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Abstract

I introduce endogenous human-capital accumulation into an infinite-
horizon version of Chari & Hopenhayn’s (1991) vintage-human-capital
model. Different skill levels inside a vintage are complementary in pro-
duction. I establish equivalence between competitive equilibrium and
a planner’s problem, which ensures uniqueness of equilibrium. Returns
to skill and tenure premia are highest in young vintages, where skill is
scarcest and agents accumulate human capital fastest. As the vintage
ages, the skill premium decreases and vanishes entirely upon vintage
death. The results are in line with German linked employer-employee
data: Young establishments pay higher tenure premia but lower mean
wages than old establishments.
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1 Introduction

This paper introduces endogenous human-capital accumulation into a vin-
tage structure and shows that the resulting framework is still analytically
and computationally tractable. As in Chari & Hopenhayn (1991), human
capital is tied to a technology and is lost when the technology is phased out.
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In each vintage, different levels of human capital are complementary inputs
to a constant-returns-to-scale production function used by competitive firms.
Unlike in Chari & Hopenhayn’s (1991) two-period overlapping-generations
model, however, human-capital accumulation is endogenous and the possi-
bly infinite lives of individuals allow for rich patterns in tenure-wage profiles
(shown in figure 1).

In equilibrium, the extant skill structure across and inside technologies
determines vintage choice of young workers. When imposing an Inada condi-
tion on production, all rungs of the skill ladder are filled in all active vintages
and there is entry of young workers into all active vintages. Vintages are
phased out by an endogenous firm decision. I show equivalence between the
market equilibrium and the planner’s solution1, which implies uniqueness of
equilibrium.

The premium on technology-specific skills is shown to be highest in the
youngest technologies. This result is driven by the relatively more pro-
nounced scarcity of skill in young technologies. As technologies age, the
skill premium shrinks and eventually vanishes entirely, a process I refer to
as wage compression. The high skill premium induces young-vintage en-
trants to accumulate human capital faster than old-vintage entrants. Fast
learning combined with high skill premia leads to faster earnings growth and
higher tenure premia in young technologies. This is illustrated in figure 1,
which plots earnings profiles along different careers.2 The longest profiles
pertain to workers entering the youngest vintages, the shortest to entrants
into almost-dead vintages — note that in equilibrium all workers stay in
their vintage until it is phased out.

As for entry wages, these are lowest in new technologies, as may be seen
in figure 1 by comparing profiles at tenure t = 0. This phenomenon is due to
a general-equilibrium effect: Since new technologies offer the most valuable
skills, they are more attractive than older technologies ceteris paribus. If
there is to be entry into all vintages, however, young vintages’ entry wages
must fall to the point where workers are indifferent between entering any
technology.

1Due to the continuous-time setting (which is essential to obtain many of the analytic
results in the paper), a novel kind of proof is required to do so. The proof is based on the
partial differential equations resulting from the planner’s problem and agents’ optimality
conditions from the Hamilton-Jacobi-Bellman equation. The reason conventional proof
techniques do not apply is that production of new human capital h is represented by a
cost functional on the time-derivative of h, which is not a production function that fits
into the classical framework.

2Figure 1 is generated for the parameters of the preferred calibration; see section 4 for
details.
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Also average wages are lowest in young technologies. This occurs because
they have the most imbalanced skill mix: Many low-skilled workers are
working alongside very few high-skilled ones. Over the life cycle of the
vintage, average wages then rise continuously. As more and more workers
climb up in the hierarchy, the skill mix becomes more balanced. The vintage
is shown to reach maximal productivity upon – and only upon – its death.3

A positive measure of workers is shown to experience real-wage losses
at some point of their vintage career (as is evident from figure 1). This is
true despite the fact that skill is never lost. The wage losses are driven by
obsolescence, the fact that the relative price of skill falls as the vintage ages.
Thus, unlike in classical human-capital models à la Ben-Porath (1967), it
is not necessary to assume depreciation of human capital in order to ob-
tain downward-bending wage profiles for old workers. When assuming a
constant-elasticity-of-substitution (CES) production function, this obsoles-
cence effect can be isolated from an experience effect and an organizational-
capital (or vintage-productivity) effect.4

Once vintages are phased out, workers again experience wage losses as
they are re-locating to newer vintages and lose their vintage-specific human
capital. In figure 1, this manifests itself in entry wages (the starting points
of the profiles) being below exit wages (the final points of the profiles).

Neither type of wage losses occurs in Chari & Hopenhayn (1991), mainly
because workers only live for two periods there.5

In the special case where different skill levels are perfect substitutes
within a vintage, I show that all workers follow the same career pattern:
When born, they enter the current frontier vintage and embark upon a
unique path of human-capital accumulation. Once the returns from learn-
ing about a technology have become small with respect to the gains from
switching to a new (more productive) one, workers switch to the newest
vintage and repeat the same cycle again. I show that an increase in frontier-
productivity growth leads to faster switching between vintages. Through
a horizon effect, this leads to lower skill levels for any given given vintage
tenure.

When different skills are complementary, however, this horizon effect

3Since firms are competitive, this is equivalent to the marginal productivity of all skill
levels – and thus wags – being equalized upon vintage death.

4See equation (19) for the decomposition.
5In Chari & Hopenhayn’s (1991) setting, figure 1 would show a series of 2-point earnings

profiles, each of them increasing. As in my model, profiles in young vintages would have
the steepest slope and the lowest entry points. 2nd-period wages would be highest in
young vintages and then decrease with vintage age.
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Figure 1: Tenure-earnings profiles over career

may be overcome by a skill-scarcity effect. Numerical exercises show that
faster growth still induces shorter vintage lifetimes, but that workers may
acquire skills faster when complementarity is sufficiently high. This effect
arises because higher growth concentrates workers in young technologies
where skill is scarce and skill premia are high. Thus, skill complementarity
is necessary for a technological acceleration to lead to more learning-intensive
careers.

In German employer-employee-matched data, I find that key predictions
of the model are borne out when interpreting vintage age (in the model) as
establishment age (in the data): Younger establishments have higher tenure
premia, but pay lower wages than older establishments on average. In a
calibration exercise, I find that the model yields a reasonable quantitative
fit to the earnings structure (by establishment age and tenure) and the
worker distribution (by establishment age). The model is also successful in
predicting correlations of growth measures and the earnings structure: Fast-
growing industries, occupations and establishments display higher tenure
premia than slow-growing ones, but pay lower mean wages.6

6Only occupations are an exception to the latter statement: Fast-growing occupations
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In relation to the previous literature, the model presented here is clos-
est to Chari & Hopenhayn (1991), but differentiates itself by endogenous
human-capital accumulation, workers’ infinite life time and the resulting
detailed predictions on tenure-wage profiles.

Somewhat less related is Parente (1994), who studies a ladder model
where agents face a trade-off between experience accumulation and obsoles-
cence. However, experience accumulation is of the learning-curve type and
the extant skill structure in a technology does not influence agents’ deci-
sions since there are no complementarities between workers. The same is
true for Violante (2002), where one worker and one entrepreneur are sub-
stitutable inputs in a vintage production function and workers accumulate
skill according to a learning curve.

In Lucas (1988), the average level of economy-wide (general) human
capital has an externality on output and so the extant skill structure does
influence human-capital-accumulation decisions as in my model. However,
human capital is not technology-specific and skill externalities are not priced,
whereas in my model the positive effect of skilled workers on the productivity
of the unskilled (in the same vintage) is reflected in wages.

Prescott & Boyd (1987) develop an overlapping-generations model of
coalitions, where experienced and inexperienced workers face a trade-off
between production of output and training of young workers. An important
difference between their model and mine is that no reallocation of workers
from phased-out technologies to new ones occurs in their model. In a more
recent contribution, Garicano & Rossi-Hansberg (2008) model explicitly how
tasks are shared within an organization and how organizations grow more
complex over time. My framework has no explicit model of task sharing.
However, skill complementarity implies that a balanced skill mix is desirable
for an organization. Efficient task sharing and efficient skill-accumulation
decisions are induced by the competitive wage structure.

An entirely different class of models that is able to generate tenure-
related gains in earnings are search models. Burdett & Coles (2003) show in
such a setting that firms optimally offer increasing wage schedules in order
to prevent costly turnover. The predictions of the model presented here are
different, however: In Burdett & Coles (2003) changes in employer are vital
for the determination of wage profiles, whereas changes in the technology a
worker uses are crucial in my setting.

The remainder of the paper is organized as follows: Section 2 presents
the model and characterizes the competitive equilibrium. Section 3 shows

pay higher mean wages than slow-growing ones.
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that this equilibrium is equivalent to the solution of a planner’s problem.
Section 4 presents computational results in a calibrated version of the model.
Section 5 concludes and discusses potential further applications of the frame-
work.

2 Model

2.1 Technology

Time is continuous. In every instant s, a new production technology (or
vintage) arrives that is available to the agents in the economy for all t ≥ s.
I will either refer to the vintages by their birth date s or – especially in
a stationary setting – identify them by their age τ ≡ t − s. All vintages
produce the same good y.

The production technology s uses labor inputs that are specific to this
technology. The inputs are arranged on a hierarchy and indexed by 0 ≤ h ≤
1. The inputs on this ladder can be thought of as tasks that are increasing
in difficulty; tasks with a higher index require more vintage-specific human
capital. Section 2.2 will specify exactly how this form of human capital is
accumulated by workers.

The production function is supposed to capture the following notions: (i)
Newer vintages are more productive holding input ratios equal and (ii) the
production function is complementary in its inputs. Specifically, I impose

Y (t, s) = eγsỸ
(
n(t, s, ·)

)

where n(t, s, h) is the density function of workers at time t in vintage s with
human capital h and Ỹ is a functional on the space of C1 functions on [0, 1]
with the following properties:

• Constant returns to scale (CRS): Ỹ (λn) = λỸ (n).

• The Frechet derivative7 w̃(n) exists everywhere, is continuous in n and
w̃(n) > 0 for all h, n.

• Weak concavity: Ỹ
(
λn + (1 − λ)n′

)
≥ λỸ (n) + (1 − λ)Ỹ (n′) for all

0 ≤ λ ≤ 1.

7Recall that the Frechet derivative is the generalization of the gradient vector from
Rn to infinite-dimensional spaces. In this model, it is a wage function w̃ : [0, 1] → R+

which takes h as its argument. In the case of the CES aggregator in (1), it is given by the
familiar f(h)Ỹ 1−ρn(t, s, h)ρ−1.
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The first two properties imply that in a competitive setting, total wage
payments exhaust production. An example for such a functional is the
constant-elasticity-of-substitution (CES) aggregator

ỸCES[n(t, s, ·)] =

[∫ 1

0
f(h)n(t, s, h)ρdh,

]1/ρ

, (1)

where ρ ≤ 1 and f(h) ≥ 0. Total output in the economy at time t is given
by Y (t) =

∫ t
−∞

Y (t, s)ds.
At times, I will additionally invoke the following Inada condition:

Definition 2.1. (Inada condition) The production function is said to fulfill
an Inada condition if n(h) → 0 implies w̃(h) → ∞ for all h ∈ [0, 1] and there
is a unique element n∗ on the interior of the unit simplex ∆ = {n :

∫

h n = 1}

that maximizes output at ȳ ≡ maxn∈∆ Ỹ (n).

Optimality of n∗ implies that marginal factor returns must be equalized
and we have a constant wage schedule w̃(n∗) = ȳ. The CES aggregator
in (1) above fulfills the Inada condition if and only if ρ < 1.

Competitive firms take wages for all labor inputs as given in each instant.
Since the production technology is CRS, profits are zero for any t and s
in equilibrium. Workers are paid their marginal product, so w(t, s, ·) =
eγsw̃

(
n(t, s·)

)
.

2.2 Workers

There is a continuum of agents of mass one. Agents die at a constant rate δ.
New agents are born at the same rate δ, keeping total population constant.

