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A FAST AND ACCURATE FFT-BASED METHOD FOR PRICING

EARLY-EXERCISE OPTIONS UNDER LÉVY PROCESSES

R. LORD∗, F. FANG† , F. BERVOETS‡ , AND C.W. OOSTERLEE§

Abstract. A fast and accurate method for pricing early exercise and certain exotic options
in computational finance is presented. The method is based on a quadrature technique and relies
heavily on Fourier transformations. The main idea is to reformulate the well-known risk-neutral
valuation formula by recognising that it is a convolution. The resulting convolution is dealt with
numerically by using the Fast Fourier Transform (FFT). This novel pricing method, which we
dub the Convolution method, CONV for short, is applicable to a wide variety of payoffs and only
requires the knowledge of the characteristic function of the model. As such the method is applicable
within exponentially Lévy models, including the exponentially affine jump-diffusion models. For
an M -times exercisable Bermudan option, the overall complexity is O(MN log(N)) with N grid
points used to discretise the price of the underlying asset. It is shown how to price American
options efficiently by applying Richardson extrapolation to the prices of Bermudan options.

Key words. option pricing , Bermudan options, American options, convolution, Lévy Pro-
cesses, Fast Fourier Transform
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Preferred short title : CONV method for option pricing

1. Introduction. When valuing and risk-managing exotic derivatives, practi-
tioners demand fast and accurate prices and sensitivities. As the financial models
and option contracts used in practice are becoming increasingly complex, efficient
methods have to be developed to cope with such models. Aside from non-standard
exotic derivatives, plain vanilla options in many stock markets are actually of the
American type. As any pricing and risk management system has to be able to
calibrate to these plain vanilla options, it is of the utmost importance to be able to
value these American options quickly and accurately.

By means of the risk-neutral valuation formula the price of any option without
early exercise features can be written as an expectation of the discounted payoff
of this option. Starting from this representation one can apply several numerical
techniques to calculate the price itself. Broadly speaking one can distinguish three
types of methods: Monte Carlo simulation, numerical solution of the corresponding
partial-(integro) differential equation (P(I)DE) and numerical integration. While
the treatment of early exercise features within the first two techniques is relatively
standard, the pricing of such contracts via quadrature pricing techniques has not
been considered until recently, see [1, 32]. Each of these methods has its merits and
demerits, though for the pricing of American options the PIDE approach currently
seems to be the clear favorite [19, 34].

In the past couple of years a vast body of literature has considered the mod-
eling of asset returns as infinite activity Lévy processes, due to the ability of such
processes to adequately describe the empirical features of asset returns and at the
same time provide a reasonable fit to the implied volatility surfaces observed in op-
tion markets. Valuing American options in such models is however far from trivial,
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due to the weakly singular kernels of the integral terms appearing in the PIDE, as
reported in, e.g., [3, 4, 11, 20, 28, 33].

In this paper we present a novel quadrature-based method for pricing options
with early exercise features. The method effectively combines the recent quadrature
pricing methods of [1] and [32] with the methods based on Fourier transformation
pioneered by [8, 29, 26]. Though the transform methods so far have mainly been
used for the pricing of European options, we show how early exercise features can
be incorporated naturally. The only requirement of the method is that the condi-
tional characteristic function of the underlying asset is known, which is the case for
many exponential Lévy models, with the popular exponentially affine jump-diffusion
(EAJD) models of [13] as an important subclass. In contrast to the PIDE methods,
processes of infinite activity, such as the Variance Gamma (VG) or CGMY models
can be handled with relative ease. In addition to its flexibility, a real benefit of our
method is its impressive computational speed, as all integrations can be evaluated
using the FFT algorithm.

This paper is organized as follows. We start with an overview of the recent
history of the FFT in option pricing. Subsequently we introduce the novel method
called Convolution (CONV) method for early exercise options. Its high accuracy
and speed are demonstrated by pricing several Bermudan and American options
under Geometric Brownian Motion (GBM), VG and CGMY.

2. Overview Transform and Quadrature Pricing Methods. All trans-
form methods depart from the risk-neutral valuation formula that, for a European
option, reads:

V (t, S(t)) = e−rτ
E [V (T, S(T ))] , (1)

where V denotes the value of the option, r is the risk-neutral interest rate, t is the
current time point, T is the maturity of the option and τ = T − t. The variable
S denotes the asset on which the option contract is based. The expectation is
taken with respect to the risk-neutral probability measure. Although we assume
throughout the paper that interest rates are deterministic, this assumption can be
relaxed at the cost of increasing the dimensionality of some of the methods. As (1)
is an expectation, it can be calculated via numerical integration provided that the
probability density is known in closed-form.

This is not the case for many models which do however have a characteristic
function in closed form.1 A number of papers starting from Heston [18] have at-
tacked the problem via another route. Focusing on a plain vanilla European call
option, note that (1) can be written very generally as:

V (t, S(t)) = e−rτ (F (t, T ) · ∆ − K · P(S(T ) > K)), (2)

where F (t, T ) is the forward price of the underlying asset at time T , as seen from t,
P(S(T ) > K) is the risk-neutral probability of ending up in-the-money and ∆ is the
delta of the option, the sensitivity of the option with respect to changes in the un-
derlying. Note that (2) has the same form as the celebrated Black-Scholes formula.
The delta can be interpreted as the probability of ending up in the money under
the stock price measure, induced by taking the asset price itself as the numeraire
asset. As such, both these cumulative probabilities can be found by inverting the
characteristic function, an approach which in the form used here dates back to

1Or, the probability density involves complicated special functions whereas the characteristic
function is comparatively easier.
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Gurland [17] and Gil-Pelaez [16]. We can write:

P(ST > K)=
1

2
+

1

2π

∫ ∞

−∞

e−iukφ(u)

iu
du, (3)

∆ =
1

2
+

1

2π

∫ ∞

−∞

e−iukφ(u − i)

iuφ(−i)
du, (4)

where i is the imaginary unit, k is the logarithm of the strike price K and φ is the
characteristic function of the log-underlying, i.e.,

φ(u) = E

[
eiu ln S(T )

]
.

Carr and Madan [8] considered another approach. Note that L1-integrability is a
sufficient condition for the Fourier transform of a function to exist. A call option is
certainly not L1-integrable with respect to the logarithm of the strike price, as:

lim
k→−∞

V (t, S(t)) = S(t),

Damping the option price with exp (αk) for α > 0 solves this however, and Carr
and Madan ended up with:

F{eαkV (t, k)} = e−rτ

∫ ∞

−∞

eiuk
E

[
(S(T ) − ek)+

]
dk

=
e−rτφ(u − (α + 1)i)

−(u − αi)(u − (α + 1)i)
, (5)

where with abuse of notation we now consider the option price V as a function of
time and k. Though this approach was new to mathematical finance, the idea of
damping functions on the positive real line in order to be able to find their Fourier
transform dates back to at least Dubner and Abate [12].

A necessary and sufficient condition for (5) to exist is that

φ(−(α + 1)i) = E[S(T )α+1] < ∞,

i.e., that the (α + 1)th moment of the asset price exists. The option price can
subsequently be recovered by inverting (5) and undamping

V (t, k) =
1

2π
e−rτ−αk

∫ ∞

−∞

e−iuk φ(u − (α + 1)i)

−(u − αi)(u − (α + 1)i)
du (6)

The representation in (6) has two distinct advantages over (3). Firstly, it only re-
quires one numerical integration. Secondly, whereas (2) can suffer from cancellation
errors, the numerical stability of (6) can be controlled by means of the damping co-
efficient α. Finally we note that if we discretise (6) with Newton-Côtes quadrature
the option price can very efficiently be evaluated by means of the FFT, yielding
option prices over a whole range of strike prices.

