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1 Introduction

The seminal contribution of Lucas (1988) has generated a vast empirical literature that investigates

the effects of human capital on the long-run per capita income. An influential strand of this liter-

ature investigates the potentially detrimental effects of income inequality on the accumulation of

human capital and subsequently income. Although, the theoretical underpinnings of this relation-

ship have been extensively studied and several mechanisms in which human capital is influenced

by income inequality have been revealed, there has been little effort in the literature to take these

theories to the data.1

This paper is an attempt to fill this gap by taking two of the most influential papers, namely

Galor and Zeira (1993) and de la Croix and Doepke (2003) to the data by means of a cross-

country and panel data estimation. More precisely, this paper conducts a systematic analysis of

the inequality-human capital-income hypothesis in a sample of 46 countries for the period 1970—

2000, and subsequently tests the main channels — financial constraints and differential fertility

between poor and rich — by which income inequality affects human capital in the two models.

In their pioneering work, Galor and Zeira (1993) argued that inequality and income are linked by

the interaction between credit constraints and human capital investment. According to this credit

constraint model, education is costly and the credit market is imperfect. As a result, inequality

imposes a financial constraint on individuals to acquire education. More recently, de la Croix and

Doepke (2003) have hypothesized that inequality and income are linked by the interaction between

the fertility decision and human capital investment.2 According to this endogenous fertility model,

there exists a fertility differential between poor and rich households and this differential is rising

with the rise in inequality. As a result, the stock of human capital falls with the rise in inequality.

To the best of our knowledge there is no empirical test of the Galor and Zeira (1993) model

to date. This is quite surprising since this is one of the most influential papers in the macro

development literature measured by the number of citations that it has received to date. The

empirical literature which examined the inequality-fertility-income link includes Kremer and Chen

(2002), and de la Croix and Doepke (2003). Kremer and Chen (2002) conducted an empirical

analysis based on their own theoretical model and found evidence that inequality has a positive

11 Although the empirical literature on growth and inequality is vast, it is seldom based on a particular theory.
An incomplete set of key contributions in this literature includes Alesina and Rodrik (1994), Persson and Tabellini
(1994), Alesina and Perotti (1996), Clarke (1995), Deininger and Squire (1998), Forbes (2000), Barro (2000), Sylwester
(2000), and Durlauf, Johnson and Temple (2005).

2Other notable contributions that make similar arguments include Dahan and Tsiddon (1998), Kremer and Chen
(2002), and Moav (2005).
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effect on the fertility differential between poor and rich households. Building upon Kremer and

Chen’s study, de la Croix and Doepke (2003) found evidence that the fertility differential has

a negative impact on economic output. Despite these encouraging results, each of these papers

focused on one part of the inequality-fertility-income link only (i.e., Kremer and Chen focused on

the link between inequality and the fertility differential, while de la Croix and Doepke focused on

the link between the fertility differential and income).

Our main findings are as follows: Our results provide strong support of inequality-human

capital-income hypothesis. When we test for the two key potential mechanisms of the relation-

ship, we show that data favors de la Croix and Doepke’s differential fertility channel over Galor

and Zeira’s credit constraint channel. In an exhaustive robustness analysis, we show that these

baseline results are robust across different model specifications, estimation methods, and various

permutations of additional control variables.

The rest of the paper is organized as follows. Section 2 briefly outlines the two key mechanisms

put forward in Galor-Zeira and de la Croix-Doepke models. Section 3 specifies the regression

equations used in estimation, while section 4 takes a look at the datasets employed in the regression

analysis. Section 5 discusses our baseline results and several robustness checks. Section 6 concludes.

2 Theoretical Motivations

We begin our analysis by providing brief summaries of the main mechanisms underlying the models

by Galor and Zeira (1993) and de la Croix and Doepke (2003).

2.1 The financial constraint mechanism — Galor and Zeira (1993)

Galor and Zeira (1993) introduced an overlapping-generation model of the economy with altruism,

where the economy consists of individuals who live for two periods. During the first period, these

individuals may choose to work or invest in human capital; during the second period, they simply

work. If they invested in human capital during the first period, they would work as skilled workers in

the second period and receive high wages; otherwise, they would work as unskilled workers in both

periods and receive low wages. The work-study decision in the first period depends partly on the

amount of wealth they inherit from their parents. Assuming that this inheritance varies from one

person to another, then those with greater inheritance stand a better chance of acquiring education.

If one’s inheritance is not sufficient, then one can still invest in human capital by borrowing.

However, due to assumed imperfect credit markets, some individuals are credit-constrained. That
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is, there are individuals who cannot afford to acquire education because their inheritance falls short

of a certain minimum amount, and they are denied educational loans.

[Insert Figure 1 about here]

Under the Galor-Zeira model, population is gradually partitioned into two groups separated by

an unstable equilibrium point, denoted by point g in Figure 1. That is, those individuals who receive

inheritance less than g will end up in the poor group, xpoor , and those who receive inheritance more

than g will end up in the rich group, xrich , in the long-run. The reason for this dynamic evolution is

that a minimum amount of inheritance is needed before subsequent generations can provide enough

bequests for their offspring as well.

It can be inferred from Figure 1 that the long-run levels of income are positively related to

the initial number of individuals who inherit more than g. To illustrate, consider an economy

characterized by three different scenarios. First, one-half of the population is concentrated around

f and the remaining one-half around h. Second, one-third of the population is concentrated around

f and the remaining two-third around h. Third, two-thirds of the population is concentrated around

f and the remaining one-third around h. In all cases, the fraction of population that lives around f

will move to xpoor and the fraction of population that lives around h will move to xrich .

With reasonable values of income at xpoor ; f; g; h; and xrich , we can deduce the following: income

tends to remain unchanged in the first scenario, rise in the second scenario, and fall in the third

scenario. Thus, the larger the fraction of people who inherit more than g, the higher the long-run

income tends to be. If we let g be the threshold that separates a poor from a non-poor economy,

then we obtain the following conclusions: 1) An initially poor economy will end up poor in the long

run, 2) An initially non-poor economy with wealth distributed among many will end up rich, and

3) An initially non-poor economy with wealth distributed among few will end up poor.

2.2 The fertility differential mechanism — de La Croix and Doepke (2003)

de la Croix and Doepke (2003) constructed a model in which fertility and education decisions

are interdependent. More precisely these authors introduced a representative agent model of the

economy with endogenous fertility decisions. That is, households make a conscious decision on the

optimal number of children that they wish to have. This optimal decision hinges on the trade-off

that households face between the quantity and quality of children that they wish to have. This

trade-off arises from the total cost of raising children, which consists of direct cost (food, clothing,

and education) and indirect cost (the opportunity cost of raising children).
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As household incomes rise, the direct cost of childrearing (as a fraction of the total cost of

childrearing) becomes less important; thus, education (which is part of the direct cost) rises with

income. As their incomes rise, however, the indirect or opportunity cost of childrearing becomes

more prominent; hence, fertility declines with income. As a result, rich people tend to have few yet

more educated children and poor people tend to have many yet less educated children. It follows,

then, that the higher the fertility and education differentials are, the smaller the stock of human

capital and the lower the level of per capita income in the future.