Agents have linear utility and discount the future at rate β, where β +
δ > γ. Each agent chooses a work life {s(t), h(t)}0≤t<∞, which consists
of a function s(t) specifying the vintage the agent works for all t and a
function h(t) specifying the task he performs at t in vintage s(t). It is
required that the vintage already exist at time t, i.e. s(t) ≤ t, and that s(t)
be a measurable function in t.8

As for human-capital accumulation h(t), I require that a worker start
her work life in position h = 0 when she enters the vintage; mathematically
I impose that h(t̄) > 0 only if there is an interval (a, b) around t̄ such that

8This specification allows for lives with more than countably many vintage changes; a
relevant example for such a life is s(t) = t.
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s(t) = t̄ for all a < t̄ < b.9 There is no cost of switching between vintages.
I will refer to a career segment (or short career) l′(t) as the maximal open
interval (l′0(t), l

′
1(t)) around an instant t that is entirely spent in one vin-

tage.10 If l′0(t) = t = l′1(t), the career segment as an open interval is empty
and we will not call this degenerate stay in a vintage a career segment. Since
segments are open intervals and each of them contains a rational number,
there can only be countably many of them in an agent’s life.

To capture the notion that human-capital accumulation inside a vintage
is costly, I require that the function h be differentiable on all segments and
assume that the worker has to pay a flow cost eγs(t)c

(
ḣ(t)

)
on segments,

where ḣ denotes the time derivative of h and c is a cost functional with the
following properties:11

• Costless demotion: c(ḣ) = 0 if ḣ ≤ 0.

• Convexity: c′(ḣ) is a continuous, strictly increasing function on (0,∞).

• Inada condition: limḣ→∞ c′(ḣ) = ∞

An example that satisfies these properties is c(ḣ) = c̄max{ḣ, 0}2/2. No costs
accrue for non-segments; observe that for any t that is not on a segment, we
must have h(t) = 0. This cost may be interpreted as a psychic or monetary
cost that the worker incurs when learning about the technology in his spare
time or during unpaid overtime at work.

Each agent born at t = 0 enters the economy with some experience
level h0 for a vintage of age s0 ≤ 0, i.e. the first segment may start off
with h0 ≥ h(0) > 0 if s(0) = s0. There is a density n0(τ, h) over these
endowments at t = 0. New-born workers enter without any endowment, i.e.
h(t) = 0 for a worker born at t > 0.

9This also means that a worker has to start at zero again even if he had worked in that
vintage before but quit it at some point. This assumption is imposed for tractability; in
equilibrium, workers would not want to return to vintages they have once left.

10Formally, define the end points as l′0(t) ≡ inf{a ≤ t : s(u) = s(t) ∀u ∈ [a, t]} and
l′1(t) = sup{b ≥ t : s(u) = s(t) ∀u ∈ [t, b]}.

11The cost of human-capital accumulation is growing at the pace of total factor pro-
ductivity (TFP) to ensure stationarity of the economy. This specification entails that
the costs of human-capital accumulation relative to productivity in a technology do not
change. This is in line with models where workers have to set aside time from productive
work in order to accumulate human capital; in such a setting, the opportunity cost of
human-capital accumulation is given by the marginal productivity of devoting one’s time
to productive work instead of learning. The specification here is a modeling shortcut that
avoids the explicit modeling of hours.
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To summarize, the agent’s criterion for a given life lt starting at t is

v(lt) =

∫ ∞

t
e−(β+δ)(u−t)

[

w
(
u, st(u), ht(u)

)
− eγst(u)c

(
ḣt(u)

)]

du,

where it is understood that ḣ = 0. The value function is defined as V (t, s, h) =
suplt(t)=(s,h) v(lt), where the supremum is taken over all feasible lives start-
ing with endowment (s, h). Since discounting is exponential, optimal policies
are time-consistent and V (t, s, h) also gives us the forward-looking value for
any agent born before t who finds herself in position (s, h) at t.

2.3 Stationary equilibrium

I will limit the discussion to densities n which have a collection of sets Si
n

in X ≡ [0,∞)× [0,∞)× [0, 1] as their support Sn = ∪iS
i
n. I require the sets

Si
n to contain an open ball; n is assumed continuous and differentiable on

each set Si
n.12

For a stationary environment, I require that n(t, s, h) depend only on
the age of the vintage τ = t − s, but not on time:

n(t, s, h) = n(s + τ, s, h) = n̄(τ, h).

Stationarity immediately implies that wages and production grow at rate γ,
i.e. w(t, s, h) = eγtw̄(τ, h), Y (t, s) = eγtȲ (τ) and Y (t) = eγtȲ . By sta-
tionarity of the cost functional, also the value function grows at rate γ:
V (t, s, h) = eγtV̄ (τ, h). From now on, we will only work with the stationary
distribution; I thus drop the bar-notation and write simplify n(τ, h), w(τ, h)
and so forth.

Definition 2.2. A stationary competitive equilibrium is a stationary density
n(τ, h), a measure µ on all possible work lives l(t) = {τ(t), h(t)} and a wage
function w(τ, h) that is continuous on the interior of X such that:

• Compatibility of µ and n: For all Borel sets B in R2 and for all u ≥ 0,13
∫

t≤u
e−δ(u−t)I

{(
τt(u), ht(u)

)
∈ B

}
dµ(l) =

∫

B
n(τ, h)dτdh.

12The Inada condition 2.1 will naturally lead to such non-degenerate sets Si
n for the

support. Only for the case of a linear production function (i.e. setting ρ = 1 in ỸCES)
it will make sense to consider a more general class of sets for Sn, see section 2.5. Note
that the specification here allows for densities that drop precipitously down to zero when
a vintage dies — which is exactly what occurs in equilibrium. Also, note that feasibility
requires that the neighborhoods be connected to points with h = 0 or t = 0.

13I{·} denotes the indicator function. The subscript lt again refers to an agent born
at t ≥ .0. The simple multiplication of the indicator function by the survival function
e−δ(u−t) is valid since death is independent of workers’ strategies.

9



• Optimal labor demand: n(τ, ·) = arg maxñ

{
Y (ñ) −

∫
w(τ, h)ñ(h)dh

}
∀τ

• Optimal labor supply: Any set A over lives such that lt ∈ A implies
v(lt) < eγtV (τt(t), ht(t)) has measure zero under µ.

Note that the definition requires wages to be specified also for regions
outside the support Sn of n, i.e. equilibrium must specify a wage schedule in
such regions which makes optimal labor supply and optimal labor demand
equal zero.

2.4 Properties of equilibrium

We will be looking for a value function V ∈ C1(X) that is consistent with
a stationary equilibrium. I start to characterize the equilibrium by deriv-
ing some properties of the value function. Since workers can always drop
down arbitrarily fast in the hierarchy at zero cost and the value function is
continuous, we have:

Lemma 2.1. (Value function weakly increasing in h) The value function
V (τ, h) is weakly increasing in h for all fixed τ .

Also, workers always have the option to start a new career immediately.
So in any position, they must always at least as well off as workers who start
an optimal career.

Definition 2.3. Define the maximal value that can be attained by a career
starter as W = maxτ V (τ, 0).

Lemma 2.2. (Value equal for all career starters) V (τ, 0) = W for all τ and
V (τ, h) ≥ W for all (τ, h).

We will now turn to characterizing the support of the equilibrium den-
sity Sn. First, observe that the Inada condition ensures that all rungs in the
skill hierarchy must be filled if a vintage is in production:

Lemma 2.3. (All jobs filled in producing vintage) If the Inada condition 2.1
holds, then Y (τ) > 0 implies (τ, h) ∈ S̄n.14

This is a consequence of promotion costs being bounded for any position
with τ > 0 but wages going to infinity for empty slots in the skill ladder. A
formal proof is given in appendix A.1.2.

Another result that allows us to make some headway is that we do not
have to consider the entire space of vintages 0 ≤ τ < ∞, but can restrict
ourselves to a finite interval 0 ≤ τ ≤ T :

14Ā denotes the closure of a set A.
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Lemma 2.4. (Finite support of technologies) There exists T < ∞ such that
∫ 1
0 n(τ, h)dh = 0 for all τ > T .

The proof uses the argument that workers can always secure some pos-
itive wage in a frontier vintage without going through training, but that
old vintages’ productivity goes to zero relative to the frontier. The result is
ultimately driven by the the fact that returns to learning are bounded but
TFP growth is not.

Proof. Since there exists τ such that w(τ, 0) > 0 (by the assumptions on Ỹ
and w̃), there is a strictly positive flow value ε > 0 that a worker can
secure by working continuously in (τ, 0). Now, we will argue that in very
old vintages, this value cannot be provided to workers since TFP eventually
goes below any positive bound.

Now, fix some old vintage S. Note that in equilibrium, the value of every
career segment l′ (which may be of finite or infinite length, and where we cut
off parts in vintages younger than S) spent in vintages above S must exceed
the value of working for ε — if not, the worker should certainly replace the
segment by ǫ:

ṽ(l′) ≡

∫ l1

l0

e(γ−β−δ)tw(t − s′(t), h′(t))dt ≥

∫ l1

l0

e(γ−β−δ)tǫdt

The inequality must hold since since l′ also includes non-negative human-
capital-accumulation costs.

Now, observe that the value of all discounted career segments in vintages
older than S has to be lower than total discounted wages and thus production
in those vintages. Integrate the above inequality over all career segments of
type l′ in the economy:

∫

all l′
ṽ(l′) ≤

∫ ∞

0
e(γ−β−δ)t

∫ t−S

−∞

∫ 1

0
n(t, s, h)w(t, s, h)dhdsdt ≤

≤ ȳe−γS

∫ ∞

0
e(γ−β−δ)t

(∫

s,h
n(t, s, h)

)

dt,

where in the last step I used that the upper bound on production for vintages
even older than S is at most e−γS ȳ for some ȳ < ∞, see lemma A.1) for a
proof.

On the other hand, we know that each agent must weakly prefer working
in an old vintage to working for ǫ — again, integrating up over all segments
we get:

∫

all l′
ṽ(l′) ≥ ǫ

∫

e(γ−β−δ)t

(∫

s,h
n(t, s, h)

)

dt

11



But combining the above inequalities yields a contradiction: By choosing S
large enough, we can make e−γS ȳ < ǫ, making it impossible that very old
vintages provide enough value to be attractive to workers.

Definition 2.4. Define the last vintage in production by T ∗ ≡ infτ{τ :
∫ 1
0 n(τ, h)dh = 0}. Note that T ∗ < ∞ is ensured by lemma 2.4.

In order to further characterize Sn, it will be useful to know more about
the wage structure in the oldest technology. Consider the problem of a
worker who optimizes his career with respect to the switching point t̄ when
he quits a vintage:

max
t̄

∫ t̄

0
e−(β+δ−γ)tw[τ(t), h(t)]dt + e−(β+δ−γ)t̄W

Since w is continuous, differentiating with respect to τ yields that t̄ can only
be optimal if w[τ(t), h(t)] = (β + δ − γ)W , where the right-hand side is the
flow value of starting a new career. If the wage was still higher than that,
the worker should stay in the vintage at least a bit more; if it was lower,
quitting a bit earlier would make him better off. We summarize:

Lemma 2.5. (Final career wage) At the end of any career segment l0 wages
tend to the flow value of starting a new career, i.e. limt→l1 w[τ(t), h(t)] =
(β + δ − γ)W .

Corollary 2.6. (Flat wage structure in oldest technology) For all (T ∗, h) ∈
Sn, we have w(T ∗, h) = (β + δ− γ)W . If the Inada condition 2.1 holds, this
implies that vintages attain maximal productivity upon their death.