The methods considered up till here can only handle the pricing of European
options. Before turning to methods that can handle early exercise features, let us
introduce some notation. We define the set of exercise dates as T = {t1, . . . , tM} and
0 = t0 ≤ t1. For ease of exposure we assume the exercise dates are equally spaced,
so that tm+1 − tm = ∆t. The best known examples of options with early exercise
are American and Bermudan options. American options can be exercised at any
time prior to the option’s expiry, whereas Bermudan options can only be exercised
at certain dates in the future. If the option is exercised at some time t ∈ T the
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holder of the option obtains the exercise payoff E(t, S(t)). The Bermudan option
price can then be found via backward induction as





V (tM , S(tM )) = E(tM , S(tM ))
C(tm, S(tm)) = e−r∆t

Etm
[V (tm+1, S(tm+1))]

V (tm, S(tm)) = max{C(tm, S(tm)), E(tm, S(tm))},
m = M − 1, . . . , 1, (7)

with C the continuation value of the option and V the value of the option im-
mediately before the exercise opportunity. Note that we now explicitly attached
a subscript to the expectation operator to indicate that the expectation is being
taken with respect to all information available at time tm.

Clearly the dynamic programming problem in (7) is a successive application of
the risk-neutral valuation formula, as we can write the continuation value as

C(tm, S(tm)) = e−r∆t

∫ ∞

−∞

V (tm+1, y)f(y|S(tm))dy, (8)

where f(y|S(tm)) represents the probability density describing the transition from
S(tm) at tm to y at tm+1. Based on (7) and (8) the QUAD method was introduced
in [1]. The method requires the transition density to be known in closed-form, which
is the case in e.g. the Black-Scholes model and Merton’s jump-diffusion model. This
requirement is relaxed in [32], where the QUAD-FFT method is introduced. The
underlying idea is that the transition density can be recovered by inverting the
characteristic function, opening up the QUAD method to a much wider range of
models. As such the QUAD-FFT method effectively combines the QUAD method
with the early transform methods. The overall complexity of both methods is
O(MN2) for an M -times exercisable Bermudan option with N grid points used to
discretise the price of the underlying asset.

The complexity of this method can be improved to O(MN log(N)) if the under-
lying is a monotone function of a Lévy process. We will demonstrate this shortly. In
the remainder we assume, as is common, that the underlying process is modelled as
an exponential of a Lévy process. Let x1, . . . , xN be a uniform grid for the log-asset
price. If we discretise (8) by the trapezoidal rule we can write the continuation
value in matrix form as

C(tm) ≈ e−r∆t∆x

[
FV −

1

2
(V (tm+1, x1) f1 + V (tm+1, xN ) fN )

]
, (9)

where

fi =




f(xi|x1)
...

f(xi|xN )


 , F = (f1, . . . , fN), V =




V (tm+1, x1)
...

V (tm+1, xN )


 ,

and f(y|x) now denotes the transition density in logarithmic coordinates. The key
observation is that the increments of Lévy processes are independent, so that due
to the uniform grid

Fj,ℓ = f(yj|yℓ) = f(yj+1|yℓ+1) = Fj+1,ℓ+1; (10)

The matrix F is hence a Toeplitz matrix. A Toeplitz matrix can easily be rep-
resented as a circulant matrix, which has the convenient property that the FFT
algorithm can be employed to efficiently calculate matrix-vector multiplications.
Therefore, an overall computational complexity of O(MN log(N)) can be achieved.
Though this method is significantly faster than [1] or [32], we do not pursue it in
this paper as the method we develop in the next section requires less operations,
though the complexity remains the same.
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The previous strain of literature does not seem to have picked up on a presen-
tation by Reiner [30], where it was recognised that for the Black-Scholes model the
risk-neutral valuation formula in (8) can be seen as a convolution or correlation of
the continuation value with the transition density. As convolutions can be handled
very efficiently by means of the FFT, an overall complexity of O(MN log N) can
be achieved. By working forward instead of backward in time a number of discrete
path-dependent options can also be treated, such as lookbacks, barriers, Asian op-
tions and cliquets. Building on Reiner’s idea, Broadie and Yamamoto [6] have been
able to reduce the complexity to O(MN) for the Black-Scholes model by combining
the double-exponential integration formula and the Fast Gauss Transform. Nat-
urally their technique is applicable to any model in which the transition density
can be written as a weighted sum of Gaussian densities, which is the case in e.g.
Merton’s jump-diffusion model.

As one of the defining properties of a Lévy process is that its increments are
independent of each other, the insight of Reiner has a much wider applicability than
only to the Black-Scholes model. This is especially appealing since the usage of Lévy
processes in finance has become more established nowadays. By combining Reiner’s
ideas with the work of Carr and Madan, we introduce the Convolution method, or
CONV method for short. The complexity of the method is O(MN log N) for an
M -times exercisable Bermudan option.

3. The CONV Method. The main premise of the CONV method is that
the conditional probability density f(y|x) in (8) only depends on x and y via their
difference

f(y|x) = f(y − x). (11)

Note that x and y do not have to represent the asset price directly, they could
be monotone functions of the asset price. The assumption made in (11) therefore
certainly holds when the asset price is modelled as a monotone function of a Lévy
process, since one of the defining properties of a Lévy process is that its increments
are independent of each other. As mentioned earlier, we choose to work with ex-
ponential Lévy models in the remainder of this paper. In this case x and y in (11)
represent the log-spot price. Let us see what the impact of independent increments
is on the continuation value in (8). By including (11) in (8) and changing variables
z = y − x the continuation value can be expressed as

C(tm, x) = e−r∆t

∫ ∞

−∞

V (tm+1, x + z)f(z)dz, (12)

which is a cross-correlation2 of the option value at time tm+1 and the density
f(z), or equivalently, a convolution of V (tm+1) and the conjugate of f(z). If the
density function has an easy closed-form expression, it may be beneficial to proceed
along the lines of (9). However, for many exponential Lévy models we either do
not have a closed-form expression for the density (e.g. the CGMY/KoBoL model
of [5] and [7] and many EAJD models), or if we have, it involves one or more special
functions (e.g. the VG model). In contrast, the characteristic function of the log-
spot price can typically be found in closed-form or, in case of the EAJD models,
via the solution of a system of ODEs.

2The cross-correlation of two functions f(t) and g(t), denoted f ⋆ g, is defined by

f ⋆ g ≡ f̄(−t) ∗ g(t) =

Z ∞

−∞

f(τ)g(t + τ)dτ,

where ‘∗’ denotes the convolution operator.
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Let us therefore take the Fourier transform of (12). The insight that the contin-
uation value can be seen as a convolution is particularly useful here, as the Fourier
transform of a convolution is merely the product of the Fourier transforms of the two
functions being convolved. In the remainder we will employ the following definitions
for the continuous Fourier transform and its inverse,

ĥ(u) := F{h(t)}(u) =

∫ ∞

−∞

eiuth(t)dt, (13)

h(t) := F−1{ĥ(u)}(t) =
1

2π

∫ ∞

−∞

e−iutĥ(u)du. (14)

If we dampen the continuation value (12) by a factor exp (αx) and subsequently
take its Fourier transform, we arrive at

er∆tF{c(tm, x)}(u) =

∫ ∞

−∞

eiuxeαx

∫ ∞

−∞

V (tm+1, x + z)f(z)dzdx (15)

=

∫ ∞

−∞

∫ ∞

−∞

eiu(x+z)v(tm+1, x + z)e−iz(u−iα)f(z)dzdx.

where in the first step we used the risk-neutral valuation formula from (12).
We introduced the convention that small letters indicate damped quantities, i.e.,
c(tm, x) = eαxC(tm, x) and v(tm, x+ z) = eα(x+z)V (tm, x+ z). Changing the order
of integration and remembering that x = y − z, we obtain

er∆tF{c(tm, x)}(u) =

∫ ∞

−∞

∫ ∞

−∞

eiuyv(tm+1, y)dy e−i(u−iα)zf(z)dz

=

∫ ∞

−∞

eiuyv(tm+1, y)dy

∫ ∞

−∞

e−i(u−iα)zf(z)dz

= F{eαyV (tm+1, y)}(u) φ(−(u − iα)). (16)

In the last step we used the fact that the complex-valued Fourier transform of the
density is simply the extended characteristic function

φ (x + yi) =

∫ ∞

−∞

ei(x+yi)zf(z)dz, (17)

which is well-defined when φ(yi) < ∞, as |φ(x + yi)| ≤ |φ(yi)|. As such (16) puts a
condition on the damping coefficient α, because φ(αi) must be finite.