Worth noting here is Kremer and Chen (2002), who also investigated the dynamics of income

distribution and the link between education and fertility. However unlike de la Croix and Doepke

(2003), there is no quantity-quality trade off at the individual level in Kremer and Chen model.

Fertility decisions are assumed to depend only on the wage, but independent of a family’s education

choices. Education and fertility decisions thus do not interact, even though they are correlated at

the aggregate level.

3 Model Specifications

In this section, we specify the regression equations that will form the basis of our empirical analysis.

We start by considering a broad reduced-form specification and continue with specifications that

test the two potential mechanisms of the inequality-human capital-income relationship.

3.1 Reduced-form specification

Although, as discussed above, the Galor-Zeira and de la Croix-Doepke differ in their underlying

mechanisms through which education is compromised, both models imply the following reduced-

form relationship:

  =   =  (1)

Given that the same reduced-form specification is obtained from both the Galor-Zeira and the

de la Croix-Doepke models, our first task is to test whether this relationship between inequality,

human capital and income finds support in the data.

We estimate this relationship using two equations: In the first equation, income is a function of

education and other explanatory variables in the Solow growth regression. In the second equation,

education is a function of income inequality and a dummy variable for poor countries. We introduce

a dummy variable for poor countries since the implications of both models are not applicable to an
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initially poor country. In particular, we estimate the following two-stage specification:

 = 1 + 2+ 3+ 4 (+  + ) +  (2)

 = 1 + 2+ 3 +  (3)

where Income is the level of long-run income per capita, Educ is defined as the ratio of skilled to

unskilled labor or the average human capital investment, Invest is the amount of physical capital

Investment, (n + g + ) is the sum of the rates of population growth (n), technological progress

(g), and capital depreciation (), Gini is the Gini index which measures the degree of inequality,

Poor is a dummy variable equal to one for an initially poor country and zero otherwise, and u and

v are the error terms. A priori, we expect the coefficients of Gini, Poor, and (n + g +) to be

negative and those of Educ and Invest to be positive.

3.2 Galor-Zeira vs. de la Croix-Doepke

Although the two models support the same underlying relationship between inequality and income

via educational attainment, they differ substantially in the way education could be compromised.

The Galor-Zeira model emphasizes the link between inequality and financial frictions. This in turn

relies on the assumption of a nonlinear relationship between education/income of parents and the

education of children. In contrast, the de la Croix-Doepke model does not rely on such nonlinearity.

Rather, it is a link between inequality and fertility differential between poor and rich individuals

that is essential for this model to work.

In this section, we specify the regression equations to test each of these models. We also examine

which of the two mechanisms finds more support in the data.

To test the financial-constraints mechanism implied by the Galor-Zeira model we modify equa-

tions (2) and (3) and estimate the following two-stage specification:

 = 1 + 2+ 3+ 4 (+  + ) +  (4)

 = 1 + 2+ 3 + 4∗+ 5 +  (5)

where PvtCredit denotes a proxy for private credit as measured by Beck, Demirgüç-Kunt and Levine

(2000), and the interaction term PvtCredit*Gini attempts to capture the marginal effect of Gini

on education for countries for which private credit has been constrained. The prior based on the

Galor-Zeira model is that the estimated coefficient for PvtCredit should be positive and significant
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while the estimated coefficient for the interaction term PvtCredit*Gini should be negative and

significant.

Alternatively, to test the differential fertility mechanism implied by the de la Croix-Doepke

model we estimate the following two-stage specification:

 = 1 + 2+ 3+ 4 (+  + ) +  (6)

 = 1 + 2+ 3 +  (7)

where Fertd is fertility differential, defined as the total fertility rate (TFR) by women’s educational

attainment, as in Kremer and Chen (2002). In particular, Fertd is the fitted value of the overall

fertility obtained from regressing TFR on average years of education. The prior based on the

Croix-Doepke model is that the coefficient of Fertd is negative and significant and the coefficients

of Gini and Poor are positive and significant.3

3.3 Discussion of alternative specifications

We conclude our discussion on the choice of estimation specifications, by comparing our specifica-

tions with those found in the existing literature. First, let us compare our regression specifications

with two closely related ones; namely, those of Perotti (1996) and Sylwester (2000). Perotti (1996)

employed the following structural model:

 = 1 + 2 + 0 + 

 = 1 + 2+ 3 + 3 + 

where Growth is the growth rate of per capita income for the period 1960−1985, Educf is the flow of
human capital, x is a vector of control variables (which includes initial income per capita and PPP

investment deflator), Mid is the income share of the third and fourth quintiles of population which

measures income equality (as opposed to income inequality), Educfem is the stock of female human

3We have also attempted to examine which of the two mechanisms finds more support in the data when eval-
uated under a more integrated specification. In particular we estimate the following two-stage specification which
allows both differential fertility and private credit constraints to potentially affect the skill ratio in the first stage:
 = 1 + 2+ 3+ 4 (+  + ) + 
 = 1 + 2+ 3 + 4∗+ 5+ 6 ∗+ 7 + 
We have also considered an alternative two-stage specification as that involved the following equations:
 = 1 + 2+ 3+ 4+ 5 (+  + ) + 
 = 1 + 2+ 3 + 4∗+ 5 + 
 = 1 + 2+ 3 + 
Unfortunately, we did not go too far with this approach as the number of regressors increased substantially reducing
our degrees of freedom prohibitively to 22 observations.
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capital, and Educmale is the stock of male human capital. There are a few notable differences

between Perotti’s and our structural model.

First, Perotti’s dependent variable in the first equation is Growth while ours is Income. We use

Income because that is what is implied by the Galor-Zeira model; Perotti used Growth because that

is a standard practice in the growth empirics. This should not be a problem, however, because we

can always transform our level regression into the growth regression. Second, he discriminated be-

tween two measures of human capital stock and flow, and he treats the flow measure as endogenous

and the stock measure as exogenous. Third, he included a PPP Investment deflator in order to

account for market distortion. However, this variable is not an important determinant of growth.

Finally, Perotti did not include Invest and Poor variables. The omission of the former follows from

his reduced-form model which tries to accommodate other theoretical models. Nevertheless, this

variable is an important determinant of growth.

Sylwester (2000) employed the following structural model:

 = 1 + 2$ + 0 + 

$ = 1 + 2+ 3+ 3+ 

where Educ$ is the amount of educational expenditures, x is a vector of control variables (which

includes the lagged value of Educ$, the stock of human capital, and initial income per capita), Dem

is a dummy variable equal to one for a democratic country and zero otherwise, and n is the growth

rate of population; other variables are as defined before.

To begin with, Sylwester (2000) did not base his specification on a theoretical model. His main

concern is to determine whether income inequality affects growth through education. It turns out

that his specification is consistent with the credit constraint model. There are several differences,

though. First, Sylwester used a distinctive measure of human capital, namely, educational expen-

ditures. This measure can be thought of as another proxy for the flow of human capital. Second,

he employs both the stock and flow of human capital. Third, he also included the lagged value

of educational expenditures in both of his equations. Finally, he added Dem, a variable which is

implied by the political-economy model but not by the Galor-Zeira model.