For vintages τ > T ∗ that are out of production, the equilibrium defini-
tion 2.3 requires us to specify a wage structure that makes it undesirable
for both workers and firms to use those vintages. There are many possible
choices for w in this region; one of them is w(τ, h) = e−γ(t−T ∗)/2w(T ∗, 0).
Workers will strictly prefer W to any career behind T ∗, and firms would not
break even for τ > T ∗ — even at optimal factor-input ratios, TFP decays
faster with τ than the wage bill does. Also, continuity of w is ensured as
required.

Reasoning along these lines shows that there cannot be any holes in the
support of n along the τ -direction:

Lemma 2.7. (No holes in vintage space) Suppose the Inada condition 2.1
holds. Then, if both Y (τ0) > 0 and Y (τ1) > 0, also Y (τ) > 0 for all
τ0 < τ < τ1.

12



This of course implies that all these in-between vintages τ have points
(τ, h) in the support Sn.

Proof. Suppose there was some τ ′ ∈ (τ0, τ1) for which Y (τ ′) = 0. Then
there must be a positive measure of career segments ending on [τ0, τ

′) and
the final wages of these segments must be equalized, which implies that all
agents leave the vintage at once for some τe = sup{τ : Y (τ > 0)} and that
w(τe, h) = e−γτe ȳ = (β + δ − γ)W for all h. But this contradicts the fact
that w(T ∗, h) = e−γT ∗

ȳ = (β + δ − γ)W since T ∗ ≥ τ1 > τ ′.

Lemma 2.7 together with lemma 2.3 implies that the closure of Sn must
be a rectangle [T0, T

∗] × [0, 1] if the Inada condition 2.1 holds. Section 2.5
establishes that there cannot be holes in the τ -direction either when labor
inputs are perfect substitutes. Arguments in sections 2.5 and 2.12 will finally
show that we must of course have T0 = 0.

We will now seek a further characterization of the equilibrium studying
the worker’s behavior on career segments. The Hamilton-Jacobi-Bellman
equation (HJB) for an interior point of a career segment is the following
first-order partial differential equation (PDE):

−Vτ (τ, h) = w(τ, h) − (β + δ − γ)V (τ, h) + max
ḣ

{

−c(ḣ) + ḣVh(τ, h)
}

(2)

where partial derivatives are denoted by subscripts. The equation says the
following: If we know the value function for a given τ on the entire h-ladder,
we can get the value a bit left of this τ by letting the agent choose the
optimal career slope ḣ. The optimal slope depends on the marginal value
of skill Vh and the cost of learning. The change in the value function a
small step to the left (keeping h fixed) is the gain the agent obtains from
moving up in the hierarchy (the term inside the max-operator) and another
term, which is the difference between the current wages and the flow value of
V (τ, h) under the discount factor β + δ − γ (which is modified for economic
growth).

The first-order condition (FOC) for ḣ corresponding to the HJB (2) is

c′
(
ḣ(τ, h)

)
= Vh(τ, h), (3)

where a unique solution for ḣ is assured whenever Vh > 0 by the assumptions
on c. Since c is convex, the FOC implies that greater value differentials in the
hierarchy induce faster human-capital accumulation. Given the boundary
condition V (T ∗, h) = W for all h, equations (2) and (3) together determine
the optimal policies of an agent who takes the wage function w as given.
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It is worthwhile noting that the term in Vh (i.e. the max-operator) in the
HJB (2), is the Legendre transform of c(·) and hence a convex function in
Vh. This implies that the HJB will be non-linear in Vh.15

Sometimes, it will be convenient to work with the Euler equation, which
tells us how the marginal value of human capital Vh changes along an op-
timal career path. Differentiate (2) with respect to h and use the envelope
condition (3) to obtain

dVh

dt
= ḣ(Vh)h + (Vh)τ = (β + δ − γ)Vh − wh, (4)

where an agent’s career is parameterized by time by t: dτ = dt and dh = ḣdt.
The dependence of the various functions on (τ, h) is suppressed for the sake
of clarity. We can solve (4) as an ordinary differential equation in t along
an agent’s optimal career path and see that the marginal value of human
capital equals the discounted integral of marginal wage gains over a career:

Vh(t) =

∫ T

t
e−(β+δ−γ)(u−t)wh

(
τ(u), h(u)

)
du, (5)

where T is the end of the career segment and Vh(T, h) = 0 since V (T, h) = W
for all h, i.e. the marginal value of skill is zero at the end of a career. This
suggests that the incentives for human-capital accumulation are strongest in
the beginning of a career, making human-capital accumulation front-loaded
and decreasing over segments.

I now proceed to characterize how the density n(τ, h) evolves given the
optimal local behavior of agents characterized by (3). Inside Sn, n must
obey the following PDE:

nτ (τ, h) + ḣ(τ, h)nh(τ, h) = −
[

δ + ḣh(τ, h)
]

n(τ, h), (6)

where the notation ḣh = ∂ḣ
∂h is used. This PDE says the following: When

following an agent’s optimal career path, the density thins out at the death
rate plus the divergence of the promotion policies ḣh inside the hierarchy.
Section 3.1 will deliver a derivation of this equation.16 For a given boundary
condition n(τ, 0) = n0(τ) on τ ∈ [T0, T

∗], we may solve this PDE through-
out Sn to obtain n given ḣ.

15For example, the Hamiltonian equals V 2
h /2c̄ in the quadratic case.

16The equation is the usual mass-transport equation for densities in a deterministic
context; it may be seen as a special (non-stochastic) case of the Kolmogorov forward
equation.
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To summarize, the HJB (2) with its boundary conditions characterizes
workers’ optimal strategies given wages. Equation (6) tells us how the re-
sulting decisions by workers in (3) translate into a density n (once we know
how new-borns enter vintages).17 Optimality of firms’ decisions implies that
wages w on the support of n are given by the Frechet derivative of Y (τ) with
respect to n(τ, ·). Wages w then feed back again into workers’ HJB.

An equilibrium is a worker distribution n satisfying (6), where policies
ḣ are determined through workers optimal behavior characterized by (2).
Equation (2), in turn, uses the marginal products of workers induced by n
as the wage function w.

2.5 Sub-case: Perfect substitutes

The next two subsections will be concerned with the characterization of the
wage structure and human-capital accumulation. Specifically, the follow-
ing objects are of interest: the skill premium inside a given vintage (i.e.
w(τ, h̄) − w(τ, h) for h̄ > h), the (vintage-)tenure premium (defined exactly
like the skill premium, but conditioning on vintage tenure instead of h as the
independent variable) and the intensity of skill accumulation ḣ(τ, h). I will
also study how these objects depend on technological growth by comparing
steady states for different values of γ, ceteris paribus.

We first turn our attention to the special case where different skill levels
are perfect substitutes: Take the CES-aggregator (1) with ρ = 1 as the
production function. Then, wages are independent of the distribution of
workers across the skill hierarchy: w(τ, h) = e−γτf(h)18. Throughout this
section, we will assume a standard learning curve and require that f ′(h) > 0
and f ′′(h) < 0.

With a linear production function, the problem essentially reduces to one
of partial equilibrium: It is sufficient to solve a worker’s problem, let every
worker follow her optimal policy and collect the results in an equilibrium
density n.19

A first result is that a worker will always choose to switch to the newest
vintage when she relocates:

17The entry density n0(τ ) may be freely chosen if Vτ (τ, 0) = 0 for all τ ∈ [T0, T
∗], i.e. if

workers are indifferent between all careers.
18Recall that wages are adjusted by frontier-productivity growth.
19Note that typically all agents will follow the same path and thus n would be a measure

that cannot be represented by a density function. However, this is unproblematic since the
production function (1) and the PDE (6) still make sense, the former as a linear functional
on measures and the latter in the weak sense.
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Lemma 2.8. (Always enter newest vintage under substitutability) If Ỹ =
ỸCES with ρ = 1, then for any optimal life h(t) = 0 ⇒ τ(t) = 0 at the
beginning of segments and τ(t) = 0 almost everywhere on non-segments.

Proof. Suppose the worker chose a career segment with s(t1) > t1 on t ∈
[t1, t2). Then this career is strictly dominated by choosing the same career
in s(t1) = t1. Obviously, the same holds true for choosing s(t) > t and
h(t) = 0 on non-segments of positive measure.

We will now be concerned with the question how technological progress
(in the form of a change in γ) affects agents’ decisions. Using the solution
to the Euler equation (5), we obtain

Vk(t) =

∫ T ∗

t
e−(β+δ)(u−t)f ′

(
h(u)

)
du, (7)

where T ∗ is the optimal switching point to a new career. Since the wage
gains from human-capital accumulation are decreasing in h by the concavity
assumption on f , this entails that workers in a lower hierarchy position have
stronger incentives to learn ceteris paribus. Another consequence is that
the h-profile will always steeper for a worker with a longer horizon. The
following lemma (proven in appendix A.1.3) will be sufficient to prove the
formalization of these insights:

Lemma 2.9. (Paths cross at most once) If Ỹ = ỸCES with ρ = 1, then for
two optimal careers h(t) and g(t) we have:

h(t) ≥ g(t) and ḣ(t) < ġ(t) ⇒ h(s) > g(s) for all s < t.

Since equation (7) shows that technological growth is inessential for the
intertemporal incentives of human-capital accumulation while inside a vin-
tage – it only affects the optimal switching point T ∗ –, we can use the above
lemma to compare optimal careers for different values of γ. As the (vintage-
)tenure premium, we define the ratio of the wage of an tenure-t worker in a
vintage to the wage of a career starter. In a stationary context, this equals
pγ(t) = e−γtw(h(t))/w(h(0)), where the optimal path h of course depends
on γ through T ∗(γ).

Proposition 2.10. (Shorter horizon lowers tenure premia) Assume Ỹ =
ỸCES with ρ = 1. Suppose that γ′ 6= γ, but fix all other parameters. Then
T ∗′ > T ∗ implies pγ′(t) > pγ(t) for all 0 < t ≤ T ∗.
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Proof. Without loss of generality, take two career segments h and h′ in vin-
tage s = 0 starting with h′(0) = h(0) = 0 and T ∗′ > T ∗. Now suppose that
h′(T ∗) ≤ h(T ∗). First, note that ḣ(T ∗) = 0 but ḣ′(T ∗) > 0 by equation (7)
and the fact that c′(ḣ) = Vh. By lemma 2.9, the two paths cannot cross
again for any 0 ≤ t > T ∗. But this is a contradiction to h(0) = h′(0) = 0.
By the same argument, the two paths cannot intersect at any other point
0 < t < T ∗(γ). So we must have h′(t) ≥ h(t) and so w(h′(t)) ≥ w(h(t)),
which implies the desired result.

This result shows that it is impossible that the life span of technolo-
gies shortens and simultaneously we see an increase in the experience pre-
mium. Figure 2 illustrates the intuition for the result: Workers with a
shorter planning horizon in their technology have fewer incentives to invest
in technology-specific knowledge and thus increase their productivity at a
slower pace, leading to a lower experience premium.
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Figure 2: Horizon effect under substitutability

To show that faster technological growth leads to faster scrapping of
technologies, define the discounted value of a career segment of length T by

K(T ) =

∫ T

0
e−ρt

[
w
(
hT (t)

)
− c
(
ḣT (t)

)]
dt, (8)

where hT (·) is the optimal skill-accumulation path for a career of length T .

Proposition 2.11. (Faster growth shortens careers and lowers tenure pre-
mia) Assume Ỹ = ỸCES with ρ = 1. Then, if the function K(·) in (8)
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is twice differentiable, the following hold: T ∗(γ) is non-increasing in γ and
strictly decreasing whenever T ∗(γ) > 0; the tenure premium pγ(t) is decreas-
ing in γ for any 0 < t ≤ T ∗.

One may find this result somewhat counter-intuitive: In a world where
different skill levels are perfect substitutes, it tells us we should expect that
faster technical growth to lead to a less learning-intensive careers; this is in
the sense that for each given tenure, agents would accumulated less knowl-
edge in the high-growth than in the low-growth world.20 The following sec-
tions will show that this result need not hold when different human-capital
levels are complementary and give some intuition on how it can indeed be
overturned.

