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Abstract:  An input distance function (IDF) is estimated to empirically evaluate and 

analyze the technical and environmental efficiencies of 210 farms located in the 

Chaudière watershed (Quebec), where water quality problems are particularly acute 

because of the production of undesirable outputs that are jointly produced with 

agricultural products. The true IDF is approximated by a flexible translog functional form 

estimated using a full information maximum likelihood method. Technical and 

environmental efficiencies are disaggregated across farms and account for spatial 

variations. Our results show that there is a significant correlation between technical and 

environmental efficiencies. The IDF is used to compute the cumulative Malmquist 

productivity index and the Fisher index. The two indices are used to measure changes in 

technology, profitability, efficiency, and productivity in response to the adoption of 2 

selected best management practices (BMPs) whose objective is to reduce water 

pollution. We found significant differences across BMPs regarding the direction and the 

magnitude of their effect on profitability, efficiency and productivity.   

 

Keywords: Environmental efficiency, distance function, phosphorus runoff, productivity, 

profitability, technical efficiency. 
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Technical and Environmental efficiencies and Best Management Practices in Agriculture 

 

1.� Introduction 

Typically, farmers produce good outputs such as milk and maize (“goods” henceforth), but also 

undesirable outputs (“bads” henceforth) such as excessive phosphorus or sediments. They must 

allocate marketable inputs efficiently to be competitive, and are increasingly under pressure to 

reduce environmental damages. The analysis of technical efficiency in agricultural production 

has a long and rich history (e.g., Farrell, 1957; Timmer, 1971), but its linkage to environmental 

efficiency is fairly recent (Reinhard, Lowell and Thijssen, 1999). Concerns about climate change, 

biodiversity and water pollution have boosted interest in mitigating the environmental 

consequences of agriculture through Best Management Practices (BMPs). Hence, the extent by 

which BMPs may impact on measured efficiencies and other aspects of economic performance 

has important public policy implications.  

Atkinson and Dorfman (2005)1 analyze economic performance of firms producing good 

and bad outputs by estimating a cost function. Their approach entails disaggregating a subset of 

inputs into abatement and non-abatement components to calculate their effect on costs. 

However, this approach usually does not consider the abatement components of other inputs 

(see Barbera and McConnell, 1990). Another approach is to introduce one or more bad outputs 

along with good outputs in a multiproduct production function. Each choice of the base 

unconstrained emission rate thus creates a different nonlinear transformation of the original 

variables conditioning agricultural production and hence a new model with different elasticities, 

returns to scale and test statistics (Atkinson and Dorfman, 2005). Stochastic frontier analysis 
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(SFA) has also been applied to cost functions and is most useful when production processes are 

subject to random shocks (Coelli, Singh and Fleming, 2003).2   

Following Fernandez, Koop and Steel (2000), Fernandez, Koop and Steel (2002) (FKS 

henceforth), introduce good and bad outputs in a stochastic production frontier, estimated with 

Bayesian methods, to disentangle technical and environmental efficiencies. Technical efficiency 

is the ratio of actual output and the maximum possible output predicted by an estimated 

frontier. FKS’s (2002, p.433) definition of environmental efficiency aims to answer the following 

question: “How much pollution could be reduced, without sacrificing good outputs, by adopting 

best-practice technology?” (p. 433). FKS (2002) made the assumption that the frontier for the 

“goods” depends only on input quantities, whereas the frontier for the “bads” is determined by 

the amount of good outputs produced. A key assumption of FKS (2002) is that of a separable 

technology allowing for the aggregation of inputs and outputs.  

The direct estimation of a cost frontier is impractical in some cases (e.g. when input 

prices do not vary much across firms) or is inappropriate because of systematic deviations from 

cost-minimizing behavior. This is the case in an industry where regulatory factors cause shadow 

prices to deviate from market prices in a systematic way. In these situations, the duality 

between cost and production functions vanishes, and the resulting bias in the cost frontier 

estimates makes the efficiency calculation and decomposition biased as well (Coelli, Singh and 

Fleming, 2003). A possible solution is the use of a shadow cost function, which explicitly models 

systematic deviations from allocative efficiency. This can be a complex exercise even when 

simplifying assumptions are made to obtain a tractable model (Coelli, Singh and Fleming, 2003). 

Reinhard and Thijssen (2000) base their analysis of environmental efficiency on a system of 
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equations estimating shadow input costs. In effect, firms minimize shadow costs (or behavioral 

costs) rather than actual costs. The authors compute nitrogen efficiency through technical and 

allocative components.3 Another solution is to obtain a direct estimate of the primal production 

technology, and then derive the implicit cost frontier. Bravo-Ureta and Rieger (1991) use this 

approach and assume that input quantities are decision variables. As mentioned by Coelli, Singh 

and Fleming (2003), this approach is not widely adopted because of a simultaneity bias. Finally, 

based on Färe et al. (2005), Huhtala and Marklund (2005) develop an empirical framework to 

estimate the shadow prices for environmentally detrimental outputs based on the opportunity 

cost of production. They implicitly assume that abatement is only possible by adjusting 

agricultural production, or output/value added at the farm level. Using this approach, a 

directional output–input distance function can be defined and estimated.4 Atkinson and 

Dorfman (2005) also use an input distance function (IDF) approach to characterize a polluting 

technology. The IDF can be interpreted as a multi-input output-requirement function that allows 

deviations from a frontier.5 Distance function approaches allow for the computation of 

measures reflecting the output and input relationships indicative of performance (Paul and 

Nehring, 2005). As such, they are ideally suited to analyze efficiency at the watershed level. 

In this paper we estimate technical and environmental efficiency scores as well as 

indices of productivity and profitability and assess the impact of BMPs on them. We follow 

Atkinson and Dorfman (2005) in relying on a distance function with a “bad” modeled as a 

technology shifter to compute our performance indicators. Monotonicity with respect to all 
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inputs, “goods” and the “bad” (i.e., phosphorus), is imposed on our system of equations derived 

from a translog distance function. A constrained maximum likelihood estimator is used to 

estimate our three-equation system. We found that farms that are technically inefficient tend to 

be environmentally inefficient and that there are significant differences across BMPs regarding 

the direction and the magnitude of their effect on profitability, efficiency and productivity. Our 

analyses have focused on a limited number of BMPs and only one bad output. Even though BMP 

implementation and bad output reductions are costly, BMP adoption increases profitability for 

one of the BMPs considered. 

The remainder of the paper is structured as follows. The next section describes our 

methodological approach while the third section discusses some aspects of the survey from 

which our data originates. The fourth section presents estimation results, performance 

indicators and how the latter are affected by BMPs. The last section concludes the paper.   

 

2.� Methodological approach 

2.1.� Input distance function of “goods” with “bads” as technological shifters 

Let us define  ( )� � �

�� � �+= ∈�
�
…  as a vector of inputs and let ( )� � �

�� � �+= ∈�
�
…  be a 

vector of good outputs. Disregarding the “bads”, the production technology is:  

(1) ( ) ( ){ }� � � ��� 3������� =� � � � � �       

This representation is a multi-output, multi-input specification of the technology set that allows 

for interactions among these netputs. We define the “bads” as: 

 (2) ( )��=� � �            

The production of “bads” is a function of the inputs, the “goods” and the state of technology � . 