As mentioned previously, there are also related specifications using the fertility differentials

hypothesis. For example, Kremer and Chen (2002) estimated the following model:

 = 1 + 2+ 0 + 
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where Fertd is the fertility differential, Gini is a measure of income inequality, x is a vector of

control variables (such as initial income and regional as well as time dummy variables), and  is

the error term.

de la Croix and Doepke (2003) estimate the following model:

 = 1 + 2+ 0 + 

where all variables are as defined previously.

As indicated earlier, the Kremer-Chen and de la Croix-Doepke specifications merely test one

part of the endogenous fertility model. A better approach would be to specify a model that is

capable of testing the model as a system, which is the approach we use in our empirical analysis.

It turns out that an earlier empirical analysis by Perotti (1996) does this. In particular, Perotti

(1996) estimated the following structural model:

 = 1 + 2+ 0 + 

 = 1 + 2+ 

where Fert is the overall fertility and Mid is the income share of the third and fourth quintiles of

the population. Hence, Mid is a measure of income equality (as opposed to income inequality).

Despite the similarity between Perotti’s specification and ours, there is one notable difference.

In Perotti’s specification there is no link between fertility and education. That is, he employs

a measure of the overall fertility as opposed to the fertility differential as implied by the de la

Croix-Doepke endogenous fertility model.

Finally, there exists a notable complementary literature on the link between human-capital

inequality and growth including; see e.g. Castello-Climent and Domenech (2002, 2008, 2009).

While these papers do not focus on the two mechanisms explored here, they are clearly relevant

to this work as they consider alternative definitions to inequality, and alternative ways in which

human capital affects growth.

4 Data

We proceed by collecting the cross-country data for all of the variables identified in those equations

from various sources. It turns out that the Gini data impose substantial restrictions on the number

of available observations. If we wish to use these data for as early as 1960, then we end up with
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as few as 14 observations. The number of available observations rises as we adjust the beginning

period upward: 27 if we begin from 1965, 41 if 1970, 52 if 1975, and 62 if 1980.

To have as many observations as possible while having data for a relatively long period of time,

we relax the time classification for the inequality data. That is, data that range between 1960 and

1965 are treated as the 1960 data, data that range between 1970 and 1975 are treated as the 1970

data, and data that range between 1980 and 1985 are treated as the 1980 data. With this slight

relaxation of classification, we have the following: 75 observations if we begin from 1980, 56 if 1970,

29 if 1960, etc. We settle for data that begin from 1970; hence, we have 56 observations. When we

match these data with the data on other variables, we lose another 10 observations. Thus, we end

up with 46 observations.

Given this restriction, we collect the necessary data for 46 countries during the period 1970−2000
as follows:

1. Gini: This variable, which measures the degree of income inequality, is defined as the log of

the Gini index in 1970 or its closest neighboring period but cannot exceed 1975. Gini is taken

from Deininger and Squire (1996), who make the necessary efforts to compile high-quality

income distribution data. In particular, they impose three stringent quality criteria before

the data can be accepted. First, data must be based on household surveys (not from national

accounts that make some assumptions about patterns of income inequality). Second, data

must be based on comprehensive coverage of population (not based on some segments of

population only). Third, data must be based on comprehensive coverage of income sources

(not based on wage incomes only but also nonwage incomes).

2. Income: The log of the real GDP per capita in 2000. The source is Penn World Table version

6.1 (RGDPCH series).

3. Educ: The log of the ratio of the amount of skilled labor to unskilled labor during the period

1970−2000. The amount of skilled labor is defined as the percentage of the population who
has attained certain level of education multiplied by the quantity of labor. The data on the

percentage of population with certain education level are taken from Barro and Lee (2001)

while the data on labor force are taken from PWT6.1. Appendix A discusses further details

on this variable. In the robustness analysis, we also use the alternative definition of the log

of average years of schooling for population over 25 years old during the period 1970−2000.
This measure is taken from Barro and Lee (2001).
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4. PrivCredit: Private credit by deposit money banks and other financial institutions to GDP.

The source of these data is Beck, Demirgüç-Kunt and Levine (2000).

5. Fertd: The fitted value of the overall fertility obtained from regressing the overall fertility

variable on average years of education; therefore, Fertd measures the variation in the overall

fertility that is explained by educational attainment. The source of the Fertd data is Barro

and Lee (1994).

6. Invest: The log of the annual average of the ratio of real Investment to GDP during the

period 1970−2000. The data for this variable are taken from PWT6.1.

7. (n + g + ): The log of the sum of the rates of population growth (n), technological progress

(g), and capital depreciation (). The population growth rate data (n), taken from PWT6.1,

is defined as the annual average of the population growth rate during the period 1970−2000.
We follow the literature by setting g +  = 0.05.

8. Poor: This variable is defined as a dummy variable, which is equal to 1 for any countries that

are classified by the World Bank as low-income countries in 1970 (and 0 otherwise) based on

their income range. Since the data for 1970 are not available, we use the data for 1972. These

data are taken from the World Tables 1976, published by the World Bank.

5 Estimation results

We start by testing the general hypothesis  =  =  implied by

both the Galor-Zeira and de la Croix-Doepke models. Subsequently, we test each of the two

models separately focusing on their specific channels through which inequality impairs educational

attainment. We also examine which of the two mechanisms — financial constraints or differential

fertility — finds more support in the data.

5.1 Reduced form estimation

Employing cross-country data for 46 countries during the period 1970−2000, we conduct an em-
pirical analysis to test the relationship in equation (1) using equations (2) and (3). In particular,

we estimate equation (2) by the instrumental variable (IV) method, where Educ is instrumented

by Gini and Poor. Hence, equation (3) corresponds to the first-stage regression and equation (2)
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the second-stage regression.45

As mentioned earlier, Educ is defined as (the log of) the ratio of skilled to unskilled labor.

However, it remains to specify what constitutes skilled and unskilled labor. According to Duffy,

Papageorgiou, and Perez-Sebastian (2004), however, six measures of skilled labor could be con-

structed: a) workers who have completed tertiary education (Ls0), b) workers who have attained

some tertiary education (Ls1 ), and so on (see Appendix A for details). Of these six, the first two

are probably more plausible than the others because the ability to think and learn complex con-

cepts (such as learning a new computer language) is probably more associated with the ability to

pursue college education. Of the two, the latter is preferred because skilled labor might plausibly

encompass those who have moved beyond secondary education. Accordingly, we employ (Ls1/Lu1 )

as the benchmark measure of Educ in our analysis.

We begin by running the first-stage regression corresponding to equation (2) and present the

estimation results in Table 1. Column (1a) shows that the coefficients of Gini and Poor are individ-

ually significant at the 1% level. Since both coefficients are also jointly significant at the 5% level,

we proceed with the second-stage regression and present the results in Column (1b).6 We observe

that the coefficients of Ls1/Lu1 , Invest, and (n + g + ) enter with the expected signs and are

individually significant at least at the 5% level. However, the coefficients of regional dummies are

individually insignificant even at the 10% level. Since the coefficients of key variables (Gini, Poor,

and Ls1/Lu1 ) enter with the correct signs and are significant, we take these results as evidence in

favor of the inequality-human capital-income hypothesis.