2.6 Wage structure under complementarity

This section will further characterize the wage structure for the case where
labor inputs of different skill levels are complementary. I start with the
following observation:

Lemma 2.12. (Vintage T ∗ has highest entry wage) If the Inada condi-
tion 2.1 holds, then w(T ∗, 0) ≥ w(τ, 0) for all 0 ≤ τ < T ∗.

Proof. By lemma 2.6, w(T ∗)/(β + δ − γ) = W , i.e. always working in
the oldest vintage as an unskilled worker is an optimal strategy. Suppose
w(τ, 0) > w(T ∗, 0) for some τ . Then always working in position (τ, 0) would
give value (β + δ − γ)w(τ, 0) > W , which contradicts W being the maximal
attainable value for a career starter.

Intuitively, entry wages have to be lower in young technologies for the
following reason: Entering a new technology provides experience that will
be valuable in the future. So, barring any offsetting wage differential, all
workers would choose to enter new technologies. However, under the In-
ada condition some workers are also needed in low-skill tasks in the oldest
technologies. In order for both entry options to be equally attractive, entry
wages in young technologies have to be lower than in old technologies.

It turns out that on the top of the skill hierarchy, the converse is true:

Lemma 2.13. (Wage explosion for skilled in young technologies) If the
Inada condition 2.1 holds, then limτ→0 w(τ, 1) = ∞ and Y (τ) > 0 for all τ ∈
(0, T ∗).

20Of course, agents in a high-growth world might still learn more in total since they
switch to new vintages more often.
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A proof is given in the appendix A.1. The intuition behind the result
is that people with high skills in very young technologies must have worked
very hard to acquire these skills. Thus, those workers have to be compen-
sated by very high wages. Note that this is ensured if only very few people
take such steep paths. When scarce enough a factor, the skilled in young
technologies can earn unbounded returns under the Inada condition.

Collecting the previous results yields:

Corollary 2.14. (Wage Compression) Suppose the Inada condition 2.1
holds. Then the wage difference between high-human-capital and low-human-
capital workers is highest in the youngest vintages and lowest in the oldest
vintages, i.e. w(τ, 1) − w(τ, 0) → ∞ as τ → 0 and w(τ, 1) − w(τ, 0) → 0 as
τ → T ∗.

Proof. The first statement follows from w(τ, 0) ≤ w(T ∗, 0) for all τ < T ∗

(see lemma 2.12) and w(ǫ, 1) → ∞ (see lemma 2.13). The second statement
follows from lemma 2.14.

Intuitively, the wage structure is compressed because experience becomes
less scarce over the life cycle of a vintage. It is easier to acquire skills over a
long time than to master a technology that was barely invented. With a view
to tenure premia, note that wage compression opens the possibility that a
technological acceleration can occur alongside an increase in tenure premia.
Since the wage structure is steeper in young technologies, a shortening of
the vintage horizon T ∗ can send more workers into steep earnings paths,
increasing the average tenure premium.

Another consequence of the discussion above is the following:

Corollary 2.15. (Obsolescence/wage losses) There is a positive measure of
careers with dw(τ(t), h(t))/dt < 0 for some t. Furthermore, agents who quit
their vintage start their new career with a wage weakly lower than their last
wage in the old career.

Proof. The first statement follows from the reasoning laid out in lemma 2.13:
There is a positive measure of agents with high human capital h ∈ [1− ǫ, 1]
in young vintages τ ∈ (0, ǫ] with a high wage w(τ, h) > M , M large, which
must experience wage losses once they leave the high-wage region. The
second statement is an obvious consequence of lemma 2.12 and 2.6.

Note that the first type of wage losses (those occurring during a career)
cannot occur when skills are perfect substitutes. These wage losses during a
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vintage career are remarkable since they occur without human-capital depre-
ciation — an assumption often invoked in Ben-Porath-type models in order
to obtain downward-bending wage profiles for old workers. Here, agents
do not lose any of their skill over their vintage career; the reason for the
wage losses is that the relative price for skill falls over time, a phenomenon
referred to as obsolescence.

Finally, note that the second type of wage loss, which stems from the loss
of vintage human capital due to a vintage change, is not due to an exogenous
shock (an assumption sometimes made in human-capital models), but stems
from an endogenous decision. The worker accepts a temporary wage loss in
order to obtain skills in a new technology which pay off later in his work
life.

3 The planner’s problem

This section shows that the competitive equilibrium characterized in the pre-
vious section is equivalent to the solution of the following planner’s problem:
Let the planner weigh the utility of an agent born at t with e−βt. Since it
costs the planner e−δ(u−t) units of time-u output to supply one unit to each
surviving member of a cohort born at t and since utility is linear for all
agents, it is easy to see that the planner’s criterion is then to choose a func-
tion n(t, s, h) (which we require again to be C1 on a given support Sn) to
maximize

J(n) =

∫ ∞

0
e−βt

(
Y
(
n(t; ·)

)
− C(t)

)
dt,

where C(t) denotes the aggregate cost of human-capital accumulation at t.
First, we will derive an expression for C(t) given the optimal strategy to
implement a given density n.

3.1 Optimal promotion strategy

It turns out that the optimal promotion strategy is such that agents’ career
paths inside a vintage never cross. A formal proof for this statement, which
builds on a discrete approximation technique, is given in appendix A.2.
Intuitively, if a positive measure of agents crossed each other’s way, then
one could improve upon the strategy by maintaining the ordering inside the
vintage, making agents go shorter paths and hence lowering total cost for
the planner.

In the following, it will prove useful to work with the anti-cdf N(t, s, h) ≡
∫ 1
h n(t, s, h̃)dh̃. In a scheme where agents’ paths do not cross, this function
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must decrease at the death rate δ when we evaluate it along an agent’s path
staying in a fixed vintage s. A first-order approximation following a career
line {h(t), τ(t)} yields:

Nt(t, s, h) + ḣ(t, s, h)Nh(t, s, h) = −δN(t, s, h), (9)

where we note that Nh = −n. Taking the h-derivative of the above and
imposing stationarity yields the PDE for the evolution of n, which we already
know from competitive equilibrium, see equation (6).

Re-arranging equation (9) gives us an expression for the career slope ḣ
that the planner should choose given that she wants to implement a given
n:

ḣ(t, s, h) =
Nt(t, s, h) + δN(t, s, h)

n(t, s, h)
. (10)

In order to aggregate costs over all agents, we have to weigh the cost
of ḣ by the mass of agents across the (t, s, h)-space and obtain C(t) =
∫

s,h n(t, s, h)c[ḣ(t, s, h)].

3.2 The planner’s first-order conditions

The strategy to obtain the first-order conditions (FOCs) for the planner’s
problem is as follows: I will first allow the planner to to choose any – possibly
time-varying – density n(t, s, h). I then look for a stationary distribution
which solves this unrestricted problem. This ensures that the planner would
not want to deviate from the stationary density n(τ, h) although she could
do so. I will first restrict Sn to the entire rectangle below a maximal vintage
age T and then let T vary to find the optimal support T ∗.

It turns out that it is useful to introduce the variable u(t, s, h) ≡ nt(t, s, h)
and connect it to the functions n, N and Nt with equality constraints. The
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Lagrangian is then21

L =

∫ ∞

0
e−βt

[
∫ t

t−T
Y (t, s) − eγs

(∫ 1

0
c
[
ḣ(t, s, h)

]
n(t, s, h)dh

)

ds

]

dt+

+

∫

t,s,h
e−(β−γ)t

[

ν(t, s, h)

(

ḣ −
Ṅ + δN

n

)

+

+ λ(t, s, h)

(

n0(s, h) +

∫ t

0
u(t̃, s, h)dt̃ − n(t, s, h)

)

+

+ η(t, s, h)

(

Ṅ(t, s, h) −

∫ 1

h
u(t, s, h̃)dh̃

)

+

+ ξ(t, s, h)

(

N(t, s, h) −

∫ 1

h
n(t, s, h̃)dh̃

)

+

+ µ(t)

(

1 −

∫ t

t−T

∫ 1

0
n(t, s, h)dhds

)

dt

]

,

where the Lagrange multipliers are scaled by e−(β−γ)t to render them sta-
tionary. The set of constraints linked to the multipliers ν is taken from
equation (10). The constraints connected to µ enforce that total population
not exceed the bound 1. The rest of the constraints link the various variables
related to the density n.

The FOC with respect to Ṅ(t, s, h), ḣ(t, s, h) and N(t, s, h) immediately
tell us that η is the marginal cost of human-capital accumulation, and that
ν and ξ are closely linked to η:

η(t, s, h) = e−γτ c′
(
ḣ(t, s, h)

)
(11)

ν(t, s, h) = e−γτ c′
(
ḣ(t, s, h)

)
n(t, s, h)

ξ(t, s, h) = δe−γτ c′
(
ḣ(t, s, h)

)
.

Using these equalities, the FOC with respect to n(t, s, h) becomes

λ(t, s, h) =w(t, s, h) − e−γτ c
(
ḣ(t, s, h)

)
+ e−γτ ḣ(t, s, h)c′

(
ḣ(t, s, h)

)
−

− µ(t) − δ

∫ h

0
η(t, s, h̃)dh̃. (12)

where we recognize in the terms involving c(·) the Hamiltonian from the
value function (2) in the worker’s problem. The last remaining derivative is

21See Luenberger (1973) for necessary conditions of constrained-optimization problems
in infinite-dimensional spaces.
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the one with respect to to u(t, s, x), which will prove crucial to obtain the
PDE that is equivalent to the HJB (2):

∫ T

τ
e−(β−γ)(τ̃−τ)λ(τ̃ , h)dτ̃ =

∫ h

0
η(τ, h̃)dh̃. (13)

At a stationary solution, we require that the density fulfill n(t, s, h) =
n̄(τ, h). As a consequence wages grow at rate γ: w(t, s, h) = eγtw̄(τ, h). The
Lagrange multipliers must also be time-independent, i.e. ν(t, s, h) = ν̄(τ, h),
µ(t) = µ̄ and so forth. Again, I drop the bar-notation in the following.

When substituting the expressions for the Lagrange multipliers (11)
and (12) into (13) and imposing stationarity, one obtains

∫ T

τ
e−(β−γ)(τ̃−τ)

[

w(τ̃ , h) − e−γτ̃c
(
ḣ(τ̃ , h)

)
+ ḣ(τ̃ , h)c′

(
ḣ(τ̃ , h)

)
− µ−

−δ

∫ h

0
η(τ̃ , h̃)dh̃

]

dτ̃ =

∫ h

0
e−γτc′

(
ḣ(τ, h̃)

)
dh̃ ≡ Λ(τ, h). (14)

We will now see that Λ(τ, h) is an “excess-value function”: It tells us what
the value of an agent to the planner in position (τ, h) is in excess of the
unconditional value µ of an additional unskilled agent.

Directly from (14), we can get the following insights: First, when τ → T ,
the left-hand side and with it the marginal cost of human-capital accumula-
tion c′(ḣ), and hence ḣ itself, go to zero. This says that one should not ac-
cumulate human capital anymore just before the vintage shuts down, which
also implies that w(T, h) must be weakly increasing in h by non-negativity
of the multipliers η. Second,when we let h → 0, the right-hand side of (14)
goes to zero and we see that λ(τ, 0) = 0 for all τ . This says that for all entry
jobs the value function must be equalized. Third, when we let both τ → T
and h → 0 and use the insights from above, we obtain w(T, 0) = µ. This
says that w(T, 0) is the reference wage of the economy: It does not provide
any valuable experience, so it has to be just as attractive per se as any other
career (in flow terms).