The difference with the Carr-Madan approach in (5) is that we take a transform
with respect to the log-spot price instead of the log-strike price, something which [26]
and [29] also consider for European option prices. The damping factor is again
certainly necessary when considering e.g. a Bermudan put, as then V (tm+1, x) tends
to a constant when x → −∞, and as such is not L1-integrable. For the Bermudan
put we must choose α > 0. Though other values of α are allowed in principle, we
need to know the poles of the payoff-transform in order to apply Cauchy’s residue
theorem, see e.g. [23] and [24]. This restriction on α will disappear when we switch
to a discretised version of (16) in the next section. The Fourier transform of the
damped continuation value can thus be calculated as the product of two functions,
one of which, the extended characteristic function, is readily available in exponential
Lévy models. How we proceed should be fairly clear. We recover the continuation
value by taking the inverse Fourier transform of the right-hand side of (16), and
calculate V (tm) as the maximum of the continuation and the exercise value at tm.
We repeat (7) recursively until we have obtained the option price at time t0. In
pseudo-code the CONV algorithm is presented in Algorithm 1.
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Algorithm 1: The CONV algorithm for Bermudan options

V (tM , x) = E(tM , x) for all x
For m = M − 1 to 0

Dampen V (tm+1, x) with exp(αx) and take its Fourier transform
Calculate the right-hand side of (16)
Calculate C(tm, x) by applying Fourier inversion to (16) and undamping
V (tm, x) = max {(E(tm, x), C(tm, x)}

Next m

In Appendix A we demonstrate how the hedge parameters can be calculated in
the CONV method. As differentiation is exact in Fourier space, they will be more
stable than when calculated via finite-difference based approximations.

The following section deals with the implementation of the CONV algorithm. In
particular we employ the power of the FFT to approximate the continuous Fourier
transforms that are involved.

4. Implementation Details of the CONV Method. The very essence of
the CONV method is the calculation of a convolution3:

c(x) =
1

2π

∫ ∞

−∞

e−iuxv̂(u)φ (−(u − iα)) du, (18)

where v̂(u) is the Fourier transform of v:

v̂(u) =

∫ ∞

−∞

eiuyv(y)dy. (19)

In the remainder of this section we will just focus on equations (18) and (19) for
notational ease. In order to be able to use the FFT for exponentially affine models
means that we have to switch to logarithmic coordinates. For this reason the state
variables x and y will represent lnS(tm) and lnS(tm+1), up to a constant shift.
This section is organised as follows. Section 4.1 deals with the discretisation of the
convolution in (18) and (19). Section 4.2 analyses the error made by one step of
the CONV method and provides guidelines to choosing the grids for u, x and y.
Section 4.3 considers the choice of grid further and investigates how to deal with
points of discontinuity. This will prove to be very important if we want to guarantee
a smooth convergence of the algorithm. Finally, sections 4.4 and 4.5 deal with the
pricing of Bermudan and American options with the CONV method.

4.1. Discretising the Convolution. We approximate both integrals in (18)
and (19) by a discrete sum, so that the FFT algorithm can be employed for their
computation. This necessitates the use of uniform grids for u, x and y:

uj = u0 + j∆u, xj = x0 + j∆x, yj = y0 + j∆y, (20)

where j = 0, . . . , N −1. Though they may be centered around a different point, the
x- and y-grids have the same mesh size: ∆x = ∆y. Further, the Nyquist relation
must be satisfied, i.e.,

∆u · ∆y =
2π

N
. (21)

In principle we could use the Fractional FFT algorithm (FrFT) which does not
require the Nyquist relation to be satisfied. Numerical tests indicated that the
FrFT is on average 4 times slower than the FFT, and that we could obtain a

3For notational convenience we have dropped the discounting term out of the equation.
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similar accuracy by quadrupling the number of points, so that we opted to use the
FFT throughout. Details about the exact location of x0 and y0 will be given in
Section 4.3, as will details about the range of all grids. Inserting (19) into (18),
and approximating (19) with a general Newton-Côtes rule and (18) with the left-
rectangle rule yields:

c(xp) ≈
∆u∆y

2π

N−1∑

j=0

e−iujxpφ (−(uj − iα))

N−1∑

n=0

wneiujynv(yn), (22)

for p = 0, . . . , N − 1. When using the trapezoidal rule we choose the weights wn as:

w0 =
1

2
, wN−1 =

1

2
, wn = 1 for n = 1, . . . , N − 2. (23)

Though it may seem that the choice for the left-rectangle rule in (18) would cause
the leading error term in (22) to be O(du), the error analysis will show that the
Newton-Côtes rule one uses to approximate (19) is one of the main determinants
hereof. Inserting the definitions of our grids into (22) yields:

c(xp) ≈
e−iu0(x0+p∆y)

2π
∆u

N−1∑

j=0

e−ijp2π/N eij(y0−x0)∆uφ (−(uj − iα)) v̂(uj), (24)

where the Fourier transform of v is approximated by:

v̂(uj) ≈ eiu0y0∆y

N−1∑

n=0

eijn2π/Neinu0∆ywnv(yn). (25)

Let us now define the DFT and its inverse of a sequence xp, p = 0, . . . , N − 1, as:

Dj{xn} :=
N−1∑

n=0

eijn2π/Nxn, D−1
n {xj} =

1

N

N−1∑

j=0

e−ijn2π/Nxj . (26)

Though the reason why will become clear later, let us set u0 = −N/2∆u. As
einu0∆y = (−1)n this finally leads us to write (24), (25) as:

c(xp) ≈ eiu0(y0−x0)(−1)pD−1
p {eij(y0−x0)∆uφ (−(uj − iα))Dj{(−1)nwnv(yn)}}.

(27)

4.2. Error Analysis of the CONV Method. A first inspection of (27) sug-
gests that error will arise from two sources:

- Discretisation of both integrals in (18) and (19);
- Truncation of these integrals.

One way to proceed is to consider both integrals in (18), (19) separately, and esti-
mate both discretisation and truncation errors by applying the error analysis of [2].
[25] recently combined their analysis with sharp upper bounds on European plain
vanilla option prices to arrive at a sharp error bound for the discretised Carr-Madan
formula. Though it is possible to use parts of their analysis, we found that the re-
sulting error bounds overestimate the true error of the discretised CONV formula.
For this reason our analysis will be based on a Fourier series expansion of the
damped continuation value c(x). This is quite natural, as the Fourier transform
itself is generalised from Fourier series of periodic functions by letting their period
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approach infinity. We depart from the risk-neutral valuation formula with damping
and without discounting:

c(x) =

∫ ∞

−∞

v(x + z)e−αzf(z)dz. (28)

The first approximation we make is due to replacing v by its Fourier series expansion
on [−L/2, L/2], where we have fixed L > 0:

c̃1(x) ≈

∫ ∞

−∞

∞∑

j=−∞

vje
ij2π(x+z)/Le−αzf(z)dz =

∞∑

j=−∞

vje
ij2πx/Lφ

(
−(j

2π

L
− iα)

)
,

(29)
using the dominated convergence theorem. The Fourier series coefficients of v are
given by:

vj =
1

L

∫ L/2

−L/2

v(y)eij2πy/Ldy. (30)

As the Fourier series expansion of v is a periodic function with period L, only
agreeing with v on [−L/2, L/2], the error from this approximation equals:

e1(L) = c̃1(x) − c(x)

=

∫

IR\[−L/2,L/2]


v(x + z) −

∞∑

j=−∞

vje
ij2π(x+z)/L


 e−αzf(z)dz. (31)

A general guideline for choosing L is to ensure that the mass of the density out-
side [−L/2, L/2] is negligible. The function c̃1 can, at least on this interval, be
interpreted as an approximate Fourier series expansion of c(x).