The fact that our dependent variable, Income, is measured in the year 2000, while some of our

explanatory variables (Invest and n)7 are measured as averages over the period 1970−2000 may
make our estimation results susceptible to simultaneity bias (i.e., the direction of causality may run

from these variables to Income instead). In the growth empirics, this endogeneity issue is partly

taken care of by instrumenting the relevant regressors (Invest and n in our context) with their

4The empirical literature on the inequality-growth relationship usually adds three regional dummy variables (the
Latin American countries, the Asian countries, and the African countries) in order to control for institutional and
cultural factors that might differ across regions. Since there are only two African countries in our 46-country sample,
we add two regional dummies only, Latin and Asia, to our second-stage regression.

5Since Invest, (n + g +  ), Latin, and Asia are assumed to be exogenous, their coefficients will enter the first-stage
regression as well to ensure that Educ is estimated with the optimal set of instruments [see Chapter 5 of Wooldridge
(2002)]. However, these exogenous variables have little meaning in the first-stage regression. Hence, their coefficients
will be suppressed from the first-stage regression results.

6The second-stage regression is conducted only if Gini and Poor are jointly significant.
7Although Ls1/Lu1 data is also an average of the period 1970 − 2000, this should not pose any simultaneity

problem because it is instrumented by Gini and Poor.
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lagged values [see Barro and Sala-i-Martin (2004)].

Before we do that, however, we test the endogeneity of Invest and n using the Hausman test.

First, we estimate the second-stage regression with and without instrumenting Invest and n with

their respective lagged values, which are measured as averages over the period 1965−1995. Second,
we test whether the difference between estimates obtained from the regression with and without

instrumenting Invest and n is statistically significant. (Note that Ls1/Lu1 is always instrumented

by Gini and Poor by the theoretical implication.) Unfortunately, the Hausman test fails to deliver

any results because the test statistic is negative. To get around this problem, we adopt the auxiliary

regression version of the Hausman test.8 In this case, we find evidence that Ls1/Lu1 , Invest, and n

are endogenous.

Given the above results, we repeat our baseline estimation by instrumenting Invest and n with

their respective lagged values. As reported in Columns (2a) and (2b), we find that, except for

the regional dummies, the coefficients of all variables enter with the anticipated signs and are

individually significant at mostly the 5% level. Compared to the corresponding coefficients in

Columns (1a) and (1b), we see that the results are fairly robust (the only sensitive coefficient is

that of Poor).

One may argue that our baseline results might be subject to sample selection bias since they

are based on an exceedingly small sample size, 46. This problem arises because the data on Gini

is not available for many countries in early years. One way to increase the sample size would be

to curtail the sample period to 1980−2000. However, doing so will increase the sample size only
marginally; the sample size becomes 61 instead of 46. Another way to increase the sample size

would be to work with panel data (as opposed to cross-sectional data). So we construct a panel

data of countries with a five-year interval during 1970−2000, where Gini and Poor are measured
at 1970, 1975, . . . , 1995, Ls1/Lu1 , Invest and (n + g + ) are measured as averages of 1971−1975,
1976−1980, . . . , 1996−2000, and Income is measured at 1975, 1980, . . . , 2000. Including only those
data for which there are at least two consecutive observations, we end up with an unbalanced panel

of 53 countries and 226 observations.

With this expanded sample size, we re-estimate our model by the pooled IV method. As before,

we start with the first-stage regression with regional dummies. As shown in Columns (3a) and (3b),

8This method can be summarized in the following steps [see Chapter 15 of Wooldridge (2006)]: First, we run
the first-stage regression for each Ls1/Lu1, Invest, and (n + g +  ). Second, we extract residuals obtained from
each first-stage regression. Third, we run the second-stage regression with the inclusion of these residuals using the
method of ordinary least squares (OLS). Finally, we test whether the estimated coefficients from the residuals are
jointly significant; if they are, then Ls1/Lu1 , Invest, and (n + g +  ) are deemed endogenous.
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the coefficients of all variables enter with the correct signs and are individually significant mostly

at the 1% level. It is worth noting that, with the enlarged sample size, the coefficients of regional

dummies are also individually significant at least at the 5% level. Compared to the corresponding

coefficients in Columns (1a) and (1b), we see that there is a remarkable change in the magnitude

of Gini, Poor, and (n + g + ). Nonetheless, since the results on key variables remain intact, they

lend further support for the inequality-human capital-income hypothesis.

[Insert Table 1 about here]

Robustness

We have been using the ratio of skilled to unskilled labor as the closest proxy for human capital

investment in Galor-Zeira and de la Croix-Doepke. In the growth empirics, however, the usual proxy

for human capital investment is school attainment rate. In order to see whether our estimation

results are sensitive to a change in the education proxy, we repeat our previous exercises with this

alternative proxy. In particular, we employ a measure of school attainment rate, AvgEduc, in lieu

of Ls1/Lu1 .
9

We re-estimate our reduced-form specification and present the results in Table 2. In Columns

(1a) and (1b), the most basic reduced-form specification, we see that the coefficients of key variables

and that of Invest continue to enter with the correct signs and are significant at the 1% level. Unlike

the corresponding specification in Table 1, however, the coefficient of (n + g + ) enters with the

wrong sign and is insignificant, and those of regional dummies are significant. In Columns (2a) and

(2b), a reduced-form specification with instrumented Invest and n, we observe that the coefficients

of key variables and that of Invest continue to enter with the expected signs and are significant

at least at the 5% level. In contrast to the corresponding specification in Table 1, however, the

coefficient of (n + g + ) is insignificant, and those of regional dummies are significant. Finally,

we find that similar results continue to hold in the reduced-form specification with panel data; see

Columns (3a) and (3b).

[Insert Table 2 about here]

Thus far, we have defined skilled labor as those individuals who have attained at least some

tertiary education (L1). It may be argued that our baseline results could be sensitive to alternative

definitions. To entertain this possibility, we redefine skilled labor as those who have completed

9AvgEduc is defined as (the log of) average years of schooling for population over 25 years old during the period
1970 − 2000, the data of which are taken from Barro and Lee (2001).
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tertiary education (L0). Consequently, we employ Ls0/Lu0 in lieu of Ls1/Lu1 . With this slight

change, we re-estimate our reduced-form specification and present the results in Table 3. In Columns

(1a) and (1b), we see that the baseline results remain intact with respect to the sign, magnitude,

and significance of the coefficients of all variables.10

All of these results notwithstanding, Duffy, Papageorgiou and Perez-Sebastian (2004) point out

that the way skilled and unskilled labor are defined suffers from an aggregation problem. For

example, the (Ls1/Lu1 ) data that we use treat workers with different levels of education equally. If

labor is paid according to its marginal revenue product, then workers with a higher level of education

should be given a greater weight than workers with a lower level of education. To overcome this

aggregation problem, we follow these researchers in weighting the (Ls1/Lu1 ) data according to the

marginal revenue product of labor. Unfortunately, the weighting procedure requires some additional

data on the return to education and on the duration of education at various levels. It turns out that

data on the return to schooling are not available for many countries; this results in the reduction

of our sample size to 32. Therefore, we opt to work with the panel data. Utilizing the same panel

data set as before (but interacting it with data on the return to education and the duration of

education) yields an unbalanced panel of 32 countries and 145 observations.

