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Abstract.
1 The market evolution since the end of 2007 has been characterized by an increase

of systemic risk and a high number of defaults. Realized recovery rates have been very dispersed

and different from standard assumptions, while 60%-100% super-senior tranches on standard indices

have started to trade with significant spread levels.

This has triggered a growing interest for stochastic recovery modelling. This paper presents an

extension to the standard Gaussian copula framework that introduces a consistent modelling of

stochastic recovery. We choose to model directly the spot recovery, which allows to preserve time

consistency, and compare this approach to the standard ones, defined in terms of recovery to maturity.

Taking a specific form of the spot recovery function, we show that the model is flexible and tractable,

and easy to calibrate to both individual credit spread curves and index tranche markets. Through

practical numerical examples, we analyze specific model properties, focusing on default risk.

1. Introduction.

The market evolution since the end of 2007 has been characterized by an increase of systemic risk
and a high number of defaults. Default rate has reached record level, with e.g. a rate of around 20% on
HY firms in March 2009, a 20 year record.

Realized recovery rates have been in general fairly different from the initial curve marking assump-
tions, and have covered a very large spectrum of values, from very low for Tribune (1.5%) to very high
for FNM (91.51%). The weighted average recovery computed over the last twelve months, on the major
CDS auctions, has been around 10%, well below the standard assumptions of 30% to 40% recovery rate.

On the standard index tranche market, the 60%-100% super-senior tranche has started to trade. It
has somehow materialized the high level of systemic risk as well as the uncertainty around recovery rate.
Quoted prices for this tranche showed a significant switch in value towards the most senior tranches over
the period. A direct consequence in terms of modelling has been the failure of standard pricing framework
to calibrate the index tranche market. This has been largely due to their embedded assumption of
constant recovery.

As an attempt to capture this market evolution, the focus in terms of modelling has been on sto-
chastic recovery. Following early work as in e.g. Andersen and Sidenius [2], different approaches have
been proposed and discussed in recent papers, such as Amraoui and Hitier [1], Ech-Chatbi [7], Krekel
[10], or Li [11]. They tend to concentrate on the dependency between default and recovery rate, which
was previously analyzed empirically in e.g. [8], and on the ability of the model to calibrate to the index
tranche market. Tractability and capacity to preserve the pricing and calibration of credit spread curves
are also identified as key features.

In this paper, we present an extension of the standard Gaussian copula framework that includes a
consistent modelling of stochastic recovery. We start with the definition of the spot recovery, and discuss
why this is a suitable underlying for recovery modelling. As most of the recent approaches have been
defined in terms of recovery to maturity2, we analyze the necessary conditions for consistency in this case.

1Disclaimer: The views expressed in this paper are the authors’ own and may not necessarily reflect those of Barclays
Capital.

2with some exception, such as Li [11]
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Taking a specific representation of the spot recovery, we show that the resulting framework preserves
the pricing of credit default swaps and is both flexible and tractable. We focus on time consistency and
analyze in details how the introduction of stochastic recovery affects default risk.

The rest of the paper is organized as follows. In section 2, we introduce the main notations and recall
briefly the standard Gaussian copula framework. The concepts of spot recovery and recovery to maturity
are presented and discussed in details.
Section 3 focuses on the modelling of the spot recovery. Fundamental results are obtained in the general
case as well as for the factor model approach. A detailed comparison between modelling spot recovery
and recovery to maturity is done with a particular focus on term structure consistency and default risk.
In section 4, we choose a specific form for the spot recovery that enables the overall pricing framework
to be tractable and efficient for practical implementation.
Section 5 provides numerical results showing the flexibility of the model for calibration to index tranche
markets, and the consistent behaviour of the model for default risk.

2. Notations and Model Setup.

In this section, we introduce the main notations and the standard Gaussian copula set-up used in
the rest of the paper.
We will consider a portfolio of N underlying issuers with corresponding market recoveries

(
RMkt

i

)
i=1,..,N

,

notional weights (ωi)i=1,..,N and default time (τi)i=1,..,N . The total portfolio notional is set to 1$, and
∑N

i=1 ωi = 1.

2.1. Default Probability, Expected Loss and Spot Recovery Rate.

We start with the definition of the different recovery rates. Then we introduce default probability,
cumulated and expected loss.

2.1.1. Spot Recovery Rate.
The spot recovery rate corresponds to the recovery paid at the time default happens.

Definition 2.1. Spot Recovery Rate
The spot recovery rate r(t) is defined as the recovery rate paid if default happens at t.

r(t) = r(τ) |τ = t (1)

In a factor model, the conditional spot recovery r(t,X) is defined by:

r(t,X) = E [r(τ) |τ = t,X ] (2)

2.1.2. Recovery To Maturity.
The recovery to maturity corresponds to the recovery rate paid if default happens before a specified
date.

Definition 2.2. Recovery To Maturity
The recovery to maturity R(t) is defined as the recovery rate paid if default happens before t.