The second error arises by truncating the infinite summation from −N/2 to
N/2 − 1, leading to c̃2 and its associated error e2:

c̃2 =

N/2−1∑

j=−N/2

vje
−ij2πx/Lφ

(
−(j

2π

L
− iα)

)
,

|e2(L, N)| = |c̃1(x) − c̃2(x)| ≤

∞∑

|j|=N/2

|vj ||φ

(
−(j

2π

L
− iα)

)
|. (32)

To further bound this error we require knowledge about the rate of decay of Fourier
coefficients. It is well known that even if v is only piecewise C1 on [−L/2, L/2]
its Fourier series coefficients vj tend to zero as j → ±∞. The modulus of vj can
therefore be bounded as:

|vj | ≤
η1(L)

|j|β1

. (33)

By ηi(·) we denote a bounding constant. The quantities it depends on are between
brackets. For functions that are piecewise continuous on [−L/2, L/2] but whose
L-periodic extension is discontinuous, we typically have β1 = 1 as the following
example demonstrates.

Example 4.2.1 (European Put). Suppose that we have a European put payoff
and that y = lnS(t)− lnK. Then the payoff function equals v(y) = eαyK(1− ey)+

and its Fourier series coefficients equal:

vj = K

(
e−Lα/2(−1)j e−L/2 − 1

L(α + 1) + 2πij
− L

e−Lα/2(−1)j − 1

(L(α + 1) + 2πij)(Lα + 2πij)

)
. (34)
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Clearly, β1 = 1 in (33), though when L → ∞ and j2π/L → u it can be shown
that the Fourier series coefficient converges to the Fourier transform of the payoff
function, which can be seen to be O(u−2) from (5).

The characteristic function can always be assumed to have power decay:

|φ(x + yi)| ≤
η2(y)

|x|β2

. (35)

This is overly conservative for e.g. the Black-Scholes model, where the characteristic
function of the log-underlying φ(x + yi) decays as exp(−cx2), or the Heston model
where the characteristic function has exponential decay. For the most popular Lévy
models however the power decay assumption is appropriate. The VG model for
example has β2 = 2τ/ν with τ being the time step. Using (33) and (35) yields:

|e2(L, N)| ≤

∞∑

|j|=N/2

η1(L)

|j|β1

η2(α)
(

2π
L

)β2

|j|β2

≤ η3(α, L)

∫ ∞

N/2−1

x−β1−β2dx

= η3(α, L)
(N/2 − 1)1−β1−β2

β1 + β2 − 1
, (36)

where η3(α, L) = 2η1(L)η2(α)(2π/L)−β2 . We finally arrive at the discretised CONV
formula in (27) by approximating the Fourier series coefficients of v in (32) with a
Newton-Côtes rule:

ṽ(uj) =
1

L
∆y

N−1∑

n=0

wneiujynv(yn). (37)

This is equal to the right-hand side of (24) multiplied by 1/L. It becomes clear that
we can set ∆y = L/N and y0 = −L/2.

Inserting (37) in c̃2 results in the third and final approximation:

c̃3(x) =

N/2−1∑

j=−N/2

ṽ(uj)e
−ij2π/Lxφ

(
−(j

2π

L
− iα)

)
. (38)

Assuming that the chosen Newton-Côtes rule is of O(N−β3), one can bound:

|vj − ṽ(uj)| ≤
η4(α, L)

Nβ3

, (39)

leading to the following error estimate for β2 6= 1:

|e3(L, N)| = |c̃2(x) − c̃3(x)| ≤
η4(α, L)

Nβ3

N/2−1∑

j=−N/2

|φ

(
−(j

2π

L
− iα)

)
|

≤
η4(α, L)

Nβ3


3φ(iα) + 2η2(α)

(
2π

L

)−β2
N/2∑

j=2

1

|j|β2




=
η5(α, L)

Nβ3

+
η6(α, L)

(1 − β2)Nβ3

(
2β2−1

Nβ2−1 − 1

)
. (40)

with η5(α, L) = 3η4(α, L)φ(iα) and η6(α, L) = 2η2(α)η4(α, L)(2π/L)−β2. For
β2 = 1 the second error term should of course be η6(α, L) ln N/2/Nβ3 .

Summarising, if we use a Newton-Côtes rule to discretise the Fourier transform
of the (continuous) function v(y), the error in the discretised CONV formula can



The CONV Method 11

be bounded as:

|c(x) − c̃3(x)| ≤ |c(x) − c̃1(x)| + |c̃1(x) − c̃2(x)| + |c̃2(x) − c̃3(x)|

≤ e1(L) + e2(L, N) + e3(L, N)

= e1(L) + O(N−min (β3,β2+β3−1,β1+β2−1)) (41)

As demonstrated, in most applications β1 = 1. This implies that, aside from the
truncation error, the order of convergence will be:

- O(N−β3) for characteristic functions decaying faster than a polynomial;
- O(Nmin (β3,β2+β3−1,β1+β2−1)) for characteristic functions with power decay.

The magnitude of β3 will depend on the interplay between the chosen Newton-Côtes
rule and the nature of the payoff function. One final word should be mentioned on
the damping coefficient α. In the continuous version of the algorithm in Section 3 α
was chosen such that the damped continuation value was L1-integrable. The direct
construction of the discretised CONV formula in Section 4.2 via a Fourier series
expansion of the continuation value replaces L1-integrability on (−∞,∞) with L1-
summability on [−L/2, L/2], so that the restriction on α is removed. In principle
any value of α is allowed as long as φ(iα) is finite. Nevertheless it seems sensible to
adhere to the guidelines stated before, as the function will resemble its continuous
counterpart more and more as L increases. The impact of α on the accuracy of the
CONV algorithm is investigated in Section 5.1.

This concludes the error analysis of one step of the CONV algorithm. It is easy
to show that the error is not magnified further in the remaining time steps. The
leading error of our algorithm is therefore dictated by the time step where the order
of convergence in (41) is the smallest.

4.3. Dealing with Discontinuities. Our focus in this section lies on achiev-
ing smooth convergence for the CONV algorithm. As numerical experiments have
shown that it is difficult to achieve smooth convergence with high order Newton-
Côtes rules, we will from here on focus on the second order trapezoidal rule in (23).
Smooth convergence is desirable as we will be using extrapolation techniques later
on to price American options in Section 4.5.

The previous section analysed the error in the discretised CONV formula when
we use a Newton-Côtes rule to integrate the function V , the maximum of the con-
tinuation value and the exercise value. If we focus on a simple Bermudan put it
is clear that already at the last time step this function will have a discontinuous
first derivative. Certainly it is also possible that V itself is discontinuous, think of
contracts with a barrier clause. This will affect the order of convergence.

It is well-known that if we want to numerically integrate a function with (a
finite number of) discontinuities, we should split up the integration domain such
that we are only integrating continuous functions. Appendix B demonstrates this
for the trapezoidal rule. In particular, we show that the trapezoidal rule remains
second-order if only the first derivative of the integrand is discontinuous, at the cost
of non-smooth convergence. If the integrand itself is discontinuous, the trapezoidal
rule loses an order. Smooth second-order convergence can be restored by placing
the discontinuities on the grid. This notion has often been utilised in lattice-based
techniques, though the solutions have more often than not been payoff-specific. An
approach that is more or less payoff-independent was recently proposed in [22],
generalising previous work by [23], which essentially places discontinuities on the
grid. Unfortunately, we cannot use their methodology here, as our desire to use the
FFT binds us to a uniform grid.

Before investigating how to handle discontinuities in the CONV algorithm, we
collect the results from the previous sections and restate the grid choice for the
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basic CONV algorithm. Equating the grids for x and y for now we have:

uj = (j −
n

2
)∆u, xj = yj = (j −

1

2
)∆y, j = 0, . . . , N − 1.