Using the weighted (Ls1/Lu1 ) data, we re-estimate our model by the pooled IV method. In

the first-stage regression, the results of which are documented in Column (3a), we find that, al-

though the coefficients of Gini and Poor enter with the expected signs, the coefficient of Gini is

insignificant.11 One way to interpret these unfavorable results is that the hypothesis is rejected

when it is confronted with better (weighted) human capital data. However, it could also be argued

that these poor results are driven by a reduction in the sample size from 226 to 145. To test for this

equally plausible interpretation, we re-estimate this specification using the unweighted (Ls1/Lu1 )

data with 145 observations. Instead, the results of the first-stage regression in Column (4a) appear

to mimic the results in Column (3a); i.e. although the coefficients of Gini and Poor enter with the

expected signs, the coefficient of Gini is insignificant suggesting that our results are sensitive to

changes in the sample size.

[Insert Table 3 about here]

10Table B1 in Appendix B shows that, even with further modifications of the skilled labor definition, we continue
to obtain similar results.
11In addition, both coefficients are also found to be jointly insignificant, thereby precluding us from conducting the

second-stage regression (see footnote 5).



Inequality, Human Capital and Development 15

5.2 Testing the mechanisms: Galor-Zeira vs. de la Croix-Doepke

So far, we have tested and found strong evidence that lends support to the inequality-human capital-

income hypothesis. Now we proceed by testing which of the two mechanisms (credit constraints

and fertility differential) finds more support. To test for the plausibility of the credit constraints

mechanism implied by the Galor-Zeira model, we employ equations (4) and (5). In particular,

equation (4) is estimated by the IV method, where Educ is instrumented by Gini, Poor, PvtCredit,

and PvtCredit*Gini. To test for the plausibility of the fertility differential mechanism implied by

the de la Croix-Doepke model, we employ equations (6) and (7). In this case, equation (6) is

estimated by the IV method, where Fertd is instrumented by Gini and Poor.

In order to provide a meaningful comparison between the two models, it is important that

we have a uniform sample. In this regard, Fertd poses further constraints on the sample size and

period.12 In particular, the inclusion of Fertd reduces the sample size to 33 and the sample period to

1970−1985. Concerns over this small sample have led us to consider the panel version of the sample
as well. So we construct a panel data of countries with a five-year interval during 1970−1985, where
Gini and Poor are measured at 1970, 1975, and 1980, Ls1/Lu1 , Invest, (n + g + ), and PvtCredit

are measured as averages of 1971−1975, 1976−1980, and 1981−1985, and Income and Fertd are
measured at 1975, 1980, and 1985. Including only those data for which there are at least two

consecutive observations, we end up with an unbalanced panel of 29 countries and 76 observations.

We begin by estimating the Galor-Zeira specification corresponding to equations (4) and (5)

and present the results in Table 4. Columns (1a) and (1b), which report the results of the cross-

sectional sample, show that, although the coefficients of Gini, Poor, Ls1/Lu1 , Invest, and (n + g

+ ) enter with the expected signs and are significant at mostly the 5% level, the coefficients of

PvtCredit and PvtCredit*Gini enter with the wrong signs and are insignificant. While these mixed

results can be taken as evidence against the Galor-Zeira model, they could also be attributed to

small sample. In order to address this small-sample issue, we repeat the above exercise with the

panel data sample, in which case the sample size is more than doubled. Columns (2a) and (2b) show

that, although the coefficients of PvtCredit and PvtCredit*Gini now enter with the correct signs,

they are insignificant. It appears that the results are sensitive to sample size. Overall, however,

these results indicate that there is not much support for the financial frictions mechanism.

We proceed by estimating the de la Croix-Doepke specification corresponding to equations (6)

12Actually, it is not Fertd per se that imposes the constraint; rather, it is TFR data which are available quinquen-
nially for the period 1970-1985. The Fertd data are derived from TFR data.
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and (7). Columns (3a) and (3b) show that the coefficients of Gini, Poor, and Fertd enter with the

expected signs and are significant at least at the 5% level. When the estimation is repeated with

the panel data sample (see Columns 4a and 4b), we find that the results are broadly robust with

respect to the coefficients of key variables. We take these results as evidence that lends support to

the de la Croix-Doepke model and its underlying differential fertility mechanism.

[Insert Table 4 about here]

Robustness

As before, we subject the estimation results based on the Galor-Zeira and de la Croix-Doepke

models to a series of robustness checks and present the results in Table 5. First, we re-estimate the

Galor-Zeira specification with instrumented Invest and n. Columns (1a) and (1b) indicate that the

results are consistent with those in the baseline specification, suggesting that the baseline results

are insensitive to the endogeneity problem. Second, we re-estimate the Galor-Zeira specification

with additional control variables (Columns 2a and 2b) but the key coefficient estimates remain

insignificant. Finally, when we perform these robustness checks to the de la Croix-Doepke spec-

ification, it is shown (Columns 3a and 3b, and 4a and 4b, respectively) that results are broadly

consistent with those in the baseline specification.

[Insert Table 5 about here]

6 Conclusion

In this paper, we conducted an empirical analysis to test the implications of the Galor and Zeira

(1993) and de la Croix and Doepke (2003) models based on a cross-section data of 46 countries

during the period 1970—2000. Both Galor-Zeira and de la Croix-Doepke (2003) models conjecture

that there exists a negative relationship between income inequality and the long-run level of per

capita income through the adverse effect of income inequality on human capital accumulation. In

the Galor-Zeira model, such an adverse effect occurs because poor households tend to invest less in

the education of their offspring due to the financial constraints that they face. Since the proportion

of the poor tends to be larger in the more unequal society, it follows that high income inequality

results in lower human capital accumulation. In the de la Croix and Doepke (2003) model, such an

adverse effect occurs because poor households tend to have more yet less educated children than rich

households do due to the differential costs of child rearing between the rich and the poor. It follows
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that high income inequality results in a lower proportion of skilled workers and, subsequently, lower

human capital accumulation.

First, we tested a reduced form specification which ties income inequality to the long-run level of

per capita income via human capital investment. In the baseline estimation and various robustness

checks, we obtained results that lend strong support to this relationship. Further, we tested for

the key mechanism behind each of the two alternative models and have shown that data seems to

favor the differential fertility mechanism as in de la Croix and Doepke (2003) over the financial

constraints mechanism argued in Galor and Zeira (1993).

There are two issues that could cast doubt on our baseline estimation: small sample size and

simultaneity. On the first issue, we repeated our analysis with a five-year panel data of those

countries during the same period. With an enlarged sample size of 226 observations, our cross-

section results continued to hold. On the second issue, we repeated our analysis by instrumenting

the explanatory variables with their lagged values. In this case too, we continued to obtain results

consistent with our baseline results. In addition, we complemented our baseline estimation with a

series of robustness checks.