Symmetric treatment of “bads” and “goods” using an input distance function can be specified as 

in Färe and Primont (1995): 
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(3) [ ]( ) [ ]( ) ( ){ }� � 	�3 � � � C � �
	


 �
λ

λ λ= ∈� � � � � � � � �     

Here, the “goods” and the “bads” are held constant and inputs are proportionally scaled 

downward to their minimum required level. Since the input distance function in (3) is dual to the 

cost function, we can write:  

(4) [ ]( ) [ ]( ){ }� � ��� � � �	� 
= ≥
�

� � � �� � � � �        

where ( )� � �

�� � �+= ∈�
�
…  is the vector of input prices and [ ]( )� �� � � �  is a cost function.  

Equation (4) implies that unless inputs are used at their cost-minimizing proportions and levels, 

the input distance measure will be greater than one. Taking the first order conditions, the 

shadow value of each input is given by:   

(5) [ ]( ) [ ]( )� � � �
	

�� 
= ∇� � � � � � �         

where [ ]( )� �� � � �
 

is the value of the Lagrange multiplier6 and 

[ ]( ) [ ]( ) [ ]( )� � � � � � � �	 	 	

� 
 
 � 
 � ∇ ≡ ∂ ∂ ∂ ∂ …� � � � � � � � �
�

. Treating the “bads” as 

exogenous shifters of the technology set allows us to write (3) as:  

(6) ( ) ( ) ( ){ }� D 	�3 � C � D � D	
 �
λ

λ λ= ∈� � � � � � � � �       

The input distance function is monotonically non decreasing in inputs ( )	


 �∂ ∂ ≥�  and the 

“bads” ( )	
 �∂ ∂ ≥� 7 and monotonically non increasing in outputs ( )	

�
 �∂ ∂ ≤� .  This 

specification of the distance function enables us to compute technological efficiencies and other 

measures of performance conditioned on levels of bad outputs. 
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2.2.� Input distance function of the “bads” 

In FKS (2002), the frontier for the “bads” is conditioned by the amount of “goods” produced as 

some “goods” must be sacrificed to lower the “bads”. Consequently, the frontier of the “bads” 

depicts the cleanest possible technology to produce a given bundle of “goods”. The firms' 

environmental efficiencies are defined as the ratio of the minimum bad aggregate output and 

the observed bad aggregate output.8  The assumption that “goods” are function only of inputs 

and “bads” are function only of “goods” is convenient, but it might be too restrictive.  An 

alternative is to treat the “goods” as exogenous shifters in the technology set of the “bads”. 

Conditional on the level of good outputs, efficiency measures over the “bads” and the inputs are 

well defined. The frontier for the “bads” being measured for given levels of “goods” requires 

that we aggregate our good outputs into a single aggregate metric. To this end, we follow FKS 

(2000) and model the production technology of the “goods” using the following aggregator: 

(7) ( )
( )� �

� �

�

�

� �

+
+

=

 
=  
 
∑

�
�

�

�

 

with '� > .  This constant elasticity of transformation aggregator was first developed by Powell 

and Gruen (1968) to analyze agricultural supply. If q is zero, products cannot be substituted 

while a value of infinity implies perfect substitution in production. In this “reverse” SFA 

framework, any systematic negative deviation is interpreted as environmental inefficiency. 

Treating the “goods” as exogenous shifters of the technology set allows us to define the IDF of 

the “bads” as:  

(8) ( ) ( ) ( ){ }� D 	�3 � C � D � D	
 �= ∈
�

ι

ι ι� � � � � � � � �  
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7

This specification allows us to estimate environmental efficiencies conditioned on levels of good 

outputs. 

    

2.3.� Empirical specification and estimation 

We assume that the IDF in (6) and (8) can be approximated by a translog functional form with 

capital, denoted by κ , treated as a quasi-fixed input. Following Paul and Nehring (2005) we use 

farms’ and farmers’ specific characteristics denoted by vector �  to account for heterogeneity. 

Thus for farms � �� �=�…  the technology can be depicted as follows: 

(9) 

 

( ) ( )

( ) ( )

�� �� ��

�� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �

�� � �� � �� � �� � ��  �

� � � � 

�� �� � � �� �� � �

� � � �

 �  � �� �� � �� �

  � 

�� �� �� � �� �� ��

� � � �

� � � �

� � � �

� � � �

� � �

′ ′ ′ ′
′ ′

′ ′
′

= + + + + + + +

+ +

+ +

+ + +

∑ ∑ ∑ ∑ ∑

∑∑ ∑∑

∑∑ ∑∑

∑∑ ∑∑

ℏκ

κκ

κ

α α κ α α α α α

α α

α α κ κ α

α α κ α

�
�

� � � �

� � � �

( )

� ��

�� �� �� �� ��

�� ��

� �

� �� �  �� � �

�  � 

�

� � � �+ + +

∑∑

∑∑ ∑∑

ℏ

κα α κ ε

  

 

where ���  represent quantities of “goods” � , ���  stand for quantities of “bads” � , ��   are 

quantities for the n variable inputs, κ  is the level of capital and ���  and ��ℏ  are respectively 

external farm specific variables �  and � . Finally,  

(10) ( ) ( )�83� � �� �  ε = −         

is an additive error with a symmetric noise component, ��  with zero mean and a half-normal 

distribution component � .  

External variables appears in two different ways in equation (9). Some of them ( )���  act 

only as external effects while others ( )��ℏ  act as production shifters (first order polynomial and 
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in interaction with the outputs).9 This introduces some flexibility in the IDF which will be useful 

in our analysis of the impacts of BMPs on productivity and profitability.  

Taking logs and deriving with respect to input quantities, equation (5) can be written as: 

(11) �� ��	

  
 � ! � �∂ ∂ =        

where !  is the price of input �  and �  is the total cost of variables inputs.10 Using (9) and (11) 

the cost minimisation condition is (Färe and Primont, 1995):  

(12) ( )�� �� �� �� 
    � � � � 

 � �

! �
� � �

�
κα α κ α α α ξ′ ′

′

= + + + + +∑ ∑ ∑� �    

We assume that costs are being systematically minimized and that the error terms ξ  have zero 

mean. As for cost and profit functions that also reflect an optimization process, parametric 

restrictions are imposed when estimating (9).11  Symmetry requires that: 

(13) 

� � � �

� � � �

� � � �

� � �

�� � �

�� � �

  

�� � �

� � � �

� � � �

   

� � � �

α α

α α

α α

α α

′ ′

′ ′

′ ′

′ ′

′ ′= ∀ ≠

′ ′= ∀ ≠

′ ′= ∀ ≠

′ ′= ∀ ≠

        

In addition, linear homogeneity in variables input quantities implies: 



=∑α � ; 

  

   

′ ′ ′
′ ′

= = =∑ ∑ ∑∑α α α � ; ��



�= ∀∑α � ; ��



�= ∀∑α �  and ��



�= ∀∑α � . 
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The estimated distance system consists of   equations: the distance function represented by 

equation (9) estimated subject to (10), and  −�  input shares first order conditions. Following 

Kumbhakar and Tsionas (2005), we assume that �  and   are mutually independent and 

independent of the explanatory variables. We also assume that ( ) ( )( )� ��  � 
� 	ξ − − Σ⊗

� �
�∼  

where Σ  is a ( ) ( ) − × −� �  covariance matrix, ( )�� �� � σ��∼  and ( )�� �   � � δ σ+ ′ �
∼  (i.e.,   

follows a half-normal distribution). �  represents a set of variables that conditions differences in 

technical efficiency across farms and δ  is a vector of corresponding coefficients as in 

Kumbhakar, Ghosh and McGuckin (1991) and Battese and Coelli (1995). Given the above 

distributional assumptions and following Battese and Corra (1977), the likelihood function of the 

model is: 

(14) 

( ) ( ) ( )�� �� �� ��

��
� �

�

� � �

� �

�  � �
� π σ

ε γ
ξ ξ ε σ

σ γ

− −

= =

−
= − − − Σ

 
′ + Φ − − Σ +    − 

∑ ∑

�

� � �

� �

�
�

� � �

�

� �

   

where � � � �≡ −ε , ( )Φ ⋅  is the cumulative distribution function of a standard normal random 

variable, �  ≡ +σ σ σ� � �  and [ ]� ≡ ∈γ σ σ� �
� � . If γ =� , then all deviations from the frontier are 

due to noise, while γ =�  means all deviations are due to technical inefficiency.  The model is 

estimated with a constrained maximum likelihood estimator.12  
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2.4.� General performance measures 

The above IDF specification is used to compute several performance measures pertaining to 

technical efficiency, productivity, profitability and environmental efficiency. Index numbers are 

used to analyze the impact of BMPs on the performance measures. This requires the estimation 

of distance functions on samples of farms that have adopted a given BMP and on farms that 

have not and rejection of the null of parameter equality to validate that adopters and non-

adopters have different technologies.     