R(t) = r(τ) |τ ≤ t (3)

In a factor model, the conditional recovery to maturity R(t, X) is defined by:

R(t,X) = E [r(τ) |τ ≤ t,X ] (4)

Remark 2.3. It is interesting to note that the spot recovery is directly linked to the default time and
corresponds to an instantaneous recovery rate, while the recovery to maturity is a function of the default
event, and could be seen as an average recovery rate over the period. The notion of recovery to maturity
is commonly used in the literature and is introduced here for comparison purpose only.
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2.1.3. Cumulated and Expected Loss.
Using previous notations, we define the cumulated loss up to time t as

Lt =

N∑

i=1

ωi (1 − ri(τi))1{τi≤t}

The default probability for issuer i up to maturity t is noted pi(t). The corresponding conditional
probability is given by:

pi(t,X) = P (τi ≤ t |X ) (5)

The expected loss ELi(t) for issuer i up to maturity t is defined as:

ELi(t) = E
[
(1 − ri(τi))1{τi≤t}

]
(6)

=

∫ t

0

(1 − E [ri(s)]) dpi(s)

= (1 − E [Ri(t)]) pi(t)

In a factor model, the conditional expected loss will then be given by:

ELi(t,X) = E
[
(1 − ri(τi))1{τi≤t} |X

]
(7)

=

∫ t

0

(1 − ri(s,X))dpi(s,X)

= (1 − Ri(t,X))pi(t,X)

From this we can derive directly that:

Ri(t,X) =

∫ t

0

ri(s,X)
dpi(s,X)

∫ t

0
dpi(s, X)

which indicates that the conditional recovery to maturity can be seen as an average of the spot recovery
rate weighted by the conditional default probabilities.

2.2. A Standard Gaussian Copula for Default Times.

Here we recall briefly the standard Gaussian copula framework - see e.g. [9] for more details.
To each issuer i and corresponding default time τi corresponds a random variable Xi defined by:

P (τi ≤ t) = P (Xi ≤ ci(t))

where ci(t) = F−1
Xi

(pi(t)).
The latent variable Xi is then constructed as:

Xi =
√

ρX +
√

1 − ρYi (8)

where X and Yi are independent, N (0, 1) random variables. For i 6= j, Yi and Yj are also independent
which implies that the dependency between the different names is driven by the common factor X and
the correlation ρ. Note that conditional on X, (Xi)i=1,..,N are independent.

The conditional default probability is given by:

pi(t,X) = Φ

(
ci(t) −√

ρX√
1 − ρ

)
(9)

2.3. Pricing and Conditional Independence.
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2.3.1. Conditional Independence.
The factor model defined for the dependency structure of default times has the very important property
of conditional independence. We extend this property to the specification of the recovery rate framework
and assume that conditional on the common factor X, default times and recovery rates are independent.

Hypothesis 2.4. Conditional on the common factor X, default times and recovery rates are indepen-
dent.

The pricing framework defined in this paper is essentially an extension of the Gaussian copula to
integrate stochastic recovery. As such, it can be applied to the pricing of various portfolio Credit
Derivatives, from Nth-to-Default to CDO and CDO2. As we will show in the next sections, this can be
achieved using either Monte-Carlo simulation or semi-analytic methods.
As the pricing of CDOs represents one of the main challenges in portfolio Credit Derivatives, the rest of
the paper will focus on this product.

2.3.2. Loss Distribution and CDO Pricing.
The expected loss of the [K − 100%] tranche with maturity t is defined by:

EL(t, K) = E
[
(Lt − K)+

]

From the model specification for the conditional recovery and conditional default probability, this can be
computed using standard numerical methods such as recursion or the conditional normal approximation
- see [3] and [12] respectively.
The conditional normal approximation is a very efficient and accurate method in the case of stochastic
recovery. It consists in assuming that the cumulated loss conditional on the common factor follows a
normal distribution, i.e.

Lt |X ∼ N (m(t,X), σ(t,X))

where m(t, X) and v(t,X) are respectively the conditional mean and variance of the conditional loss
with maturity t. Under the conditional independence assumptions these two quantities can be computed
directly from

Lt(X) = E [Lt |X ]

=

N∑

i=1

ωiELi(t,X)

L2
t (X) − Lt(X)2 = E

[
L2

t |X
]
− E [Lt|X]

2

=
∑

i

ω2
i

{
E

[
(1 − ri(τi))

21{τi≤t}|X
]
− ELi(t, X)2

}

Note that EL(t, K) is then given directly by a closed form:

EL(t,K) = E

[
σ(t,X)ϕ

(
K − m(t,X)

σ(t,X)

)
− (K − m(t,X))

(
1 − Φ

(
K − m(t,X)

σ(t,X)

))]

The tranche expected loss can be computed by a direct numerical integration. As soon as the tranche
expected loss is known for all maturities, the protection and coupon leg of the corresponding CDO can
be derived directly.
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3. Spot Recovery Rate Modelling.

3.1. General Results.

In this section, we derive the condition (EL) on the expected loss, which is the only condition for
the spot recovery to be valid. We also derive the limiting distribution when the instantaneous default
probability p0+ tends to 1. The spot recovery process is supposed to be a general bounded process
between 0 and 1.

3.1.1. Expected Loss Condition.
Let lit be the loss at time t of a given issuer i, τi its default time and ri(τ) its recovery rate. To simplify
notations, we will note explicitly use the index i in the rest this section. By definition:

lt = (1 − rτ )1{τ≤t}

with r ∈ [0, 1]. This is the only condition required a priori. Another condition is given by the single
name CDS as we want the expected loss to be matched for any maturity:

Definition 3.1. Expected Loss Condition (EL)
The general expected loss condition is defined by:

∀t, E [lt] = (1 − RMkt)pt (10)

If we assume that the default can happen at any point in time with a non-zero density, i.e. that
P (τ ∈ [t, t + dt[) = ftdt with f > 0, then:

Proposition 3.2. The (EL) condition is equivalent to:

E [rτ |τ = t] = RMkt (11)

Proof.: Considering (10) at t and t + ǫ for an arbitrary ǫ > 0 we get:

E
[
rτ1{τ∈[t,t+ǫ[}

]
= RMkt (pt+ǫ − pt)

or equivalently, as f > 0: ∫ t+ǫ

t
ψsfsds

∫ t+ǫ

t
fsds

= RMkt

with ψ(t) = E [rτ |τ = t]. Taking the limit when ǫ tends to 0, leads to ψt = RMkt.