Here x and y represent, up to a constant shift, lnS(tm) and lnS(tm+1), respec-
tively. If in particular x = lnS(tm) − lnS(0) and y = lnS(tm+1) − lnS(0), so that
x and y represent total log-returns, we will refer to this discretisation as Discreti-
sation I. A convenient property of this discretisation is that the spot price always
lies on the grid, so that no costly interpolation is required to back out the desired
option value. Note that we need to ensure that the mass of the density of x and y
outside [−L/2, L/2] is negligible. Though more sophisticated approximations can
be devised, we use a rule of thumb from [32] which chooses L as a multiple of the
standard deviation of lnS(tm), i.e.,

L = δ ·

√

−
∂2φ(tm, u)

∂u2

∣∣∣∣
u=0

+

(
∂φ(tm, u)

∂u

∣∣∣∣
u=0

)2

(42)

where φ(tm, u) is the characteristic function of lnS(tm) conditional upon lnS(0),
and δ is a proportionality constant. Note that there is a trade-off in the choice
of L: as we set ∆y = L/N , the Nyquist relation implies ∆u = 2π/L and hence
[u0, uN−1] = [−Nπ/L, (N − 2)π/L]. Though larger values of L imply smaller trun-
cation errors, they also cause the range of the grid in the Fourier domain to be
smaller, so that the error in turn will be larger initially.

It is easy to come up with a choice of grid that allows us to place one disconti-
nuity on the grid. Suppose that at time tm the discontinuity we would like to place
on the grid is dm. We can then shift our grid by a small amount to arrive at:

xj = ǫx + (j −
L

2
)∆y, yj = ǫy + (j −

L

2
)∆y, (43)

where ǫx = dm−⌈dm/∆x⌋·∆x and ǫy is chosen in a similar fashion. This discretisa-
tion will be referred to as Discretisation II. Even for plain vanilla European options
where only one time step is required this is very useful. By choosing ǫy = lnK/S(0)
and ǫx = 0 we ensure that the discontinuity of the call or put payoff lies on the y-
grid, and the spot price lies on the x-grid. When more discontinuities are present it
seems impossible to guarantee smooth convergence without abandoning the restric-
tion of a uniform grid. In order to still be able to use the computational speed of the
FFT we will then have to resort to e.g. the discontinuous FFT algorithm of [14] or
a recent transform inversion technique in [24]. These directions are left for further
research. Luckily, Discretisation II is well-suited for the pricing of Bermudan and
American options, as we will show in the following sections.

4.4. Pricing Bermudan Options. As mentioned, when pricing Bermudan
options the function V in (7) will have a discontinuous first derivative. Though at
the final exercise time tM the location of this discontinuity is known, this is not the
case at previous exercise times. All we know after calculating V by equation (7) is
that the discontinuity is contained in an interval of width ∆x, say [xℓ, xℓ+1].

If we proceed with the CONV algorithm without placing the discontinuity on
the grid, the algorithm will display a non-smooth convergence. Andricopoulos et
al. [1] overcome this problem by equating the exercise payoff and the continuation
value, and solving numerically for the location of the discontinuity. In our framework
this can be quite costly, so that we propose an effective alternative. We can use a
simple linear interpolation to locate the discontinuity, say dm:

dm ≈
xℓ+1(C(tm, xℓ) − E(tm, xℓ)) − xℓ(C(tm, xℓ+1) − E(tm, xℓ+1))

(C(tm, xℓ) − E(tm, xℓ)) − (C(tm, xℓ+1) − E(tm, xℓ+1))
. (44)
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In the actual implementation we will use a cubic, instead of a linear interpolation.
As in Discretisation II we can now shift the grid such that dm lies on it, and
recalculate both the continuation and the exercise value. In particular, note that
the inner DFT of (27) does not have to be recalculated, the only term that is affected
is the outer inverse DFT. As a by-product, calculating dm automatically gives us
an approximation of the exercise boundary.

It is demonstrated in Appendix B that if we opt for the trapezoidal rule a
linear interpolation is sufficient to guarantee a smooth convergence. Obviously, if
higher-order Newton-Côtes rules are used, higher order interpolation schemes will
have to be employed to locate the discontinuity. The resulting algorithm we use
to value Bermudan call or put options with a fixed strike K is presented below in
pseudo-code.

Algorithm 2: Details of the algorithm for valuing Bermudan options.

Ensure that the strike K lies on the grid by setting ǫy = lnK/S(0)
For m = M − 1 to 1

Equate the x-grid at tm to the y-grid at tm+1

Compute C(tm, x) through (27)
Locate xℓ and xℓ+1 and approximate dm, e.g. via (44)
Set ǫx = dm and recompute C(tm, x)
Calculate V (tm, x) = max (E(tm, x), C(tm, x))
Set the y-grid at tm to be equal to the x-grid at tm

Next m
Set ǫx = 0 such that the initial spot price lies on the grid
Compute V (0, x) = C(0, x) using (27)

4.5. Pricing American Options. Within the CONV algorithm there are
two ways to value an American option. One way is to approximate an American
option by a Bermudan option with many exercise opportunities, the other is to
use Richardson extrapolation on a series of Bermudan options with an increasing
number of exercise opportunities. The method we use has been described in detail
by Chang, Chung, and Stapleton [10], though the approach in finance dates back
to Geske and Johnson [15]. The QUAD method in [1] also uses the same technique
to price American options. We restrict ourselves to the essentials here. Let V (∆t)
be the price of a Bermudan option with a maturity of T years where the exercise
dates are ∆t years apart. It is assumed that V (∆t) can be expanded as

V (∆t) = V (0) +

∞∑

i=1

ai(∆t)γi , (45)

with 0 < γi < γi+1. V (0) is the price of the American option. Classical extrapola-
tion procedures assume that the exponents γi are known, which means that we can
use n + 1 Bermudan prices with varying ∆t in order to eliminate n of the leading
order terms in (45). The only paper considering an expansion of the Bermudan
option price in terms of ∆t we are aware of is of Howison [21], who shows that
γ1 = 1 for the Black-Scholes model. Nevertheless, numerical tests indicate that the
assumption γi = i produces satisfactory results for the Lévy models we consider.

5. Numerical Experiments. By various experiments we show the accuracy
and speed of the CONV method. The method’s flexibility is presented by showing
results for three asset price processes, GBM, VG, and CGMY. In addition, we
value a multi-asset option to give an impression of the CPU times required to value
a basket option of moderate dimension. The pricing problems considered are of
European, Bermudan and American style. We typically present the (positive or
negative) error V (0, S(0)) − Vref (0, S(0)), where the reference value Vref (0, S(0))
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is either obtained via another numerical scheme, or via the CONV algorithm with
220 grid points. In the tables to follow we will also present the error convergence
defined as the absolute value of the ratio between two consecutive errors. A factor
of 4 then denotes second order convergence. All single-asset tests were performed
in Matlab 7.0.1 on an Intel Xeon CPU 5160, 3.00GHz with 2GB RAM. The multi-
asset calculations were done in C on a 64-bit machine, with a 1 GHz Bus frequency
and 8GB RAM.

5.1. Characteristic Function for Lévy Price Processes. The CONV
method, as outlined in Section 3, is particularly well-suited for exponential Lévy
models whose characteristic functions are available in closed-form. We will briefly
review some defining properties of these models before turning to the extended
CGMY/KoBoL model (from hereon extended CGMY model) of [5] and [7] that will
be used to access the performance of the CONV method. For more background we
refer you to [11] for the usage of Lévy processes in a financial context and to [31]
for a detailed analysis of Lévy processes in general.