Performance impacts of the farms’ – and farmers’ – characteristics 

The farms’ and farmers’ characteristics can be construed as fixed effects. The distance function 

elasticities for these external factors are given by: 

(15)  
�

��	
�

	

�
 �

 �ε− = −∂ ∂  and 

�
��	

�

	

�


− = −∂ ∂

ℏ
ℏε      

Input compensation for increasing “goods” 

The variable input elasticity measures the input expansion required to achieve a 1 % increase in 

�" . 

(16) 
�

�� ��	
�

	

�
 "

 "ε− = −∂ ∂         

Output jointness or complementarily is measured by 
�

��	 	
� � �

� ��
 � � 
 �
�ε ε β

′
′ ′= ∂ ∂ = . Output 

complementarity implies 
�	

� �
 � �
ε

′
<� , which means that input use does not have to increase as 

much to expand ��  when the level of �  is higher. 

Scale economies 

The sum of first-order netput elasticities define the extent of scale economies or the increase in 

productivity resulting from increasing all variable inputs. In our multi-output context, our 

measure indicates how much overall input use must increase to support a 1 % increase in all 

outputs. Therefore, an elasticity less than unity is indicative of increasing returns. 
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(17) 
�

�� ��	

	

�
 " �

 "ε− = − ∂ ∂∑       

This measure, developed by Baumol, Panzar and Willig (1982) for a multiple-output cost model 

(Paul and Nehring, 2005), is similar to a cost function’s elasticity of size which compares 

marginal and average costs to produce all outputs. 

Technical efficiency 

Farm � ’s level of technical efficiency (TE) is given by ( )N�83� �#$  = − . We use Jondrow et al.‘s 

(1982) predictor of � : 

(18) 
( )
( )

N
�

� �

�

 
  

 

φ σ
σ

σ

∗
∗∗

∗ ∗
∗

 
 = +
Φ  

       

where ( )N N� �	

� 
∗ ≡ ⋅θ γ� � , �∗ ≡ ⋅σ γ σ� � , ( )φ ⋅  and ( )Φ ⋅  are respectively the probability density 

function (pdf) and the cumulative distribution function (cdf) of a standard normal random 

variable. The normalization of N �  guarantees that �#$< ≤� � . �#$  compares the input use by 

an efficient farm on the frontier to that of farm f to produce the same outputs: the lower �#$ ,  

the less efficient farm f is. 

 

2.5.� BMPs adoption impact measures 

Malmquist Input-Based Productivity Index 

The Malmquist index is a measure of true productivity change accounting for “bads” and is 

defined by  ratios of distance functions which can be interpreted as the product of an efficiency 

change index and the geometric mean of  two indices measuring technological change or how 

the frontier changes when BMP are accounted for (Caves, Christensen and Diewert, 1982). 

Formally, the index is defined as (Färe, Grosskopf and Lovell, 1994, pp. 227-232): 
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(19) 
( )
( )

( )
( )

( )

( )

�

�
� � � � �

� � � �

� � �

� � �

	 	 	

% % % % % % % % %

	 	 	

% % % % % % % % %


 
 

�


 
 


+ + + + +

+ + + +

  
  = ⋅   

      

� � � � � �

� � � � � �
      

The product of ratios in the second bracket can be thought of as a measure of technological 

change; the first bracket captures the changes in efficiency between the two periods, as 

measured by the ratio of the two efficiencies. A value of M greater (less) than unity indicates an 

improvement (deterioration) in productivity. Given the objective of the study at hand, we are 

interested in the comparison of performances of more than two groups.  In this instance, 

“circularity” is a desired property for a bilateral productivity index.13 Pastor and Lovell (2005) 

show that the contemporaneous Malmquist productivity index is not circular and can give 

conflicting signals. Camanho and Dyson (2006) define a Malmquist-based performance 

measures for groups with the circularity property: 

(20) 

( )

( )

( )

( )

( )

( )

� � �

� � �

& & '
& & '

' & '
' & '

� � �
� � �

	 	 	

& & & ' & & ' ' '

� � �&'

� � �
� � �

	 	 	

' ' ' & & & & ' '

� � �


 
 


�


 
 


= = =

= = =

      
     
      = ⋅ ⋅ 

      
      

      

∏ ∏ ∏

∏ ∏ ∏

� � � � � �

� � � � � �

� �
� � �

� � �

� � �

� � �

  

where the parameter �  represents the number of farms in a given subset of the database. The 

ratio inside square brackets evaluates the gap between the frontiers of the two groups while the 

ratio outside square brackets compares within-group efficiency spreads. Following Camanho and 

Dyson (2006), we compute an overall performance index that satisfies the circular relation and 

can be used for the comparison of more than 2 two groups. This index is obtained by pooling all 

the data and establishes a technology for this pooled set.14 The index is computed as follows  
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(21) 

( )

( )

( )

( )

� �

� �

' �
�'

) �
�)

�
� �

��
	 ' ' 	 � �

' � � ) � ��
� �)'

��� � �
��

�
	 ) ) 	 � �

) � � ' � �

� �


 


�


 


= =

=

= =

    
   
    = ⋅  

    
    

    

∏ ∏
∏

∏ ∏

� � � �

� � � �

�
� �

� �

� �

�

� �

     

where parameter P represents the pooled dataset and ��  the number of farm in each group i 

( )� �� �= …� . Let )'

�����  be the product of ratios in the second bracket and )'�$  the first 

bracket. A value of )'�$  below one indicates that there is greater structural efficiency in group 

B than in the pooled dataset P. A value of )'

�����  below one indicates superior productivity of 

the technological frontier of group B compared to group P. And finally, a value of )'

����  below 

(above) unity indicates a superior (inferior) productivity of group B compared to group P. The 

index in (21) provides a robust performance ranking of groups of farms operating under 

different conditions. Camanho and Dyson (2006, p.40) indicate that “The advantage of this index 

is that the comparison between frontiers is made for a larger number of points, covering a wider 

range of activity profiles … The additional information considered in the adjusted index 

guarantees its circularity.”   