Note that we have the equivalence:

∀t, E [Lt] = (1 − RMkt)pt ⇔ ∀t, E [rτ |τ = t] = RMkt

The (EL) condition is a direct translation of the intuitive concept that the expected recovery given
default is the market recovery.

3.1.2. Limiting Distribution.
The limiting distribution is trivial to obtain as by definition:

lim
p(0+)→1

τ = 0+ a.s.

Hence, when the instantaneous default probability tends to 1, the loss process is defined by the spot
recovery value at 0+:

lim
p(0+)→1

lt = 1 − r(0+) a.s. (12)

The previous result is particularly useful as it shows how to decouple what happens when the name is
close to default, which is driven essentially by its recovery rate, from what happens when the name is far
from default, which is driven by its spread dynamics. In particular, the continuity on default is directly
guaranteed if r(0+) = RMkt. By doing this, we guarantee the continuity on default of the specific issuer
but also of the whole basket as the loss of the issuer is decoupled from the rest of the basket.
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3.2. Factor Model for Spot Stochastic Recovery.

We work with a factor representation and make the following assumption.

Hypothesis 3.3. In a factor model, the spot recovery depends only on τ and X. This implies that
r(t, x) is a deterministic function of t and x.

Under (3.3.), rτ = r(τ, X), the conditional expected loss and squared loss given default are therefore
respectively given by their integral over time:

{
lt(X) =

∫ t

0
(1 − r(s, X))dp(s,X)

l2t (X) =
∫ t

0
(1 − r(s,X))2dp(s,X)

Proposition 3.4. The (EL) condition reads:

E [r(τ,X)|τ = t] = E

[
r
(
t,
√

ρΦ−1(pt) +
√

1 − ρX
)]

= RMkt

Proof.: The result relies on the conditional distribution of X conditional on the default time τ . One
can derive X|τ = t ∼ N

(√
ρΦ−1(pt), (1 − ρ)

)
.

Let us now assume the following form for the recovery rτ = r
(
Φ−1(pτ ), X

)
. Such a transformation

is always possible as long as dpt > 0. Replacing the dependency in t by a dependency in Φ−1(pt) leads
to an integration over the space domain compared to an integration over time.

Proposition 3.5. The loss process is equivalently given by:

rτ1{τ≤t} ∼ r(
√

ρX +
√

1 − ρY, X) 1n
Y ≤Φ−1(pt)−

√
ρX

√

1−ρ

o (13)

Proof. By definition rτ1{τ≤t} ∼ r
(
Φ−1(pτ ), X

)
1{√ρX+

√
1−ρY ≤Φ−1(pt)}.

As a consequence, the different moments are simply given by:

lkt (X) = E

[(
1 − r(

√
ρX +

√
1 − ρY,X)

)k

1
Y ≤Φ−1(pt)−

√
ρX

√

1−ρ

|X
]

(14)

In particular the integral over time can be avoided as long as r is such that the previous expectation
can be computed in closed form.

Proposition 3.6. The (EL) condition reads:

∀µ ∈ R, E

[
r
(
µ,

√
ρµ +

√
1 − ρX

)]
= RMkt (15)

Proof. ∀t, the (EL) condition reads:

E

[
r
(
Φ−1(pt),

√
ρΦ−1(pt) +

√
1 − ρX

)]
= RMkt

Changing Φ−1(pt) → µ ends the proof.

In particular, if r(x, y) = r
(

y−√
ρx√

1−ρ

)
then the (EL) condition simplifies to:

E [r(X)] = RMkt (16)

The change of variable removes the time dependency and all we are left with is a space constraint.
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3.3. Monte Carlo Simulation.

One of the main advantages of the spot recovery formulation is its simplicity in a Monte Carlo environ-
ment since both the recovery and the default time can be simulated independently. This is particularly
useful for basket default swaps and CSO2 valuation. The procedure is described hereafter:

• Simulate the common factor X

• Simulate each issuer default time given X, τi|X
• Compute the recovery value r(τi, X)

• Compute the loss (1 − r(τi, X))1τi≤t

This procedure can easily be implemented in any standard Monte Carlo pricer as it does not require
any extra work to simulate the recovery on default.

4. Spot Recovery vs Recovery to Maturity.

In the literature, stochastic recovery modelling has been tackled from different angles. One approach
however, which consists in modelling the recovery to maturity, seems to benefit from the favor of the
practitioners. In this section, we discuss the link between spot recovery and recovery to maturity and
focus on the specific conditions required for a recovery to maturity approach to be arbitrage-free and
numerically efficient.

4.1. Linking Spot Recovery and Recovery to Maturity.

Even when specifying the model in terms of spot recovery, it is possible for the actual implementation to
use an equivalent representation with a recovery to maturity. This requires some specific approximations,
as detailed in the proposition below.

Proposition 4.1. The conditional mean can be represented in terms of recovery to maturity:

lt(X) ≃ (1 − R(t, X))p(t,X)

with




R(t, X) = r(
√

ρX +
√

1 − ρY (t,X), X) + 1
2σ2(t, X) ∂2

∂x2 r(
√

ρX +
√

1 − ρY (t,X), X)

c(t,X) =
Φ−1(pt)−

√
ρX√

1−ρ

Y (t,X) = ϕ(c(t,X))
p(t,X)

σ2(t,X) = 1 − c(t, X)Y (t,X) − Y 2(t,X)

This provides an equivalent formulation to the one obtained in the previous section.