Nevertheless, it is important to acknowledge the limitations of our study. First, our findings

are based on a cross-country sample which suffers from well-documented measurement error. On

top of that our inequality dataset excludes most African countries and our results may be driven

by this omission. Second, although we have tried to correct for endogeneity problems as best as we

could, we can only claim that our attempts only partly address these problems.

A broader message of this paper is that the empirical development/growth literature could

benefit from exploring more deeply the indirect relationship between human capital and income, as

there seems to be several intervening conditions in the growth process that can limit the formation

and effectiveness of human capital. Such intervening conditions are hard to capture in an aggregate

macro relationship and, with this logic, it should not be surprising that this relationship is not stable

in existing literature.
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Figure 1: The Dynamics of Galor-Zeira Model 
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Table 1.  Reduced Form Estimation: Baseline Results  

[Educ = Ls1/Lu1; Sample Period: 19702000] 

Dependent 

Variable 

Ls1/Lu1 

(1a) 

2SLS 

1
st
 stage 

Income 

(1b) 

2SLS 

2
nd

 stage 

Ls1/Lu1 

(2a) 

2SLS-inst. 

1
st
 stage 

Income 

(2b) 

2SLS-inst. 

2
nd

 stage 

Ls1/Lu1 

(3a) 

Panel 

1
st
 stage 

Income 

(3b) 

Panel 

2
nd

 stage 

Constant 13.578*** 

(2.88) 

3.644* 

(1.73) 

12.302** 

(2.68) 

1.930 

(0.86) 

1.612 

(0.61) 

5.703*** 

(5.64) 

Gini 2.624*** 

(4.27) 

 2.445*** 

(4.17) 

 1.465*** 

(3.83) 

 

Poor 1.723*** 

(3.99) 

 0.915* 

(1.92) 

 1.120*** 

(4.71) 

 

Ls1/Lu1  0.669*** 

(5.01) 

 0.430** 

(2.33) 

 0.503*** 

(6.44) 

Invest  0.409** 

(2.37) 

 0.891** 

(2.72) 

 0.758*** 

(5.73) 

(n  +  g  +  )  2.198*** 

(2.99) 

 2.139** 

(2.65) 

 0.878*** 

(2.73) 

Latin  0.134 

(0.60) 

 0.240 

(0.97) 

 0.239** 

(2.23) 

Asia  0.101 

(0.40) 

 0.151 

(0.49) 

 0.421*** 

(4.12) 

Adj.  R
2
 0.51 0.71 0.57 0.68 0.42 0.77 

Obs. 46 46 46 46 226 226 
Notes: Educ is defined as the ratio of skilled to unskilled workers, Ls1/Lu1, as defined in the main text. Except for 

dummies, all variables are expressed in logs.  Estimation  is  done  by  2SLS;  columns  (1a)  and  (1b)  report  

results  from  the  first-  and  second-stage  regressions,  respectively; columns (2a)  and  (2b)  report  results  from  

the  first-  and  second-stage  regressions with instrumented Invest and (n  +  g  +  );   columns (3a)  and  (3b)  

report  results  from  the  first-  and  second-stage  panel regressions. t-values are  in  parentheses;  ***,  **,  and  *  

denote  statistical  significance  at  the  1%,  5%,  and  10%  levels,  respectively.  
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Table 2.  Reduced Form Estimation: Robustness Results 

[Educ = AvgEduc; Sample Period: 19702000] 

Dependent 

Variable 

AvgEduc 

(1a) 

2SLS 

1
st
 stage 

Income 

(1b) 

2SLS 

2
nd

 stage 

AvgEduc 

 (2a) 

2SLS-inst. 

1
st
 stage 

Income 

(2b) 

2SLS-inst. 

2
nd

 stage 

AvgEduc 

 (3a) 

Panel 

1
st
 stage 

Income 

(3b) 

Panel 

2
nd

 stage 

Constant 2.706 

(1.26) 

7.750*** 

(3.39) 

1.981 

(0.92) 

5.143* 

(1.97) 

0.558 

(0.49) 

5.880*** 

(5.31) 

Gini 0.999*** 

(3.57) 

 0. 923*** 

(3.35) 

 0.658*** 

(4.04) 

 

Poor 0.846*** 

(4.30) 

 0. 588** 

(2.62) 

 0.428*** 

(4.22) 

 

AvgEduc 

 

 1.610*** 

(5.64) 

 1.137*** 

(2.84) 

 1.147*** 

(5.12) 

Invest  0.337** 

(2.04) 

 0.795** 

(2.58) 

 0.815*** 

(6.72) 

(n  +  g  +  )  0.726 

(0.81) 

 0.041 

(0.04) 

 0.393 

(0.89) 

Latin  0.591*** 

(2.95) 

 0. 546** 

(2.65) 

 0.303*** 

(3.39) 

Asia  0.370* 

(1.75) 

 0.451* 

(1.98) 

 0.632*** 

(7.46) 

Adj.  R
2
 0.63 0.75 0.65 0.73 0.54 0.78 

Obs. 46 46 46 46 226 226 
Notes: Educ is defined as the average years of education, as defined in the main text. Except for dummies, all 

variables are expressed in logs.  Estimation  is  done  by  2SLS;  columns  (1a)  and  (1b)  report  results  from  the  

first-  and  second-stage  regressions,  respectively; columns (2a)  and  (2b)  report  results  from  the  first-  and  

second-stage  regressions with instrumented Invest and (n  +  g  +  );   columns (3a)  and  (3b)  report  results  from  

the  first-  and  second-stage  panel regressions. t-values are  in  parentheses;  ***,  **,  and  *  denote  statistical  

significance  at  the  1%,  5%,  and  10%  levels,  respectively.  
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Table 3.  Reduced Form Estimation: Robustness Results (cont.) 

[Educ = Ls/Lu; Sample Period: 19702000] 

Dependent 

Variable 

Ls0/Lu0 

(1a) 

2SLS 

1
st
 stage 

Income 

(1b) 

2SLS 

2
nd

 stage 

Ls2/Lu2 

(2a) 

2SLS 

1
st
 stage 

Income 

(2b) 

2SLS 

2
nd

 stage 

Wgt Ls1/Lu1 

(3a) 

Panel 

1
st
 stage 

Ls1/Lu1 

(4a) 

Panel 

1
st
 stage 

Constant 10.522** 

(2.49) 

4.404* 

(1.89) 

7.785 

(1.60) 

6.263** 

(2.71) 

1.812 

(0.58) 

1.322 

(0.40) 

Gini 2.210*** 

(4.02) 

 2.121*** 

(3.35) 

 0.169 

(0.34) 

0.121 

(0.23) 

Poor 1.542*** 

(3.99) 

 1.636*** 

(3.67) 

 0.537* 

(1.83) 

0.837*** 

(2.67) 

Ls/Lu  0.782*** 

(4.71) 

 0.788*** 

(5.18) 

  

Invest  0.398** 

(2.13) 

 0.436** 

(2.57) 

  

(n  +  g  +  )  2.203*** 

(2.78) 

 1.050 

(1.34) 

  

Latin  0.234 

(0.99) 

 0.162 

(0.73) 

  

Asia  0.032 

(0.12) 

 0.188 

(0.81) 

  