The profitability change 

Using Althin, Färe and Grosskopf’s (1996) Fisher-based index, the profitability change when 

adopting a BMP can be expressed as:   

(22) 
( )

( )
��

�

�

�

	

	

'

' '
 ")'

)

) )
 "

� �$
ε

ε

    = ⋅ 
    

� �

� �

�

        

where 
�	
 "

ε  is the primal input-based measure of elasticity of scale as defined before. There is 

an improvement when � <
�
�  since Georgescu-Roegen’s (1951) “return on the dollar” is higher 
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for the BMP adopters (group B).15  As in Althin, Färe and Grosskopf (1996), our analysis of the 

impacts of BMP adoption on productivity and profitability entails estimating separate distance 

function for each individual BMP.16 

 

2.6.� Environmental performances measures 

Shadow price of the “bads” 

The shadow price of the “bads” is: 

(23) 
[ ]( )

[ ]( ) [ ] [ ]( )( )
� �

� � � � � �	

�

�
� 


∂
= − ∇

∂

� � �
� � � � � � � � �

�
    

We assume that the set of inputs �  is a cost-minimizing solution and that  [ ]( )� �� � � �  is a 

function of shadow prices. We then assume that the observed price equals the shadow price for 

one input. Assuming that herbicide is this input, its shadow price is given by (5). By taking the 

ratio of the shadow price of the “bads” to the observed price of herbicide, the [ ]( )� �� � � � ’s 

cancel out and we can solve for the estimated shadow price of the “bads” in terms of ratios of 

estimated partial derivatives and the observed price of herbicide. 

(24) 
[ ] [ ]( )( )
[ ] [ ]( )( )
� � � �

� � � �

	

� �*���+��* 	

,


 �
� �


 �

∂ ∂
= −

∂ ∂

� � � � � �

� � � � � �
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Because of the log representation of the distance function, we can compute the elasticity that 

measures the percentage increase in the shadow price of the bad in response to a 1% decrease 

in bad output. 

Environmental Efficiency Scores 

We use Reinhard, Lowell and Thijssen’s (1999, 2002) approach to derive a stochastic measure of 

producers’ environmental efficiency (EE). The log of the IDF of an environmentally efficient 

producer is obtained by replacing ���  with ���τ  where ≤τ �  and by setting N� =� . Setting the 

production function for farm �  equal to the production function of an environmentally efficient 

farm, we can solve for �� �� �� ��� � �$$ � �= − =τ τ :  

 (25) )

�� �� ��

��

�� �� ��

� �� �� � � �� ��

 �

�� ��

� �� �� � � �� �� �� �

 �

� � �

$$

� � �  

α α α α

α

α α α α α

−

  
− + + +  
  

=      ± + + + −       

∑ ∑

∑ ∑

�
� �

�

�

   

We use the predictor N �  given by equation (18) in (25). Environmental efficiency is calculated 

using the positive root in (25)17 and is used to compute the environmental efficiency score (EES) 

for each farm as ( )����� �� ��$$- $$ $$= . 

Inputs compensation for reducing “bads”  

 Our objective is to measure the input expansion required to compensate for a 1% decrease in 

the “bads” 
�
�  while producing the same level of “goods”. 

(26) 
�
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Environmental Efficiency 

Firm � ’s level of Environmental Efficiency (EE) is computed using Jondrow et al.’s (1982) results 

(see equation (18)) with the IDF of the “bads” with  an aggregate “good” used as a technological 

shifter.  This EE measure of environmental efficiency is an alternative to the EES measure 

previously described.  The degree of consistency between the two measures can be ascertained 

by computing the level of correlation.  A strong positive correlation would be indicative of 

robust results.      

 

3.� The data 

Our sample consists of 210 observations. Agricultural production consists of good outputs, 

namely livestock and crops, and bad outputs associated with runoff and leaching of chemicals 

and sediments. 

The “goods” 

Crops ( )��  and animal ( )&�  production are measured in thousands of dollars. The percentage 

of producers claiming to raise beef cattle and dairy cows account for 59.5% and 52.9% of all 

producers in our sample as many are engaged in both productions. Hog producers make up a 

smaller share at 20.8%, but they marketed a total of 197,000 hogs compared to 8,700 heads for 

beef producers. The dairy producers owned a total of 5,600 dairy cows. Finally, the total acreage 

cultivated with crops (hay, alfalfa, pulses, maize and other cereals) amounted to 33,380 acres. 

The “bads” 

Agricultural production is also assumed to generate “bads”. They are identified by the levels of 

emission (kilograms) of nitrogen ( )�� , phosphorous ( ))�  and sediments ( )-� . Chemicals’ 

runoff levels are computed through a simulation program that identifies the amount of chemical 
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leached from individual Relatively Homogeneous Hydrological Units (RHHUs).18 The correlation 

coefficients between these “bads” are so high19 that only phosphorus runoff is considered in the 

empirical application.  

Variables inputs 

Quantity of labor ( )�� is expressed in working hour and the quantities of fertilizers ( )��  and 

herbicides ( ),�  are in kilogram per acres.  

Quasi-fixed input 

Capital κ  is assumed to be quasi-fixed in the short run. It is proxied by owned and rented 

machinery and equipment estimated value. 

The BMP variables 

There are four binary BMP variables that take a value of one when the BMP is implemented and 

zero otherwise. As mentioned before, some BMP variables act as production shifters and they 

are: crop rotation cycles ( )��%�%��ℏ ,  injection of liquid and semi-liquid manure ( )�� �*ℏ  in the 

soil within 24 hours of the initial spreading and herbicide control and reduction 

measures ( )�*��+�%ℏ . Crop rotation is considered to be practiced if it covers over half of the 

cultivated land and we merged the herbicide control and reduction practices because of their 

high correlation. The establishment and maintenance of a riparian buffer zone larger than one 

meter ( )� ��*��  is used as an external effect.  
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Farm characteristics 

Other variables that reflect “environmental sensibility” are added. We hypothesize that having a 

certificate for biological/organic production ( )�����+�  and belonging to an agro-environmental 

club ( )*�+( ��  also condition the IDF. 

Farm and producer’s attributes 

Producers’ socio-economic attributes are used as explanatory variables in the decomposition of 

efficiency scores. The variable capturing whether the residence of the primary producer is on 

the farm or not ( )�*�����  and gender ( )�*�*�  are modelled through binary variables. 

�*�*�  takes a value of one when the primary producer is a woman. The level of education 

( )$� +�%��  is specified through an ordered variable. It takes the value of 0 when secondary 

school is attained and 1 when the producer has a degree from a technical school, and/or a 

community college and/or a university. The age of the producer ( )&�*  is introduced through a 

dummy variable taking a value of zero if ����* ≤   and a value of one if ����* >  years. Land use 

( ).�*  and farm size ( )-��*  are added to reflect the potential relationship between efficiencies 

and agricultural production. The variable Use equals 1 if the value of crops produced is higher 

than the value of livestock and dairy l productions and 0 otherwise. Finally, another variable, the 

level of annual expenditure on telecommunication services ( )#*(+�� , is used to capture a 

producer’s exposure to information.  Then, technical inefficiency is modelled as: 

(27) � � � � � � � � &�* �*�*� $� +�%�� .�* -��* �*����� #*(+��δ δ δ δ δ δ δ= + + + + + +
� � � � � � �

 

The summary statistics of the variables used in the distance function analysis are presented in 

table 1.  
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4.� Results 

4.1.� General results 

The coefficient estimates of the distance function system are displayed in table 2. Many 

estimated coefficients are significant and have the expected sign. The model satisfies the 

curvature conditions, i.e. the distance function is monotonically non-decreasing in inputs and 

non-increasing in “goods” as well as quasi-concave in variable inputs.20 The monotonicity 

condition of the “bads” is also met. The input cross-effects coefficients are predominantly 

significant and positive, thus indicating complementarities between fertilizers, herbicides and 

labor. The “goods” cross-effect coefficient is positive and significant, reflecting substitution 

between the two outputs. The cross-effect coefficient of the two “goods” and the “bads” are 

non-significant, indicating that the link between “goods” and “bads” is noisy. Output mix, 

including the “bads” seems to be less fixed across farm types than the input composition as in 

Paul and Nehring (2005).21 Generally, these results suggest that diversification at the farm level 

does not contribute significantly to overall economic performance. The cross output-input terms 

are not significant for animal production, which is consistent with the separability hypothesis 

between outputs and inputs. However, this is not the case for the crop output.  