Proof. Using (14) with k = 1:

R(t,X)p(t,X) = E

[
r(
√

ρX +
√

1 − ρY,X)1n
Y ≤Φ−1(pt)−

√
ρX

√

1−ρ

o|X]

= E

[
r(
√

ρX +
√

1 − ρY, X)
∣∣∣X, Y ≤ Φ−1(pt)−

√
ρX√

1−ρ

]
p(t,X)

The Taylor expansion of r(x, y) around x = x0 is given by:

r(x, y) = r(x0, y) + ∂xr(x0, y)(x − x0) +
1

2
∂2

xr(x0, y)(x − x0)
2 + ...

Here we take x0 =
√

ρX +
√

1 − ρY (t, X) where Y (t,X) is chosen to cancel the first order term or
in other words:

Y (t,X) = E

[
Y

∣∣∣∣X,Y ≤ Φ−1(pt) −√
ρX√

1 − ρ

]

Keeping the first three terms of the Taylor expansion leads to the result.
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4.2. No-Arbitrage Constraints for Recovery To Maturity.

Spot recovery and recovery to maturity behave differently and have different existence conditions. If
the conditions for the spot recovery are easy to derive, the ones for the recovery to maturity are more
difficult to obtain.

By definition, expressing the conditional loss in terms of spot recovery and recovery to maturity:

∫ t

0

r(s, X)dp(s, X) = R(t,X)p(t,X)

Or equivalently:

r(t,X) =
∂t (R(t, X)p(t,X))

∂tp(t,X)
= R(t,X) + p(t,X)

∂tR(t,X)

∂tp(t,X)
(17)

For the recovery to maturity to be valid, the following partial derivative equation must be satisfied:

0 ≤ R(t,X) + p(t,X)
∂tR(t,X)

∂tp(t,X)
≤ 1 (18)

This condition is generally not satisfied by current representations of R(t,X). In particular, the
recovery to maturity defined in [1]:

R(t,X) = 1 − p̃(t,X)

p(t,X)

with p̃(t,X) = Φ
(

Φ−1(ept)−
√

ρX√
1−ρ

)
and p̃t = (1 − RMkt)pt, does not satisfy this condition.

Proof. Starting from (18) we have:

R(t,X) + p(t,X)∂tR(t,X)
∂tp(t,X) ∈ [0, 1]

⇔ ∂tep(t,X)
∂tp(t,X) ∈ [0, 1]

⇒ ∂tp̃(t,X) ≤ ∂tp(t, X)

⇒
(
X −√

ρΦ−1(pt)
)2 ≤

(
X −√

ρΦ−1(p̃t)
)2

⇒ 0 ≤
(
Φ−1(pt) − Φ−1((p̃t)

) (
X −√

ρ
(

Φ−1(pt)+Φ−1(ept)
2

))

As p̃t < pt, as soon as X <
√

ρ
(

Φ−1(pt)+Φ−1(ept)
2

)
the previous equation will not be satisfied.

4.3. Recovery to Maturity in Practice.

Modelling the recovery to maturity is essentially motivated in practice by its simplicity and tractability
in terms of numerical implementation. This is strongly linked to the following assumption:

Hypothesis 4.2. In a factor model, the recovery to maturity depends only on {τ ≤ t} and X. In
particular, the recovery to maturity R(t, x) is a deterministic function of t and x.

Under (4.2.), the loss conditioned on the common factor X is simply given by:

lit|X ∼ (1 − Ri(t,X))pi(t,X)

It is important to note at this stage that without (4.2.), a recovery to maturity approach would be
significantly more difficult to implement. It is also not clear that it would be an efficient approach
anymore.
This critical assumption has very important consequences. Combined with the no-arbitrage conditions
derived in the previous section, it leads to the following result:

8
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Proposition 4.3. Under (4.2.), the only valid recovery to maturity is R(t,X) = RMkt.

Remark 4.4. This implies that under (4.2.) the spot recovery itself is deterministic.

Proof. By definition, for k ≥ 0 we have:

∫ t

0

E
[
rk
τ |τ = t,X

]
dp(t,X) = Rk(t,X)p(t,X)

And hence:

E [rτ |τ = t,X ] = R(t,X) + p(t,X)
∂tR(t,X)

∂tp(t, X)

E
[
r2
τ |τ = t, X

]
= R2(t,X) + 2R(t,X)p(t, X)

∂tR(t,X)

∂tp(t,X)

Applying the conditional Jensen inequality for the function: x → x2 leads to:

E
[
r2
τ |τ = t,X

]
≥ E [rτ |τ = t, X ]

2

⇔ R2(t,X) + 2R(t,X)p(t,X)∂tR(t,X)
∂tp(t,X) ≥

(
R(t,X) + p(t,X)∂tR(t,X)

∂tp(t,X)

)2

⇔ 0 ≥ p2(t,X)
(

∂tR(t,X)
∂tp(t,X)

)2

⇔ ∂tR(t, X) = 0

Now, the (EL) condition reads:

∀µ, E

[
R(

√
1 − ρX +

√
ρµ)

]
= RMkt

Let F (u) = E

[
e
iu Y

√
ρ R

(√
1 − ρX +

√
ρY

)]
. F can be computed either by conditioning on Y or by

noticing that Z =
√

1 − ρX +
√

ρY is a standard gaussian random variable.