Now, take the derivatives of Λ in (14) in both dimensions to see how this
excess-value function behaves on the interior:

Λh(τ, h) = e−γτc′
(
ḣ(τ, h)

)
(15)

−Λτ (τ, h) = w(τ, h) − e−γτc(ḣ) + e−γτ ḣc′(ḣ) − µ − (β + δ − γ)Λ(τ, h).
(16)
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When adding an agent’s value at the start of a career segment W = µ/(β +
δ − γ) to Λ by defining V = Λ + W , we obtain

−Vτ (τ, h) = w(τ, h) − e−γτ c(ḣ) + ḣVh − (β + δ − γ)V (τ, h), (17)

where we use Vh = Λh = c′(ḣ). When imposing the boundary conditions
V (τ, 0) = V (T, h) = 0 for all τ and for all h, this system is the same
as the agent’s HJB (2) and its boundary conditions in the decentralized
problem. Subsection 3.5 will discuss equivalence of the planner’s problem
to the competitive equilibrium more carefully; before, it is useful to analyze
the effects of variations in T .

3.3 Uniqueness

A fundamental concavity argument allows us to establish uniqueness of the
planner’s solution:

Proposition 3.1. (Solution to planner’s problem is unique) If Ỹ
(
nt,s(·)

)
is

strictly concave in nt,s(h)22, then J(n) is strictly concave in n and there is
a unique density n(t, s, h) that maximizes J(n).

Proof. Suppose there were two maximizers n1 and n2. Clearly, a convex
combination nλ = λn1 + (1− λ)n2 would also be feasible. Implementing nλ

in terms of promotion costs would be at least as cheap as implementing λn1

and (1−λ)n2 separately and adding up the costs. Output, however, will be
strictly larger for each fixed pair (t, s) by the concavity assumption on Ỹ (·),
which implies the desired result.

It is worthwhile to note that this argument does not hinge on the assump-
tion of n being continuous or differentiable, nor on any restriction on Sn.

If Y is not strictly concave, matters are slightly more complicated.
Take the example from subsection 2.5 with a linear production function:
Uniqueness of the planner’s problem depends on uniqueness of the partial-
equilibrium solution for the agent. If the agent’s problem has a unique solu-
tion for any starting value of h, then the solution to the planner’s problem
is unique.

Existence of equilibrium is not a problem computationally, but could
not be established formally without making an equicontinuity assumption
on the function space for n; see section A.3 for a discussion.

22For the CES case, this is equivalent to assuming ρ < 1.
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3.4 Varying T

So far, we had fixed the maximal vintage age T and imposed it on the
planner; we will now be concerned with varying T and finding the optimal T ∗

under the assumption that Ỹ is strictly concave. By the concavity argument
in lemma 3.1, there is at most one T ∗ for which the planner’s criterion is
maximized. An argument analogous to the proof for 2.4 shows that T ∗ < ∞.
However, it is very hard to further characterize T ∗. Computationally, it
may be found by finding the optimal n for each fixed T and then pick
the value T ∗ that yields the highest value to the planner. The following
discussion describes regularities and problems that arose in this process.

First, for T < T ∗, the simulations usually yield the wage structure is
not flat in the last vintage yet. In this case, an argument along the lines
of lemma 2.6 shows that it is preferable for the planner to extend the vin-
tage horizon T marginally; marginal productivities for different h-levels are
not aligned yet and there is room for further gains through human-capital
accumulation.

Second, for T > T ∗ computational problems may arise because of the
following issue: The problem of finding the optimal n given T will usu-
ally not have a maximand in the space of continuous differentiable func-
tions. To see this, suppose there was such a maximand n∗(T ). Since
J(n∗(T ∗)) > J(n∗(T )), by concavity also J(nλ) > J(n∗(T )) where we de-
fine nλ = λn∗(T ∗) + (1 − λ)n∗(T ) for any λ ∈ (0, 1). In turn, any nλ may
be approximated arbitrarily well by any continuous, differentiable n with
support until T . So there is a sequence of densities for which J converges
to the global optimum, but the global optimum is not in the space we are
considering since its support only extends to T ∗ < T and is discontinuous
at this point.

3.5 Equivalence to competitive equilibrium

The following proposition establishes that the global solution to the plan-
ner’s problem is a competitive equilibrium and a partial converse of this
statement:

Proposition 3.2. (Equivalence of planner’s solution and competitive equi-
librium) The stationary (global) solution to the planner’s problem with T ∗

is a competitive equilibrium (CE). Any stationary CE is also a solution to
a planner’s problem for some T ≤ T ∗. There is no CE with T > T ∗.

Proof. I will first show that the global solution to the planner’s problem
constitutes a CE. Set wages w(τ, h) = ∂Y (τ)/∂n(τ, h) for τ ≤ T ∗ and
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w(τ, h) = w(T ∗, 0) = µ for all τ > T ∗, all h. This implies that firms
optimally choose not to produce for τ > T ∗ since even the cost-minimizing
input combination leads to losses. For τ ≤ T ∗, n(τ, h) is an optimal input
choice and profits are zero. For agents, the HJB (17) and its boundary
conditions imply that any career segment which fulfills ḣ = Vh everywhere
is an optimal strategy with starting value µ. This weakly dominates any
career segment in vintages (T ∗,∞). One may then insert agents into careers
to engineer the entry density n(τ, 0) since agents are indifferent between all
careers. Equation (6) ensures that the density n reproduces itself given the
optimal decisions of agents.

Second, I prove that any CE is a solution to the planner’s problem for
some T ≤ T ∗. To start, note that the worker’s HJB (2) and the correspond-
ing optimal policy (3) in competitive equilibrium have their exact counter-
parts in equations (17) and (16) for the planner’s problem. Equation (14)
follows by integrating from the boundary over τ and h, which in turn is
equivalent to (13). Since the first-order conditions (11) and (12) can be
used to define the Lagrange multipliers, equation (13) already ensures that
all first-order conditions for the Lagrangian hold for any competitive equi-
librium.

This means that any competitive equilibrium is a stationary point of
the Lagrangian.23 However, there can be at most one stationary point for
a given T since J is a concave function and the set of permissible n is
convex. Hence this stationary point must be the global maximum of the
planner’s problem corresponding to the T induced by the respective CE. As
the discussion in 3.4 showed, no such maximizer exists for T > T ∗, which
means that there cannot be any CE with T > T ∗.

It is hard to formally rule out competitive equilibria with T < T ∗. If
there is such a CE, then it must be that µT > µT ∗ since these multipliers
equal wages in the last vintage. This seems to suggest that JT > JT ∗ , which
would be a contradiction to T ∗ being associated with a global maximizer.
However, as the discussion in 3.6 will show, J also includes the excess value
for agents already born at t = 0 starting with h(0) > 0, which is not
comprised in the multiplier µ.24

23A stationary point is defined as a point where the Frechet-derivative is zero in all
directions, see Luenberger (1973) — this is the equivalent to the gradient being zero in
R

n.
24In the numerical exercises, however, enforcing T < T ∗ always led to an increasing

wage structure at T which is not compatible with a CE according to lemma 2.6.
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3.6 Vintage productivities

Thinking along the lines of the planner’s problem also proves useful in assess-
ing vintage productivities. First, note that we can decompose the planner’s
criterion by integrating over the single agents’ values:

J =
w(T, 0)

β + δ − γ
+

∫

τ,h
Λ(τ, h)

︸ ︷︷ ︸

≡Λ̄

+

∫ ∞

0
e−(β−γ)tδ

w(T, 0)

β + δ − γ
dt =

w(T, 0)

β − γ
+ Λ̄

where the first equality decomposes the value for the measure one of agents
alive at t = 0 according to V = W + Λ and uses the fact that Λ = 0
for all agents born later. We can juxtapose this decomposition and the
decomposition of J into production and promotion costs:

Y − C = (β − γ)J = w(T, 0) + (β − γ)Λ̄,

where we write Y = Y (0) and C = C(0). Since Λ̄ ≥ 0 and C ≥ 0, this
equation says that labor productivity in the last vintage w(T, 0) is lower
than average labor productivity Y in the overall economy. Furthermore, it
gives us upper bounds for both C and Λ that can be empirically assessed
by observing productivity in dying vintages and average productivity in the
economy.

4 Calibration and computational results

For the calibration, I choose the CES aggregator defined in (1) for the
production function and a quadratic specification for the cost of human-
capital accumulation: c(ḣ) = c̄max{ḣ, 0}2/2. Finding a competitive equi-
librium amounts to solving the system of PDEs and integral equations
consisting of the agent’s HJB (2) and FOC (3) with boundary conditions
V (T ∗, h) = V (τ, 0) = W for all h and all τ , the PDE (6) (which describes
the evolution of n) and the following wage equation:25

w(τ, h) = e−γτf(h)

(

Ỹ (τ)

n(τ, h)

)1−ρ

(18)

25Note that this system is non-standard in the following respects: First, wages are
determined non-locally; they depend not only on the density in the immediate (τ, h)-
neighborhood of the agent but also on h-levels in the same vintage that are far away from
the agent. Second, we are dealing with a system where the boundary condition W̄ is
unknown.
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I propose a solution algorithm which uses a discretization scheme as
in standard lattice methods and attacks the problem of endogeneity of the
boundary values with an algorithm inspired by the way a real economy might
oscillate around a steady state when some inertia is present. Section B
provides the complete documentation of the algorithm.

The model is calibrated to yearly data. I identify vintage age in the
model with the age of an establishment in the data; the underlying assump-
tion here is that new establishments incorporate the newest available tech-
nology. The death rate δ is set to 0.092; this number is chosen to match the
rate at which workers are displaced from establishments in the data (6.7%
yearly) plus the rate at which they leave the labor force (2.5%, obtained from
an expected labor-market participation of 40 years for a 20-year old26).27 β
is set to 0.015 to obtain a standard yearly discount rate of β +0.025 = 0.04,
where 0.025 is the exit rate from the labor force.

The most parsimonious functional form possible is assumed for returns
to experience: f(h) = A, where A = 1 is chosen as a normalization. Ex-
periments with the specification F (h) = 1 + a showed that identification
inside the parameter tuple (c̄, a) was weak and that the specification did not
improve upon the fit of the more parsimonious model.

The remaining parameters c̄ = 0.77, γ = 0.049 and ρ = 0.71 were chosen
to minimize the mean squared deviation of the six model moments given in
table 1 to their counterpart in the data. A grid search was used to minimize
the penalty function. The data used here are the German IAB employ-
ment sample, a large employer-employee-matched panel, see appendix C for
details.

Table 1 shows that that the model is qualitatively in line with the main
features of the earnings distribution in the data: Wages are higher in older
vintages on average, but the experience premium is lower in old vintages
(implying that entry wages are highest in old vintages). Vintages survive
for T ∗ = 49 years. The model over-predicts both the increase of earnings
with vintage/establishment age and the decrease of the tenure premium with
vintage/establishment age, but is able to generate a reasonable quantitative
fit to the orders of magnitude observed in the data.

26I take the expected retirement age of 60 years for Germans from the German associ-
ation of retirement insurers, see www.deutsche-rentenversicherung.de.

27It is easy to see that a model where agents are displaced from a vintage with probabil-
ity δp and die at rate δd yields the same allocations as a model with death rate δ = δp + δd

— human-capital-accumulation decisions do not have any effect on a worker’s life after a
vintage-displacement shock.
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Table 1: Calibration targets
Moment Establishments Data Model

Difference of median log earnings < 10 years old −0.13 −0.16
to establishments > 20 years old 10-20 years old −0.13 −0.05

< 10 years old 0.41 0.41
5-year tenure premium 10-20 years old 0.34 0.21

> 20 years old 0.28 0.08

Fraction of workers > 20 years old 0.56 0.58

(The first five statistics are in log points. The 5-year tenure premium is calculated from
the predicted values of a regression of log earnings on a quartic in establishment tenure
within the respective group of establishments.)