Adj.  R
2
 0.47 0.66 0.45 0.71 0.34 0.35 

Obs. 46 46 46 46 145 145 

Notes: Educ takes alternative measures of skilled to unskilled workers, Ls/Lu, as defined in Appendix A. Except for dummies, all 

variables are expressed in logs.  Estimation  is  done  by  2SLS;  columns  (1a)  and  (1b)  report  results  from  the  first-  and  

second-stage  regressions,  respectively using Ls0/Lu0; columns (2a) and (2b)  report  results  from  the  first- and second-stage  

regressions using Ls2/Lu2; column (3a) reports results from the first-stage panel regression with weighted skilled to unskilled 

workers; column (4a)  reports  results  from  the  first- stage panel regression with unweighted skilled to unskilled workers but with 

the same number of observations as in the model with weighted Ls1/Lu1. t-values are  in  parentheses;  ***,  **,  and  *  denote  

statistical  significance  at  the  1%,  5%,  and  10%  levels,  respectively.  
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Table 4.  Galor-Zeira and de la Croix-Doepke models: Baseline Results  

[Educ = Ls1/Lu1; Sample Period: 19701985] 

Dependent 

Variable 

Ls1/Lu1 

(1a) 

2SLS 

1
st
 stage 

Income 

(1b) 

2SLS 

2
nd

 stage 

Ls1/Lu1 

(2a) 

Panel 

1
st
 stage 

Income 

(2b) 

Panel 

2
nd

 stage 

Constant 21.706** 

(2.38) 

1.994 

(0.91) 

11.541** 

(2.16) 

1.322 

(1.17) 

Gini 3.588** 

(2.09) 

 1.850* 

(1.72) 

 

Poor 1.291* 

(1.99) 

 1.145*** 

(3.00) 

 

Credit 1.278 

(0.09) 

 9.833 

(1.25) 

 

Credit*Gini 0.555 

(0.14) 

 2.505 

(1.13) 

 

Ls1/Lu1  0.303** 

(2.44) 

 0.419*** 

(6.05) 

Invest  0.616*** 

(3.16) 

 0.887*** 

(7.16) 

(n  +  g  +  )  2.243** 

(2.66) 

 2.205*** 

(5.29) 

Latin  0.004 

(0.01) 

 0.431*** 

(2.70) 

Asia  0.503* 

(1.90) 

 0.312** 

(2.25) 

Adj.  R
2
 0.61 0.84 0.54 0.87 

Obs. 33 33 76 76 
Notes: Educ is defined as the ratio of skilled to unskilled workers, Ls1/Lu1, as defined 

in the main text. Except for dummies Credit and Fertd, all variables are expressed in 

logs.  Estimation  is  done  by  2SLS;  columns  (1a)  and  (1b)  report  results  from  

the  first-  and  second-stage  regressions,  respectively based on the Galor-Zeira 

specification given by equations (4-5) using the cross-sectional data; columns (2a)  

and  (2b)  repeats the exercise using panel data. 
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Table 4 (cont.) Galor-Zeira and de la Croix-Doepke models: Baseline Results 

[Educ = Ls1/Lu1; Sample Period: 19701985] 

Dependent 

Variable 

Ls1/Lu1 

(3a) 

2SLS 

1
st
 stage 

Income 

(3b) 

2SLS 

2
nd

 stage 

Ls1/Lu1 

(4a) 

Panel 

1
st
 stage 

Income 

(4b) 

Panel 

2
nd

 stage 

Constant 3.219 

(0.48) 

6.111** 

(2.14) 

4.261 

(0.88) 

8.149*** 

(3.44) 

Gini 2.761*** 

(3.23) 

 2.205*** 

(3.06) 

 

Poor 1.708** 

(2.52) 

 1.239*** 

(2.88) 

 

Fertd  0.308*** 

(2.96) 

 0.465*** 

(4.20) 

Invest  0.544** 

(2.42) 

 0.658*** 

(3.81) 

(n  +  g  +  )  0.931 

(0.99) 

 0.167 

(0.25) 

Latin  0.296 

(1.02) 

 0.086 

(0.59) 

Asia  0.726** 

(2.72) 

 0.715*** 

(4.87) 

Adj.  R
2
 0.68 0.88 0.56 0.83 

Obs. 33 33 76 76 
Notes: Educ is defined as the ratio of skilled to unskilled workers, Ls1/Lu1, as defined 

in the main text. Except for dummies, Credit, and Fertd, all variables are expressed 

in logs.  Estimation  is  done  by  2SLS;  columns (3a)  and  (3b)  report  results  from  

the  first-  and  second-stage  regressions, respectively based on the de la Croix-

Doepke specification given by equations (6-7) using the cross-sectional data; 

columns (4a)  and  (4b)  repeats the exercise using panel data. 
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Table 5.  Galor-Zeira and de la Croix-Doepke models: Robustness Results 

[Educ = Ls1/Lu1; Sample Period: 19701985] 

Dependent 

Variable 

Ls1/Lu1 

(1a) 

2SLS-inst. 

1
st
 stage 

Income 

(1b) 

2SLS- inst. 

2
nd

 stage 

Ls1/Lu1 

(2a) 

2SLS-contls 

1
st
 stage 

Income 

(2b) 

2SLS-contls  

2
nd

 stage 

Constant 23.889*** 

(2.98) 

1.441 

(0.63) 

20.729* 

(2.08) 

1.316 

(0.62) 

Gini 3.847** 

(2.54) 

 2.408 

(1.24) 

 

Poor 1.317** 

(2.30) 

 1.247* 

(1.83) 

 

Credit 4.003 

(0.32) 

 9.482 

(0.58) 

 

Credit*Gini 1.352 

(0.39) 

 2.406 

(0.53) 

 

Ls1/Lu1  0.344*** 

(2.85) 

 0.101 

(0.71) 

Invest  0.516** 

(2.59) 

 0.408 

(1.68) 

(n  +  g  +  )  2.576*** 

(2.85) 

 1.216 

(1.22) 

Latin  0.087 

(0.31) 

 0.133 

(0.43) 

Asia  0.401 

(1.415) 

 0.535* 

(2.01) 

Adj.  R
2
 0.65 0.83 0.60 0.88 

Obs. 33 33 33 33 
Notes: Educ is defined as the ratio of skilled to unskilled workers, Ls1/Lu1, as defined in 

the main text. Except for dummies Credit and Fertd, all variables are expressed in logs.  

Estimation  is  done  by  2SLS;  columns  (1a)  and  (1b)  report  results  from  the  first-  

and  second-stage  regressions,  respectively based on the Galor-Zeira specification given 

by equations (4-5) with instrumented Invest and (n  +  g  +  ); columns (2a)  and  (2b)  

repeats the exercise using a set of additional controls (i.e. government consumption, 

government spending on education, government defense spending, PPI deflator, and life 

expectancy). 
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Table 5 (cont.) Galor-Zeira and de la Croix-Doepke models: Robustness Results 

[Educ = Ls1/Lu1; Sample Period: 19701985] 

Dependent 

Variable 

Ls1/Lu1 

(3a) 

2SLS-inst. 

1
st
 stage 

Income 

(3b) 

2SLS-inst. 