• On one hand:

F (u) = E

[
e
iu Y

√
ρ E

[
R

(√
1 − ρX +

√
ρY

)
|Y

]]
= RMkte−

1
2

u2

ρ

• On the other hand:
F (u) = e−

1
2

1−ρ
ρ

u
E

[
eiuZR(Z)

]

Therefore, we have:

E
[
eiuZR(Z)

]
= RMkte−

1
2 u2

Applying the inverse Fourier transform leads to R(x) = RMkt.

Working with a recovery to maturity is possible but the simplified assumption (4.2.) required to
compute the conditional variance introduces arbitrage in time. One way to get around this issue is to
start from a recovery to maturity definition and define the loss process as:

lt = (1 − r(t,X))1{τ≤t}

with r(t, X) = R(t,X) + p(t,X)∂tR(t,X)
∂tp(t,X) . We preserve the tractability of the conditional expected loss

computation as :
lt(X) = (1 − R(t, X))p(t,X)

However, the variance term now requires some work and the gain compared to the spot recovery formu-
lation is not guaranteed.
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5. A Specific Form for the Spot Recovery Rate.

In this section, we specify the spot recovery as a simple function of the common factor, which provides
additional tractability. The calibration and practical implementation of the model is then discussed in
details.

5.1. Conditional Normal Spot Recovery.

The spot recovery is defined as
ri(t,X) = Φ (αρX + βi(t)) (19)

This choice is motivated by at least three fundamental properties:

• r ∈ [0, 1] and is a continuous function of t and X.

• The dependency in ρ is controlled by αρ. In particular, αρ = 0 corresponds to the constant recovery
case, while the spot recovery will convergence to a Dirac function as αρ → +∞.

• The resulting modelling framework is very tractable. In particular, closed forms can be derived
for the moments of the cumulated loss, and for the calibration to the individual expected loss.

It is sometime more convenient to adopt the following equivalent formulation:

ri(t, X) = Φ

(
γρ

(
X −√

ρΦ−1(pi(t))√
1 − ρ

)
+ δi

)
(20)

or with the notations defined in the previous section:

r(x, y) = r

(
y −√

ρx√
1 − ρ

)

= Φ

(
γρ

(
y −√

ρx√
1 − ρ

)
+ δ

)

The parameters for the two specifications are directly linked by:

{
αρ = γρ/

√
1 − ρ

βi(t) = δi − γρ

√
ρ

1−ρ
Φ−1 (pi(t))

We will use either formulation of the spot recovery function in the following sections, depending on which
is more convenient. Note that both are strictly equivalent.

5.2. Calibration to Credit Default Swaps.

As part of the modelling approach, the conditional probability arising from the choice of a Gaussian
copula are preserved following the introduction of stochastic recovery.
Then, calibrating the initial credit spread curve is strictly equivalent to calibrating the model to the ex-
pected loss curve. This ensures that standard CDS pricing is preserved for any par and off par contract.
With the specific form of the spot recovery (19), this can be done using a simple closed form.

Proposition 5.1. For a spot recovery function defined by (19), the (EL) condition is equivalent to





δ = Φ−1
(
RMkt

i

)√
1 + γ2

ρ

βi(t) = Φ−1
(
RMkt

i

)√
1 + (1 − ρ)α2

ρ − αρ
√

ρΦ−1 (pi(t))

10
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Proof. As detailed in the previous section, the (EL) condition is given by

E

[
ri

(
t,
√

ρΦ(pi(t)) +
√

1 − ρX
)]

= RMkt
i

Given the equivalent form (20) of the spot recovery, this is equivalent to:

E [Φ (γρX + δ)] = RMkt
i

Using the fact that (see e.g. [2])

E [Φ (γρX + δ)] = Φ


 δ√

1 + γ2
ρ




leads to the result for δ.

5.3. Model Properties and Default Risk.

5.3.1. Basic Properties.
Given (19), it is clear that any value of recovery rate in [0, 1] is attainable. The main properties of the
recovery function are driven by the coefficient αρ, which depends on the actual default correlation. We
require αρ to have the following properties:





∀ρ ∈ [0, 1], αρ ≥ 0
limρ→0 αρ = 0

limρ→1 αρ = +∞

This ensures that for high levels of systemic risk, i.e. very negative values of the common factor X, the
recovery will be low. It implies as well that the model will converge to constant recovery as default times
become independent, and that conversely, the recovery function converges to a Dirac function as they
become perfectly correlated.
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Figure 1: Spot Recovery and Conditional Probability Functions

Figure (1) gives an idea of the typical shape of the recovery rate as a function of the common factor.
The conditional probability function is provided as well for comparison.

11



A Spot Stochastic Recovery Extension of the Gaussian Copula

5.3.2. Time Consistency and Default Risk.
A critical element of risk management for portfolio Credit Derivatives in the current market conditions
is the monitoring and hedging of default risk. Default risk is also one of the main measures of portfolio
risk used for reserves, regulatory risk reporting and capital allocation. It is therefore a fundamental
requirement for a pricing model to be continuous if an issuer goes smoothly to default. This notion of
continuity on default can be defined more precisely as follows.

Definition 5.2. Continuity on Default
Introducing the following notations:

• P (T, K1,K2) is the price of a given CDO of maturity T , initial strikes K1 and K2 on the initial
portfolio.

• P−i0(T, K−i0
1 ,K−i0

2 ) is the price of the same CDO after the realised default of issuer i0 - at market
recovery rate RMkt

i0
- for which the strikes and portfolio have been adjusted.