The performance impacts of the farms and farmers’ characteristics are given by the 

estimated coefficient in table 2. Adopting a riparian buffer tends to have a positive impact on 

the overall performance of the farm - a negative impact on the value of the distance function- 

while having an organic product certificate tends to have a negative impact on overall 

performance. The mean of the performance impacts of the farm– and farmer-specific variables 
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that can interact with the level of production ( )ℏ  is shown in table 4. The computed means of 

the overall impact of the three variables are negative implying a reduction of the IDF.  

The mean value of the predicted distance function is 1.413. We estimate the same 

distance function without taking into account the “bads” as a technological shifter. The mean 

value of the predicted IDF is 1.430 when the “bads” are not considered as a technological 

shifter. This difference confirms that the potential to increase production with the given bundle 

of inputs decreases when farms are not allowed to freely dispose of phosphorus emissions. The 

two mean values are statistically different at the 5% level, as expected.  

 

4.2.� Technical efficiency (TE) 

Table 2 also reports on the parameters conditioning the level of technical efficiency of farms. 

The level of education and the size of the farm have a significant and positive impact on TE. 

Bigger farms and producers who hold a technical school, college or university degree are 

generally more efficient. The log-likelihood is parameterized in terms of ( ) �  ≡ +γ σ σ σ� � � . The 

significant estimate (i.e., 0.583) indicates that, about half of the variation in the composite error 

term is due to the noise component. This is similar to the estimated value of 0.58 found in 

Reinhard, Lowell and Thijssen’s (1999) analysis of Dutch dairy farms. The mean of the predicted 

TE is 0.426.22 Overall the estimated mean value of the predicted TE is low.23 Figure 1 plots the 

density distribution of predicted technical efficiency within the dataset. The mean of the 
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predicted TE scores of farms primarily involved in animal production is higher than the one for 

farms involved in crop production (i.e., 0.466 and 0.428 are statistically different at the 5% level 

of significance.) The least efficient farm has a TE score of 0.186 while the most efficient farm has 

a TE score of 0.989.  This wide range in technical efficiencies is consistent with the fact that the 

number of farms is decreasing in spite of generous farm programs.  

 

4.3.� Scale elasticities 

The measure of scale elasticity is 0.644 which suggests that there are significant economies of 

scale (see table 3). The scale elasticity has a value of 0.682 when only farms involved in crop 

production are considered and a value of 0.625 for farms involved only in animal production. 

The difference between these two values is significant at the 5% level. These elasticities are 

quite close to the 0.65 obtained by Paul and Nehring for the United States (2005).   A value of 1 

is consistent with constant return to scale  

Individual output contributions embodied in the overall scale elasticitiy are presented in 

table 3. The results show that more variable input are needed to increase crop production by 1% 

than to increase livestock production by the same level. The coefficients have the correct sign 

and are significant at the 5%.level. The values of labor and fertilizer elasticities are respectively -

0.621 and -0.291. The value of the shadow share of labor is smaller than the observed mean 

share (72.38%). This finding is indicative of low labor productivity.   

    

4.4.� The impact of best management practices 

The adoption of a BMP is likely to induce a structural change in the IDF because some inputs are 

likely to interact in different ways when a BMP is implemented.  In some cases, new machinery 

may be needed that may increase or decrease the demand for other inputs like labour. We 
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relied on a Chow test (see Greene, 2008), with a null hypothesis of equal coefficient vectors for 

estimations done on subsamples of adopters and non-adopters, to determine whether BMP 

adopters actually use a different technology. Consistent with our expectations, we rejected the 

null hypothesis of equal coefficients for herbicides controls and manure injection BMPs (see 

table A4 in appendix).24 Accordingly, we restricted our analyses regarding the potential impact 

of BMPs to the two aforementioned BMPs.  

Figures 5-8 present the impacts of BMP adoption on efficiency, productivity and 

profitability. The methods used to compute the productivity change as well as the profitability 

change look at marginal changes represented by the adoption of the BMP. In order to make 

figures 5-8 as illustrative as possible, we represent the inverses of )'

����� , )'�$ , )'

����  and �
�

. 

As a result, a value greater (less) than one represents an improvement (a deterioration). 

Farms that have adopted herbicides control are technically less efficient (0.939<1), but 

enjoy a -very small- technological advantage (1.008>1). In this case, the overall effect is a decline 

in productivity (0.947>1). However, the adoption of herbicide control also tends to slightly 

decrease economies of scale, as indicated by the profitability index (1.054<1). This net impact on 

the profitability index implies an important change in scale elasticity and then, in the best 

practice frontier. In contrast, the technical efficiency of farms that have adopted manure 

injection tends to be higher.  These farms also have a technological advantage over farms that 

have not adopted this BMP. The net positive effect on productivity is 1.142>1. Furthermore, 

profitability increases sharply when manure injection within 24 hours is adopted (1.136>1), 

indicating an increase in returns to scale. Our results uncovered positive environmental effects, 

namely a reduction of pollutant induced by the adoption of the BMP, and positive private 

effects. Ambec and Lanoie (2007) and Horbach (2008) suggest that the positive private gains can 
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be attributed to reductions in the cost of regulations  and to the fact that environmental 

management tools provide incentives to develop new cost saving practices (specifically material 

and energy savings).  These innovations induced by the adoption of environmentally-friendly 

practices are at the heart of the Porter-hypothesis (Porter, 1991; Porter and van der Linde, 

1995).25 Piot-Lepetit and Le Moing (2007) also found a gain in productivity resulting from the 

relationship between efficiency and environmental regulation in the French pig sector, but 

Managi (2004) did not find evidence in support of the Porter-hypothesis when analyzing the US 

agricultural sector. 

 

4.5.� The “bads”  

The shadow value of the “bads” 

The estimated shadow value of phosphorus runoff (i.e. marginal abatement cost) has a mean 

value of 0.063 with a standard deviation of 0.001. The shadow price of the “bad” for farms 

primarily involved in livestock production is 0.0652, which is higher than the value of 0.062 for 

farms involved in crop production. The difference between these two estimates is significant at 

the 5% level. As in Ball et al. (2002), reducing a “bad” output is costly.26 A 10% reduction in 

phosphorus induces a 0.628 % increase in cost, evaluated at the mean values of the data. In our 

sample, the average value for the sub-cost function is $73,668, which implies that the cost of a 

10% runoff reduction would be $461.24.27 The effect of the scale of crop and animal production 
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on the marginal abatement cost can also be estimated. These coefficients have a negative sign, 

but are not significant at 5 %. This suggests that the marginal abatement cost of runoff weakly 

increases with the scale of production.  There is a small difference between animal and crop 

productions. The shadow value of the bad is higher for farms primarily involved in animal 

production than for farms specialized in crop production. 