In exponential Lévy models the asset price is modelled as an exponential func-
tion of a Lévy process L(t):

S(t) = S0 exp(L(t)). (46)

Though the CONV method can be adapted to cope with discrete dividend pay-
ments, for ease of exposure we assume the asset pays a continuous stream of div-
idends, measured by the dividend rate q. In addition, we assume the existence of
a bank account B(t) which evolves according to dB(t) = rB(t)dt, r being the risk-
free rate. Recall that a process L(t) on (Ω,J , P ), with L(0) = 0, is a Lévy process if:

1 it has independent increments;
2 it has stationary increments;
3 it is stochastically continuous, i.e., for any t ≥ 0 and ǫ > 0 we have

lim
s→t

P(|L(t) − L(s)| > ǫ) = 0. (47)

The first property (cf. (11)) is exactly the property we required to be able to recog-
nise a cross-correlation in the risk-neutral valuation formula. Each Lévy process can
be characterised by a triplet (µ, σ, ν) with µ ∈ IR, σ ≥ 0 and ν a measure satisfying
ν(0) = 0 and

∫

IR

min (1, |x|2)ν(dx) < ∞. (48)

In terms of this triplet the characteristic function of the Lévy process equals:

φ(u) = E[exp (iuL(t))]

= exp (t(iµu −
1

2
σ2u2 +

∫

IR

(eiux − 1 − iux1[|x|<1]ν(dx))), (49)

the celebrated Lévy-Khinchine formula. As is common in most models nowadays we
assume that (46) is formulated directly under the risk-neutral measure. To ensure
that the reinvested relative price eqtS(t)/B(t) is a martingale under the risk-neutral
measure, we need to ensure that

φ(−i) = E[exp (L(t))] = e(r−q)t, (50)

which is satisfied if we choose the drift µ as:

µ = r − q −
1

2
σ2 −

∫

IR

(ex − 1 − x1[|x|<1])ν(dx) (51)
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The motivation behind using more general Lévy processes than the Brownian
motion with drift is the simple fact that the Black-Scholes model is not able to
reproduce the volatility skew or smile present in most financial markets. Over the
past few years it has been shown that several exponential Lévy models are, at
least to some extent, able to reproduce the skew or smile. The particular model
we will consider is the extended CGMY model. The underlying Lévy process is
characterised by the triple (µ, σ, νCGMY ), where the Lévy density is specified as:

νCGMY (x) =






C
exp

“

−G|x|
”

|x|1+Y if x < 0

C
exp

“

−M |x|
”

|x|1+Y if x > 0.

(52)

The parameters satisfy C ≥ 0, G ≥ 0, M ≥ 0, and Y < 2. The condition Y < 2 is
induced by the requirement that Lévy densities integrate x2 in the neighbourhood
of 0. Conveniently, the characteristic function of the log-asset price can be found
in closed-form as:

φ(u)= (53)

S(0)iu exp

(
iuµt−

1

2
u2σ2t + tCΓ(−Y )[(M − iu)Y − MY + (G + iu)Y − GY ]

)
,

where Γ(x) is the gamma function. One can verify that the parameters G and
M represent respectively the smallest and largest finite moment in the model, as
φ(−iu) = E[S(t)u] is infinite for u < −G and for u > M . The model encompasses
several models. When σ = 0 and Y = 0 we obtain the Variance Gamma (VG)
model, which is often parameterised slightly differently with parameters 4 σ, θ and
ν, related to C, G and M through:

C =
1

ν
, G =

1√
1
4θ2ν2 + 1

2σ2ν − 1
2θν

, M =
1√

1
4θ2ν2 + 1

2σ2ν + 1
2θν

. (54)

Finally, when C = 0 the model collapses to the Black-Scholes model.
To conclude this section, Table 1 contains a set of five parameter sets which

will be used in various tests throughout this section. The only two parameters we
have not specified yet are δ from (42), which determines the range of the grid, and
the damping coefficient α. For all GBM tests we set δ = 20; for the other Lévy
models, which have fatter tails, we use δ = 40.

Regarding the choice of α, Lord and Kahl [27] have demonstrated recently
how to approximate the optimal damping coefficient when the payoff-transform is
known, which increases the numerical stability of the Carr-Madan formula. This is
particularly effective for in/out-of-the-money options and options with short matu-
rities. Though their rationale can to some extent be carried over to the pricing of
European plain vanilla options (the difference being that now the payoff-transform
is also approximated numerically), the problem becomes much more opaque when
dealing with Bermudan options. To see this, note that the continuation value of
the Bermudan option at the penultimate exercise date equals that of a European
option. In each grid point, the European option will have a different degree of
moneyness, calling for a different value of α per grid point. The situation worsens
as the number of exercise dates increases so that it is hard to say what the overall
optimal value of α will be. What is evident from Figure 1, where we graph the error
of the CONV algorithm as a function of α for a European and a Bermudan put

4The parameters σ and ν should not be confused with the volatility and Lévy density of the
Lévy triplet.
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under T2-VG, is that there is a relatively large range for which the error is stable.
In all numerical experiments we will set α = 0 which, at least for our examples,
produces satisfactory results.

T1-GBM: S0 = 100, r = 0.1, q = 0, σ = 0.25;

T2-VG: S0 = 100, r = 0.1, q = 0, σ = 0.12,
θ = −0.14, ν = 0.2;

T3-CGMY: S0 = 1, r = 0.1, q = 0, σ = 0,
C = 1, G = 5, M = 5, Y = 0.5;

T4-CGMY: S0 = 90, r = 0.06, q = 0, σ = 0
C = 0.42, G = 4.37, M = 191.2, Y = 1.0102;

T5-GBM: S0 = 40, r = 0.06, q = 0.04, σi = 0.2,
ρij = 0.25.

Table 1
Parameter sets in the numerical experiments
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Fig. 1. Error of CONV method under T2-VG and K = 110 for a European and Bermudan
put in dependence of parameter α.

5.2. European Call under GBM and VG. First of all, we evaluate the
CONV method for pricing European options under VG. The parameters for the
first test are from T2-VG with T = 1. Figure 2 shows that Discretisations I and II
generate results of similar accuracy. What we notice from Figure 2 is that the only
option with a stable convergence in Discretisation I is the at-the-money option with
K = 100. It is clear that placing the strike on the y-grid in Discretisation II ensures
a regular second order convergence. The results are obtained in comparable CPU
time. From the error analysis in Section 4.2 it became clear that for short maturities
in the VG model, the slow decay of the characteristic function (β3 = 2τ/ν) might
impair the second order convergence. To demonstrate this, we choose a call option
with a maturity of 0.1 years, and K = 90. Table 2 presents the error of Discretisation
II for this option in models T1-GBM and T2-VG. The convergence under GBM is
clearly of a regular second order. From the error analysis we expect the convergence
under VG to be of first order. Most probably the highly oscillatory integrand causes
the non-smooth behaviour observed in Table 2. Note that all reference values are
based on an adaptive integration of the Carr-Madan formula; all CPU times are
determined after averaging the times of 1000 experiments.

In Appendix A the Greeks of the GBM call from Table 2 are computed.

5.3. Bermudan Option under GBM and VG. Turning to Bermudan op-
tions, we compare Discretisations I and II for 10-times exercisable Bermudan put
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Fig. 2. Convergence of the two discretisation methods for pricing European call options at
various K under T2-VG; left: Discretisation I, right: Discretisation II.

Table 2
CPU time, error and convergence rate for European call options under T1-GBM and T2-VG,

K = 90, T = 0.1 (using Discretisation II)

(N = 2n) GBM: Vref (0, S0) = 11.1352431; VG: Vref (0, S0) = 10.9937032;

n time(sec) error conv. time(sec) error conv.

7 0.0001 -2.08e-3 – 0.0002 -2.92e-4 –

8 0.0002 -5.22e-4 4.0 0.0003 -1.42e-4 2.1

9 0.0003 -1.30e-4 4.0 0.0006 -4.61e-5 3.1

10 0.0006 -3.26e-5 4.0 0.0011 -9.48e-6 4.9

11 0.0012 -8.15e-6 4.0 0.0023 -8.41e-7 11.3

12 0.0023 -2.04e-6 4.0 0.0045 8.10e-7 1.0

options under both T1-GBM and T2-VG. The reference values reported in Table 3
and 4 are found by the CONV method with 220 grid points.