Continuity on default is defined as:

lim
pi0 (0+)→1

P (T, K1,K2) = P−i0(T, K−i0
1 ,K−i0

2 )

In practice, there is still uncertainty on the recovery until the auction process is completed. Continu-
ity in default does not suggest that there is no uncertainty on recovery once a given issuer has defaulted.
It simply outlines that this uncertainty cannot be modelled adequately using the dependency of the
recovery with the common factor - which drives the dependency structure of default times.

As shown in Section 3, the spot recovery model has the specific property that

∀x, lim
p(0+)→1

r(t, x) = r(0+, x)

which implies that continuity on default will be guaranteed as soon as

∀x, lim
p(0+)→1

r(0+, x) = RMkt (21)

It is interesting to note that continuity on default can only be achieved because of the flexibility of
the spot recovery model w.r.t the time dimension. Indeed, there is no condition on the evolution of
r(t, x) w.r.t to t, which allows to specify a consistent behaviour at t = 0+ for the model to satisfy default
continuity.

5.4. Practical Implementation.

As seen in section 3, there are two equivalent ways to compute the cumulated loss conditional moments.
They correspond to two different approaches of spot recovery modelling, which we can categorized as
representations in space or in time.
As discussed in section 2.3.2, the loss distribution is fully defined by the conditional expected loss and
squared expected loss when using the conditional normal approximation. We will therefore focus on the
numerical computation of these two quantities in the following sections.

5.4.1. Representation in the Space Dimension.
We recall from (13):

rτ1{τ≤t} ∼ r(
√

ρX +
√

1 − ρY, X) 1n
Y ≤Φ−1(pt)−

√
ρX

√

1−ρ

o
Proposition 5.3. The conditional moments of the cumulated loss are respectively given by:

lt(X) = Φ2 (c(t,X), d(X),Θρ)
l2t (X) = Φ3 (c(t,X), d(X), d(X),Σρ)

12
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with 



c(t, X) =
Φ−1(pt)−

√
ρX√

1−ρ

d(X) = −γρ

√
1−ρX+

√
1+γ2

ρΦ−1(RMkt)√
1+γρ2ρ

Θρ = − γρ
√

ρ√
1+γ2

ρρ

Σρ =




1 Θρ Θρ

1 Θ2
ρ

1




Proof. Given the previous definition of the conditional recovery, the conditional expected loss is given
by

lt(X) = EX

[(
1 − Φ(γρ

√
1 − ρX + Φ−1

(
RMkt

i

) √
1 + γ2

ρ − γρ

√
ρY )

)
1n

Y ≤Φ−1(pt)−
√

ρX
√

1−ρ

o]

= EX

[
Φ

(
γρ

√
ρY + d(X)

√
1 + γ2

ρρ
)
1{Y ≤c(t,X)}

]

= Φ2 (c(t,X), d(X);Θρ)

using the fact that (see e.g. [2])
∫ c

−∞
Φ(ax + b)ϕ(x)dx = Φ2

(
b√

1 + a2
, c;

−a√
1 + a2

)

In a similar way, the conditional squared expected loss is computed as

l2t (X) = EX

[(
1 − Φ(γρ

√
1 − ρX + Φ−1

(
RMkt

i

) √
1 + γ2

ρ − γρ

√
ρY )

)2

1n
Y ≤Φ−1(pt)−

√
ρX

√

1−ρ

o]

= EX

[
Φ

(
γρ

√
ρY + d(X)

√
1 + γ2

ρρ
)2

1{Y ≤c(t,X)}

]

Defining Y1 and Y2 as 



Y1 = ΘρY + 1√
1+γ2

ρρ
ε1

Y2 = ΘρY + 1√
1+γ2

ρρ
ε2

where ε1 and ε2 are independent, N (0, 1) random variables.

EX

[
1{Y1≤d(X)}1{Y2≤d(X)}1{Y ≤c(t,X)}

]
= EX

[
E

[
1{Y1≤d(X)}1{Y2≤d(X)}1{Y ≤c(t,X)} |Y

]]

= EX

[
Φ

(
γρ

√
ρY + d(X)

√
1 + γ2

ρρ
)2

1{Y ≤c(t,X)}

]

= l2t (X)

= Φ3 (c(t,X), d(X), d(X); Σρ)

This approach relies heavily on the bivariate and trivariate Gaussian distributions which can be
computationally intensive. Approximations exist for both (see e.g. [6]), but one might as well consider
the alternative representation in the time dimension as it might be a more tractable solution.

5.4.2. Representation in the Time Dimension.
The representation in the time dimension uses the fact that the cumulated loss moments can be written
as integrals over time that are easy to discretise. In fact,

lki (t,X) =

∫ t

0

(1 − ri(s,X))
k
dpi(s,X)

≃
J−1∑

j=0

(1 − ri(tj+1, X))
k
(pi(tj+1, X) − pi(tj , X)) (22)

13
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where (tj)j=0,..,J is a discretisation of [0, t] with t0 = 0 and tJ = t.

For each time step [tj , tj+1], the value of βi(tj+1) is computed to ensure the absence of bias for the
expected loss. This can be done easily using the following result.