4.1 Equilibrium properties

Figure 3 is a summary of the results. The career lines in the upper-left
panel show agents’ equilibrium trajectories through the (τ, h)-space. Agents
in young vintages make the hardest efforts to climb the skill hierarchy. This
is in line with value differentials in the hierarchy being highest in these
vintages, as the value function in the lower-left panel shows. The lower-
right panel illustrates that wage compression is a process that happens all
the way from the newest to the oldest vintages. The skill premium is highest
in the youngest vintages and continuously shrinks as the vintage ages. The
density function in the upper-right panel is in line with wages: Workers with
high experience in young technologies are the scarcest factor in the economy,
whereas skill scarcity vanishes in old vintages as workers press up in the skill
hierarchy from below.

Figure 4 shows more variables of interest. In the upper-right panel, we
see that entry into vintages is hump-shaped and strictly greater than zero
even for the oldest vintages.28 As apparent in figure 3, late entrants are
compensated for learning the least useful skills by the highest entry wages
in the economy. The upper-left panel illustrates that despite positive entry,
total employment is decreasing in vintage age in the end because incumbent
workers are displaced at a faster rate than entrants replace them.

The lower-right panel in figure 4 illustrates labor productivity by vintage
age. The pattern is reminiscent of the hump-shaped, back-loaded return pro-
files that are typical for organization-capital models (see Atkeson & Kehoe,
2005, for example). Young vintages are unproductive because they have a

28A straightforward calculation shows that the entry density is m(τ ) = n(τ, 0)/ḣ(τ, 0).
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very unbalanced mix of labor inputs; marginal returns to the different skill
levels are far from equalized since high-skill labor is very scarce. In older
vintages, human-capital accumulation leads to gradual equalization of skill
returns. However, these returns wear off over time and the negative TFP
effect eventually dominates, as section 3.6 pointed out.

4.2 Tenure-earnings profiles

Figure 1 shows tenure-earnings profiles, following a cohort of vintage en-
trants over time as they accumulate human capital in their respective tech-
nology. The curve that extends farthest to the right refers to workers who
enter the frontier technology; the shorter the curves become, the later the
respective workers enter the vintage.

To understand the forces at work in these profiles, it is useful to de-
compose the growth of log-wages into its different components. Consider
infinitesimal changes in log-wage along a career {h(t), τ(t)} using (18):

d ln w

dt

∣
∣
∣
∣
∣
τ(t),h(t)

= ḣ(τ, h)
f ′(h)

f(h)
+(1−ρ)

(

∂ ln Ỹ (τ)

∂τ
−

d ln n[τ(t), h(t)]

dt

)

. (19)

The three terms on the right-hand side have a clear economic interpretation:
I term them (from left to right) the experience effect, the organization-capital
effect and the obsolescence effect. The latter two can be combined into a
relative-supply effect.

The experience effect captures returns from learning. This is the only
effect present when skills are perfect substitutes (ρ = 1). In figure 3 we see
that human-capital accumulation ḣ is always positive but decreasing over all
careers. Since the learning function f was assumed to be concave decreases
over a career, this means that the experience effect is always positive but
wears off over the course of a career.

The innovation in the model presented here with respect to the models
in the literature lies in the terms that are switched on when lowering ρ
below one. These are stemming from relative factor supply. The second
term involving production Ỹ (τ) is always increasing; it represents the gains
from joint learning and the equalization of factor returns, which grow as the
vintage ages and its skill mix improves. I call this term the organization-
capital effect.

Finally, the obsolescence effect (which involves the density n evaluated
along the career path) is key for understanding why earnings profiles are
decreasing for most workers towards the end of their careers. As a vintage
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ages and more agents enter it, once-scarce skills become more abundant as
workers from the lower ranks press up in the skill hierarchy. A real-world
example for this might be an HTML-programmer whose skills commanded
high returns when the Internet was in its infancy but saw his wages dwindle
as more and more other programmers learned HTML and his knowledge
became less scarce. Proposition 2.15 shows that – under any parameter
constellation –, for some skilled workers in young vintages this effect indeed
overrides the other two and leads to earnings losses.

An interesting feature of the wage profiles generated by the model is that
they have heterogeneous slopes and curvature. In Ben-Porath-type models,
heterogeneity in shape is usually attained by assuming heterogeneous learn-
ing ability, see for example Guvenen & Kuruscu (2007) and Huggett, Ventura
& Yaron (2006). In contrast to these models, agents here are ex-ante equal
and all heterogeneity is ex-post and endogenous. In fact, heterogeneity in
earnings profiles is essential in order to give workers the incentives to enter
all existing vintages and to ensure that all vintages have an efficient skill
mix.

Another topic from the labor literature addressed by the model is “over-
taking”. Hause (1981) defines overtaking as the fact that two wage profiles
with different slope but the same present value have to intersect at a certain
point. The model has precise predictions on when this overtaking point oc-
curs for different pairs of agents in the economy. In the calibrated model,
overtaking happens throughout the first decade of workers’ careers, as is
evident from figure 1.

4.3 Comparative statics

When varying parameters with respect to the baseline calibration, steady-
state characteristics change as follows:

An increase in γ creates incentives to abandon old vintages earlier since
frontier TFP is increasing faster. For example, an increase from 0.45% to
0.9% cuts T ∗ (the age of the oldest vintage) from 49 to 34 years, which of
course lowers the fraction of workers employed in old technologies. Tenure
premia rise in young vintages but fall in older ones. The difference between
median wages in young vintages and old vintages, however, decreases with
respect to the baseline calibration.

Changes in ρ have ambiguous effects on T ∗. There seem to be two funda-
mental effects that work in different directions. A first (partial-equilibrium)
effect is always positive: The higher ρ, the less important complementarities
between skills in determining production and wages; this takes away the
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only advantage that older technologies have over younger ones – their more
balanced skill mix –, so it makes sense to scrap vintages earlier. A second
(general-equilibrium) effect works in the opposite direction: The more im-
portant complementarities, the higher the returns for highly-skilled workers
in young technologies — this leads more entrants to choose young technolo-
gies and to acquire skill faster, which leads to a balanced skill mix inside
a vintage earlier and encourages early scrapping. Indeed, in the parameter
region around the preferred calibration, the second effect is stronger: Low-
ering ρ from 0.71 to 0.60 lowers the optimal scrapping time T ∗ from 49 to
44 years. Tenure and skill premia in young vintages increase as expected:
Stronger complementarities mean that scarce factors reap higher rewards.
However, tenure and skill premia decrease in over-20-year-old vintages.

An increase of c̄ (the cost of skill accumulation) unambiguously leads to a
shortening of the vintage horizon T ∗: Doubling c̄ from 0.75 to 1.50 increases
T ∗ from 49 to 65 years, for example. It takes agents longer to accumulate
skills, which leads to longer vintage lifetime. It turns out that changes in
c̄ do not have systematic effects on tenure premia. This is probably due
to the fact that there are two competing forces at play: On the one hand,
slower skill accumulation exacerbates skill scarcity and hence increases skill
premia; on the other hand it also slows down workers’ rise in the skill ladder
and thus leads to lower skill differences between workers a given difference
in tenure.

4.4 More evidence

Note that the identification strategy pursued so far has relied on the as-
sumption that younger establishments operate with technology of a newer
vintage. However, the model still has strong implications for the data even
when this assumption is dropped.

To see this, suppose that a certain industry has plants that are predom-
inantly of new vintages. Then the model makes us expect higher tenure
premia and lower mean wages in this industry than in an industry mainly
comprised of old-vintage plants. The same should be true for occupations
or even establishments: Occupations/Establishments which make heavier
use of new vintages should display higher tenure premia and lower mean
wages. Now, note from figure 4 that young vintages grow strongly in
both employment and output, whereas older vintages are contracting; so in-
dustries/occupations/establishments (IND/OCC/EST) with predominantly
new vintages grow faster according to the model. To summarize, we would
expect high tenure premia and low mean wages in fast-growing IND/OCC/EST.
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Table 2 shows the results of a regression of cross-sectional earnings
on worker (IND/OCC/EST-)tenure, IND/OCC/EST growth and quadratic
and interaction terms of the two. The interaction terms are all positive, as
predicted by the model: Faster growing IND/OCC/EST have higher tenure
premia. The coefficients on growth (g) have the expected negative sign for
IND and EST, but a positive sign for OCC: Faster-growing IND/OCC/EST
have lower mean wages. So overall, the regression results support the model’s
predictions.29

Table 2: Regressions on growth and earnings structure

Category N const ten ten2/100 g g2/100 ten × g

Industry 208,986 4.930 .055 -.141 -.113 .065 .023
Occupation 209,721 4.923 .060 -.164 .189 -.221 .027
Establishment 152,383 5.043 .0386 -.098 -.005 .007 .006

Censored regression (top-coded data) of log earnings on a second-order polynomial in
IND/OCC/EST tenure and IND/OCC/EST growth, both referring to the respective cat-
egory. IND/OCC/EST-growth g is calculated as ln M(2000)− ln M(1995), where M is the
number of workers in the respective category. Tenure and earnings data are from 2000.
All coefficients – except for the one on g for EST – are significantly different from 0 at
the 1%-level.

The magnitude of the effects is considerable: An IND (OCC, EST) that
grows by 1% on a yearly basis has a 5-year tenure premium that is 0.58 (0.67,
0.14) percentage points higher than that of a stagnant one. In an IND (OCC,
EST) that grows by one standard deviation faster than a stagnant one, the
5-year tenure premium is 2.38 (2.42, 1.92) percentage points higher than in
stagnant one.

5 Conclusions

This paper has studied a model of vintage-human-capital accumulation that
matches key facts on the tenure-earnings distribution in a German data set.
It provides a promising avenue for understanding the systematic variation
in the earnings structure across establishments, industries and occupations.

29These empirical patterns are in line with Michelacci & Quadrini’s (2004) results from
Finnish matched-employer-employee data. They find that in fast-growing firms returns to
tenure are highest and starting wages are lowest . Their model explains this phenomenon
by financial constraints that are especially severe for fast-growing firms, inducing firms to
“borrow” from their workers by offering back-loaded tenure-earnings profiles.
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In the following, some potential applications of the framework are briefly
discussed.

A first proposed application is a macroeconomic one: The model relates
the rate of embodied technological growth to the earnings structure, both
at the industry and the economy-wide level. Previous versions of the paper
had focused on this point, arguing that the steepening of age-earnings pro-
files and the concomitant rise in cross-sectional and time-series variance of
earnings in many industrialized countries over the last decades could have
been caused by a technological acceleration.

Second, the model tells us how the extant skill structure across industries
influences sector choice and human-capital-accumulation decisions of young
people. An implication is that young Germans are put to productive use
entering the relatively old car industry and complementing their skilled an-
cestors, whereas young Indians are doing well concentrating in new industries
(becoming programmers, for example). Since there is a lack of established
industries with a large stock of existing human capital in India, young Indi-
ans do not have the same incentives as their German counterparts to enter
old sectors. The model implies that the described sector-choice patterns are
efficient given the extant skill structure in each country.

A third aspect worth mentioning, which has only been touched upon in
the previous discussion, is the productivity profile of a vintage over time
(see the lower-right panel of figure 4). It displays the typical back-loaded
shape that is often posited in an ad-hoc fashion for organization capital (see
Atkeson & Kehoe, 2005, for example). In fact, the model presented here can
be construed as a micro-foundation for the way an organization increases its
productivity over time and how it shares these productivity gains among its
members.

Finally, one could study the riskiness of human capital and technology
choice for workers by introducing a stochastic component into the frame-
work.
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A Additional proofs

A.1 Proofs on the competitive equilibrium

A.1.1 Bounded resources

Lemma A.1. (Bounded resources) There is a uniform bound ȳ < ∞ on Ỹ (n),
∫

n ≤
1. Thus, resources in the economy are bounded for each fixed t.