It is shown in Tables 3 and 4 that both Discretisation I and II give results of
similar accuracy. Discretisation I uses somewhat less CPU time, but Discretisation
II shows a regular second order convergence, enabling the use of extrapolation. The
computational speed of both discretisations is highly satisfactory.

Table 3
CPU time, error and convergence rate pricing a 10-times exercisable Bermudan put under

T1-GBM; K = 110, T = 1 and Vref (0, S0) = 11.98745352,

(N = 2n) Discretisation I Discretisation II

n time(sec) error conv. time(sec) error conv.

7 0.0003 9.09e-3 - 0.006 -3.31e-2 -

8 0.0004 -1.29e-3 7.1 0.007 -8.53e-3 3.9

9 0.0007 1.80e-6 717.7 0.008 -2.13e-3 4.0

10 0.0019 2.71e-5 0.06 0.011 -5.33e-4 4.0

11 0.0041 -9.31e-6 2.9 0.018 -1.33e-4 4.0

12 0.0082 -1.31e-5 0.71 0.029 -3.33e-5 4.0

5.4. American Options under GBM, VG and CGMY. Because Discreti-
sation II yields a regular convergence, we choose it in this section to price American
options. We compare the accuracy and CPU time of the two approximation meth-
ods mentioned in Section 4.5, i.e. the direct approximation via a Bermudan option,
and the repeated Richardson extrapolation technique. For the latter we opted for
2 extrapolations on 3 Bermudan options with 128, 64 and 32 exercise opportuni-
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Table 4
CPU time, error and convergence rate pricing a 10-times exercisable Bermudan put under

T2-VG; K = 110, T = 1 with reference value Vref (0, S0) = 9.040646119.

(N = 2n) Discretisation I Discretisation II

n time(sec) error conv. time(sec) error conv.

7 0.0003 8.45e-2 - 0.006 9.53e-2 -

8 0.0005 9.02e-3 9.4 0.007 1.09e-2 8.7

9 0.0010 -1.70e-4 53.1 0.008 2.50e-3 4.4

10 0.0019 -2.04e-4 0.8 0.010 6.51e-4 3.8

11 0.0047 -4.28e-5 4.8 0.016 1.65e-4 4.0

12 0.0094 -1.11e-5 3.9 0.026 4.15e-5 4.0

ties, which gave robust results. In our first test we price an American put under
T1-GBM. The reference value was obtained by solving the Black-Scholes PDE on a
very fine grid. The performance of both approximation methods is summarised in
Table 5, where ’P (N/2)’ denotes that the American option is approximated by an
N/2-times exercisable Bermudan option. ’Richardson’ denotes the results obtained
by the 2-times repeated Richardson extrapolation scheme. It is evident that the
extrapolation-based method converges fastest and costs far less CPU time than the
direct approximation approach (e.g. to reach an accuracy of 10−4, the extrapolation
method is approximately 20 times faster).

In Appendix A the Greeks of the American put from Table 5 are computed.

Table 5
CPU time and errors for an American put under T1-GBM, with: K = 110, T = 1,

Vref (0, S(0)) = 12.169417

(N = 2n) P(N/2) Richardson

n time(sec) error conv. time(sec) error conv.

7 0.025 -6.34e-2 – 0.011 -4.88e-2 –

8 0.055 -2.34-3 2.7 0.020 8.77e-3 5.6

9 0.130 -9.49e-3 2.5 0.038 2.24e-3 3.9

10 0.346 -4.19e-3 2.3 0.078 5.53e-4 4.1

11 1.18 -1.95e-3 2.1 0.181 1.29e-4 4.3

12 3.98 -9.40e-4 2.1 0.436 2.30e-5 5.6

In the remaining tests we demonstrate the ability of the CONV method to price
American options accurately under alternative dynamics, using the VG and both
CGMY test sets. All reported reference values were generated with the CONV
method on a mesh with 220 points and 2-times Richardson extrapolation on 512-
, 256- and 128-times exercisable Bermudans. We have included one CGMY test
with Y < 1, and one with Y > 1, as the latter is considered a hard test case when
numerically solving the corresponding PIDE. Both CGMY tests stem from the
PIDE literature, where reference values for the same American puts were reported
as 0.112171 for T3-CGMY [4], and 9.2185249 for T4-CGMY [33]. Our reference
result for the latter test differs in the second decimal with the result in [33]. For
European options however, the CONV method converges to the exact analytical
result, whereas the European reference given in [33] is not exact (the most accurate
reported value for a call option with K = 98 and T = 0.25 is 2.2228514, whereas the
analytical value of the option is 2.2306557). For this reason we present the CONV
reference value. Though the convergence in Table 6 is less stable than for Bermudan
options, the results in this section indicate that the CONV method is able to price
American options under a variety of Lévy processes. A reasonable accuracy can
be obtained quite quickly, so that it might be possible to calibrate a model to the
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prices of American options 5.

Table 6
CPU time and errors for American puts under VG and CGMY

T2-VG T3-CGMY T4-CGMY

K = 110, T = 1 K = 1, T = 1 K = 98, T = 0.25

(N = 2n) Vref (0, S(0)) = 10.0000 Vref (0, S(0) = 0.112152 Vref (0, S(0) = 9.225439

n time(sec) error time(sec) error time(sec) error

7 0.073 -3.49e-1 0.062 -6.35e-3 0.074 -1.89e-1

8 0.096 4.13e-2 0.097 1.38e-4 0.093 2.93e-2

9 0.115 1.37e-2 0.116 1.16e-4 0.118 -1.30e-3

10 0.157 -6.17e-3 0.160 1.10e-5 0.162 -3.97e-4

11 0.270 6.03e-3 0.275 1.18e-5 0.278 2.89e-4

12 0.466 1.31e-3 0.482 -2.35e-6 0.483 9.59e-5

5.5. 4D Basket Options under GBM. The CONV method can easily be
generalised to higher dimensions. The only assumption that the multi-dimensional
model is required to satisfy is the independent increments assumption in (11). We
do not state the multi-dimensional version of Algorithm 1 here as it is a trivial
generalisation of the univariate case. Its ability to price options of a moderate di-
mension is demonstrated by considering a 4-asset basket put option. Upon exercise
at time ti, the payoff is:

V (ti,S(ti)) = max(
1

4

4∑

p=1

Sp(ti) − K, 0). (55)

The results of pricing a European and a 10-times exercisable Bermudan put under
T5-GBM are summarised in Table 7. The CPU times on the tensor-product grids
are very satisfactory, especially as the results on the coarse grids obtained in only a
few seconds seem to have converged to within a practical tolerance level. In order
to be able to price higher-dimensional problems our future research will aim to
combine the multi-dimensional CONV method with sparse grids.

Table 7
CPU time and prices for multi-asset European and 10-times exercisable Bermudan basket

put options under T5-GBM, K = 40, T = 1

European 10-times exerc. Bermudan

N result time (sec) result time (sec)

164 1.6428 0.02 1.7721 0.18

324 1.6537 0.51 1.7390 3.40

644 1.6539 9.5 1.7394 65.7

1284 1.6538 202.4 1.7393 1526.3

6. Conclusions. In this paper we have presented a novel FFT-based method
for pricing options with early-exercise features, the CONV method. Like other
FFT-based methods, it is flexible with respect to the choice of asset price process
and the type of option contract, which has been demonstrated in numerical exam-
ples for European, Bermudan and American options. Path-dependent exotics can
in principle also be valued by a forward propagation in time, though this has not

5The majority of exchange-traded options are American.
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been demonstrated here. The crucial assumption of the method is that the under-
lying assets are driven by processes with independent increments, whose character-
istic function is readily available. Though we have mainly focused on univariate
exponential Lévy models, the techniques presented here certainly also extend to
multivariate models, as Section 5.5 has shown. By using the FFT to calculate con-
volutions we achieve a complexity of O(MNlogN), where N is the number of grid
points and M is the number of exercise opportunities of the option contract. In
comparison, the QUAD method of [1] is O(MN2). The speed of the method may
make it possible to calibrate models to the prices of American options, as exchange-
traded options are mainly of the American type. Future research will focus on the
usage of more advanced quadrature rules, combined with speeding up the method
for high-dimensional problems.
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options on Lévy driven assets, working paper, ETH, Zürich, 2003.
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Boston MA, 2001.