Proposition 5.4. For the interval [tj , tj+1], the value of βi(tj+1) is taken as solution of the following
equation:

RMkt
i (pi(tj+1) − pi(tj)) = E [Φ (αρX + βi(tj+1)) (pi(tj+1, X) − pi(tj , X))]

= Φ2


 −αρ

√
ρ√

1 + α2
ρ

; Φ−1(pi(tj+1)),
βi(tj+1)√

1 + α2
ρ


 (23)

− Φ2


 −αρ

√
ρ√

1 + α2
ρ

; Φ−1(pi(tj)),
βi(tj+1)√

1 + α2
ρ




Proof. First, we note that

E [Φ (αρX + βi(tj+1)) (pi(tj+1, X) − pi(tj , X))] = A
(
Φ−1(pi(tj+1))

)
− A

(
Φ−1(pi(tj))

)

with

A (y) = E

[
Φ(αρX + βi(tj+1)) Φ

(
y −√

ρX√
1 − ρ

)]

Now we introduce the following auxiliary variables:





Y1 =

√
α2

ρ

1+α2
ρ
X +

√
1

1+α2
ρ
ε1

Y2 =
√

ρX +
√

1 − ρε2

where ε1 and ε2 are independent, N (0, 1) random variables.
Then, conditioning on X leads to

E


1(

Y1≤
βi(ti+1)√

1+α2
ρ

)1{Y2≤y}


 = E


E


1(

Y1≤
βi(ti+1)√

1+α2
ρ

)1{Y2≤y} |X







= A(y)

and as Y1 and Y2 are also N (0, 1) random variables, with correlation

< Y1, Y2 >=
−αρ

√
ρ√

1 + α2
ρ

this completes the proof.

From a practical implementation perspective, equation (22) can be computed efficiently by recursion
provided that the same time grid in used for all maturities at which the expected loss is required.

Equation (23) needs to be solved numerically, at each time step and for each underlying issuer, which
could potentially be time consuming. However, the (EL) condition given in section 5.2 provides a closed
form for β that could be used either directly or as an efficient first guess. This has a significant impact
in terms of performance.

14
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The implementation of the model used for practical analysis has proved to be reasonably fast. The
overhead of using a spot recovery model implies a computation time about 2x higher than for the
equivalent constant recovery approach. On a standard PC3, the computation time e.g. for the full
capital structure of iTraxx S9 5Y is ∼ 0.5s.

6. Model Properties and Numerical Results.

The spot recovery model presented in details in the previous section is essentially an extension of the
standard Gaussian copula approach to allow for consistent stochastic recovery. This implies that it can
be combined with a standard base correlation framework - see e.g. [5] for more details - which is still
widely used in the industry. In this section, we provide numerical examples of the flexibility of the model
for calibration, with a particular focus on the super senior part of the capital structure. Then we analyze
some of the model properties, such as the implied term structure of recovery and the continuity of the
model w.r.t default events.

We compare different model specifications, which we identify and define as:

• Constant Recovery

This corresponds to the standard case in which each names defaults with its market recovery:

ri(t, x) = RMkt
i , ∀t ≥ 0, ∀x

• Spot Recovery (1)

This first version of the model uses the same functional form for the recovery function for all
maturities. In particular, the variance of the recovery does not go to zero as the default probability
goes to one. This model specification is not continuous w.r.t default, as described in a previous
section. {

ri(t, x) = Φ (αρx + βi(t)) , ∀t ≥ 0
αρ = ρ

1−ρ

• Spot Recovery (2)

This second version of the model defines explicitly the recovery function at time t = 0+ to preserve
continuity in case of default; the simplest solution being to revert to constant recovery for this
case. For t > 0, the specification is identical to version (1).





ri(0
+, x) = RMkt

i

ri(t, x) = Φ (αρx + βi(t)) , ∀t > 0
αρ = ρ

1−ρ

6.1. Calibration to the Index Tranche Market.

Using the different model specifications, we calibrate iTraxx and CDX as of 11th March 2009.

iTraxx S9 Upfront Running Upfront Running Upfront Running
Index Maturity/Spread 5Y 200.0 7Y 184.0 10Y 179.0
0%-3% 6650 500.0 7000 500.0 7332 500.0
3%-6% 3475 500.0 4050 500.0 4439 500.0
6%-9% 0 890.0 0 900.0 0 901.7
9%-12% 0 442.5 0 467.5 0 529.4
12%-22% 0 151.0 0 160.0 0 174.8
60%-100% 0 29.4 0 31.1 0 39.3

Figure 2: iTraxx S9 Index Tranche Market - 11th March 2009

3Intel Core 2 Quad Q6600 @ 2.40Ghz
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CDX S9 Upfront Running Upfront Running Upfront Running
Index Maturity/Spread 5Y 285.0 7Y 257.0 10Y 217.0
0%-3% 8014 500.0 8212 500.0 8289 500.0
3%-7% 5597 500.0 6089 500.0 6316 500.0
7%-10% 2284 500.0 3059 500.0 3547 500.0
10%-15% 0 672.5 0 681.3 0 663.0
15%-30% 0 149.1 0 168.1 0 167.0
60%-100% 0 18.0 0 19.0 0 19.0

Figure 3: CDX S9 Index Tranche Market - 11th March 2009

Tables (2) and (3) summarize the market quotes for both indices and the corresponding market
tranches. We have included quotes for 60%-100% tranches but we will treat these separately as they are
not as standard and as liquid as the rest of the index tranches. However, they provide valuable market
information and a good benchmark to assess the calibration flexibility of the model.