Environmental Efficiency Measures 

The mean of the computed EES is 0.486. Figure 2 plots the density distribution of computed EES 

within the dataset and figure 3 the density distribution of the estimated EE. The mean of the EES 

for farms specialized in animal production is smaller than its  crop production counterpart: 0.380 

versus 0.504. The difference is significant at the 5% level. The correlation between the two sets 

of environmental efficiencies EES and EE is high. This Spearman rank correlation between the 

two efficiencies is 0.71.28  

Table 5 reports the Spearman rank correlation between technical and environmental 

efficiencies. In this table, the dataset is subdivided into subsets based on the predicted TE. Table 

5 shows that the correlation is strongest for the 75th percentile to the maximum of the TE within 

the dataset and that there is no statistically significant correlation between EE and TE when the 

latter lies between the median and the 75th percentile. Overall there is a tendency for farms that 

are technically inefficient to also be environmentally inefficient. A similar finding was reported 

by Reinhard, Lowell and Thijssen (1999) and FKS (2002). Because of the low level of predicted 

TE, our findings suggest that for many farms, pollution could be reduced at no cost in terms of 

good output foregone.  
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The input compensation for reducing “bads” 

Figure 4 plots the distribution of the “bads” elasticity using a model where “goods” are 

introduced as technological shifters in the production frontier of phosphorus. This elasticity tells 

us about the percentage increase in all inputs necessary to decrease the level of phosphorus 

emissions by 1%. The mean value of the input share of the “bads” is -0.048 which implies that 

overall inputs use must decrease by 4.8% to decrease phosphorus emission by 1% while keeping 

the good outputs at the same levels. However, because of the values spanned by the plot in 

Figure 4, we divided our sample in two groups to gain more insights about the elasticity of the 

“bads”. In the first group, reducing the level of inputs “suffices” to reduce the level of “bads” 

without altering the level of “goods” outputs. The mean value of predicted “bads” elasticity of 

these farms that have to reduce the level of inputs is -5.09% for a 1% decrease in the “bads”. In 

the second group, the “bads” ’s elasticity is positive implying that input use must increase for at 

least one input. Input costs must increase by 1.80% to implement a 1% reduction in “bads” 

output.  This subset of our sample includes only 10 farms. 

 

5.� Conclusion 

The variability in farmers’ technical efficiency is likely to influence observed environmental 

performance, as does the adoption or non-adoption of Best Management Practices (BMPs). A 

distance function approach is implemented to empirically analyze technical and environmental 

efficiencies. In the context of multiple good and bad outputs, two types of input distance 

function (IDF) are estimated. For the first type, a bad output is modeled as a technological 

shifter in an IDF for good outputs.  For the second type, good outputs are aggregated into one 

good output which is introduced as a technological shifter in an IDF for the bad output. Systems 

of equations accounting for the monotonicity property (inputs, outputs and undesirables) are 
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estimated. The IDF are approximated by a flexible translog functional form which is estimated 

using a full information maximum likelihood method. We rely on a unique data set covering 210 

farms located in the Chaudière watershed, where water quality problems are acute and 

livestock and crop production intensive. Data on phosphorus, nitrogen and sediment loads have 

been simulated through a hydrological model. These simulations identify the amount of 

chemical leached from individual Relatively Homogeneous Hydrological Units (RHHUs) that are 

then matched with the location of individual farms. 

The computed level of technical efficiency is disaggregated across farms. The level of 

education and the size of the farm have a significant and positive impact on the technical 

efficiency scores (TE).  The mean of the predicted TE suggests that less than half of farm 

diversity is explained by the broad characterization of input and output relationships in the 

model. The mean of the computed environmental efficiency is relatively low and a positive 

correlation was found between environmental and technical efficiencies. Our study also found 

that reducing phosphorus run off entails cost at the farm level. 

The IDF of the good output is used to compute the cumulative Malmquist-based 

productivity index and we computed measures of efficiency change, technical change and 

productivity change in response to the adoption of selected Best Management Practices (BMPs). 

The Fisher productivity index was computed and, by exploiting the duality between cost and 

input distance functions, we obtained a measure of profitability change when farms adopt 

selected BMPs. Our results show significant differences across BMPs regarding the direction and 

the magnitude of their effect on profitability, efficiency and productivity. Even if BMP 

implementation and bad output reductions are costly, profitability increases for one of the 

implemented BMPs.  
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Table 1.  Summary statistics of variables used in the analysis 

  Mean  Standard 

Deviation 

 Minimum  Maximum 

 

“GOODS” 

        

Yield (x $1000)  103.09  325.41  0.15  2,696.16 

Animal Production (x $1000)       6.55   22.16  0.00      260.00 

 

“BADS” 

        

Nitrogen Runoff (kilograms)  14.85  12.51  0.23  46.98 

Phosphorus runoff  (kilograms)  6.35  5.69  <0.01  20.55 

Sediment runoff (kilograms)  1.53  1.39  <0.01  6.13 

 

“VARIABLE INPUTS” 

        

Labour         

 Quantity  27.56  91.59  0.03  730.10 

 Share in total Cost (%)  72.38  25.13  1.04  99.98 

Fertilizers         

 Quantity  1.16  1.39  <0.01  10.91 

 Share of in Total Cost (%)  21.06  19.87  <0.01  77.33 

Herbicides         

 Quantity  0.56  0.68  <0.01  4.99 

 Share in Total Cost (%)  6.56  6.90  <0.01  48.28 

 

“QUASI-FIXED INPUTS” 

        

“Quantity” of capital (x $1000)  137.77  115.10  1.79  784.50 

 

BMP/ENVIRONMENTAL VARIABLES (binary 

variables) 

        

Production shifter         

Crop Rotation  0.70  0.46  0  1 

Herbicide Control  0.38  0.49  0  1 

Manure Control Measures  0.41  0.49  0  1 

Exogenous factors         

Riparian Buffer  0.56  0.50  0  1 

Biological/organic certificate  0.03  0.18  0  1 

Belonging to an environmental club   0.62  0.49  0  1 

 

FARM AND PRODUCER’S ATTRIBUTES 

        

Age (years)  49.23  9.95  17  81 

Gender  (binary variable)  0.04  0.21  0  1 

Education (order variable)  2.31  1.04  1  5 

Residence on farm (binary variable)  0.88  0.32  0  1 

Size of farm         

 Cultivated Acres (x 100 acres)  1.29  1.47  <0.01  11.21 

 Animal Production (x 100 heads)  6.56  22.16  0.01  260 

Crop production (binary variable)  1.24  1.41  <0.01  11.21 

Telecommunication expenditures (x 

$1000) 

 1.33  1.73  0.05  15 

         

TOTAL COST OF PRODUCTION (x $1000)  73.67  239.93  0.23  2011.62 
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Table 2. Estimated coefficients of the input distance function (full sample) 