Proof. Let ∆ = {n :
∫

n = 1} be the unit simplex. By weak concavity of Ỹ (·),

the set B = {(n, Y ) : n ∈ ∆, Y ≤ Ỹ (n)} is convex and has non-empty interior.
Now, fix some interior point n̄ ∈ ∆, say n̄(·) = 1. By the separating-hyperplane
theorem, there is a bounded linear functional f on ∆ such that Y (n) ≤ f(n) for
all n ∈ B; in other words, all points in B must be in the halfspace below the
hyperplane {(n, Y ) : n ∈ ∆, f(n) = Ỹ (n̄). Since f is bounded, we must have
Ỹ (n) ≤ M ||n|| = M} for all n ∈ ∆ for some M < ∞ (the norm of f), where we use
the norm ||n|| =

∫
|n| for the functions n.

A.1.2 Proof of lemma 2.3: All jobs filled in producing vintage

Proof. Y (τ̄ ) > 0 implies that some open ball Bǫ(τ̄ , h̄) lies in the support of n for
some h̄ ∈ (0, 1). If there was some h′ such that (τ̄ , h′) did not lie in the closure
of n’s support, then there would be a ball Bǫ′(τ̄ , h′) with ǫ′ ≤ ǫ in which wages
must be infinity — if not, firms should optimally choose to employ some workers
there. But then, any career segment passing through Bǫ′(τ̄ , h′) would yield infinite
wages yet could be reached with a finite cost, implying that W = ∞. This is clearly
impossible since resources in the economy are bounded, see lemma A.1.

A.1.3 Proof of lemma 2.9: Paths cross at most once (ρ = 1)

Proof. Suppose that the paths crossed again and denote by s the first crossing
point, i.e. s = maxu<t{u : h(u) ≤ g(u)}. Together with h(t) ≥ g(t) this implies

h(t) − h(s) ≥ g(t) − g(s) ⇒

∫ t

s

ḣ(u)du ≥

∫ t

s

ġ(u)du, (20)

i.e. h must grow by at least as much as g over the interval to end up above. By the
assumption on the wage function, wh(h) is a decreasing function in h. Using the
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FOC (3), this implies that for all s < u < t, we have

c′
(
ḣ(u)

)
=

∫ t

u

e−βvwh[h(v)]dv + e−β̃(t−u)c′
(
ḣ(t)

)
<

<

∫ t

u

e−β̃vwh[g(v)] + e−β̃(t−u)c′
(
ġ(t)

)
= c′

(
ġ(u)

)

since by assumption ḣ(t) < ġ(t) and wh[h(v)] ≤ wh[g(v)] point-wise; the inequality
follows from c′ being increasing. This again implies ḣ(u) < ġ(u) for all u, which in
turn contradicts (20).

A.1.4 Proof of proposition 2.11: Faster growth shortens careers
and lowers tenure premia (ρ = 1)

Proof. Let W (γ) be the value of being an inexperienced worker at time 0 given
vintage productivity growth γ. His problem is then to choose the switching time T
when to leave the vintage to maximize

V (γ, T ) = J(T ) + e−ρT W (γ),

where K(·) is given in (8). Invoking the assumption that K(·) is twice differentiable,
the derivatives are computed as

VT (γ, T ) = J ′(T ) − (ρ − γ)e−(ρ−γ)T W (γ) (21)

VTT (γ, T ) = J ′′(T ) + (ρ − γ)2e−(ρ−γ)T W (γ), (22)

The FOC for the optimal career length T ∗(γ) is VT (γ, T ∗(γ)) = 0, the SOC is
VTT (γ, T ∗(γ)) < 0.

I will now state the problem in slightly different terms, which will enable us
to derive how W ∗(γ) ≡ W (γ, T ∗(γ)) changes as γ changes. Note that since the
worker’s problem is recursive, we can write his value as W (γ, T ) = K(T )/(1 −
e−(ρ−γ)T . T ∗(γ) maximizes the function W (γ, T ) for a given γ — indeed, the
first-order conditions yield just the same result as in the problem above when max-
imizing V (γ, ·). But the formulation here is much more handy to see what happens
to the agent’s value when we change γ:

∂W ∗(γ)

∂γ
=

dW (γ, T ∗(γ))

dγ

∣
∣
∣
∣
∣
γ,T∗(γ)

=
e−(ρ+γ)T∗

1 − e−(ρ−γ)T∗
T ∗W (γ, T ∗)

where the envelope condition WT (γ, T ∗(γ)) = 0 is used.
Now, re-state the first-order condition for T ∗(γ) from (21):

J ′
(
T ∗(γ)

)
= (ρ − γ)W ∗(γ)e−(ρ−γ)T∗(γ)
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Take the total derivative of this equation with respect to γ and use (23) to obtain

dT ∗

dγ
VTT

(
γ, T ∗(γ)

)

︸ ︷︷ ︸

<0 by SOC (22)

= (ρ − γ)e−(ρ−γ)T∗(γ)W ∗(γ)
︸ ︷︷ ︸

>0

[

T ∗(γ)

1 − e−(ρ−γ)T∗(γ)
−

1

ρ − γ
︸ ︷︷ ︸

≡Φγ(T∗)

]

(23)
We see that if T ∗ is large, also Φγ grows large, implying that also the effect dT ∗/dγ
is negative and large in absolute value. When taking T ∗ → 0 and using L’Hopital’s
rule, one finds that Φγ → 0, implying that the effects on T ∗ become very small.

The derivative of Φγ in T ∗ is

Φ′

γ(T ∗) =
1 − 1+(ρ−γ)T∗

e(ρ−γ)T∗

(1 − e−(ρ−γ)T∗)2
.

Note that in the numerator, 1 + (ρ − γ)T ∗ is nothing but the first-order Taylor
expansion of the function e(ρ−γ)T∗

in T ∗ around 0, which always below the func-
tion itself since the exponential function is convex. This implies that the fraction
in the numerator is always smaller than one, implying that Φγ is an increasing
function all the way from zero to infinity. This in turn implies Φγ > 0 (recall that
limT∗→0 Φ(T ∗) = 0), which tells us we have dT ∗/dγ < 0 for all γ > 0.30

There may exist values of γ where T ∗(γ) = 0; in this case, the statements in
the proposition are trivial.

Finally, since T ∗(γ) is a decreasing function it follows from proposition 2.10
that pγ(t) is decreasing in γ for any fixed t > 0.

A.1.5 Proof of lemma 2.13: Wage explosion for the skilled in
young technologies

Proof. First, I show that the cost C(∆h, ∆t) of accumulating human capital ∆h in
a time interval ∆t goes to infinity for fixed ∆h when letting ∆t → 0. By Jensen’s
inequality, the minimal cost of accumulating ∆h within ∆t is by setting a constant
ḣ = ∆h/∆t throughout ∆t. Then C(∆h, ∆t) ≥ c(∆h/∆t)∆t → ∞ if ∆t → 0 by
our assumption on c(·).

By lemma 2.7, Sn must be a rectangle (T0, T
∗) × [0, 1]. Now, suppose there

was no singularity for w in the upper left corner and w(T0, 1) < ∞. Then, by
continuity of w, for each ǫ there is a ball Bδ(T0, 1) in which wages deviate not more
than ǫ from w(T0, 1). So the parts of any career segment contained in Bδ(T0, 1)
yield bounded wage payments. But we can definitely find a sequence of careers for
which learning costs inside the ball exceed any bound. To see this, set ∆h = δ, take
a sequence ∆τ → T0 and note that the cost of reaching (T0 + ∆τ, 1) inside B must
go to infinity. Note also that a positive measure of workers must take such paths
since no region is empty by lemma 2.3. But then, those workers cannot behave

30Note that these calculations fail to provide us with any upper bound on dT ∗/dγ, so
in principle this change can be arbitrarily large.
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optimally and should change their h-path through the ball B, which is inconsistent
with equilibrium.

This also implies that T0 = 0. If this was not the case, then workers with
careers in Bδ(T0, 1) should reach those by choosing flatter careers entering at τ = 0,
which would imply that those careers could achieve unbounded value by the above
argumentation. This contradicts W < ∞.

A.2 Planner’s cost-minimizing promotion strategy

Lemma A.2. (No-crossing measure is optimal) For a given density n(t, s, h), it is
optimal for the planner not to let career paths cross when implementing the density.
This means that the planner makes workers follow paths h(t+u) for any given t, any
vintage s and any u ∈ (0, T−t) such that N [t+u, s, h(t+u)] = exp(−δu)N [t, s, h(t)].

Proof. I will proceed constructively to engineer the optimal measure on life paths by
a discrete approximation procedure. Cut time and vintages into intervals of length

2−kT ∗ for k = 1, 2, . . . to obtain grids {t
(k)
i }∞i=1 and {s

(k)
i }Ns

i=1. For human capital,

slice such that the points {h
(k)
i }Ns

i=1 yield intervals of length 2−k. Approximate
every path by connecting the middle of the interval [hi, hi+1] it passes through at ti
for t = 0, 2−k, . . . with straight lines. For every given measure µ on lives, summing
up the costs over all possible promotion paths weighted by the densities induced by
the measure µ gives us an approximation Ck(µ) for the total cost of human-capital
accumulation for this µ.

Now, we will construct a lower bound C∗

k on this cost for a fixed iteration k
in the algorithm. Note that it is enough to consider the task of moving workers
between ti and ti+1 for each point in time. It does not matter how we combine
these path segments sequentially later, any such combination must obviously yield
the same value.

Without loss of generality, consider the case k = 1 for t1 = 0 and t2 = 1 for the
vintage s = 1 (note that the case s = 0 is trivial). The claim is that it cannot be
optimal to choose a promotion scheme under which the paths of a positive measure
of agents cross. Suppose we chose a promotion scheme under which a positive
measure of agents crossed, i.e. a measure ǭ went from h̄0 to h1 and a measure
ǫ > 0 from h0 to h̄1, where all the mentioned h-levels are center points of the
approximation grid, and where h̄j > hj . Now, set ǫ′ = min{ǫ, ǭ} and consider the
alternative of moving ǫ′ agents from h̄0 to h̄1 and the measure ǫ′ from h0 to h1. This
would dominate the original allocation because of the following argument: Take z
to be the intersection of the lines h̄0 to h1 and h0 to h̄1. Then, clearly the process
of sending everybody to z but then exchanging the flows to keep workers positions
in the hierarchy fixed is just as cheap as the original policy. However, notice that
this new policy must be weakly inferior to sending workers on the direct line h̄0 to
h̄1 and h0 to h1, since this is the cost-minimizing strategy by Jensen’s inequality.

Also, notice that there always exists a policy which does not make any worker
flows cross: First, fill the uppermost interval at t = 1 with the uppermost workers
from t = 0; proceed by filling the second interval with the uppermost workers left at
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t = 0 after the first step, and so forth. It is also clear that any process that does not
follow these rules must make some workers cross and that any such process can be
rendered into the proposed no-crossing algorithm by a finite number of improving
operations; this shows that the no-crossing mechanism is optimal for a fixed k.

Obviously, the values C∗

k converge to the value of implementing the no-crossing
measure µnc. Now, observe that no other measure µ′ can yield a cost strictly lower
than this: If we approximate µ′ by the above scheme, by the above argument it must
be that Ck(µ′) ≥ Ck(µnc). This precludes C(µ′) = limk→∞ Ck(µ′) < limk→∞ C∗

k =
C∗.

It remains to prove that the lines of the no-crossing measure follow the proposed
law. By the algorithm above, it is clear that an agent who at t had N(t, s, h)
workers above himself (position h) in vintage s and survives until t + u will have
exp(−δu)N(t, s, h) workers above himself at t+u if none of the other workers crosses
his path. This proves the second claim of the statement.

