000701 0.000029 11η  0.08 

1500 0.000827 0.000019 

Within Block 2         

500 0.005067 0.000077 

1000 0.003018 0.000033 22α  0.19 

1500 0.002200 0.000019 

500 -0.005330 0.000133 

1000 -0.004166 0.000062 22β  0.65 

1500 -0.003992 0.000045 

500 -0.002042 0.000077 

1000 -0.002772 0.000040 22η  0.09 

1500 -0.002817 0.000027 

Between Blocks 1 & 2       

500 -0.010866 0.000289 

1000 -0.009514 0.000185 12α  0.12 

1500 -0.008090 0.000134 

500 -0.019136 0.000873 

1000 -0.015233 0.000510 12β  0.61 

1500 -0.012096 0.000328 

500 0.007745 0.000279 

1000 0.008206 0.000173 12η  0.13 

1500 0.007510 0.000131 
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Table 2. Average RMSEs of the Different DCC Models in 500 Monte Carlo Simulations of In-

Sample Forecasts in Estimating Simulated Block Dynamic Conditional Correlations 

Case DCC(1,1) BDCC(2,2;1,1) ADCC(1,1,1) AGDCC(2,2;1,1,1) ABDCC(2,2;1,1,1) 

1 0.01458 0.01775 0.01795 0.09336 0.01867 

2 0.01509 0.01836 0.01882 0.09850 0.01926 

3 0.01547 0.01897 0.01951 0.08000 0.01929 

4 0.01823 0.02086 0.01578 0.08666 0.02047 

5 0.02144 0.02518 0.01745 0.08775 0.02130 

6 0.02575 0.02800 0.01971 0.09084 0.02298 

7 0.04366 0.04145 0.02281 0.07186 0.02448 

8 0.04893 0.04537 0.02602 0.07537 0.02701 

9 0.05353 0.04913 0.02926 0.08230 0.02932 
Highlighted Average RMSEs are the two lowest in each case. 

 

Table 3. Average MSEs of the Different DCC Models in 500 Monte Carlo Simulations of 200-

Step-Ahead Out-of-Sample Forecasts in Estimating Simulated Block Dynamic Conditional 

Correlations 

Case DCC(1,1) BDCC(2,2;1,1) ADCC(1,1,1) AGDCC(2,2;1,1,1) ABDCC(2,2;1,1,1) 

1 0.000345 0.000337 0.000514 0.004908 0.000787 

2 0.000328 0.000367 0.000414 0.004156 0.000399 

3 0.000469 0.000395 0.000509 0.001558 0.000413 

4 0.000440 0.000506 0.000455 0.003909 0.000443 

5 0.000604 0.000594 0.000478 0.002840 0.000477 

6 0.001146 0.000769 0.000878 0.001138 0.000535 

7 0.001968 0.001609 0.001021 0.002114 0.000596 

8 0.002699 0.002067 0.001112 0.001746 0.000719 

9 0.003879 0.002367 0.002071 0.002301 0.000830 
Highlighted Average MSEs are the two lowest in each case. 

 

 
Table 4. Proportion of H0 Rejections in the Diebold-Mariano and the Modified Diebold-

Mariano Tests in 500 Monte Carlo Simulations of 200-Step-Ahead Out-of-Sample Forecasts of 

the Top 2 Models from Table 3 in Estimating Simulated Block Dynamic Conditional 

Correlations 

MSE 
Case 

DCC(1,1) BDCC(2,2;1,1) ADCC(1,1,1) ABDCC(2,2;1,1,1) 

DM 

Test 

MDM 

Test 

1 0.000345 0.000337 − − 0.898 0.900 

2 0.000328 0.000367 − − 0.852 0.854 

3 − 0.000395 − 0.000413 0.646 0.648 

4 0.000440 − − 0.000443 0.812 0.814 

5 − − 0.000478 0.000477 0.900 0.902 

6 − 0.000769 − 0.000535 0.726 0.728 

7 − − 0.001021 0.000596 0.966 0.968 

8 − − 0.001112 0.000719 0.942 0.944 

9 − − 0.002071 0.000830 0.830 0.832 
Highlighted Average MSE is the smaller between the two in each case. 
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Table 5. ABDCC(2,2;1,1,1) Model of PHP-THB and MYR-SGD Forex Returns 

Block 

α̂  

(s.e.) 

β̂  

(s.e.) 

η̂  

(s.e.) 

PHP-THB MYR-SGD 

 

PHP-THB 
 

 

0.164128 

(0.002960) 

0.523677 
(0.003629) 

0.046345 
(0.003323) 

0.041819 

(0.000753) 

0.824190 
(0.002214) 

0.002132 

(0.003567) 

 

MYR-SGD 
 

 

 

 0.129147 
(0.001858) 

0.508595 
(0.004072) 

0.087879 

(0.002228) 
All highlighted parameter estimates are significant at the 0.05 level. 

 

Table 6. ABDCC(2,2;1,1,1) Model of PHP-THB and HKD-CNY Forex Returns 

Block 

α̂  

(s.e.) 

β̂  

(s.e.) 

η̂  

(s.e.) 

PHP-THB HKD-CNY 

 

PHP-THB 
 

 

0.126281 

(0.002443) 

0.510580 
(0.008824) 

0.124693 
(0.000132) 

0.207637 

(0.002027) 

0.501463 
(0.001917) 

0.219513 
(0.000512) 

 

HKD-CNY 
 

 

 

 0.195552 
(0.002426) 

0.482574 
(0.003070) 

0.291877 
(0.003016) 

All highlighted parameter estimates are significant at the 0.05 level. 
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Table 7. ABDCC(2,2;1,1,1) Model of HKD-CNY and MYR-SGD Forex Returns 

Block 

α̂  

(s.e.) 

β̂  

(s.e.) 

η̂  

(s.e.) 

HKD-CNY MYR-SGD 

 

HKD-CNY 
 

 

0.150419 

(0.000233) 

0.574708 
(0.000624) 

0.194977 
(0.001349) 

0.238101 

(0.000199) 

0.683436 
(0.000378) 

0.118465 
(0.000325) 

 

MYR-SGD 
 

 

 

 0.119230 
(0.000485) 

0.570860 
(0.000473) 

0.087742 

(0.000376) 
All highlighted parameter estimates are significant at the 0.05 level. 

 

 

Figure 1. Asymmetric Block DCC of PHP-THB and MYR-SGD Blocks of Forex Returns 
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Figure 2. Asymmetric Block DCC of PHP-THB and HKD-CNY Blocks of Forex Returns  
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Figure 3. Asymmetric Block DCC of HKD-CNY and MYR-SGD Blocks of Forex Returns 
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