Parameters  Estimate  Standard 

Error 

 Parameters  Estimate  Standard 

Errors 

α
�

  0.817  0.152  
�*���+��*� �*�%�(��*��α ×   -0.173  0.014 

���� �α   -0.024  0.035  
+��� (����α ×   0.122  0.009 

�*��+�%α   -0.028  <0.001  
+��� �*�%�(��*��α ×   -0.097  0.007 

�������α   0.482  0.112  
+��� �*���+��*�α ×   -0.025  0.004 

*�+( �α   0.025  0.035  
����( (����α ×   -0.001  0.006 

(����α   -0.054  0.098  
����( �*�%�(��*��α ×   0.001  0.005 

+�����%α   0.202  0.093  
����( �*���+��*�α ×   0.001  0.002 

�������� �α   -0.007  0.027  
+��� �������� �×α   0.003  0.010 

+���α   -0.860  0.053  
����( �������� �×α   -0.006  0.005 

����(α   -0.102  0.033  
+��� +���%�(α ×   0.026  0.020 

�*�%�(��*��α   0.361  0.033  
����( +���%�(α ×   -0.010  0.010 

�*���+��*�α   0.192  0.012  
+��� +�����%α ×   -0.078  0.029 

(����
α   0.447  0.041  

����( +�����%α ×   0.011  0.023 

+���%�(α   -0.033  0.049  
+��� (����α ×   0.007  0.023 

����( ����(α ×   -0.017  0.008  
����( (����α ×   -0.016  0.021 

����( +���α ×   0.074  0.019  
+��� +�%�*��α ×   -0.034  <0.001 

+��� +���α ×   -0.071  0.017  
����( +�%�*��α ×   0.018  0.021 

�������� � �������� �×α   -0.012  0.007  
�������� � (����×α   0.009  0.009 

+���%�( +���%�(α ×   -0.013  0.027  
�������� � �*�%�(��*��×α   -0.007  0.007 

(���� (����α ×   -0.173  0.014  
�������� � �*���+��*�×α   -0.003  0.002 

�*�%�(��*�� �*�%�(��*��α ×   0.027  0.009  
+���%�( (����α ×   -0.006  0.012 

�*���+��* �*���+��*α ×   0.146  0.010  
+���%�( �*�%�(��*��α ×   0.006  0.009 

(���� �*�%�(��*��α ×   0.146  0.010  
+���%�( �*���+��*�α ×   0.001  0.003 

(���� �*���+��*
α ×   0.027  0.009       

 

Efficiency parameters 

*� +�%��
δ   -0.096  0.039  

 �*
δ   -0.018  0.078 

���*
δ   -0.293  0.026  

�*�*�δ   0.049  0.088 

��*δ   0.014  0.044  
�*�����δ   -0.022  0.053 

%*(*+��
δ   0.016  0.057       

( ) �  

−
≡ +γ σ σ σ

�
� � �

 

 0.583  0.117  
�
σ   0.474  0.034 

 

Mean log-likelihood 

  

3.186 

  

Number of observations 

  

210 
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Figure 1. Predicted technical efficiency distribution 
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Figure 2. Predicted environmental efficiency score distribution 
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Figure 3. Predicted environmental efficiency distribution 
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Figure 4. Inputs expansion (%) required for 1% reduction in 

phosphorus emission
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Table 3. Economic performances measures 

Parameters  Mean  Bootstrapped standard 

error of the mean 

 Normal based 95% confidence 

interval of the mean 

Technical efficiency  0.437  0.008  [ 0.422; 0.452 ] 

Distance function  1.413  0.018  [ 1.379; 1.448 ] 

Shadow value of bad  -0.063  0.001  [-0.064; -0.061] 

“input share” of crop  0.618  0.014  [ 0.592; 0.645 ] 

“input share” of animals  0.030  0.005  [ 0.020; 0.040 ] 

Scale economies  0.644  0.014  [ 0.616; 0.671 ] 

Labor elasticity  -0.621  0.011  [ -0.644; -0.599 ] 

Fertilizer elasticity  -0.291  0.010  [ -0.311; -0.272 ] 

Herbicide elasticity  -0.087  0.002  [ -0.092; -0.083 ] 

 

Table 4. Mean values of the overall impact of the external variables 

Parameters  Mean  Bootstrapped standard 

error of the mean 

 Normal based 95% confidence 

interval of the mean 

Herbicide control  -0.098  0.005  [  -0.107; -0.089 ] 

Manure injection  -0.062  0.002  [ -0.067; -0.058 ] 

Rotation cycle implementation  -0.015  0.010  [ -0.034; -0.004 ] 
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Table 5. Spearman correlation rank test between predicted technical efficiency and 

environmental efficiency measures 

 EES  EE   Number of 

observations  Spearman 

correlation 

rank test 

 Prob.  

>| t | 

 Spearman 

correlation 

rank test 

 Prob. 

 >| t | 

Percentile distribution of 

predicted technical efficiency 

          

( 0; p25(=0.343) [  52  0.349   0.011  0.321  0.020 

[ p25(=0.343); p50(=0.431) [  53  0.331  0.015  0.329  0.018 

[ p50(=0.431); p75(=0.509) [  51  0.177  0.206  0.330  0.0206 

[ p75(=0.509); p100 )  54  0.590  <0.001  0.658  <0.001 

 

Technical efficiency value 

          

( 0; 0.25 [  9  0.600  0.088  0.367  0.337 

[ 0.25; 0.50 [  139  0.625  <0.001  0.605  <0.001 

[ 0.50; 0.75 [  58  0.352  0.007  0.117  0.383 

[ 0.75; 1 )  4  -0.316  0.684  -0.384  0.616 

 

Overall sample 

  

210 

  

0.713 

  

<0.001 

  

0.757 

  

<0.001 
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Figure 5. Index for the comparison of efficiency, using pooled dataset 

as the reference 
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Figure 6. Adjusted index for the comparison of productivity of the 

farms best-practice frontiers, using pooled dataset as the reference 
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Figure 7. Adjusted (overall) index for the ranking of performance 

given the adopted BMPs, using pooled dataset as the reference 
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Figure 8. Index for the comparison of profitability given the adopted 

BMPs, using pooled dataset as the reference 
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Appendix 

A1. Input distance function representation 

Figure A1 provides an illustration of an input distance function. Two inputs are used to produce 

one output. The value of the distance will be equal to or greater than one if the input vector 

( )�� �
� �

 is an element of the feasible input set ( )� � . The isoquant -- ′  is the inner boundary of 

the input set, reflecting the minimum input combinations that may be used to produce a given 

output. The value of the distance function for the firm producing output, � , using the input vector 

defined by the point &  is equal to the ratio /& /' .  

 

Figure A1. Input distance function representation 

Treating the level of “bads” as a shifter of the technology set allows firms to be credited for 

reducing the level of “bads” that they produce.  For the firm with the lowest level of bad, the 

isoquant shifts outward - -- ′
��

 - reflecting that more inputs are required to produce the same level 

of desirable output because some inputs are needed to reduce the production of the bad. 
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Table A1. Estimated coefficients of the IDF of farms that have adopted manure injection   

Parameters  Estimate  Standard 

Error 

 Parameters  Estimate  Standard 

Errors 

α
�

  0.487  0.493  
�*���+��*� �*�%�(��*��α ×   -0.130  0.015 

���� �α   0.151  0.080  
+��� (����α ×   0.114  0.014 

�*��+�%
α   -0.095  4.538  

+��� �*�%�(��*��α ×   -0.093  0.011 

�������α   0.262  0.214  
+��� �*���+��*�α ×   -0.022  0.004 

*�+( �
α   -0.072  0.080  

����( (����
α ×   0.013  0.011 

(����α   -  -  
����( �*�%�(��*��α ×   -0.011  0.009 

+�����%α   -0.552  0.305  
����( �*���+��*�
α ×   -0.002  0.002 

�������� �α   0.410  0.155  
+��� �������� �×α   -0.089  0.034 

+���α   -0.590  0.151  
����( �������� �×α   -0.021  0.013 

����(
α   -0.068  0.108  

+��� +���%�(α ×   0.035  0.054 

�*�%�(��*��α   0.191  0.073  
����( +���%�(α ×   -0.049  0.032 

�*���+��*�
α   0.138  0.017  

+��� +�����%α ×   0.128  0.081 

(����
α   0.672  0.087  

����( +�����%α ×   0.023  0.047 

+���%�(α   0.199  0.200  
+��� (����α ×   -  - 

����( ����(
α ×   0.035  0.022  

����( (����α ×   -  - 

����( +���α ×   0.023  0.036  
+��� +�%�*��α ×   -0.096  0.539 

+��� +���α ×   -0.122  0.042  
����( +�%�*��
α ×   0.005  0.041 

�������� � �������� �×α   -0.025  0.019  
�������� � (����×α   0.009  0.017 

+���%�( +���%�(α ×   -0.032  0.101  
�������� � �*�%�(��*��×α   -0.008  0.014 

(���� (����
α ×   -0.130  0.015  

�������� � �*���+��*�×α   -0.001  0.003 

�*�%�(��*�� �*�%�(��*��α ×   0.014  0.008  
+���%�( (����α ×   -0.069  0.028 

�*���+��* �*���+��*
α ×   0.116  0.011  

+���%�( �*�%�(��*��α ×   0.060  0.024 

(���� �*�%�(��*��α ×   0.116  0.011  
+���%�( �*���+��*�α ×   0.009  0.006 

(���� �*���+��*
α ×   0.014  0.008       

 