2
nd

 stage 

Ls1/Lu1 

(4a) 

2SLS-contls 

1
st
 stage 

Income 

(4b) 

2SLS-contls 

2
nd

 stage 

Constant 7.915 

(1.29) 

5.891* 

(1.91) 
2.780 

(0.47) 

3.294 

(1.39) 

Gini 3.177*** 

(3.78) 

 1.640* 

(1.99) 

 

Poor 2.133*** 

(3.29) 

 1.397** 

(2.45) 

 

Fertd  0.332*** 

(3.45) 

 0.213 

(1.14) 

Invest  0.481** 

(2.22) 

 0.475* 

(2.07) 

(n  +  g  +  )  1.099 

(1.09) 

 1.027 

(1.31) 

Latin  0.249 

(0.85) 

 0.128 

(0.50) 

Asia  0.670** 

(2.45) 

 0.625*** 

(2.99) 

Adj.  R
2
 0.67 0.88 0.80 0.90 

Obs. 33 33 33 33 
Notes: Educ is defined as the ratio of skilled to unskilled workers, Ls1/Lu1, as defined in 

the main text. Except for dummies Credit and Fertd, all variables are expressed in logs. 

Estimation is done by  2SLS; columns (3a) and (3b) report results from the first- and 

second-stage  regressions, respectively based on the de la Croix-Doepke specification 

given by equations (6-7) with instrumented Invest and (n  +  g  +  ); columns (4a) and 

(4b) repeats the exercise using a set of additional controls. 
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Appendix A: Details on the construction of skill-to-unskilled variable (Ls/Lu) 

 

Since  there  are  three  levels  of  education  (primary,  secondary,  and  tertiary),  we  

could  construct  three  different  measures  of  skilled  labor.  Nonetheless,  we  follow  

Duffy,  Papageorgiou,  and  Perez-Sebastian  (2004)  and  Caselli  and  Coleman  (2006)  

in  considering  six  alternative  measures  of  skilled  labor:  a)  workers  who  have  

attained  complete  tertiary  education  (Ls0),  b)  workers  who  have  attained  at  least  

some  tertiary  education  (Ls1),  c)  workers  who  have  attained  at  least  complete  

secondary  education  (Ls2),  d)  workers  who  have  attained  at  least  some  secondary  

education  (Ls3),  e)  workers  who  have  attained  at  least  complete  primary  education  

(Ls4),  and  f)  workers  who  have  attained  at  least  some  primary  education  (Ls5).   

 

Given  these  six  measures,  the  corresponding  measures  of  unskilled  labor  can  be  

calculated  residually.  For  example,  if  skilled  labor  is  defined  as  in  (a),  then  

unskilled  labor  is  defined  as  any  workers  who  have  not  completed  tertiary  

education.  Similarly,  if  skilled  labor  is  defined  as  in  (b),  then  unskilled  labor  is  

defined  as  any  workers  who  have  not  attained  any  tertiary  education.  Of  all  these  

alternative  measures  of  skilled  labor  plus  workers  who  have  not  received  any  

education  at  all  (Lu),  workers  who  have  attained  at  least  some  and  complete  

primary  education  (Ls5  and  Ls4) account  for  a  large  bulk  of  all  workers  in  our  46-

country  sample  over  the  period  19702000  (see  Table  A1). 

 

Table A1: Relative Size of Alternative Measures of Skilled Labor 

Year Ls0 Ls1 Ls2 Ls3 Ls4 Ls5 Lu 

1970 50.81 

(1.74) 

83.67 

(2.86) 

200.59 

(6.85) 

345.59 

(11.80) 

659.13 

(225.51) 

964.33 

(32.93) 

624.19 

(21.32) 

1980 102.92 

(2.49) 

171.51 

(4.14) 

415.33 

(10.03) 

644.32 

(15.56) 

870.53 

(21.03) 

1228.43 

(29.67) 

707.19 

(17.08) 

1990 179.53 

(3.33) 

292.73 

(5.43) 

555.56 

(10.30) 

863.10 

(16.01) 

1165.35 

(21.61) 

1582.95 

(29.36) 

752.57 

(13.96) 

2000 255.07 

(3.75) 

417.24 

(6.14) 

743.11 

(10.93) 

1127.74 

(16.59) 

1507.42 

(22.17) 

2043.99 

(30.06) 

704.67 

(10.36) 

Average 147.08 

(3.05) 

241.29 

(5.01) 

478.65 

(9.94) 

745.19 

(15.48) 

1050.61 

(21.82) 

1454.92 

(30.22) 

697.16 

(14.48) 
Notes:  Entries  in  the  cells  and  parentheses  are  the  number  of  workers  (in  thousands)  and  their  

percentages  (in  percentage  points),  respectively. 
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Appendix B: Additional Estimation using Alternative Measures of Skill-to Unskilled 

Variable (Ls/Lu) 
 

Table B1.  Reduced Form Estimation: Additional Alternative Measures of Skilled Labor 

[Educ = Ls/Lu; Sample Period: 19702000] 

Dependent 

Variable 

Ls3/Lu3 

(1a) 

2SLS 

1
st
 stage 

Income 

(1b) 

2SLS 

2
nd

 stage 

Ls4/Lu4 

(3a) 

2SLS 

1
st
 stage 

Income 

(3b) 

2SLS 

2
nd

 stage 

Ls5/Lu5 

(4a) 

2SLS 

1
st
 stage 

Income 

(4b) 

2SLS 

2
nd

 stage 

Constant 4.561 

(0.86) 

8.913*** 

(3.46) 

3.110 

(0.63) 

9.420*** 

(3.64) 
3.359 

(0.48) 

15.334*** 

(3.39) 

Gini 2.122*** 

(3.05) 

 1.990*** 

(3.08) 

 2.431** 

(2.68) 

 

Poor 1.487*** 

(3.04) 

 1.804*** 

(3.97) 

 1.937*** 

(3.17) 

 

Ls/Lu  0.813*** 

(5.17) 

 0.782*** 

(5.41) 

 0.698*** 

(4.06) 

Invest  0.624*** 

(3.99) 

 0.462*** 

(2.82) 

 0.468** 

(2.15) 

(n  +  g  +  )  0.317 

(0.35) 

 0.639 

(0.69) 

 3.169* 

(1.87) 

Latin  0.287 

(1.35) 

 0.052 

(0.23) 

 0.742** 

(2.54) 

Asia  0.345 

(1.55) 

 0.149 

(0.66) 

 0.033 

(0.10) 

Adj.  R
2
 0.44 0.72 0.61 0.72 0.67 0.51 

Obs. 46 46 46 46 43 43 
Notes: Educ takes alternative measures of skilled to unskilled workers, Ls/Lu, as defined in Appendix A. Except 

for dummies, all variables are expressed in logs.  Estimation is done by 2SLS. Columns (1a) and (1b) are based 

on Ls3/Lu3; columns (2a) and (2b) on Ls4/Lu4; columns (3a) and (3b) on Ls5/Lu5. t-values are  in parentheses;  ***,  
**,  and  *  denote  statistical  significance  at  the  1%,  5%, and  10%  levels,  respectively. 