A.3 Existence of solution to the planner’s problem

In order to reap the benefits of compactness, we may restrict ourselves to seek a
maximand n in the planner’s problem that satisfies the following conditions: We re-
parameterize the density from n(t, s, h) to n(t, τ, h), which ensures that the partial
derivative nt → 0 everywhere as t → ∞ for any n that converges to a stationary dis-
tribution. Then, compactify the t-dimension using an increasing concave transform
that maps [0,∞) → [0, 1) and define limt→∞ n(t, τ, h) as ñ(1, ·). We then impose
a Lipschitz condition uniformly on the entire family of ñ in which we look for a
maximand (This essentially means that the modulus of continuity for the original
n becomes always stricter in the t-direction as t increases; the “wiggling” in n has
to become smaller as t grows).

If we further assume that n is point-wise bounded – which is unproblematic –
, equicontinuity allows us to employ the Arzela-Ascoli theorem which tells that
such a family of functions ñ is a compact set; see Rudin (1973) for a statement of
the theorem. The computational exercises indicate that indeed the optimizer n∗

satisfies a Lipschitz condition; decreasing the grid size to allow for always steeper
functions n does not significantly alter the solution after some point. However, it
is hard to prove that the solution really satisfies such a Lipschitz condition.

B Computational algorithm

The following method discretizes the state space into a finite number of vintages
and a finite number of rungs in the skill ladder. The algorithm can be interpreted as
introducing a random element to skill accumulation (see Kushner & Dupuis, 1992,
on the approximation of continuous-time models by discrete-time Markov chains).
The algorithm is not only useful compute an approximation to the equilibrium,
but also to form some intuition about the value function, agent’s paths and other
objects of the (continuous) model. The death probability δ is set to zero to simplify
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the exposition; of course, all arguments presented here also apply to the case δ > 0.
Throughout, we only consider stationary allocations, i.e. variables depend only on
(τ, h) but not on t.

First, construct a discrete grid on the rectangle (0 ≤ τ ≤ T, 0 ≤ h ≤ 1 as follows:
Divide the vintages into S sub-intervals (of equal size ∆τ) and the experience levels
into h sub-intervals (of equal size ∆h). The center points of these intervals are
denoted by {τi}

T
i=1 and {hj}

S
j=1.

To approximate skill approximation choices ḣ, we linearly interpolate the value
function between adjacent cells. If the grid is such that workers climb less than ∆h
over a time interval of ∆τ in all cells, than linear interpolation is equivalent to the
following “stochastic careers”: Set the probability p(τi, hj) that the agent moves
one box up (from hj in vintage τi to hj+1 in vintage τi+1, that is) such that the

expected slope of his career equals ḣ(τi, hj), but that it does not exceed one:

p(τi, hj) = min

{

ḣ(τi, hj)
∆τ

∆h
, 1

}

This means that in order to be able to replicate very steep slopes in this fashion,
we need to make the slope ∆h/∆τ become successively greater as k grows. I will
make the following limiting argument: If we have an infinite sequence of discrete
approximations as described above, choose the number of grid points as Sk = kS0

and Hk = k3/2H0 (the reason for this choice will become clear later). Now, since
the number of grid points for the hierarchy grows faster than the number of grid
points for vintages, the maximal possible slope ∆hk/∆τk will grow to infinity, so
any slope ḣ will be covered from some k on, and all points in the upper-left corner
of the rectangle will be reached by some mass from some k on. Of course, for each
given grid size there still might be some cells in which the bound 1 is reached.

Consider now how the density of workers evolves on the grid:

n(τi+1, hj) =
[
1 − p(τi, hj)

]
n(τi, hj) + p(τi, hj−1)n(τi, hj−1).

Now, introduce the (upward-) difference operators ∆hf(τi, hj) = f(τi, hj+1) −
f(τi, hj) and ∆τf(τi, hj) = f(τi+1, hj) − f(τi, hj) for arbitrary functions f(·, ·).
Then we can re-write the above as

∆τn(τ, h) = − ∆h

[

n(τ, h − 1)p(τ, h − 1)
]

= −n(τ, h − 1)∆hp(τ, h − 1)

− p(τ, h − 1)∆hn(τ, h − 1) − ∆hn(τ, h − 1)∆hp(τ, h − 1).

Note that the last term on the right-hand side will become small compared to the
others when the grid becomes very fine. In the limit, the equation becomes equiv-
alent to the mass-transport PDE (6) that describes the behavior of the density n.

Production in a vintage Ỹ (excluding the TFP term e−γτi) is calculated as

Ỹ (τi) =
[∑

(f(τj)n(τi, hj))
ρ
∆h
]1/ρ

,
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where again the function f is evaluated in the middle of the corresponding box
(τi, hj). This expression converges to Ỹ (n(τi, ·)) (under mild conditions) for a given
function n(·) as δh → 0.

The discrete counterpart for wages is

w(τi, hj) = exp[−γτi]fj

(

Ỹ (τi)

n(τi, hj)

)1−ρ

. (24)

Note that this gives the wage rate per unit of time. If we want to calculate the
counterpart to wage payments over time a worker spends inside a box (τi, hj), of
course we have to multiply this wage rate by ∆τ .

The discrete counterpart of the value function is

V (τi, hj) = w(τi, hj)∆τ + e−(β+δ−γ)∆τV (τi+1, hj)+ (25)

= max
ḣ

{

−
c

2
ḣ2∆τ + ḣ

∆τ

∆h
︸ ︷︷ ︸

=p

e−(β+δ−γ)∆τ∆hV (τi+1, hj)

}

.

Since agents only move upward in equilibrium, we take the upward-difference to
approximate the h-derive of V in the spirit of upwind-differencing.

Solving for the optimal policy gives us

ḣ∗(τi, hj) =
e−(β+δ−γ)∆τ

c

∆hV (τi+1, hj)

∆h
, (26)

which converges to the optimal policy from the agent’s first-order condition in the
continuous case. Plugging back in, we obtain the Bellman equation

V (τi, hj) = w(τi, hj)∆τ + e−(β+δ−γ)∆τV (τi+1, hj) + e−2(β+δ−γ)∆τ 1

c

(

∆hV (τi+1, hj)

∆h

)2

∆τ.

When dividing this equation by ∆τ and taking the limit as ∆τ → 0, we obtain the
Hamilton-Jacobi-Bellman equation (HJB) (2) for the continuous case.

I solve the system for a given rectangle with length T using an algorithm that
is inspired by how a real economy might converge to a steady state under adaptive
expectations, assuming some inertia in agents’ actions. Given a distribution of
agents nk (where k indexes the iterations of the algorithm) over the grid, one can
calculate the resulting wages from (24). Using the fact that the marginal value of
skill is zero when the vintage dies (i.e. ∆hV (k)(τT+1, hj = 0 for all j), we can back
out the value function recursively going from τT back to τ1 using (25), which also
yields optimal policies ḣ∗(k) from (26).

As for the promotion efforts ḣ, we now mix some of the optimal policies into the
existing ones: ḣ(k+1) = αḣk + (1− α)ḣ∗(k). As for the entry decisions, I send more
mass into the starting points with higher value and less mass into those with higher
value. Since wages are inversely related to the density, this algorithm drives the
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system towards an equilibrium if the tuning parameters are chosen right. Further
work is required to prove that this algorithm is indeed a contraction.

To find T ∗, the vintage horizon that is optimal from the planner’s point of
view, I vary T and find a density nT by the algorithm above. I then choose T ∗ as
the horizon T that maximizes the planner’s criterion described in the beginning of
section 3.

The complete Matlab code used in the calibration and more detailed documen-
tation are available from the author upon request.

C Data

This study uses the weakly anonymous IAB Employment Sample (years 1975-2001).
Data access was provided via on-site use at the Research Data Center (FDZ) of
the German Federal Employment Agency (BA) at the Institute for Employment
Research (IAB) and remote data access.31 The data set is a 2% random sample of
all Germans covered by the mandatory public unemployment-insurance scheme.32

Every individual holding a job that fell under this scheme for at least several weeks
at any point of the period 1975-2001 was at the same 2% risk of being sampled.
For every sampled individual, all available employment spells were collected and
included in the data set. Available characteristics include pre-tax earnings, gen-
der, age and 3-digit occupation code of the person as well as an identifier of the
employer’s establishment and a 3-digit industry classification of the establishment.
As is common in the literature, I restrict the sample to males who work full time
and are between 20 and 61 years old. For consistency reasons, only workers born in
former West Germany are considered. The next section provides a more detailed
description of the data and the exclusion restrictions.

The data used in this paper are the Employment Samples provided by the Re-
search Data Center of the German unemployment office 33. They were collected
for administrative purposes by the mandatory unemployment-insurance (UI) sys-
tem in Germany. From 1975 until 2001, spell data about the employment situation
were collected at least once yearly from all German employees that were subject
to contributions to the unemployment-insurance system. Among full-time employ-
ees, this excludes only the self-employed and Beamte (public-sector employees with
life-time tenure). On the other hand, data are available for all unemployed workers
who were paid benefits out of the UI system — the latter are not used in this paper.

31See Drews, Hamann, Köhler, Krug, Wübbeke & Autorengemeinschaft ’ITM-
Benutzerhandbücher’ (2006) for an excellent documentation of the IAB Employment Sam-
ple.

32The sample does not include tenured public-sector employees and the self-employed;
these groups are not overwhelmingly large so that the data set can be seen as representative
of the German labor market.

33In German, the data are succinctly called the: (IAB) Beschäftigtenstichprobe, pro-
vided by the Forschungsdatenzentrum (FDZ) of the Bundesagentur für Arbeit (BA) at
the Institut für Arbeitsmarkt- und Berufsforschung (IAB).
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The sampling design for the IABS is as follows: Every German individual who
was subject to paying contributions to the UI system at any point between 1975 and
2001 was sampled at a uniform probability of 2%. Once an individual was sampled,
all data from the UI system (work spells and unemployment spells) that could be
matched to the individual were included in the sample. The data set consists of
more than 12 million spells for more than 1 million individuals.

Individual-specific data include a person’s age, sex and a measure of educa-
tion34. For each spell, daily earnings, an establishment ID and the worker’s 3-
digit-level occupation classification are available. At the establishment level, some
information is available that was obtained from aggregates over the original set
of administrative data before the 2%-sample was drawn. These data include 3-
digit-level industry classification, number of employees in the establishment in the
respective year, and the first and last date between 1975 and 2001 in which the
establishment hired a worker subject to UI contributions.

I only consider records of male individuals who are both older than 20 years
and younger than 62 years in the beginning of the year under consideration. I
only consider spells coming from the BeH, the database for work relationships – all
spells stemming from LeH, the database for unemployment-insurance payments, are
automatically excluded from the sample. Also, I consider only full-time employees
(stib< 8). Furthermore, all spells that are marked as “geringfügige Beschäftigung”
(tax-exempt part-time employment) are dropped.

Note that apprentices and interns are included in the sample. This is a deliber-
ate choice; since these employees constitute arguably a considerable fraction of the
labor force that has no job-specific skills yet, it would not be desirable to discard
this information in a study on human-capital accumulation.

Also, I only consider individuals whose first employment is with an establish-
ment located in former West Germany. This is done in order to ensure compara-
bility of the results before and after 1990.35 Furthermore, some quality checks are
performed on the data: Spells of individuals for whom more than one full-time job
is declared are discarded. Also, spells with unreasonably low daily earnings are
deleted (below 7 Euros in 2000 Euros per day).

Earnings are adjusted for inflation using the consumer price index for West
Germany provided by the Bundesbank (the German Central Bank).

Stata programs and documentation on how the moments in section 4 were
obtained in detail are available from the author upon request.

34This education measure is only filled for employment contracts where education infor-
mation is necessary to determine UI contributions or benefits, so its information content
is limited.

351990 is the year of German re-unification. Note that individuals born in the former
East who have moved West before their first job are included. This should have no major
bearing on the results since it is reasonable to assume that these individuals do not differ
systematically from West Germans in terms of earnings potential — the education systems
in both parts are of similar quality.
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