Efficiency parameters 

*� +�%��
δ   -0.041  0.105  

 �*
δ   0.092  0.163 

���*
δ   -  -  

�*�*�δ   0.001  0.144 

��*δ   0.135  0.090  
�*�����δ   0.066  0.134 

%*(*+��
δ   0.069  0.126       

( ) �  

−
≡ +γ σ σ σ

�
� � �

 
 0.831  0.175  

�
σ   0.379  0.243 

 

Mean log-likelihood 

  

3.529 

  

Number of observation 

  

89 
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Table A2. Estimated coefficients of the IDF of farms that have adopted crop rotation 

Parameters  Estimate  Standard 

Error 

 Parameters  Estimate  Standard 

Errors 

α
�

  0.890  0.194  
�*���+��*� �*�%�(��*��α ×   -0.174  0.018 

���� �α   -0.021  0.046  
+��� (����α ×   0.127  0.015 

�*��+�%
α   -0.072  0.844  

+��� �*�%�(��*��α ×   -0.101  0.009 

�������α   0.567  0.145  
+��� �*���+��*�α ×   -0.027  0.005 

*�+( �
α   0.002  0.045  

����( (����
α ×   0.002  0.009 

(����α   -0.119  0.137  
����( �*�%�(��*��α ×   -0.002  0.008 

+�����%α   -  -  
����( �*���+��*�
α ×   <0.001  0.003 

�������� �α   0.037  0.037  
+��� �������� �×α   0.007  0.013 

+���α   -0.882  0.072  
����( �������� �×α   -0.013  0.007 

����(
α   -0.171  0.057  

+��� +���%�(α ×   0.011  0.027 

�*�%�(��*��α   0.383  0.049  
����( +���%�(α ×   -0.004  0.018 

�*���+��*�
α   0.197  0.017  

+��� +�����%α ×   -  - 

(����
α   0.420  0.062  

����( +�����%α ×   -  - 

+���%�(α   0.011  0.092  
+��� (����α ×   0.027  0.031 

����( ����(
α ×   -0.006  0.012  

����( (����α ×   -0.024  0.028 

����( +���α ×   0.088  0.025  
+��� +�%�*��α ×   -0.026  0.845 

+��� +���α ×   -0.087  0.021  
����( +�%�*��
α ×   0.015  0.030 

�������� � �������� �×α   -0.010  0.008  
�������� � (����×α   -0.005  0.011 

+���%�( +���%�(α ×   -0.014  0.047  
�������� � �*�%�(��*��×α   0.005  0.009 

(���� (����
α ×   -0.174  0.018  

�������� � �*���+��*�×α   <0.001  0.003 

�*�%�(��*�� �*�%�(��*��α ×   0.028  0.012  
+���%�( (����α ×   -0.001  0.021 

�*���+��* �*���+��*
α ×   0.146  0.013  

+���%�( �*�%�(��*��α ×   0.001  0.017 

(���� �*�%�(��*��α ×   0.146  0.013  
+���%�( �*���+��*�α ×   <0.001  0.006 

(���� �*���+��*
α ×   0.028  0.012       

 

Efficiency parameters 

*� +�%��
δ   -0.103  0.046  

 �*
δ   -0.067  0.101 

���*
δ   -0.305  0.031  

�*�*�δ   0.053  0.110 

��*δ   0.001  0.052  
�*�����δ   -0.032  0.067 

%*(*+��
δ   -0.023  0.068       

( ) �  

−
≡ +γ σ σ σ

�
� � �

 
 0.530  0.161  

�
σ   0.491  0.036 

 

Mean log-likelihood 

  

3.075 

  

Number of observations 

  

147 
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Table A3. Estimated coefficients of the IDF of farms that have adopted herbicides control 

Parameters  Estimate  Standard 

Error 

 Parameters  Estimate  Standard 

Errors 

α
�

  3.101  0.565  
�*���+��*� �*�%�(��*��α ×   -0.183  0.027 

���� �α   -0.053  0.081  
+��� (����α ×   0.164  0.017 

�*��+�%
α   -  -  

+��� �*�%�(��*��α ×   -0.127  0.013 

�������α   0.381  0.142  
+��� �*���+��*�α ×   -0.037  0.008 

*�+( �
α   -0.059  0.092  

����( (����
α ×   -0.002  0.013 

(����α   -0.507  0.199  
����( �*�%�(��*��α ×   0.001  0.010 

+�����%α   -0.139  0.223  
����( �*���+��*�
α ×   0.001  0.004 

�������� �α   -0.408  0.127  
+��� �������� �×α   0.073  0.032 

+���α   -1.405  0.147  
����( �������� �×α   0.019  0.017 

����(
α   -0.148  0.088  

+��� +���%�(α ×   0.248  0.053 

�*�%�(��*��α   0.207  0.057  
����( +���%�(α ×   0.020  0.034 

�*���+��*�
α   0.164  0.024  

+��� +�����%α ×   0.103  0.069 

(����
α   0.629  0.073  

����( +�����%α ×   -0.082  0.075 

+���%�(α   0.145  0.146  
+��� (����α ×   0.169  0.051 

����( ����(
α ×   0.065  0.031  

����( (����α ×   -0.034  0.045 

����( +���α ×   -0.008  0.039  
+��� +�%�*��α ×   -  - 

+��� +���α ×   -0.157  0.035  
����( +�%�*��
α ×   -  - 

�������� � �������� �×α   0.006  0.024  
�������� � (����×α   0.014  0.018 

+���%�( +���%�(α ×   -0.356  0.097  
�������� � �*�%�(��*��×α   -0.008  0.014 

(���� (����
α ×   -0.183  0.026  

�������� � �*���+��*�×α   -0.005  0.005 

�*�%�(��*�� �*�%�(��*��α ×   0.033  0.017  
+���%�( (����α ×   -0.106  0.029 

�*���+��* �*���+��*
α ×   0.150  0.018  

+���%�( �*�%�(��*��α ×   0.085  0.022 

(���� �*�%�(��*��α ×   0.150  0.018  
+���%�( �*���+��*�α ×   0.022  0.009 

(���� �*���+��*
α ×   0.033  0.017       

 

Efficiency parameters 

*� +�%��
δ   -0.012  0.077  

 �*
δ   0.309  0.145 

���*
δ   -  -  

�*�*�δ   -  - 

��*δ   0.109  0.097  
�*�����δ   -0.116  0.106 

%*(*+��
δ   -  -       

( ) �  

−
≡ +γ σ σ σ

�
� � �

 
 0.134    

�
σ   0.521  0.022 

 

Mean log-likelihood 

  

2.995 

  

Number of observations 

  

80 
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Table 4A. Statistics of the Chow test 

Parameters  [ ]����'F�   Prob.>F 

Herbicide control  2.571  <0.001 

Manure injection  4.528  0.000 

Rotation cycle implementation  1.219  0.194 

 