The context is still one of a distressed market with the price for the 60%-100% tranches remaining
high. In particular, it is not possible to calibrate the standard index tranches using a constant recovery
model, even when excluding the super-senior tranches. The standard base correlation approach fails to
calibrate the senior tranches - 12%-22% and 15%-30% respectively for iTraxx and CDX.

iTraxx S9
Index Strike/Maturity 5Y 7Y 10Y 5Y 7Y 10Y 5Y 7Y 10Y
3% 45.9% 48.9% 52.6% 32.5% 34.4% 36.3% 33.0% 34.7% 36.5%
6% 62.2% 65.7% 72.9% 42.1% 43.9% 48.2% 42.8% 44.4% 48.4%
9% 63.6% 64.7% 69.8% 42.4% 42.1% 44.6% 43.4% 42.6% 44.8%
12% 69.8% 70.0% 72.8% 46.1% 44.9% 45.2% 47.2% 45.5% 45.4%
22% - - - 63.4% 62.9% 65.3% 65.3% 64.2% 65.9%
60% - - - 74.8% 76.4% 82.3% 84.4% 85.0% 90.3%

Constant Recovery Spot Recovery (1) Spot Recovery (2)

Figure 4: iTraxx S9 Base Correlation Surface - 11th March 2009

CDX S9
Index Strike/Maturity 5Y 7Y 10Y 5Y 7Y 10Y 5Y 7Y 10Y
3% 61.1% 65.7% 67.3% 40.3% 43.6% 44.3% 41.4% 44.3% 44.8%
7% 52.1% 56.7% 58.3% 33.6% 36.6% 37.1% 34.7% 37.2% 37.4%
10% 58.7% 60.8% 59.4% 36.7% 37.3% 35.4% 38.1% 38.0% 35.8%
15% 69.7% 71.8% 68.0% 42.0% 42.2% 38.3% 44.0% 43.3% 38.8%
30% - - - 72.2% 73.9% 69.3% 80.5% 80.6% 75.2%
60% - - - 65.5% 62.7% 62.7% 89.1% 83.2% 81.7%

Constant Recovery Spot Recovery (1) Spot Recovery (2)

Figure 5: CDX S9 Base Correlation Surface - 11th March 2009

Tables (4) and (5) give the base correlation surfaces for the different model specifications. First,
these results confirm that it is not possible to calibrate standard tranches using constant recovery. With
this assumption the senior tranches - 12%-22% and 15%-30% respectively for iTraxx and CDX - are
overpriced compared to market level.

Both versions of the spot recovery model are flexible enough to calibrate iTraxx and CDX, including
the 60%-100% tranches. As with other stochastic recovery models, the correlation smile is lower and
significantly flatter than in the constant recovery case. The two specifications have similar correlations
for the junior tranches whereas differences appear for the senior part of the capital structure. This is
directly linked to the particular choice for r(0+, x). Further analysis is provided in the sections below.
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6.2. Implied Term Structure of Recovery.

To illustrate the behaviour of the spot recovery function, we take one particular single name curve
of the iTraxx S9 index and sample the conditional expected loss function at different maturity dates for
both specifications of the spot recovery model. The same correlation is used for all maturities and both
parameterizations, with ρ = 40%.
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Figure 6: Conditional Expected Loss Profile - Spot Recovery (1)
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Figure 7: Conditional Expected Loss Profile - Spot Recovery (2)

Figures (6) and (7) display the evolution with maturity of the conditional expected loss as a function
of the common factor.

We can observe that the difference between the two profiles comes essentially from the specification of
the initial recovery function r(0+, x). Note that for the same level of correlation, the second specification
of the spot recovery model puts less weight in the extreme region, typically above 60% loss. This
is directly caused by the initial condition on the recovery, and explains the significant difference in
correlation when calibrating both models to the same index tranche market.
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6.3. Continuity on Default.

Continuity on default is defined in Section 5.3.2 as the continuity of the price function when going
smoothly to default.

Figures (7) and (8) provide numerical examples of default continuity. We take iTraxx S9 portfolio as
of 11th March 2009, and use the first issuer curve to simulate the behaviour to default. A flat correlation
set to 40% is used. We represent the difference between the final price P−i0(T, K−i0

1 ,K−i0
2 ) and the price

obtained with issuer i0 set to a given spread level. We choose to report the corresponding 3M default
probability, which is more useful in this particular case. We choose two different parts of the capital
structure with a 5Y equity tranche and a 5Y 12%-22% tranche. We report the difference in upfront
terms for the equity and in basis points for the senior tranche.
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Figure 8: Continuity on default - 0%-3% Tranche
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Figure 9: Continuity on default - 12%-22% Tranche
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We observe that the second version of the spot recovery model is continuous on default as expected.
The difference with the reference price goes to zero as the default probability goes to 1. However, the
first specification of the spot recovery is showing significant discontinuities on default, for both tranches,
with a particularly large difference for the equity tranche. As the correlation is kept constant, this is
only due to the recovery variance not converging to zero as the default probability goes to 1.
It is interesting to note that the two versions of the model have a very similar behaviour when default
probability remains below 20%. The standard constant recovery case is also represented to provide a
simple reference case.

7. Conclusion.

In this paper, we have presented a simple and tractable extension to the Gaussian copula framework
that allows for consistent stochastic recovery. The spot recovery rate has been introduced as a suitable
underlying for recovery modelling. General results have been derived, such as time consistency con-
ditions for spot recovery and recovery to maturity. We have shown in particular that existing model
specifications using the later are not time consistent.
The modelling framework is tractable and flexible. It can be calibrated to individual credit spread curves,
and is able to calibrate standard index tranche markets. Fundamental properties such as continuity on
default have been analyzed in details.

Further analysis would lead to an extension of the spot recovery model to more general forms of factor
models. More analysis would also be required to understand the true impact of stochastic recovery on
hedging, and on the pricing of other portfolio Credit Derivatives.
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