[32] C. O’Sullivan, Path Dependent Option Pricing under Levy Processes EFA 2005 Moscow
Meetings Paper, Available at SSRN: http://ssrn.com/abstract=673424, Febr. 2005.

[33] I. Wang, J.W. Wan and P. Forsyth, Robust numerical valuation of European and Amer-
ican options under the CGMY process. Techn. Report U. Waterloo, Canada, 2006.

[34] P. Wilmott, J. Dewynne, and S. Howison, Option pricing, Oxford: Financial Press, 1993.

Appendix A. The Hedge Parameters. Here, we present the CONV formulae
for two important hedge parameters ∆ and Γ, defined as,

∆ =
∂V

∂S
=

1

S

∂V

∂x
, Γ =

∂2V

∂S2
=

1

S2

(
−

∂V

∂x
+

∂2V

∂x2

)
. (56)

As it is relatively easy to derive the corresponding CONV formulae, we merely
present them here. For notational convenience we define:

F{eαxV (t0, x)} = e−r∆tA(u), (57)

where A(u) = F{eαyV (t1, y)} · φ(−u + iα), and we assume t1 > 0. We now obtain
the CONV formula for ∆, as

∆ =
e−αxe−r∆t

S

[
F−1{−iuA(u)} − αF−1{A(u)}

]
, (58)

and for Γ:

Γ =
e−αxe−r∆t

S2

[
F−1{(−iu)2A(u)} − (1 + 2α)F−1{−iuA(u)}

+ α(α + 1)F−1{A(u)}
]
. (59)

Note that the only additional calculations occur at the final step of the CONV
algorithm, where we calculate the value of the option given the continuation and
exercise values at time t1. Since differentiation is exact in Fourier space the rate of
convergence of the Greeks will be the same as that of the value. To demonstrate
this we evaluate the delta and gamma under T1-GBM of the European call from
Table 2 and the American put from Table 5. For both tests we choose Discretisation
II. Tables 8 and 9 present the results. The reference values for the European call



22 R.Lord, F.Fang, F.Bervoets, C.W.Oosterlee

option are analytic solutions, for the American call these were found by numerically
solving the Black-Scholes PDE on a very fine grid. Note that the delta and gamma
of the American put converge to a slightly different value - this is due to our ap-
proximation of the American option via 2 Richardson extrapolations on 128-, 64-
and 32-times exercisable Bermudans. If we would increase the number of exercise
opportunities of the Bermudan options the delta and gamma would, at the cost of
a longer computation time, converge to their true values.

Table 8
Accuracy of hedge parameters for a European call under T1-GBM; K = 110, T = 0.1

(N = 2d) European call

∆ref = 0.933029 Γref = 0.01641389

d ∆ error conv. Γ error conv.

7 -3.75e-4 – 3.79e-5 –

8 -9.37e-5 4.0 9.43e-6 4.0

9 -2.34e-5 4.0 2.35e-6 4.0

10 -5.86e-6 4.0 5.88e-7 4.0

11 -1.46e-6 4.0 1.47e-7 4.0

12 -3.66e-7 4.0 3.68e-8 4.0

Table 9
Values of hedge parameters for an American put under T1-GBM; K = 110, T = 0.1

(N = 2d) American put:

d ∆ref = −0.62052 Γref = 0.0284400

7 -0.62170 0.028498

8 -0.62035 0.028687

9 -0.62050 0.028464

10 -0.62053 0.028463

11 -0.62054 0.028463

12 -0.62055 0.028463

Appendix B. Error Analysis of the Trapezoidal Rule.

Suppose we are integrating f ∈ C∞ over an interval [a, b]. The discretisation
error induced by approximating this integral with the trapezoidal rule follows from
the Euler-Maclaurin summation formula:

∫ b

a

f(x)dx − T (a, b, f,∆x) =
∞∑

j=1

(∆x)2j B2j

(2j)!

(
f (2j−1)(b) − f (2j−1)(a)

)
, (60)

where Bj is the j-th Bernoulli number and T (a, b, f,∆x) is the trapezoidal sum:

T (a, b, f,∆x) = ∆x{

N−1∑

j=1

f(xj) −
1

2
(f(a) + f(b))}, (61)

with ∆x = (b−a)/(N −1) and xj = a+ j∆x. From (60) it is clear that if the value
of the first derivative is not the same in a and b, the trapezoidal rule is of order
1/N2.

The trapezoidal rule can obviously also be applied to functions that are piece-
wise continuously differentiable. The convergence may however be less stable if we
do not know the exact location of the discontinuities. To see this, suppose that f
can be written as:

f(x) =

{
g(x) x ≤ z
h(x) x > z

. (62)
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Further, we define the following points:

ℓ = max {j|xj ≤ z, j = 0, . . . , N − 1}, (63)

so that the interval [xℓ, xℓ+1] contains z. Placing the discontinuity on the grid would
result in the same order of convergence as the trapezoidal rule itself:

∫ b

a

f(x)dx ≈ T (a, xℓ, g, ∆x) + T (xℓ+1, b, h, ∆x) +

1

2
(z − xℓ)(g(xℓ) + g(z)) +

1

2
(xℓ+1 − z)(h(z) + h(xℓ+1)). (64)

A straightforward application of the trapezoidal rule would lead to T (a, b, f,∆x).
The difference with (64) is:

1

2
∆xg(xℓ) +

1

2
∆xh(xℓ+1)−

1

2
(z − xℓ)(g(xℓ) + g(z))−

1

2
(xℓ+1 − z)(h(z) + h(xℓ+1)).

Expanding both g and h around the point of discontinuity z yields:

1

2
(xℓ+1 + xℓ − 2z)(g(z)− h(z)) +

1

2
(xℓ+1 − z)(z − xℓ)(g

(1)(z) − h(1)(z)) +

1

2
(xℓ+1 − z)

∞∑

j=1

1

j!
g(j)(z) +

1

2
(z − xℓ)

jh(j)(z).

If f is continuous, but the first derivatives of g and h do not match at z, the order
of convergence is still 1/N2 since (xℓ+1 − z)(z − xℓ) ≤ (∆x)2. It is clear that as
N changes, the ratio of (xℓ+1 − z)(z − xℓ) to (∆x)2 may vary strongly, leading to
non-smooth convergence. If f is discontinuous, i.e., if the values of g and h in z
disagree, the order of convergence is of O(1/N).

Now suppose that we have computed g and h at grid points xj , j = 0, . . . , N−1.
We know that g(z) = h(z), though we do not know the exact location of z. All we
know is that it is contained in [xℓ, xℓ+1]. This is a situation we encounter in the
pricing of Bermudan options, as outlined in Section 4.4. If we proceed to integrate
f on this grid, we will not obtain smooth convergence. A simple approximation of
the discontinuity can however be found by assuming a linear relationship between
x and g(x) − h(x). This leads to

z ≈
xℓ+1(g(xℓ − h(xℓ)) − xℓ(g(xℓ+1) − h(xℓ+1))

(g(xℓ − h(xℓ)) − (g(xℓ+1) − h(xℓ+1))
+ O

(
∆x2

)
, (65)

where the error estimate follows from linear interpolation. Now suppose that we
recalculate g and h such that either Xℓ or xℓ+1 coincide with this approximation
of z, and redo the numerical integration. It is easy to see that smooth convergence
will be restored, as the combination of the error term in(65) to the error term in
(64) will be of O

(
∆x3

)
. Note that if we use higher-order Newton-Côtes rules, a

higher order interpolation step will be required.


